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Abstract

The possibilities of merging QED with the standard many-body perturbation the-
ory (MBPT) for atomic systems in a rigorous and systematic way are analysed. Time-
dependent MBPT, based on the time-evolution operator, a technique well developed
particularly in nuclear theory, is used and somewhat reformulated to be consistent with
the covariant QED formalism. An effective QED Hamiltonian, free from singularities,
is constructed. The procedure can be applied to degenerate and quasi-degenerate sys-
tems (extended model space), which is not possible with the standard QED technique
based upon the S -matrix formulation. To include in the model space closely lying en-
ergy levels, such as fine-structure levels, can have a drastic effect on the convergence
rate. The electron-electron interaction is investigated in detail, and it is shown that
it can be separated into irreducible multi-photon interactions, which in principle can
be iterated as in standard MBPT. Singularities do not appear, and a simple procedure
for evaluating residual finite contributions is described. Comparison is made with the
closely related Green’s-function technique. The procedure is presently being tested on
the fine-structure levels of He-like ions, the results of which will be published separately.

1 Introduction

Essentially there are two approaches to atomic many-body theory, the self-consistent and
the perturbative. The two approaches are complementary, and each has merits and short-
comings. The self-consistent technique of multi-configuration Hartree-Fock (MCHF) has
been developed to a high degree of sophistication, particularly by Charlotte Froese-Fischer
and her associates, and the technique has now become a general and efficient tool, which can
be used also by non-specialists. Our group in Göteborg has been working mainly with the
alternative perturbative approach, although also non-perturbative methods (coupled-cluster
approach) have been developed from this ansatz.

During the last decade there has been increasing interest in relativistic and quantum-
electrodynamical (QED) calculations on heavy and highly charged systems, due mainly to
the advent of new experimental techniques, such as storage rings and ion traps, which make
it possible to study such systems with high accuracy. For instance, the atomic g-factor for
hydrogen-like carbon has recently been measured using the ion-trap technique by the Mainz
group with an accuracy of 1 : 109 [1], verifying previous theoretical calculations from our
group of corresponding accuracy [2, 3].

In principle, it is possible to base atomic-QED calculations entirely upon QED, and this
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is the technique normally employed on simple systems. This procedure, however, is limited
to systems with only a few electrons. Another disadvantage with this approach is that
the QED calculations become very cumbersome already at second order and will be almost
prohibited beyond that order in the foreseeable future. For many systems, particularly
lighter ones, where the Coulomb interaction dominates, the convergence of a perturbative
approach is very slow. In MBPT, iterative and non-perturbative approaches have been
developed, which make it possible to include the dominating perturbations essentially to all
orders of perturbation theory. These approaches have been quite successful and frequently
used in atomic/molecular physics and quantum chemistry. It would be desirable to be able
to include some of these iterative ideas also into QED calculations. The work presented here
is an effort in this direction.

It is also of interest to be able to perform QED calculations on systems with more than
a few electrons. For instance, X-ray energies can now be obtained with such a high accuracy
that the QED effects are clearly visible [4]. The standard procedure today for atomic-QED
calculations on such systems is to perform the two calculations independently. After the
MBPT or SCF calculation has been completed, a ”QED correction” is added [5]. Such a
procedure is satisfactory up to a certain level, but it gives no way of gradually improving
the result. To go beyond that it will be necessary to merge the two approaches together
in a more systematic fashion. In recent time we have made certain progress along these
lines, and such a combined procedure, based upon the perturbative approach to many-body
theory, will be outlined in the present paper.

Most MBPT works on general systems are based upon the effective-Hamiltonian ap-
proach, i.e., the solution of the secular equation [6]

HeffΨα
0 = EαΨα

0 (α = 1, 2, . . . d). (1)

Heff is here an effective Hamiltonian, which has the important property that although it
operates only within a subspace of the Hilbert space of the system (the model space, D,
of dimensionality d), it generates the exact energies of the system, corresponding to the
parent states in the model space. In addition, the secular equation generates the correct
zeroth-order functions (ZOF) or parent states, Ψα

0 , which are eigenfunctions of the effective
Hamiltonian in the model space. After diagonalization of the effective Hamiltonian, the full
wave functions, Ψα, can be constructed from the ZOF’s by means of the wave operator or
Møller operator [7], Ω,

Ψα = ΩΨα
0 (α = 1, 2, . . . d), (2)

satisfying the equation
HΩ = ΩHeff , (3)

where H is the Hamiltonian of the system.

The equations above can be solved in a perturbative way by expanding the wave operator
order-by-order. Alternatively, the wave operator can be expanded by means of second quan-
tization in one-, two-, . . . body operators, which leads to the coupled-pair and coupled-cluster
approaches [6]. The equations can then be solved in a non-perturbative way, including cer-
tain types of excitations to all orders of perturbation theory. Such approaches have been
demonstrated to be quite efficient for many atomic and molecular as well as nuclear systems.

Most QED calculations performed for bound systems are based upon the S -matrix for-
mulation of QED and the adiabatic procedure of Gell-Mann–Low [8] and Sucher [9] to
eliminate the singularities. Although this procedure works well in many cases, it has sev-
eral limitations. Firstly, being based on the S -matrix, the procedure can only yield matrix
elements diagonal in energy. This implies that it cannot be applied to an extended model
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space with several (quasi-degenerate) eigenvalues. The fine-structure levels of light elements
is a good example of a quasi-degenerate case, and the inclusion of the closely lying levels in
the model space can here improve the convergence rate dramatically, as was clearly demon-
strated recently in a relativistic (non-QED) MBPT calculation on helium-like systems [10].
Furthermore, in the S -matrix formalism the singularities are eliminated by the adiabatic
process at the end of the calculation, which makes the evaluation of the residual finite parts
quite cumbersome beyond the lowest orders.

The procedure outlined in the present paper is based upon the time-evolution operator,
U(t, t0), which evolves the state forward in time,

Ψ(t) = U(t, t0)Ψ(t0). (4)

This is the basic tool in non-covariant perturbation theory, which has been applied in non-
QED calculations for a long time [11, 12]. In the present paper this procedure will be
modified to be applicable also to bound-state QED problems. This requires that the evolu-
tion operator is generalized to include forward as well backward time evolution, which makes
it possible to adopt the covariant Feynman approach. It will be shown that in this way an
effective QED Hamiltonian of the type (1) can be derived, applicable also to an extended
model space. This Hamiltonian is free from singularities. The singularities are eliminated
by means of a factorization procedure, similar to that developed in nuclear theory in the
1970’s, and which leads to a generalization to degenerate and quasi-degenerate systems of
the Gell-Mann–Low procedure. With the generalized form of the evolution operator the
procedure is made covariant, and this is an alternative to the Sucher modification, based
upon the S -matrix. Being based upon the covariant evolution operator rather than on the
S -matrix, makes it applicable also to quasi-degenerate systems.

Another difference from standard time-dependent perturbation theory is that in QED
also the interactions are time dependent, which will lead to residual finite contributions, when
the singularities are eliminated. A simple procedure for evaluating these finite contributions
is described. Since the operators involved are free from singularities, the adiabatic switching
can be performed independently for each interaction, leading to exact energy conservation
at each vertex.

It will also be shown that the multi-photon interaction between the electrons can be
separated into irreducible one-, two-, . . . photon interactions [13],

V Irred
21 = V

(1)
21 + V

(2)
21 + . . . (5)

These irreducible multi-photon interactions are free from singularities and can in princi-
ple be iterated as in the standard MBPT procedure. The intermediate states between
the irreducible interactions are restricted to the complementary space (outside the model
space), which makes the entire procedure non-singular. Including all irreducible two-body
interactions to all orders is equivalent to solving the complete Bethe-Salpeter equation [14].
Iterating the one-photon interaction corresponds to the ladder approximation of this equa-
tion. The one-photon interaction obtained here is an alternative to the so-called Mittleman
potential [15].

The procedure introduced here is closely related to the two-times Green’s-function tech-
nique, developed and applied by Shabaev and coworkers [16, 17, 18], and a relation between
the two techniques will be shown. In a forthcoming paper the procedure will be further
developed and presented together with numerical illustrations [19].
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2 Time-independent many-body perturbation theory

2.1 General

In this section we shall briefly outline the time-independent MBPT as a background for
the time-dependent treatments that will follow. MBPT normally starts by partitioning the
Hamiltonian [6]

H = H0 + H ′ (6)

of the system into an unperturbed Hamiltonian,

H0 =
N∑

i=1

hS(i); hS = − h̄2

2m
∇2 − e2Z

4πε0r
+ U(r), (7)

composed of single-particle Schrödinger Hamiltonians, hS , and a perturbation

H ′ =
N∑

i<j=1

e2

4πε0rij
−

N∑

i=1

U(ri). (8)

N is the number of electrons of the system, and U is a single-electron potential that rep-
resents (in an approximate way) the interaction from the remaining electrons. (In the
following, we shall employ relativistic units m = c = ε0 = h̄ = 1; e2 = 4πα, where α is the
fine-structure constant.)

The eigenfunctions of H0 are assumed to be known

H0Φi = E0
i Φi,

and we search the solutions of the full Schrödinger equation

HΨα = EαΨα.

The basis functions Φi can be expressed in terms of antisymmetrized combinations (Slater
determinants) of single-electron orbitals, φi(x), which are eigenfunctions of hS

hS φi(x) = εi φi(x).

We select a sub-space (D) of dimensionality d of the complete Hilbert space of the system,
called the model space, which is spanned by the eigenfunctions of H0 (Slater determinants)
corresponding to one or several eigenvalues. We are interested in the corresponding full
wave functions, which we can express by means of a wave operator Ω, the same for the
entire model space (2),

Ψα = ΩΨα
0 (α = 1, 2, . . . d). (9)

The functions Ψα
0 , which lie in the model space, are the parent states and will be referred

to as the correct zeroth-order wave functions (ZOF). It should be noted that these functions
need in the general case not be identical to any of the basis functions Φi we have chosen
initially.

We separate the single-electron orbitals of the atom into core, valence and excited orbitals.
The core shells are filled (closed) in the model space, while the valence shells are normally
unfilled (open) - but also filled shells can be treated as valence shells. The excited orbitals
are unoccupied in the model space. A model space is said to be complete, if it contains all
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determinants that can be formed from the orbitals of the valence shell(s) - in addition to
the closed-shell electron core.

The wave operator satisfies the generalized Bloch equation [20, 21, 6, 22]

[Ω,H0]P = (H ′Ω− ΩH ′
eff)P, (10)

where H ′
eff is the effective perturbation, related to the full effective Hamiltonian by

Heff = PH0P + H ′
eff , (11)

P is the projection operator for the model space, and we introduce the corresponding pro-
jection operator, Q, for the complementary space

P + Q = 1. (12)

Although it acts only within the model space, the effective Hamiltonian generates the exact
energies of the system (1), corresponding to the parent states in the model space,

HeffΨα
0 = EαΨα

0 (α = 1, 2, . . . d). (13)

In addition, the eigenfunctions of Heff are the ZOF’s. The Bloch eqn (10) can also be given
a more compact form (3), without using the partitioning (6),

HΩP = ΩHeff . (14)

Assuming that the wave operator has an inverse, we can then express the effective Hamli-
tonian as

Heff = PΩ−1HΩP. (15)

Most MBPT works are based on the so-called intermediate normalization, where
〈Ψα

0 |Ψα〉 = 1, which implies that

Ψα
0 = PΨα and PΩP = P (16a)

and the effective Hamiltonian and the effective perturbation get the form

Heff = PHΩP and H ′
eff = PH ′ΩP (16b)

This gives the Bloch eqn (10) the form

[Ω,H0]P = (H ′Ω− ΩPH ′Ω)P (16c)

By expanding the wave operator in a perturbation series, this leads to a general form of
the Rayleigh-Schrödinger perturbation expansion, valid also for an extended model space.

In the general case the ZOF’s are not known from the start. The procedure is then first
to evaluate the effective Hamiltonian matrix in the model space to the desired accuracy. If
there are several states in the model space of the same symmetry, the effective Hamiltonian
will also have non-diagonal elements. Diagonalizing the matrix then yields the corresponding
energies and the ZOF’s. If the wave functions are needed, they can subsequently be obtained
by evaluating the wave operator by means of the Bloch eqn (10) and applying (9).

The relation (16a) implies that with the intermediate normalization all contributions
to Ω beyond the zeroth order lie in the Q space. It also follows in this case from the
order-by-order expansion of (16c) that all intermediate states will lie in the Q space.
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2.2 Linked-diagram theorem

It is convenient to express the operators in second-quantized form, i.e., for one- and two-body
operators [6]

f =
∑

i,j

c†i 〈i|f |j〉 cj ; g =
∑

i,j,k,l

c†i c
†
j 〈ij|g|kl〉 clck. (17)

where c†i , ci are electron creation and absorption operators, respectively, satisfying the usual
anticommutation relations for fermions

{ci, cj} = {c†i , c†j} = 0; {c†i , cj} = δij . (18)

By means of Wick’s theorem the terms appearing in the perturbation expansion can then
be conveniently represented by diagrams of Feynman or Goldstone type. A free line of a
diagram is associated with an uncontracted creation/absorption operator, and it follows that
an operator acting on the model space (to the left or to the right) can have no other free
orbital lines than valence lines on that side. The diagrams of the effective Hamiltonian can
have no other free lines than valence lines whatsoever (see Fig. 1). Such diagrams are said
to be closed. A diagram which is not closed is open.

Heff = 1 + P H0 P + ������
������

������
������

Figure 1: The effective Hamiltonian is (apart from the H0 part) represented by linked diagrams that are
closed, i.e., with no other free orbital lines than valence lines. (Lines with double arrows represent valence
orbitals and those with single arrow valence or non-valence orbitals.) The wave operator is - apart from
unity - represented by linked diagrams that are open, i.e., with the final state in the complementary space.
All free orbital lines of the wave operator must not be valence lines. (There may also be core lines, not
shown, which represent excitations from the closed-shell electron core.)

In the diagrammatic representation the wave operator and the effective Hamiltonian con-
tain diagrams with closed parts, disconnected from the rest of the diagram. Such diagrams
are said to be unlinked, and diagrams free from such parts are linked. (It should be ob-
served that with this definition a wave-operator diagram can consist of several disconnected
parts and still be linked, if all parts are open.) It can be shown that all unlinked diagram
can be made to disappear from the representation of the wave operator and the effective
Hamiltonian, provided certain exclusion-principle-violating diagrams (EPV) are included.
This is the linked-diagram theorem (LDT), first demonstrated for closed-shell systems by
Brueckner [23] and Goldstone [24] and later extended to the open-shell case with a complete
model space by Brandow [25] and others. In the latter case the LDT can be expressed by
means of the Bloch eqn (10) as [6, 22]

[Ω,H0]P = (H ′Ω− ΩH ′
eff)LP. (19)

The second term on the RHS primarily has the effect of eliminating the unlinked diagrams
originating from the first term. Some linked parts remain, though, which correspond to
the so-called ”folded” diagrams, first introduced in time-dependent perturbation theory by
Morita [26] and later extensively discussed by Kuo et al. [12], Brandow [25] and others. It has
been shown by Mukherjee [27, 22] that the LDT can be extended also to incomplete model
spaces, if the intermediate normalization condition is abandoned. We shall not consider such
cases here but restrict ourselves to complete model spaces, spanned by functions of one or
several eigenvalues, i.e., to complete degenerate and quasi-degenerate model spaces.
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3 Time-dependent many-body perturbation theory.
Closed-shell case.

The quantum field theory (QFT), as developed in the late 1940’s and in the 50’s by Feynman,
Schwinger, Tomanaga, Dyson and others, is based upon time-dependent Green’s-function and
time-evolution-operator techniques [28, 29]. Such techniques have later been extensively used
also in non-QFT many-body problems in different fields of physics, particularly for extended
systems (see, e.g., [30, 31, 32]). These treatments, however, do not address the particular
degeneracy problem, occurring for bound-state systems in atomic/molecular and nuclear
physics. Generalization to such systems was done later in the 1960’s and 70’s, particularly
in nuclear physics. In order to be able to merge the QED and MBPT procedures, it will
be necessary to rely upon time-dependent techniques. For that reason we shall in the next
two sections consider time-dependent many-body theory in the non-relativistic limit, i.e.,
with time-independent perturbations. In section 5 we shall extend the treatment to time-
dependent interactions and a covariant formulation.

We consider first the case with a single reference state (closed-shell system), which means
that the zeroth-order wave functions (ZOF), Ψ0 = Φ, is known from the start,

H0Φ = E0Φ and HΨ = EΨ. (20)

The Hamiltonian is partitioned as before (6), H = H0 + H ′. The perturbation H’ is time-
independent but we add an adiabatic damping factor

H ′ → H ′ e−γ|t|, (21)

where γ is a small positive constant, which eventually will go to zero. This has the effect
that the perturbation is turned on and off smoothly, so that H → H0 and Ψ → Φ, when
t → ±∞.

We shall work in the interaction picture, which means that the operators (OS) and
wave functions (ΨS(t)) in the conventional Schrödinger (or Dirac) picture are transformed
according to

OI(t) = eiH0t OS e−iH0t; ΨI(t) = eiH0t ΨS(t). (22)

The time-dependent Schrödinger equation then takes the form

i
∂

∂t
ΨI(t) = H ′

I ΨI(t), (23)

which leads to the implicit formula [28, 30]

ΨI(t) = ΨI(t0)− i
∫ t

t0

dt′ H ′
I(t
′) ΨI(t′)

or
ΨI(t) = Uγ(t, t0) ΨI(t0), (24)

where

Uγ(t, t0) = 1 +
∞∑

n=1

(−i)n

∫ t

t0

dtn

∫ tn

t0

dtn−1 . . .

∫ t2

t0

dt1

×H ′
I(tn)H ′

I(tn−1) . . . H ′
I(t1)e

−γ(|t1|+|t2|...+|tn|)

7



is the (forward) time-evolution operator. It can also be expressed

Uγ(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

dtn

∫ t

t0

dtn−1 . . .

∫ t

t0

dt1

×T [H ′
I(tn) H ′

I(tn−1) . . .H ′
I(t1)] e

−γ(|t1|+|t2|...+|tn|), (25)

where T represents the Wick time-ordering operator. (We shall work entirely in the inter-
action picture in the following and suppress the subscripts I.)

The evolution operator can be represented by means of diagrams in a similar way as
operators in time-independent perturbation theory. (As a matter of fact, the diagrammatic
representation in MBPT was first developed in this context.)

Gell-Mann and Low [8] have shown that if the limit of

|Ψ̃〉 =
|Ψ〉
〈Φ|Ψ〉 =

Uγ(0,−∞)|Φ〉
〈Φ|Uγ(0,−∞)|Φ〉 (26)

exists as γ → 0, then it represents an exact eigenfunction of the full Hamiltonian [30, p.
61], [28, p. 336],

H
|Ψ〉
〈Φ|Ψ〉 = E

|Ψ〉
〈Φ|Ψ〉 . (27)

The notation Uγ(0,−∞) is a short-hand notation for the limit
Uγ(0,−∞) = limt0→−∞ Uγ(0, t0). (This limiting process is analysed in detail in several
standard texts, e.g., [33, 11]). In addition, the limit γ → 0 is always understood.

It should be observed that the numerator and the denominator in (26) become separately
singular as γ → 0, due to the appearance of unlinked diagrams. These are eliminated in the
ratio, which therefore remains regular in this limit.

By operating on (27) by 〈Φ| from the left (and removing the H0 part), we get the energy
shift due to the perturbation

∆E = E − E0 =
〈Φ|H ′|Ψ〉
〈Φ|Ψ〉 =

〈Φ|H ′ Uγ(0,−∞)|Φ〉
〈Φ|Uγ(0,−∞)|Φ〉 . (28)

By means of (23) this can also be expressed

∆E = i
[

∂

∂t
ln 〈Φ|Uγ(0,−∞)|Φ〉

]

t=0

. (29)

The linked-diagram theorem mentioned above can (for a non-degenerate model space)
in the time-dependent formulation be expressed [32]

〈Φ|Uγ(t, t0)|Φ〉 = exp〈Φ|Uγ(t, t0)L|Φ〉, (30)

where the exponent on the rhs contains only linked diagrams, as previously defined. Inserted
into (29), this yields the important relation

∆E = i
[

∂

∂t
〈Φ|Uγ(0,−∞)L|Φ〉

]

t=0

. (31)

Since the operator Uγ(t,−∞)L is regular as γ → 0, we can here leave out the subscript γ.
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Alternatively, the energy shift can be expressed [28, 30]

∆E = iλγ
〈Φ| ∂

∂λUγ(0,−∞)|Φ〉
〈Φ|Uγ(0,−∞)|Φ〉 (32)

by introducing a parameter λ in the Hamiltonian, H = H0 + λH ′. This formula has been
modified by Sucher [9] to

∆E = i
1
2
λγ
〈Φ| ∂

∂λUγ(−∞,−∞)|Φ〉
〈Φ|Uγ(0,−∞)|Φ〉 , (33)

which makes it possible to base the calculation on the covariant scattering operator rather
than the evolution operator. This is the standard procedure used in bound-state QED
calculations. In section 5 we shall develop an alternative procedure by means of the covariant
form of the evolution operator.

The expression (31) can also be written, again using (23),

∆E = 〈Φ|H ′ Uγ(0,−∞)L|Φ〉. (34)

Comparing this with the corresponding (intermediate-normalization) expression in time-
independent perturbation theory,

∆E = 〈Φ|H ′|Ψ〉 = 〈Φ|(H ′Ω)L|Φ〉, (35)

we see that the wave operator is represented by the linked, open part of the evolution operator
(also including unity) [28, p. 326], [11, p. 319]

Ω = U(0,−∞)QL. (36)

In the next section we shall extend this analysis to open-shell systems.

4 Time-dependent many-body perturbation theory.
Open-shell case.

The original treatment of Brueckner and Goldstone as well as the Gell-Mann–Low proce-
dure is limited to the case of a single reference state and therefore not directly applicable to
general bound-state problems with degenerate (or quasi-degenerate) reference states (open-
shell systems). The first attempt to generalize the procedure to the more general case was
made by Bloch-Horowitz [34] and Morita [26], but these generalizations were not complete.
More complete time-dependent formulations of MBPT were made in the 1970’s by several
groups [12, 35, 36, 37]. In the present section we shall review this (non-covariant) treat-
ment and in the next section we shall indicate how this can be generalized to a covariant
formulation.

In the non-degenerate case (closed-shell system) considered in the previous section, sin-
gularities appear in diagrams that are unlinked, i.e. with one or several closed parts discon-
nected from the rest of the diagram. In the degenerate case (open-shell system) singularities
may appear also for connected diagrams, when a model-space state appears as an inter-
mediate state. Such a diagram is referred to as reducible.1 Irreducible diagrams have no
intermediate states in the model space and are free from singularities.

1Note that we shall later use the concepts reducible and irreducible in a somewhat different sense in
connection with the multi-photon interactions; see also Eq. 5.
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Uγ(0,−∞) = 1 + ������
������

Q ������
������

+ ������
������

Q ������
������

Q ������
������

+ · · ·

+ ���
���

Q ������
������

+ ���
���

Q ������
������

Q ������
������

+ · · ·
Figure 2: Graphical representation of the evolution operator for open-shell systems. The top row represents
the closed part, with the final state in the model space, and the bottom row the open part, with the final
state in the complementary space. At least one of the outgoing lines of the open part must be non-valence.
The boxes represent irreducible diagram parts with no intermediate states in the model space (Q-box). The
states between the Q-boxes lie in the model space. Diagrams with several Q-boxes are reducible.

Generally, a connected evolution-operator diagram can be expressed as a string of irre-
ducible boxes, ”Q-boxes”, separated by states in the model (P) space, as illustrated in Fig.
2 [12]. The irreducible part of the evolution operator is the analogue of the linked part in
the non-degenerate case, and we shall denote it by Uγ(0,−∞)L. It can be represented by a
single (closed or open) Q-box, apart from unity, as depicted in Fig. 3. (For simplicity, we
restrict the discussion here to two-body effect, represented by diagrams with two incoming
valence lines.) We also introduce

Uγ(0,−∞)PL P = P Uγ(0,−∞)L P, (37a)

which is the closed part and

Uγ(0,−∞)QL P = [1 + QUγ(0,−∞)L] P (37b)

the open part of the irreducible evolution operator, including unity.

Uγ(0,−∞)L = 1 + ������
������

Q ������
������

+ ���
���

Q ������
������

Uγ(0,−∞)PL = 1 + ������
������

Q ������
������

Uγ(0,−∞)QL = 1 + ���
���

Q ������
������

Figure 3: Graphical representation of the irreducible part of the evolution operator (top row) and its closed
and open parts. All these parts are free from singularities. (C.f. Fig. 1.) For convenience we include the
unity operator also in the open part.

It can be shown that the evolution operator can be factorized according to [12, 35, 36]

Uγ(0,−∞)|i〉 =
∑

j∈D

Uγ(0,−∞)QL |j〉 〈j|Uγ(0,−∞)|j〉

or
Uγ(0,−∞)P = Uγ(0,−∞)QL P Uγ(0,−∞)P. (38)

Uγ(0,−∞)QL is regular as γ → 0, and all singularities of the evolution operator are contained
in the closed part, P Uγ(0,−∞) P . This factorization is illustrated in Fig. 4. (Diagram parts
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with no free valence lines can be factorized out in a separate way, and we do not consider
them further here [12]). It should be noted that in the time-ordered representation we
consider in this section, the factorization process also generates ”folded” diagrams, which
compensate for the difference in the time-orderings. These are left out here. Later, in
the covariant QED formalism we shall work with Feynman diagrams containing all time-
orderings, and folded diagrams of this kind will not appear. Furthermore, it should be noted
that the folded diagrams that appear here are of different origin from those appearing in
MBPT - although there may be some relation [6].

Uγ(0,−∞) =( 1 + ���
���

Q ������
������

) x ������
������

Uγ ������
������

Figure 4: Illustration of the factorization of the evolution operator (38). The smaller box represents the
irreducible Q-box and the larger box the closed part of the evolution operator, shown in the top line of
Fig. 2.

Kuo et al.[12] have shown that functions |φα〉, lying in the model space, can be con-
structed so that

|Ψ̃α〉 =
Uγ(0,−∞)|φα〉

〈φα|Uγ(0,−∞)|φα〉 =
Uγ(0,−∞)QL P Uγ(0,−∞)|φα〉

〈φα|Uγ(0,−∞)|φα〉 (39)

are eigenfunctions of the full Hamiltonian, H,

H|Ψ̃α〉 = E |Ψ̃α〉 (α = 1, 2, . . . d),

which is a generalization to degenerate systems of the Gell-Mann–Low relation (26). The
eigenvalue equation can be written

H Uγ(0,−∞)QL |Ψ̃α
0 〉 = Eα Uγ(0,−∞)QL |Ψ̃α

0 〉

with

|Ψ̃α
0 〉 =

P Uγ(0,−∞)|φα〉
〈φα|Uγ(0,−∞)|φα〉 . (40)

By operating on this equation by P from the left, we obtain

PHUγ(0,−∞)QL|Ψ̃α
0 〉 = EαPUγ(0,−∞)QL|Ψ̃α

0 〉 = Eα|Ψ̃α
0 〉, (41)

since PUγ(0,−∞)QL = P according the definition (37b). Equation (41) is of the form of
the secular equation (1, 13),

Heff |Ψ̃α
0 〉 = Eα|Ψ̃α

0 〉.
Thus, we have found expressions for the effective Hamiltonian in the general (quasi-)degenerate
case

Heff = PHUγ(0,−∞)QLP = PH0P + PH ′ Uγ(0,−∞)QLP. (42a)

H ′
eff = PH ′ Uγ(0,−∞)QL P. (42b)

This is the analogue of the relation (34) in the non-degenerate case. The functions |Ψ̃α
0 〉 are

the ZOF’s, |Ψ0
α〉. Since Uγ(0,−∞)QL is regular as γ → 0, we can leave out the subscript

γ. Using (23) we can also express the effective perturbation as [35]

H ′
eff = P

[
i
∂

∂t
U(t,−∞)PL

]

t=0

P, (43)

11



which is the analogue of (31) in the non-degenerate case. This is a key equation for our
procedure. Later we shall indicate that it will be valid also in the covariant treatment of
the next section. It should be noted that the effective Hamiltonian (42b) is closed by the
perturbation H ′. Therefore, it is the closed part of the evolution operator that contributes
in the form (43).

By comparing (42a) with the time-independent form of the effective Hamiltonian in
intermediate normalization (16b), Heff = PHΩP , we find in analogy with (36) that the
wave operator can be identified with the open, irreducible part of the evolution operator
(including unity)

Ω = U(0,−∞)QL. (44)

5 Relativistic many-body perturbation theory and QED

5.1 No-virtual-pair approximation

Relativistic many-body perturbation theory (RMBPT) and quantum-electro-dynamics(QED)
are tightly connected and have to be considered together. One early primitive starting point
for RMBPT was the non-relativistic Hamiltonian (6-8) with the Schrödinger single-electron
Hamilton ian replaced by the corresponding Dirac operator

H0 =
N∑

i=1

hD(i); hD = −α · p + βm− e2Z

4πr
+ U(r). (45)

This suffers from problems due to the appearance of the negative energy states of the Dirac
Hamiltonian, the Brown-Ravenhall desease [38]. This can be remedied by introducing pro-
jections operators [39], which prevent the solutions from falling into the negative Dirac sea,

H = Λ+




N∑

i=1

hD(i) +
N∑

i<j=1

e2

4πrij
−

N∑

i=1

U(ri)


 Λ+. (46)

It was first shown by Gaunt that when relativity is taking into account the electron-electron
interaction contains in addition to the electrostatic interaction also a magnetic interaction,
which contributes to the order (Zα)2, where α is the fine-structure constant and Z is the
nuclear charge. Shortly afterwards, Breit demonstrated that also the retardation of the
interactions contributes to the same order. This leads (in the Coulomb gauge) to the so-
called Breit interaction

B12 = − e2

4π

(
α1 ·α2

2r12
+

(α1 · r12)(α2 · r12)
2r3

12

)
(47)

and the projected Coulomb-Breit Hamiltonian

H = Λ+

[∑
hD +

∑(
e2

4πrij
+ Bij

)
−

∑
U(ri)

]
Λ+. (48)

This is the no-virtual-pair approximation in the Coulomb gauge (NVPA).

It can be shown by means of QED that the NVPA is in fact quite accurate and contains all
effects of order (Zα)2 [40, 41]. For light systems this is often sufficient. For heavier systems,
for which Zα approaches unity—or when higher accuracy is needed for light systems—it

12



will be necessary to go beyond this approximation. This can be done by means of QED, as
will be demonstrated in the following.

As mentioned in the introduction (5), the multi-photon interaction between the electrons
can be separated into irreducible one-, two-, . . . photon interactions2 [13],

V Irred
12 = V

(1)
12 + V

(2)
12 + . . . (49)

The Coulomb-Breit interaction (48) is an approximate form of the one-photon interaction,
which neglects the effects of retardation and negative-energy states. It will be demonstrated
that by means of QED a more complete single-photon interaction can be derived, including
these effects. Effects beyond the single-photon interaction are contained in the irreducible
multi-photon interactions, and iterating these to self-consistency is, as mentioned, equivalent
to solving the Bethe-Salpeter equation [14]. In the following we shall indicate how the
irreducible multi-photon interactions can be derived.

In addition to the electron-electron interaction there are also other QED effects, such
as self-energy interactions and vertex modifications. We shall not be concerned with these
effects in the present paper.

5.2 Bound-state QED

The starting point for our QED treatment of bound states will be the time evolution operator
(25). In this operator time is evolving only in the forward direction. In order to be able to
apply the covariant formalism, using Feynman diagrams, we shall generalize this operator
by including forward as well as backward time evolution.

We consider first the second-order (non-covariant) evolution operator with t0 → −∞

U (2)(t′,−∞) =
(−i)2

2

∫ t′

−∞
d4x2

∫ t′

−∞
d4x1

×T
[(−eψ†(x)ανAνψ(x)

)
2

(−eψ†(x)αµAµψ(x))
)
1

]
e−γ(|t1|+|t2|), (50)

for simplicity leaving out the subscript γ. Here the space integration is over the entire space
and the time integration as indicated. We have here introduced the interaction Hamiltonian
density

H′(x) = −eψ†(x)αµAµψ(x), H ′
I(t) =

∫
d3xH′(x) (51)

and the electron-field operators in the interaction picture

ψ(x) =
∑

j

φj(x) cj ; ψ†(x) =
∑

j

φ†j(x) c†j . (52)

x is the four-dimensional time-space coordinate, x = xµ = (t,x) [29]. c†j , cj are the cre-
ation and destruction operators (17), and the four-dimensional single-electron orbitals are
φj(x) = φj(x) e−iεjt and φ†j(x) = φ†j(x) eiεjt with φj(x) being the eigenfunctions of the
Dirac Hamiltonian (45)

hD φj(x) = εj φj(x). (53)

2The terms reducible and irreducible interaction should be distinguished from the term reducible and
irreducible diagrams, used in the previous section. We refer to an interaction as reducible if there is an
intermediate time with no free photons, regardless of the fact whether the intermediate state lies in the
model space or in the complementary space.
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Generally, an expression like (50) can be evaluated by means of Wick’s theorem, which
states that in second quantization the time-ordered product is equal to the sum of all possible
normal-ordered contractions, each of which can be represented by a Feynman diagram.

The contraction between electron operators leads to the electron propagator, SF (x1, x2),
defined by

iSF (x2, x1) =
︷ ︸︸ ︷
ψ(x2)ψ†(x1) =

〈
0

∣∣T [
ψ(x2)ψ†(x1)

]∣∣ 0
〉

=

=
〈
0

∣∣Θ(t2 − t1)ψ(x2)ψ†(x1)−Θ(t1 − t2)ψ†(x1)ψ(x2)
∣∣ 0

〉
, (54a)

where Θ(t′ − t) is the Heaviside step function and 〈0| represents the ’vacuum’ state with no
particles or holes. With the field operators (52), the electron propagator can be expressed

iSF (x2, x1) = Θ(t2 − t1)φj+(x2) φ†j+(x1)−Θ(t1 − t2)φ†j−(x1)φj−(x2) =

= Θ(t2 − t1)φj+(x2)φ†j+(x1) e−iεj(t2−t1)

−Θ(t1 − t2)φ†j−(x1) φj−(x2) e−iεj(t2−t1).

(54b)

We indicate here by a subscript (+ or -) whether the function represents a particle or a hole
state. We employ also the summation convention with implicit summation over repeated
indices.

The electron propagator can be written also as a complex integral, integrated along the
real axis,

SF (x2, x1) =
∫ ∞

−∞

dω

2π
SF (x2,x1, ω) e−iω(t2−t1) (54c)

SF (x2, x1, ω) =
φj(x2)φ†j(x1)
ω − εj + iηj

,

where j runs over all states and ηj is a small positive quantity with the same sign as εj .

���
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Figure 5: Graphical representation of the electron (a) and photon (b) propagators.

The contraction between the photon operators leads similarly to the photon propagator,
DFνµ(x2 − x1),

iDFνµ(x2 − x1) =
︷ ︸︸ ︷
Aν(x2) Aµ(x1) = 〈0|T [Aν(x2) Aµ(x1)] |0〉, (55a)

DFνµ(x2 − x1) =
∫

dz

2π
DFνµ(x2 − x1, z) e−iz(t2−t1).

For simplicity we shall work here in the Feynman gauge, where

DFνµ(x2 − x1, z) = gνµ

∫
d3k

(2π)3
e−ik·(x2−x1)

z2 − k2 + iη
= − gνµ

2π2 r12

∫ ∞

0

k dk sin(k r21)
z2 − k2 + iη

. (55b)

The graphical representations of the propagators are depicted in Fig. 5.
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5.3 Single-photon exchange. Covariant form of the evolution oper-
ator.
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Figure 6: Graphical representation of the evolution operator for single-photon exchange between the elec-
trons.

In order to develop a covariant form of the evolution operator, we consider first the single-
photon exchange between the electrons, illustrated in Fig. 6a. Here, there is a contraction
between the photon operators but no contraction between the electron operators, and we
obtain from (50)

U (2)(t′,−∞) =
1
2

∫ t′

−∞
d4x2

∫ t′

−∞
d4x1 ψ†(x2) ψ†(x1) I21 ψ(x1) ψ(x2) e−γ(|t1|+|t2|), (56)

where

I21 = ieαν
2 iDFνµ(x2 − x1) ieαµ

1 ; I21(z) = ieαν
2 iDFνµ(x2 − x1, z) ieαµ

1

I21 =
∫

dz

2π
I21(z) e−iz(t2−t1). (57)

This describes evolution forward in time, which corresponds to the situation when 〈rs| are
particle states. In order to allow also for propagation into hole states, integration should
also be performed backwards in time from +∞ to t′ (r and s must here be of the same sign).
We then make the replacement

∫ t′

−∞
dt1 . . . ⇒

∫ t′

−∞
dt2 . . . +

∫ t′

+∞
dt1 . . . =

∫ +∞

−∞
dt1 [Θ(t′ − t1) . . .−Θ(t1 − t′) . . .] ,

which leads to the covariant form of the evolution operator

U
(2)
Cov(t

′,−∞) =
1
2

∫∫
d4x2 d4x1

[
Θ(t′ − t2) ψ†+(x2)−Θ(t2 − t′)ψ†−(x2)

]

×
[
Θ(t′ − t1)ψ†+(x1)−Θ(t1 − t′)ψ†−(x1)

]
I21 ψ(x2)ψ(x1) e−γ(|t1|+|t2|). (58)

Here, the integrations are carried out over all space and time. The subscripts of the field
operators indicate particle and hole part, respectively.

It follows from the definitions used here that∫
d3x2 ψ†(x2) iSF (x2, x1) = Θ(t2 − t1)ψ†+(x1)−Θ(t1 − t2)ψ†−(x1), (59)

which leads to the alternate form of the covariant evolution operator (58)

U
(2)
Cov(t

′,−∞) =
1
2

∫∫
d3x′2 d3x1 ψ†(x′2) ψ†(x′1)

×
∫∫

d4x2 d4x1 iSF (x′2, x2) iSF (x′1, x1) I21 ψ(x1)ψ(x2) e−γ(|t1|+|t2|), (60a)
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using the notations x1 = (t1, x1), x′1 = (t′1,x
′
1) etc. with t′1 = t′2 = t′. By expanding

the electron-field operators according to (52) and comparing with the expression (17) for a
second-quantized operator, we can identify the matrix elements of the evolution operator,

〈rs|U (2)
Cov(t

′,−∞)|ab〉 =
〈
rs

∣∣∣
∫∫

dt2 dt1 iSF (x′2, x2) iSF (x′1, x1)

×I21 eit′(εr+εs) e−iεat1−iεbt2 e−γ(|t1|+|t2|)
∣∣∣ab

〉
. (60b)

This is represented by the diagram in Fig. 6b. It will be demonstrated later that this
covariant form of the evolution operator is equivalent to the Green’s function used in field
theory and can be regarded as the operator form of the two-times Green’s function employed
by Shabaev and others ([16, 17, 18]).

The standard technique for evaluating expressions like (60b) is to use the integral repre-
sentation (54c) of the electron propagators and to do the adiabatic switching by means of
the time integrals

∫ ∞

−∞
dt e−iωt−γ|t| =

2γ

ω2 + γ2
= 2π ∆γ(ω); lim

γ→0
∆γ(ω) = δ(ω). (61)

This leads to rather complicated integrations, and here we shall demonstrate a simpler
procedure, by using the time-dependent form of the electron propagator (54b).

The time integral in (58, 60b) is
∫ ∞

−∞
dt2

∫ ∞

−∞
dt1

[
Θ(t′ − t2) φ†s+

(x2)−Θ(t2 − t′) ψ†s−(x2)
]

I21(z)

×
[
Θ(t′ − t1)φ†r+

(x1)−Θ(t1 − t′)ψ†r−(x1)
]

e−it1(q−z) e−it2(q
′+z) e−γ(|t1|+|t2|),

where q = εa − εr and q′ = εb − εs. Performing the time integrations yields
〈
rs

∣∣∣|U (2)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

= −
〈

rs

∣∣∣∣
∫

dz

2π

1
q − z + iγr

1
q′ + z + iγs

I21(z)
∣∣∣∣ ab

〉
e−it′(q+q′+iγr+iγs). (62)

with γr = γ sgn(εr). We can here identify the denominators as those of the electron propa-
gators (54c) with ω = εa − z and ω = εb + z, respectively. The advantage of the procedure
used here is that we do not have to integrate over the energy parameter of the electron
propagators, using the ∆ functions (61), but we can directly apply energy conservation at
the vertices. Furthermore, in this way we also connect the imaginary part of the electron
propagator to the exponent (γ) of the adiabatic damping factor, which we later shall find
important in extracting the residual, finite contributions from the singularities (77).

By using the relation

1
q − z + iγr

1
q′ + z + iγs

=
[

1
q − z + iγr

+
1

q′ + z + iγs

]
1

q + q′ + iγr + iγs
,

we get after performing the z integration of (62)
〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

=
〈

rs

∣∣∣∣
∫

dk f21(k)
[

1
q − (k − iγ) sgn(εr)

+
1

q′ − (k − iγ) sgn(εs)

] ∣∣∣∣ ab

〉

× e−it′(q+q′+iγr+iγs

q + q′ + iγr + iγs
, (63)
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introducing the function

f21(k) = −e2αµ
1 α2µ

4π2 r12
sin(k r21); I21(z) = −i

∫
dk

2k f12(k)
z2 − k2 + iη

.

5.4 Factorization in the covariant formulation

In order to apply the covariant form of the evolution operator to evaluate the effective
Hamiltonian and the wave operator for bound-state QED problems it is necessary to gener-
alize the treatment of the previous section. At least for the two-electron systems considered
here, it is not difficult to show that the factorization (38) still holds in this formulation
with time-dependent interactions, using Feynman graphs. This will be illustrated below
with the reducible two-photon ladder interaction. Further details of the factorization will be
given in a later publication. From the factorization theorem it follows that also the gener-
alized Gell-Mann–Low formula (39) and the form of the effective Hamiltonian and the wave
operator (42a-44) are valid. The main difference from the previous treatment is that the
time-dependent interactions will lead to residual, finite contributions—Model-Space Contri-
butions—when an intermediate state lies in the model space. This will be discussed further
below.

5.5 First-order electron-electron interaction

If the outgoing state 〈rs| lies in the complementary Q space (outside the model space), and
since we assumed that r and s have the same sign, then q + q′ 6= 0, and the expression (63)
is regular as γ → 0. For t′ = 0 this is then a contribution to the first-order wave operator
(44)

Ω(1) =
∑

|rs〉∈Q

|rs〉〈rs|V (q, q′)|ab〉
εa + εb − εr − εs

, (64)

where

V (q, q′) =
∫

dk f21(k)
[

1
q − (k − iγ) sgn(εr)

+
1

q′ − (k − iγ) sgn(εs)

]
(65)

is the equivalent interaction.

If the outgoing state 〈rs| lies in the P or model space, then we get a contribution to the
first-order effective Hamiltonian by means of (43). That this equation is valid also in the
covariant formulation, follows from the fact that the relations (23) and (24) still hold. This
yields

〈rs|H ′
eff |ab〉 = 〈rs|V (q, q′)|ab〉. (66)

The time derivation eliminates here the singularity occurring for q + q′ = 0 (and the small
denominator that might occur in the quasi-degenerate case). Thus, we see that the first-
order wave operator and effective Hamiltonian are given by expressions quite analogous to
those of standard time-independent MBPT.

The interaction (65) is the one-photon interaction, mentioned previously (5, 49). The
expression is valid also for elements non-diagonal in energy and can thus be used in an
iterative process as well as for evaluating the effective Hamiltonian of an extended model
space. This should be compared with the standard interaction derived from the S-matrix
formalism with energy conservation

V12(q) = e2 αµ
1αν

2 DFνµ(x2 − x1, q) =
∫

2k dk f12(k)
q2 − k2 + iη

=
e2αµ

1α2µ

4π2r12
ei|q|r12 , (67)
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which does not have these properties. It is easy to show that the two expressions (65) and
(67) are identical for elements diagonal in energy, i.e., for q + q′ = 0.

It should be noted that the interaction (65) is non-hermitian, which is a consequence of
the use of the intermediate normalization (16a), as in ordinary MBPT [6]. By forming the
hermitian part of the effective Hamiltonian

HHerm =
1
2

(
H + H†) ,

the first-order interaction becomes

VHerm(q, q′) =
1
2
[
V12(q, q′) + V12(−q,−q′)

]

=
∫

k dk f12(k)
[

1
q2 − k2 + iη

+
1

q′2 − k2 + iη

]
, (68)

which is identical to the so-called Mittleman potential [15]

VMittleman(q, q′) =
1
2

[V12(q) + V12(q′)] .

This is also the form of the first-order interaction obtained in the procedure of Shabaev [16,
17, 18]. Numerical calculations show that the differences between the potentials is quite
small.

5.6 Relation to Green’s functions
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Figure 7: Graphical representation of the Green’s function (a) and the evolution operator (b) for single-
photon exchange between the electrons. The internal electron lines (between the dots) represent electron
propagators and the free lines represent electron-field operators. The dotted lines represent certain times
and should not cross any photon line.

The covariant evolution operator employed here is very closely related to the field-
theoretical Green’s function, frequently used in many-body problems in various field of
physics [28, 29, 30] and recently employed in bound-state QED calculations by Shabaev
and coworkers [16, 17, 18]. The Green’s function corresponding to single-photon exchange,
represented graphically in Fig. 7a, can be expressed

G(x′2, x
′
1, x20, x10) =

1
2

∫
d4x2

∫
d4x1

×iSF (x′2, x2) iSF (x′1, x1) I21 iSF (x2, x20) iSF (x1, x10). (69)

This is a two-times Green’s function, which implies that there is a single final time, t′, and
a single initial time, t0. This we can compare with the corresponding covariant, two-times
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evolution operator U
(2)
Cov(t

′, t0), which we can get by generalizing the operator (60a),

U
(2)
Cov(t

′, t0) =
1
2

∫
d3x′2

∫
d3x′1

∫
d3x20

∫
d3x10 ψ†(x′2)ψ†(x′1)

×
∫

d4x2

∫
d4x1 iSF (x′2, x2) iSF (x′1, x1) I21

×iSF (x2, x20) iSF (x1, x10) ψ(x10)ψ(x20). (70)

This is illustrated in Fig. 7b. We can then express the evolution operator in terms of the
Green’s function as

U
(2)
Cov(t

′, t0) =
∫

d3x′2

∫
d3x′1

∫
d3x20

∫
d3x10 ψ†(x′2)ψ†(x′1)

×
∫

d4x2

∫
d4x1 G(x′2, x

′
1, x20, x10)ψ(x10) ψ(x20). (71)

This relation can be generalized to more complex situations. We see here that the main
difference between the two concepts is that the Green’s function is a function, while the
evolution operator is an operator with field-operator lines connected to the free vertices.
Therefore, the evolution operator (70) can be regarded as the operator form of the two-times
Green’s function (69).

5.7 Two-photon electron-electron interaction
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Figure 8: Graphical representation of the evolution operator for the two-photon-photon ladder interaction
between the electrons.

We consider next the evolution operator for the two-photon (ladder) exchange, illustrated
in Fig. 8, and start with the forward-evolving operator. Here we make the restrictions in
the time-ordering that t4 < t2 and t3 < t1, which leaves six possible time-orderings, each of
them leading to an equivalent diagram. The time integrations are then

∫ t′

−∞
dt4

∫ t′

−∞
dt3

∫ t4

−∞
dt2

∫ t3

−∞
dt1.

In order to allow for backward evolution into hole states, we perform in analogy with the
one-photon case (58-60b). This leads to the covariant evolution operator for the two-photon
ladder exchange

〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

〈
rs

∣∣∣
∫∫

d4x3 d4x4

∫∫
dt1 dt2

× iSF (x′3, x4) iSF (x′3, x3) I43 iSF (x4, x2) iSF (x3, x1) I21

× eit′(εr+εs) e−iεat1−iεbt2 e−γ(|t1|+|t2|+|t3|+|t4|)
∣∣∣ab

〉
. (72)
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Performing the time integrations in the same manner as in the single-photon exchange above,
leads to

〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

∑
t,u

∫∫
dz1

2π

dz2

2π

1
(q − z1 − z2 + iγt + iγr)

× 1
(q′ + z1 + z2 + iγu + iγs)

1
(p− z1 + iγt

1
(p′ + z1 + iγu

×|rs〉〈rs|2k2f43(k2)|tu〉〈tu|2k1f21(k1)|ab〉
(z2

2 − k2
2 + iη)(z2

1 − k2
1 + iη)

e−it′(q+q′+iγr+iγs+iγt+iγu). (73)

with p = εa − εt; p′ = εb − εu; q = εa − εr; q′ = εb − εs.

The first denominators in (73) can be rewritten as

1
(q − z1 − z2 + iγt + iγr)

1
(q′ + z1 + z2 + iγu + iγs)

=
[

1
(q − z1 − z2 + iγt + iγr)

+
1

(q′ + z1 + z2 + iγu + iγs)

]
1

∆E
,

∆E = q + q′ + iγr + iγs + iγt + iγu,

which becomes singular, when the final state lies in the model space. As before, this singu-
larity is eliminated, when the effective Hamiltonian is evaluated according to (43). When
the final state lies in the complementary space, we have q + q′ 6= 0, and the evolution op-
erator gives a contribution to the wave operator (44). When there is no singulartity, the
expressions can be evaluated by integrating over z1 and z2 as in the S-matrix procedure [42].

5.8 Reducible two-photon ladder interaction
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Figure 9: When there is a time between the interactions with no free photons, the two-photon exchange
interaction can be separated into two single-photon exchange interactions. This is the ”ladder approxima-
tion” of the full exchange. This is the reducible part of the interaction, and it contains the singular part of
the full two-photon interaction.

A substantial part of the two-photon ladder interaction can be expressed as a ladder of
two single-photon interactions of the same type as in standard perturbation theory. Fol-
lowing Bethe and Salpeter and others, we refer to this part as the reducible interaction and
the remaining part as the irreducible interaction (see footnote on p. 12). The reducible
two-photon ladder interaction is illustrated in Fig. 9, and for positive intermediate states it
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can be expressed
〈
rs

∣∣∣U (4)
Cov(0,−∞)

∣∣∣ ab
〉

Red
=

=
∑
t,u

〈rs|V43(q + p′, q′ + p)|tu〉〈tu|V21(q + p′, p + p′)|ab〉
(q + q′)(p + p′)

=
∑
t,u

∫∫
dk dk′ FRed(k, k′) 〈rs|f43(k′)|tu〉 〈tu|f21(k)|ab〉 (74)

FRed(k, k′) =
1

q + q′

[
1

q + p′ − k′
+

1
q′ + p− k′

]
1

p + p′

[
1

p− k′
+

1
p′ − k

]

(p = εa − εt; p′ = εb − εu; q = εa − εr; q′ = εb − εs)

It is easy to show that this has the same singularity as the full ladder interaction, which
implies that the remaining irreducible ladder interaction is non-singular. The same is true
for the crossed two-photon interaction, which has no reducible part.

When 〈tu| lies in the model space, the reducible ladder (74) can be expressed
〈
rs

∣∣∣U (4)
Cov(0,−∞)

∣∣∣ ab
〉

Red
=

〈
rs

∣∣∣U (2)
Cov(0,−∞P U

(2)
Cov(0,−∞)

∣∣∣ ab
〉

, (75)

which is an illustration of the factorization theorem (38) in the covariant formulation. Ex-
panding the denominator of (39) gives rise to counter terms, which for 〈tu| = 〈ab| becomes
in lowest order

−
〈
rs

∣∣∣U (2)
∣∣∣ ab

〉 〈
ab

∣∣∣U (2)
∣∣∣ ab

〉
= −〈rs|V43(q, q′)|ab〉

q + q′
〈ab|V21(0, 0)|ab〉

2iγ
. (76)

This cancels exactly the singularity of (74, 75). The situation is similar for the exchange
part.

5.9 Model-Space Contribution

As mentioned above, when the interactions are time-dependent—as in QED—there will in
the factorization process in general be residual finite contributions when an intermediate
states lies in the model space. We refer to those as the Model-Space Contribution (MSC).
These contributions can be quite cumbersome to evaluate in the S-matrix formulation, using
the Gell-Mann–Low–Sucher procedure. Shabaev has devised an alternative method based
on the two-times Green’s function, which is free from some of the difficulties in the S-matrix
procedure [16], [17], [18]. Here we shall demonstrate a different way of obtaining these
contributions, and we take the two-photon electron-electron interaction as an illustration.

In order to study the singularity of (74), we make the substitution(
p → p + iγ
p′ → p′ + iγ

)
, which gives

FRed(k, k′) =
1

q + q′

[
1

q + p′ − k′ + iγ
+

1
q′ + p− k′ + iγ

]

× 1
p + p′ + 2iγ

[
1

p− k + iγ
+

1
p′ − k + iγ

]
. (77)
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The singularity, which appears for p + p′ = 0, is of the type

D =
1
γ

(A + Bγ + . . . ). (78a)

After subtracting the counter term, discussed above, the singular A term vanishes, and to
see if there is any finite contribution at the singularity, we apply the l’Hospital rule (to the
entire expression, including the counter term)

B = lim
γ→0

(
∂(γD)

∂γ

)
. (78b)

In the present case it can be shown that the counter term does not give any contribution to
the finite term. Therefore, the residual, finite contribution—or the Model-space contribution
(MSC)—of the two-photon exchange (74) is given by

MSCRed =
∑

εt+εu=εa+εb

∫∫
dk dk′ lim

γ→0

[
∂

∂γ
(γFRed)

]
〈rs |f43(k′)| tu〉 〈tu |f21(k)| ab〉 . (79)

It is easy to show that this procedure yields for the two-photon exchange the same result
as the conventional procedure [42] but in a much simpler way. It should be noted that the
irreducible part of the interaction also have a contribution when the intermediate state is in
the model space. Since there is no singularity involved here, we do not here include this in
the model-space contribution.

The full two-photon interaction can now be expressed

〈rs |VTwo−photon| ab〉 =
〈
rs

∣∣V Irred
Two−photon

∣∣ ab
〉

+
∑

t,u∈Q

〈rs |V43(q + p′, q′ + p)| tu〉 〈tu |V21(p, p′)| ab〉
(p + p′)

+ MSCRed (80)

Here, the first term is the irreducible two-photon ladder and crossed-photon interaction,
the second term is the reducible ladder interaction (77) and the last term is the finite
contribution (Model-Space Contribution) due to the reducible ladder interaction (79). Note
that intermediate states within the model space are excluded from the reducible part but are
included in the (regular) irreducible part. Note that the states t and u must either both be
particle states or both hole states. The contribution where the states are of different kind
is included in the irreducible part.

5.10 The Bethe-Salpeter equation

The procedure described above for the two-photon interaction can in principle be generalized
to arbitrary multi-photon interactions. We can separate out the irreducible one-, two-, three-
. . . photon interactions

V Irred
21 = V

(1)
21 + V

(2)
21 + V

(3)
21 + . . . , (81)

and the complete electron-electron interaction is essentially reproduced by iterating these
to all orders. This can be represented as a Green’s-function equation

G(x′2, x
′
1, x20, x10) = iSF (x′2, x20) iSF (x′1, x10)

+
∫

d4x2

∫
d4x1 K(x′2, x

′
1, x2, x1)G(x2, x1, x20, x10) + MSCRed (82)
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where K represents the irreducible kernel and MSCRed is the model-space contribution
of the reducible part. This corresponds to the complete Bethe-Salpeter equation for the
electron-electron interaction, illustrated graphically in Fig. 10 [14, 30]. The model-space
is excluded from the intermediate states between the irreducible parts, which makes the
expression regular.

s s

s s

=

s s

s s

+
s s

s s

s s

s s

+ MSCRed

Figure 10: Graphical representation of the complete Bethe-Salpeter equation in the form of a Dyson equation.
The solid area represents the two-particle propagator or Green’s function and the dashed area the irreducible
kernel. The MSC represents the model-space contribution of the reducible part.

It follows from what is said above that the irreducible multi-photon interactions can be
handled very much like the interactions in standard MBPT. The irreducible interactions are
free from singularities. The intermediate states between the interactions are restricted to the
Q space, as in ordinary MBPT, while inside the interactions all intermediate states (Q as well
as P space) should be included. In addition, there will be finite model-space contributions
(MSC) of the reducible part, which can be obtained by means of the l’Hospital rule, as
described above.

The procedure outlined here is presently being investigated further, and more details
together with numerical illustrations, will be published in a forthcoming paper [19].

6 Summary and outlook

The conventional procedure for atomic QED calculations on bound systems is based upon the
S- matrix formalism and the adiabatic damping procedure of Gell-Mann–Low and Sucher.
This procedure has certain shortcomings and cannot be used to construct a secular equation
with an effective Hamiltonian for general open-shell systems. In this paper a procedure is
described for constructing such an effective Hamiltonian, applicable also to a model space
with degenerate or quasi-degenerate unperturbed energy levels (extended model space). The
effective Hamiltonian constructed in this way is free from singularities. It is also shown that
the electron-electron interaction can be separated into non-singular irreducible one-, two-,
. . . photon interactions. In principle, these can be iterated as in standard MBPT. Including
all multi-photon interactions to all orders is equivalent to solving the Bethe-Salpeter equation.
Singularities do not appear, but intermediate states in the model space give rise to finite
contributions, which can be evaluated by a limiting process.

We have here concentrated on the photon exchange between the electrons. In principle
also other radiative effects could be included in the procedure. The vertex modifications
can be included in the irreducible multi-photon interactions. The vacuum polarization can
be treated as a potential perturbation, generating new single-electron states. The electron
and photon self-energy interactions can be treated by modifying the electron and photon
propagators. In this way it seems possible - at least in principle - to merge QED and MBPT
together in a rigorous and systematic way. The irreducible multi-photon interactions ob-
tained in this process can be iterated in very much the same way as in ordinary MBPT.
Since these interactions can at present only be obtained in a numerical way, it may not be
feasible to use them, beyond the simplest ones, in practical calculations on more complex
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structures. The procedure may be used, though, to test various approximations, and the
more complete scheme described here can then be used for benchmarking.

Acknowledgements
It is a great pleasure for me to contribute to this volume in honour of Charlotte Froese-
Fischer. Charlotte has played a world-leading role in the field of atomic-many-body theory
for more than three decades. Many generations of new scientists have been educated in the
field of atomic structure, which has improved the level of scientific works both in experiments
and theory.

The author also wishes to acknowledge stimulating collaboration and discussions with
Thomas Beier, Martin Gustavsson, Paul Indelicato, Eva Lindroth, Ann-Marie Mårtensson-
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