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Abstract
In a quantum dot, the electrons are confined in all three dimensions to a length
scale of the order of the electron Fermi wavelength. Due to the confinement,
quantum effects will dominate over the bulk properties and the energy spectrum
becomes discrete, similar to that of an atom. In this review, we present a
short introduction to electron confinement in nanosize structures and properties
related to quantum size effects. Furthermore, we present a model for calculation
of the electronic structure of adsorbed quantum dots, where we have focused
on the system of Na on Cu(111). Our results are compared to experimental
results from scanning tunnelling microscopy and photoemission spectroscopy.
In addition, we present a study of CO adsorption on a small Na quantum dot.
The resulting charge transfer turns out to depend critically on the size of the
quantum dot, and the results are discussed in terms of electron structure and
symmetry of relevant electron orbitals.

1. Introduction

Today, nanoscience presents a very active research area, bringing together researchers from
many areas like physics, chemistry, materials science, electronics, biology and medicine. The
emphasis is on trying to understand the relationship between the structure of the material and
its optical, chemical and electronic properties, but also to develop and improve techniques
for manufacturing nanomaterials for new applications. Nanomaterials show large industrial
potential, with applications in areas such as new electronic components, detectors, lasers, smart
materials and catalysts.

When the dimensions are minimized to a scale of the order of the Fermi wavelength of the
electron, the behaviour will be dominated by the rules of quantum mechanics [1, 2], and new
properties will develop that may be totally different from the bulk properties, and sometimes
completely unexpected. One well-known example is provided by gold, which changes in both
physical and chemical character when dispersed as nanoparticles. Bulk gold has a yellowish
colour, while nanoparticulate gold gives a ruby-red, purple or even blue colour, depending on
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the nanoparticle size [3, 4]. In addition, the catalytic activity is changed when the nanoparticle
regime is reached. Gold is a noble metal, and in its bulk form quite inert, but oxide supported
gold clusters have shown very high chemical activity [5, 6, 8, 7], and have proved to be very
well suited for use as chemical catalysts [9].

About ten years ago, Crommie and co-workers [1] presented a method for confining
electrons to artificial structures on the nanometre scale, referred to as quantum corrals. These
synthetic structures were formed by deliberately assembling Fe adatoms to enclosed structures
on a Cu(111) surface by using the tip of a scanning tunnelling microscope (STM). The
experiment was performed at ultrahigh vacuum and extremely low temperature. The surface
electrons become confined laterally to the adatom structure because of the strong scattering
that occurs at the Fe atoms [1], and perpendicular to the surface due to the bandgap that exists
for the (111) face of noble metals [10]. The spectroscopic results showed very nice agreement
with theoretical values for a corresponding two-dimensional (2D) circular potential well with
hard walls, and by recording the local density of states (LDOS) at low bias voltage with the
STM, it was possible to observe directly the standing wave patterns of the confined electron
states. The nodal pattern could be accounted for by a linear combination of the electron density
corresponding to the states close to EF, as calculated from a 2D model. Another nice example
is provided by the stadium shaped quantum corral [11, 12].

A natural way of forming low dimensional structures on metal surfaces is by controlled
growth of epitaxial layers [2]. With an appropriate choice of deposition and annealing
temperatures small islands of different sizes and symmetries, so-called quantum dots (QD),
may form [13]. The QDs arise when it is energetically more favourable for the film to
relax by forming islands than to form dislocations [10]. As an example, close packed
surfaces of noble metals have proved suitable as a basis for 2D island growth. Ag islands
one monolayer (ML) high are formed naturally during epitaxial growth on Ag(111) at
room temperature [2, 14, 15], and also the second ML of Na on Cu(111) grows via island
formation [16–20]. Individual atomic events can strongly influence or even dominate the
microstructure and nanostructure of epitaxial films [21, 22]. The exact morphology of the
surface depends critically on the interaction of the adatoms with the substrate as well as the
growth process itself, including evaporation rates [23, 24], temperature [25, 26], pressure [27],
post-annealing [28], dislocations [29] and substrate impurities [30, 31]. By creating surfaces
with a periodic strain-relief pattern, ordered arrays of equally spaced monodispersed islands
can be formed by atom diffusion and deposition [32, 33].

The self-assembled QDs have the advantage, in comparison with the quantum corrals, of
being relatively stable even at room temperature [2] and at high voltages [14, 15]. This enables
imaging for a wide range of voltages, without inducing structural damage. The STM [34, 35]
presents an essential experimental tool for characterization of real space structure and electronic
properties of adsorbed surface structures and defects [36, 37]. It has also proved useful for
atomic level resolution of chemical surface reactions [32, 38, 39], and lately also lifetime
studies of electronic states [40].

One important application for self-assembled quantum dots is in the field of catalysis.
For large clusters, containing hundreds or thousands of electrons, the electronic properties are
essentially those of the bulk and the resulting reactivity is due to surface electronic structure
features and morphology effects like the density of kinks, steps and defects [41]. For small
clusters on the other hand, with sizes that corresponds to the Fermi wavelength of the electron,
the valence electrons are highly confined and quantum effects become dominant [1, 2, 42]. It
has been observed that supported clusters often show a higher activity towards certain reaction
than the corresponding bulk material and that the activity depends critically on the cluster
size [8, 42, 44–46].
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One very nice example is provided by gold, which is a noble metal and as a bulk material
quite inert [3, 8, 46], but when dispersed as ultrafine particles on various metal oxides [5–
7, 46, 47] as well as nanosized islands on titania oxide [8, 47, 48], gold exhibits extra
high activity in many reactions like combustion of hydrocarbons [49], reduction of nitrogen
oxide [50], propylene epoxidation [51] and in particular low temperature oxidation of carbon
monoxide [5–8, 42, 43, 45–48]. For CO oxidation, the activity has been observed to depend
critically on the nanoparticle size, the nature of the support as well as the detailed synthetic
procedure [3, 47, 48]. STM results, reported by Valden et al [8, 45], showed that the reactivity
to CO oxidation on TiO2 supported 2D Au islands was size dependent with respect to the
island height. The result was interpreted as a quantum size effect [8, 45]. Other experimental
investigations emphasize coordination [52, 53], shape [54] and interface [55] effects. The
activity of nanoparticulated gold has also attracted a lot of theoretical interest. First-principles
calculations show a clear correlation between particle size and chemical activity, explained in
terms of enhanced density of low coordination sites with decreasing cluster size [56, 57]. In
addition the nature of the support plays an important role. Recent results [46, 58–60] show
that the oxide provides excess charge to the Au cluster, which is important for the ability to
bind and activate O2. The gold–oxide support interface provides the most reactive sites [58],
where the precise interface structure depends on the cluster size and geometry.

In this paper, we focus on self-assembled metallic QDs with emphasis on the system of Na
on Cu(111), where the second ML of Na is grown via formation of approximately hexagonal
1 ML thick islands [16–20]. We present a model for calculating the electronic structure for this
system [61, 62], and make comparisons to experimental results from STM and photoemission
spectroscopy (PES). In addition, we study the size dependence of the reactivity for 1 ML thick
Na quantum dots [63]. We show that the resulting charge transfer, between the approaching
molecule and the QD, can be understood in terms of the electronic structure and symmetry
which makes it possible to tune the charge transfer by changing the size parameters of the QD.

2. Na/Cu(111)

Close packed (111) surfaces of noble metals have a local bandgap perpendicular to the surface.
When alkali metals are adsorbed on these surfaces, they form hexagonal structures at saturated
ML coverage, following approximately the underlying structure [64]. The valence electrons
of the alkali metal are confined to the surface by the vacuum barrier on one side and the local
bandgap of the substrate on the other side, and form a 2D nearly free electron gas [65, 66]. The
overlayer electron states show quantization properties similar to those of electrons confined to
a one dimensional (1D) potential well [67], and are often referred to as quantum well states
(QWS). The wavefunctions decay rapidly on the vacuum side, and have an oscillating tail
decaying more slowly into the substrate [16], which can accommodate a substantial amount
of electron charge. When Na is adsorbed on Cu(111), the first ML saturates at a coverage
of � = 4/9 [64, 68], corresponding to four Na atoms per nine surface Cu atoms yielding a
(3/2 × 3/2) structure with a nearest neighbour distance of 7.43 au (1 au = 0.529 Å). The
corresponding value for bulk Na is 6.92 au. If the Na deposition is continued, a second ML
will start to grow. Results from PES [16, 17] indicated that the second ML grows via formation
of 1 ML high islands. This was indeed verified by STM experiments [18–20]. Kliewer and
co-workers [18] observed small 1 ML high Na islands already at a coverage of 1.1 ML.

The clean Cu(111) surface has a Shockley surface state within the bandgap at about 0.4 eV
below the Fermi energy [69] at the �̄ point of the surface Brillouin zone, corresponding to the
binding energy in normal PES. The state exhibits a parabolic dispersion [70] characteristic for
free electron-like surface states. When Na is deposited on the surface, the energy of the Cu
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surface state decreases with increasing Na coverage [66, 71], and for coverage above� ≈ 0.11
the state is shifted below the band edge of the local bandgap [72] and is no longer visible in
PES experiments. As the Na is deposited, Na-induced states will appear within the local
bandgap. The lowest of these is a p-type QWS with one node in the direction perpendicular to
the surface. It has a parabolic dispersion consistent with a free electron-like state [17, 71], and
the energy decreases with increasing coverage. At a saturated ML coverage, it is situated at
0.1 eV below EF [16, 17, 71]. In addition there are also unoccupied Na-induced states situated
above the Fermi level, which have been observed and characterized by inverse photoelectron
spectroscopy (IPES) [73] and two-photon photoemission (2PPE) [71]. During the growth of
the second ML a new peak appears in the photoemission spectra for coverage above 1.3 ML
at 0.1 eV above the Fermi level [16, 17]. This peak is ascribed to the 2 ML thick parts, and the
position is shifted to somewhat lower energy as the coverage is increased. This shift in energy
was ascribed to lateral quantum size effects as the Na islands grow larger [17].

The system of Na/Cu(111) has also attracted theoretical interest. A first-principles
calculation [74] was performed to verify the existence of the QWS observed by PES. In addition,
a first-principles study of the phonon-induced decay of a QWS hole was presented [75]. Here,
we present results regarding electron structure and reactivity of the second-ML Na quantum
dots. The electron structure has been calculated by using a three-dimensional finite potential
well model [61] and by developing a two-density jellium model [62].

3. Computational method

Sodium is an alkali metal. Thus, the valence electrons are only weakly bound to the ions,
forming a nearly free electron gas. When a Na quantum dot is formed on Cu(111), the valence
electrons will be confined to the overlayer by the vacuum barrier on one side and the substrate
bandgap on the other side. Since the confinement at the substrate side is not so very different
from the vacuum barrier [65], a finite potential well model, section 3.1, could serve quite
well as a first approximation. In order to get a more accurate description of the decay of the
overlayer states into the substrate, we introduce a two-jellium model in section 3.2.

From STM experiments [18–20], we know that the second ML Na islands on Cu(111)
are approximately hexagonal in shape. However, to simplify our calculations, we assume
cylindrical symmetry. We do not believe that this will have a large effect on the general
features.

3.1. Finite potential well model

We model the valence electrons confined within the QD by a finite potential barrier assuming
cylindrical symmetry,

V (r, z, ψ) =
{

O r < a and − L
2 < z < L

2

U0 elsewhere,
(1)

where U0 is the constant potential barrier, a is the QD radius and L is the effective height. The
Schrödinger equation is solved in cylindrical coordinates using atomic units (e = m = h̄ = 1),

(− 1
2∇2 + V (r, z, φ))�(r, z, φ) = E�(r, z, φ). (2)

Here, �(r, z, φ) is the one-electron wavefunction, and E is the corresponding eigenenergy
in atomic units (1 au = 27.2 eV). We denote the principal quantum number, referring to the
quantization in the z-direction, by n and the azimuthal quantum number, implied by the axial
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symmetry, by m. The l quantum number orders the orthogonal solutions with the same n and
m.

The Schrödinger equation (2) is separated and solved semi-analytically, matching the
analytic solutions for the interior and the exterior numerically at the boundary by requiring the
wavefunction and its derivative to be continuous. The solutions for the internal (r < a) and
external (r > a) regions are given by

�<
nml(r, z, ψ) = Anml�n(z)Jm(kmlr)eimφ (3a)

�>
nml(r, z, ψ) = Bnml�n(z)Km(qmlr)e

imφ (3b)

where qml = (2U0 − k2
ml)

1/2, Anml and Bnml are normalization constants, �n(z) are the
wavefunctions corresponding to the quantization in the z-direction,and Jm(kmlr) and Km(qmlr)
are Bessel functions of the first and second kind respectively, corresponding to the radial
solutions. The axial symmetry implies the angular solution eimφ . The eigenenergies for (2)
are given by

Enml = εn + εml, (4)

where εn is the eigenenergy achieved by solving the z part, and εml corresponds to the lateral
part. The parameters U0 and L in (1) define the potential. Their values have been chosen by
fitting the �̄ point energy for the two lowest states with quantum numbers n = 1 and 2, to
first-principles calculations for a free standing Na ML [76] in the limit of a large QD (a → ∞).
This resulted in U0 = 6.21 eV and L = 8.57 au. For further details, we refer the reader to a
previous work [61].

3.2. Two-jellium model

The system we consider consists of a 1 ML thick Na QD on top of one complete ML of
Na on Cu(111). To mimic the decay of the wavefunctions into the substrate, we introduce a
two-jellium model. Within this model, we do not include the electrons of the Cu substrate.
Instead, we take a small amount of the electron density from the Na ML, and turn this into
a slab of lower density placed below the Na slab, keeping the total charge density constant.
The procedure is illustrated in figure 1. For the density of Na, we have used rs1 = 3.79 au,
calculated from the bulk value of Na, rs = 3.93 au and the observed height of the Na QDs of
5.5 au [19, 20]. The thicknessw2 and density rs2 for the lower density jellium slab representing
the Cu substrate give two free parameters. Those are chosen by fitting the band bottoms for
the first and second band for 1 and 2 ML to experimental results [16, 66, 71]. This resulted
in rs2 = 6.0 au and w2 = 6.3 au. The calculations are performed in the context of density
functional theory (DFT) [77, 78],using the program package MIKA [79–81] (Multigrid Instead
of K-spAce).

In DFT, the many-body Schrödinger equation is replaced by a set of one-electron equations,
where the electrons interact via an effective potential, that are solved self-consistently for the
electron density n(�r), minimizing the total energy of the system. Due to the cylindrical
symmetry, the wavefunction may be separated as

�m�kl(r, z, φ) = eimφUm�kl(r, z), (5)

where m is the azimuthal quantum number and l differentiates between orthogonal states with
the same m and �k. Two �k-vectors are used when transferring the finite cylindrical system into
a periodic planar system; see below. In axial symmetry (�r = (r, z)) the Kohn–Sham equations
take the form

−1

2

(
1

r

∂

∂r
+
∂2

∂r2
− m2

r2
+
∂2

∂z2
+ 2Veff(�r)

)
× Um�kl(�r) = εm�klUm�kl(�r) (6)
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Figure 1. Top: The two-jellium model for 1 ML of Na on Cu(111). The positive background
charge is illustrated by the shaded areas. The electron density is indicated by a dashed curve, the
effective potential by a solid curve and the electrostatic potential by a dash–dotted curve. Bottom:
a schematic figure showing a second ML Na QD dot on Cu(111).

n(�r ) = 2
∑
m�kl

(2 − δ0m) fm�kl |Um�kl(�r)|2 (7)

Veff(�r) = Vion(�r) + VH(�r) + VXC(�r), (8)(
1

r

∂

∂r
+
∂2

∂r2
+
∂2

∂z2

)
VH(�r) = −4πn(�r). (9)

Here, Um�kl(�r) are the wavefunctions expressed in the (r, z) plane and εm�kl are the one-
electron eigenenergies. The electron density in equation (7) is obtained by summing the
absolute magnitude of the one-electron wavefunctions squared, weighted by the Fermi–Dirac
occupation numbers fml and multiplied with the degeneracy factor 2(2−δ0m). The degeneracy
for m = 0 is 2, due to the two different spin directions, while for m �= 0 the degeneracy is 4,
since ±m are degenerate.

The effective potential Veff(�r) in equation (8) contains the external potential due to the
ionic background Vion(�r), the Hartree potential VH(�r) calculated from the electron density and
the exchange–correlation potential VXC(�r) containing the effects of exchange and correlation
between electrons. The potential Vion(�r) is treated with the jellium approximation [82, 83],
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where the ionic background is replaced by a rigid positive background charge of constant
density. The Hartree potential is achieved by solving the Poisson equation (9) for the
electron density, and the exchange–correlation potential is treated within the local density
approximation (LDA) [84, 85]. The Kohn–Sham equations (6)–(9) are solved self-consistently
using the MIKA program package [79–81]. This is a real space code, where the wavefunctions
are represented on a three-dimensional (or two-dimensional) point grid, and the equations are
discretized using finite differences. The Schrödinger equation is solved using the Rayleigh
quotient multigrid method (RQMG) [79], and the Poisson equation (9) is solved with a standard
multigrid method [94].

A real space code is perfectly suited for describing finite systems and systems with varying
length scales since the grid can be refined locally. However, a uniform planar system cannot
be exactly reproduced in the cylindrical symmetry. Instead we adopt a Wigner–Seitz [95]
type of approximation scheme, where we imagine the plane exactly filled by hexagons, and
approximate these by area-covering circles. We sample the Brillouin zone of the lattice of
circles with two �k-points, �k = 0 and �k at the Brillouin zone boundary. The wavefunctions with
�k = 0 are required to have a vanishing radial derivative at the radius of the circle, while the
wavefunctions with �k at the Brillouin zone boundary vanish at the circle boundary. This scheme
gives a qualitatively uniform charge distribution, and minimizes the interactions between the
object and its periodic images [96, 97]. The convergence of the real space calculation can
easily be checked by increasing the number of grid points. This corresponds to changing
the energy cut-off in a corresponding plane wave representation. The cell size also plays an
important role. For a finite system (like a unsupported QD) there has to be enough vacuum
to ensure that the wavefunctions vanish at the boundary, and for a continuous system (as an
adsorbed QD on a substrate) the cell has to be large enough to prevent interactions between
the QD and its periodic images.

4. Electronic spectrum

When a second ML Na QD is formed on top of the Na overlayer, the electrons within the QD
will be quasi-confined to the island structure, and thus show the corresponding quantization.
The electron structure calculated for a QD containing 100 electrons with the finite potential
well model is presented in the left panel of figure 2, with the energy given with respect to
the Fermi energy EF. The energy spectra consist of two bands. The lowest band corresponds
to s-type states without any node in the z-direction, while the second band corresponds to
unoccupied p states with one node. The two horizontal lines indicate the band edges for a
free standing Na ML [76]. The bands show a dispersion with m, where m corresponds to
the lateral quantization. Wavefunctions corresponding to states with even m are symmetric in
the (r, z) plane with respect to the z-axis, while states with odd m are anti-symmetric. The
symmetry of the wavefunction is of great importance when studying properties that depend on
the local electronic structure, like the real space electronic structure, local density of states and
charge transfer. In the two-jellium model, the band structure will contain two different types
of band; see the right panel of figure 2. On one hand there are bands with qualitatively the
same dispersion as the free standing quantum dot, corresponding to states with large density
within the QD region, but superimposed on these are less dispersed bands corresponding to
states with large density in the underlying jellium slabs [62]. These states also show a larger
dispersion in k-space.

The density of states (DOS) is defined by

D(ε) ≡ dN

dε
=

∑
i

δ(ε − Ei ), (10)
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Figure 2. Left: the energy spectrum for a N = 100 QD calculated within the finite potential well
model. The two horizontal lines indicate the s- and p-band edges for a complete ML [76]. Right:
the energy spectrum for a N = 100 QD on an N = 400 two-jellium slab calculated within the
two-jellium model.

Figure 3. The DOS calculated with the finite potential
well model for QDs containing N = 40, 60, 80 and 100
electrons. A Lorentzian peak broadening of 0.20 eV has
been used.

Figure 4. The energy shift as a function of coverage for
the three lowest m = 0 states, where εml is the lateral
part of the eigenenergy. The solid curves correspond to
the results calculated from the finite potential well model,
and the dashed curves correspond to the results from an
infinite potential well of the same dimensions.

where N is the number of states. The DOS calculated within the finite potential well model is
presented in figure 3. The DOS is approximately constant within each band,which is consistent
with the results for a free electron gas in two dimensions [95]. When the radial size of the QD
is increased there will be more states in each band. As a result, the onsets of the bands get
more pronounced with larger N . There is also a small downshift of the states, which is due to
lateral quantum size effects. This is discussed further in section 5.

5. Growth mode

To understand the process of epitaxial growth, monitoring the growth mode of the islands is of
great interest. It is important to know whether the islands grow in a two-or three-dimensional
mode, and if there are ripening or other effects. One way to get qualitative information about
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the growth mode is by measuring the energy downshifts of the overlayer states as a function
of coverage by means of PES. Measurements of the energy downshift during the growth of
the second ML of Na/Cu(111) were presented by Carlsson et al [16, 17]. They observed a
downshift of about 30 meV, as the coverage was increased from 1.7 to 2 ML, and interpreted
this as a lateral quantum size effect due to 2D island growth.

When the radius of the QD is increased, the energy states will be downshifted. The second
term in equation (4) corresponds to the lateral quantization, and is proportional to k2

ml . When
the radius of the QD is increased this term will decrease, and by assuming that the number
of islands on the surface is constant, the energy downshift as a function of coverage θ can be
expressed as

−ε = ε0

(
1 − θ0

θ

)
, (11)

the limit of infinite potential barrier [61]. Here, ε is the lateral part of the eigenenergy, and ε0 is
the energy corresponding to the initial coverage θ0. Comparing the calculated energy downshift
with the experimental results provides information on the growth mode, as well as the average
island size. By assuming a second ML initial coverage of θ0 = 0.7, and comparing the results
from equation (11) with the observed downshift of 30 meV, we get an average island radius of
25 au. The corresponding downshifts for the infinite barrier calculated by equation (11) and
for our finite potential well model are presented in figure 4.

6. Local electronic structure

The physical and chemical properties of a surface are intimately connected to its local electron
structure. It plays an important role for surface processes like epitaxial growth [98] and
catalysis [99]. The STM is a very useful tool for studying topography and the local electron
structure of a surface. The topography is recorded by scanning in either constant current mode
or constant height mode, and the LDOS is measured by recording the differential conductance
d I/dV with applied voltage. At low bias voltage, the differential conductance is proportional
to the LDOS [36], defined by

ρ(�r , ε) =
∑

i

|�i(�r)|2δ(ε − Ei). (12)

The LDOS provides the dominant contributions at a given point in space for a certain energy,
and by integrating up to the Fermi energy and multiplying with the degeneracy di,

n(�r ) = di

∫ EF

−∞
ρ(�r , ε) =

∑
i

di|�i(�r)|2, (13)

the electron density is obtained.
Kliewer and Berndt [20] presented a d I/dV spectrum for a second ML Na QD on

Na/Cu(111) recorded by the STM. In figure 6 we present the LDOS calculated with the two-
jellium model for a Na QD of approximately the same size. In our calculations, the QD contains
550 electrons and the underlying slab 2000. The radius of the QD is 85 au, and the cylindrical
supercell has a radius of 160 au. Kliewer and Berndt recorded the d I/dV slightly off the centre
of the island, and to enable a comparison, we calculated the LDOS at a corresponding position.
The results are shown in figure 5. The solid curve corresponds to the LDOS calculated 18 au
above the centre of the QD, and the dashed curve corresponds to LDOS calculated a distance
of 20 au off the centre. The experimental values are indicated by arrows at the top of the
figure, where the positions are shifted so that the first experimental peak coincides with our
first off-centre peak. At the axis, only the m = 0 states contribute while off-centre we will
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Figure 5. The LDOS corresponding to a N = 550 QD on a two-jellium substrate containing 2000
electrons. The LDOS is calculated at a distance of 18 au above the centre of the QD (solid) and at
a point 20 au radially from the centre of the QD (dashed); see the inset. A Lorentz broadening of
� = 8 meV is used for the peaks. The arrows at the top of the figure indicate the experimentally
measured positions for a QD of similar size [20].

Figure 6. The electron density and the LDOS at energies corresponding to the most pronounced
peaks in figure 5. The Lorentzian broadening is � = 0.8 meV.

also have a contribution from states with m �= 0. We have labelled the peaks with m and N ,
where m is the azimuthal quantum number and N − 1 is the number of radial nodes in the QD
region. The hybridization of the QD states with the states belonging to the underlying slab
causes a splitting of states with binding and anti-binding character. For this reason, some of
the peaks in figure 5 belong to the same resonance state. A more thorough discussion on this
matter has been presented previously [62].
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In figure 6, we present isosurfaces of the LDOS corresponding to the dominant peaks in
figure 5, in addition to the electron density. The density is smooth in the interior of the QD, and
shows small oscillations towards the edges. The iso-LDOS surfaces show the nodal structure
of the individual states, and compare well to experimental results [20].

7. Reactivity

When modelling the reactivity of an adsorbed quantum dot, we choose the system of CO
adsorbed on an unsupported Na QD. Our main focus is on studying possible size dependence
of the charge transfer between the QD and molecule. We have kept the cylindrical symmetry,
requiring the molecule to approach along the symmetry axis with the carbon atom facing
downwards. We start by presenting results from a model study based on the Newns–Anderson
(NA) model [102, 103] and proceed with a first-principles DFT study.

First, we outline the basis of the NA study. The highest occupied molecular orbital
(HOMO) for the CO molecule is the filled 5σ orbital which has m = 0 character, and the lowest
unoccupied molecular orbital (LUMO) is the anti-bonding 2π∗ orbital, which corresponds to
the quantum numbers m = ±1. The 5σ state can host two electrons, while the 2π∗ state can
host four, two in each of the 2πx and 2πy orbitals. The electron affinity for CO is −1.5 eV [100].
The negative sign for the electron affinity indicates that energy is required to impose an extra
electron. The CO molecule is represented by 〈�x |a〉 = 〈�x |2π∗〉 and 〈x̄ |k〉 are the QD states. We
make the assumption that the coupling matrix elements Vak in the NA model can be described
as

|Vak | = V0|〈a|k〉|, (14)

where V0 is a parameter and 〈a|k〉 the overlap between the 2π∗ orbital and the QD states.
The charge transfer is obtained by integrating the projected density of states (PDOS) up to the
Fermi level and multiplying with the degeneracy da,

Qa = da

∫ EF

−∞
ξa(ε) dε, (15)

where the PDOS in the NA model is given by

ξa(ε) = 1

π

(ε)

(ε − εa −�(ε))2 +(ε)2
, (16)

where �(ε) and (ε) are the real and imaginary parts of the one-electron self-energy

(ε) = π
∑

k

|Vak |2δ(ε − εk) (17)

�(ε) = P

π

∫
(ε ′)
ε − ε ′ dε ′. (18)

The QD is described by the finite potential well model, outlined in section 3.1, and the CO
molecule by the 2π∗ orbital constructed from normalized linear combinations of Cartesian
Gaussians, using the ab initio computer code GAMESS [101].

The charge transfer between the unsupported Na QD and the CO molecule as a function
of the number of electrons N within the QD is presented in figure 7. It is calculated for a
constant height, bond length and interaction parameter [63]. The resulting charge transfer
shows a pronounced quantum size dependence, with sharp maxima at N = 6, 20, 46 and 76
and minima at N = 16, 42 and 72. The peaks correspond to QD sizes, where there exists
a filled m = 1 state at the Fermi level, indicating that the charge transfer depends critically
on the presence of weakly bound QD electrons with the same symmetry as the LUMO of the
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Figure 7. The charge transfer as a function of the number of electrons in the QD, calculated within
the NA approximation. We have used the parameters V0 = 0.15, b0 = 2.13 au and d = 1.11 au.

CO molecule. The quantum size effects are most pronounced for small QDs, and will vanish
for large enough QD radii, since 〈a|k〉 will obviously decrease with increasing QD size.

The NA model calculation indicates that the charge transfer is quantum size dependent. To
investigate this more thoroughly, we have performed a first-principles calculation, as outlined
in section 3.2, for QDs in the range of N = 5–22 electrons [63]. However, to keep a reasonable
computational effort, we consider the finite system with an unsupported Na jellium QD. We
base this assumption on our previous calculations [62] for the system which indicated that it
is the states localized to the QD region that give the predominant contribution to the LDOS
above the QD. The CO molecule is represented by pseudopotentials of the Kleinman–Bylander
form [104].

The net total energy for the electrons of the combined system, consisting of the CO
molecule and the QD, with respect to the values for the corresponding free counterparts, is
defined by

ETot = EQD+CO
Tot − (EQD

Tot + ECO
Tot ). (19)

A negative net energy indicates an energetically favourable configuration, while a positive
energy indicates that energy is required to obtain the configuration. In figure 8 we present
ETot and the corresponding intermolecular bond length b and bond distance d between the
carbon atom and the jellium edge as a function of the number of electrons N in the QD.
Each quantity is calculated for the energetically most favourable configuration. We see the
same trend as in figure 7. The energetically most favourable size for adsorption is N = 6,
as for the calculation with the NA model, and the energetically least favourable are the sizes
corresponding to N = 13–16. For sizes where adsorption is energetically favourable, the CO
bond length is increased with respect to the free molecule value (b0 = 2.092 au), indicating
that charge transfer to the molecule has taken place.

In figure 9, we present potential energy surfaces (PES) for the two limiting cases. The net
total energy is calculated according to equation (19), as a function of molecular bond length b
and bond distance d , and displayed on a grid. In the top panel we have the PES corresponding
to the N = 6 QD with a well-defined minimum at (b, d) = (2.12, 1.5) au, and a net total
energy ofETot = −0.28 eV. For N = 16 on the other hand, the minimum is less pronounced,
withETot = +0.06 eV at (b, d) = (2.10, 4.0) au. The bond length is practically the same as
for the free molecule, which indicates that the charge transfer to the molecule is small.
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Figure 8. The net total energy (top), the molecule–QD bond distance (middle) and the CO
intermolecular bond length (bottom) as a function of the number of electrons within the QD. Each
quantity is calculated for a relaxed system, corresponding to the energetically most favourable
configuration. The dashed line in the top panel indicates ETot = 0, and the dashed line in the
bottom panel represents the bond length for the free molecule b0 = 2.092 au.

We calculate the charge transfer according to equation (15), where the PDOS is defined
by

ξa(ε) =
∑

i

|〈i |a〉|2δ(ε − εi). (20)

Here, |i〉 are the self-consistent one-electron states of the combined CO and QD system and
|a〉 is either the CO HOMO (5σ) or LUMO (2π∗) orbital. For N = 16 the charge transfer
was Q2π∗ = 0.5e, while for N = 6, Q2π∗ = 1.6e. Thus, we see a considerably larger
charge transfer for N = 6 as compared with N = 16, as indicated already by the PES in
figure 9. In figures 10 and 11 we present the PDOS for the N = 6 and 16 QDs, calculated for
d = 2.0, 6.0 and 10.0 au. In addition, we show the wavefunctions corresponding to the most
pronounced peaks in the 2π∗ PDOS, calculated for d = 10.0 au and the energetically most
favourable bond distance for each size. The change in electron density for the CO molecule
when adsorbed on the N = 6 QD is presented in figure 12. We observe an increased density
with 2π∗ symmetry, and a decrease in electron density with 5σ symmetry, as expected from
the Blyholder model [105].

The origin of why the charge transfer is considerably larger for N = 6 than for N = 16 is
understood by studying the electronic spectra for each case; see figures 13(a) and (b). The 2π∗
molecular orbital is formed by a linear combination of states with angular momenta +1 and
−1. As a consequence, only QD states with |m| = 1 will contribute to the charge transfer. For
N = 6 we have a completely filled m = 1 state just below the Fermi level, while for N = 16,
this m = 1 state has been downshifted in energy, and the next m = 1 state is still above EF.
From this we conclude that the presence of occupied electron states, with the same symmetry
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Figure 9. The PES for N = 6 (top) and N = 16 (bottom) QDs. The molecular bond length b
and the distance d between the centre of the carbon atom and the upper jellium edge are given in
au. The net total energy is given in eV, and the energy difference between two successive levels is
0.05 eV.

as the LUMO for the adsorbing molecule, close to the Fermi level is crucial for an enhanced
charge transfer.

In addition to the radius, the height also presents a size parameter within our model.
Increasing the radius of the QD allows states with higher m quantization to fit and induces
more states in each band, while increasing the height of the QD downshifts the energy states
and compresses the bands, since states with higher n quantum number will show a larger
downshift. In figure 13(c) we show the energy spectrum for a 2 ML thick QD with the same
radius as the N = 16 QD in figure 13(b). The increased height results in an energy spectrum
with two m = 1 states practically at the same energy, just below the Fermi level. The resulting
charge transfer to the 2π∗ orbital is in this case 0.93e at d = 4.0 au, almost twice the amount
for the 1 ML N = 16 QD. Thus, by controlling the radius and height of the QD, it is in principle
possible to tune the energy spectrum to promote a certain property.

We have illustrated that the size parameters influence the electron spectrum, and thus the
local electronic properties of the adsorbed QD. These properties are in turn determined by
the adsorbate, underlying substrate and the growth process itself. The average island size and
the growth mode are often delicate, and depend on temperature, evaporation rate, pressure,
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Figure 10. Top: the PDOS corresponding to the 5σ and 2π∗ states, calculated for the N = 6 QD
at bond distances d. Bottom: the wavefunctions for m = 1 states with indices l, corresponding to
d = 1.5 and 10.0 au. The bond length is kept constant at b = 2.12 au.

presence of impurities etc. In addition, coordination and interface effects have proved to be
important, especially for the catalytic properties of adsorbed clusters and nanoparticles.

8. Summary and conclusion

During the last decade experimental and theoretical studies of adsorbed nanoscale metallic
clusters have revealed several features of great interest for applications in a new field—
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Figure 11. Top: the PDOS corresponding to the 5σ and 2π∗ states, calculated for the N = 16 QD
at bond distances d. Bottom: the wavefunctions for m = 1 states with indices l, corresponding to
d = 4.0 and 10.0 au. The bond length is kept constant at b = 2.10 au.

nanocatalysis. In this paper we have summarized some of these achievements. In addition, we
have in more detail presented our own recent theoretical investigations of adsorbed metallic
quantum dots. We have calculated the energy shifts, electron density and local density of states
and compared our results to experimental results from STM and PES. In addition, we have
modelled CO reactivity on an unsupported Na QD, by calculating the charge transfer with the
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Figure 12. The change in electron density up on CO adsorption on a N = 6 QD. The solid curves
indicate an increased electron density, while dashed curves indicate a decrease. The molecule is
positioned along the z-axis, with the C atom at 3.69 and O at 5.81 au. The QD jellium edge is
located at z = −0.31 au.

Figure 13. The energy eigenstates for (a) the N = 6 QD, (b) the N = 16 QD and (c) a 2 ML thick
QD with the same radius as for N = 16.

Newns–Anderson model and from first principles. We observed a pronounced size dependence
in the charge transfer, which could be explained in terms of the presence of weakly bound QD
electrons with the same symmetry as the LUMO of the reacting molecule. In conclusion, we
indeed find that by changing the size parameters of the adsorbed quantum dot, it is possible to
control the reactivity.
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