
Creation of a Learning, Flying Robot by Means of Evolution

Peter Augustsson Krister Wolff

Department of Physical Resource Theory, Complex Systems Group
Chalmers University of Technology SE-412 96 Göteborg, Sweden

E-mail: wolff, nordin@fy.chalmers.se

Peter Nordin

Abstract

We demonstrate the first instance of a real
on-line robot learning to develop feasible
flying (flapping) behavior, using evolution.
Here we present the experiments and results
of the first use of evolutionary methods for
a flying robot. With nature’s own method,
evolution, we address the highly non-linear
fluid dynamics of flying. The flying robot is
constrained in a test bench where timing and
movement of wing flapping is evolved to give
maximal lifting force. The robot is assembled
with standard off-the-shelf R/C servomotors
as actuators. The implementation is a con-
ventional steady-state linear evolutionary al-
gorithm.

1 INTRODUCTION

As a novel application of EA, we set out to replicate
flapping behavior in an evolutionary robot [Nolfi and
Floreano, 2000]. There is a great interest in construct-
ing small flying machines, and the way to do that
might be artificial ornithopters. The continuum me-
chanics of insect flight is still not fully understood, at
least not about controlling balance and motion. Ac-
cording to what was known about continuum equa-
tions a couple of years ago, the bumblebee could not
fly. The way around this problem could be to give up
understanding and let the machines learn for them-
selves and thereby create good flying machines [Lang-
don and Nordin, 2001] and [Karlsson et al, 2000]. We
propose for several reasons the concept of evolution-
ary algorithms for control programming of so-called
bio-inspired robots [Dittrich et al, 1998] as e.g. an arti-
ficial ornithopter. The traditional geometric approach
to robot control, based on modelling of the robot and

derivation of limb trajectories, is computationally ex-
pensive and requires fine-tuning of several parame-
ters in the equations describing the inverse kinematics
[Wolff and Nordin, 2001] and [Nordin et al, 1998]. The
more general question is of course if machines, to com-
plicated to program with conventional approaches, can
develop their own skills in close interaction with the
environment without human intervention [Nordin and
Banzhaf, 1997], [Olmer et al, 1995] and [Banzhaf et
al, 1997]. Since the only way nature has succeeded in
flying is with flapping wings, we just treat artificial or-
nithopters. There have been many attempts to build
such flying machines over the past 150 years1. Gustave
Trouve’s 1870 ornithopter was the first to fly. Powered
by bourdon tube fueled with gunpowder, it flew 70 me-
ters for French Academy of Sciences2. The challenge

Figure 1: Drawing of Gustave Trouve’s 1870 or-
nithopter.

of building ornithopters attracts an accelerating inter-
est in our days as well and there are many different
types of ornithopters. Both manned and unmanned
machines, powered by rubber band, compressed air
and combustion engines as well as electric engine ex-
ist3. All of these projects are still dependent of a for-

1www.ctie.monash.edu.au/hargrave/timeline2.html
2indev.hypermart.net/engine.html
3indev.hypermart.net/photos.html



ward motion trough the air and we are not aware of
any machine with flapping wings that has succeeded
in hovering like a dragonfly or a mosquito. Kazuho
Kawai, e.g. has during several years tried to make
a manpowered ornithopter fly, but has not succeeded
yet4. Charles Ellington has created another insect-
imitating robot5. The purpose of this robot is to learn
about the aerodynamics of insect flight, by means of
scaling up the insect and thereby get lower velocity
and easier measurements. After nine months of design
and construction, the flapper was born at a cost of £40
000. Although its slow motion ensured that the flapper
would never get airborne, it was perfect for visualizing
the detailed airflow over the wings. Conventional aero-

Figure 2: Pictures of some modern ornithopters. First
known R/C ornithopter, P.H. Spencer’s Orniplane,
which took off in 1961 (top). Kazuho Kawai’s project
Kamura (bottom).

dynamics used in the design of aircraft and helicopters
rely on ”steady-state” situations such as a fixed wing
moving at a constant speed, or a propeller rotating at a
constant rate. By contrast, the motion of insect wings
is a complex behavior in 3D-space. Within this the-
ory rooted in steady-state situations, it has not been
clearly understood why this special motion could gen-
erate any unusual sources of lift to explain the insect
flight. This picture left out some obvious differences
between insects and aircraft. First of all, insects are
small. On this smaller scale, viscosity of air becomes
more important so that, for the average insect, flying
through air is like swimming through treacle. Because
of this, the classic airfoil shape that generates an air-
craft’s lift doesn’t work, and insects have evolved en-
tirely different forms of wing structures. At the Uni-
versity of California at Berkeley, a research team at the

4web.kyoto-inet.or.jp/people/kazuho/
5www.catskill.net/evolution/flight/home.html

Robotics and Intelligent Machines Laboratory came to
the same conclusion as Ellington, i.e. that the problem
is scale dependent6. They are now developing a micro-
mechanical flying insect (MFI), which is a 10-25 mm
(wingtip-to-wingtip) device, eventually capable of sus-
tained autonomous flight. The goal of the MFI project
is to use biomimetic principles to capture some of the
exceptional flight performance achieved by true flies.
The project is divided into four stages:

1. Feasibility analysis

2. Structural fabrication

3. Aerodynamics and wing control

4. Flight control and integration

Their design analysis shows that piezoelectric actu-
ators and flexible thorax structures can provide the
needed power density and wing stroke, and that ad-
equate power can be supplied by solar cells. In the
first year of this MURI grant, research has concen-
trated on understanding fly flight aerodynamics and
on analysis, design and fabrication of MFI structures.
The Berkeley project does not try to improve nature’s
way of flying but are more concerned with the actual
construction of the robot. There are projects with
learning control systems for model helicopters known,
but there has not been any project involving learning
flying machines with flapping wings reported.

2 METHOD

2.1 EA CONTROL

Simulated evolution is a powerful way of finding so-
lutions for analytically hard problems [Banzhaf et al,
1998]. An ordinary mosquito has a very small compu-
tational power (a couple of 100.000 neurons at a very
low clock frequency) and yet it is able solves prob-
lem that are rather complex. The problem is not only
how to move its wings to fly, the mosquito also com-
putes its visual impression and controls its flight path
to avoid obstacles and compensates for disturbances
like side wind. Beside this performance, it also han-
dles its life as a caterpillar, finds food and a partner
to mate with. This is an example of a control system
created by nature. Developing such a control system
would be impossible for a single programmer and pos-
sibly even for an organization. This is why we propose
for evolutionary algorithms as a solution candidate for
control of such complex systems.

6robotics.eecs.berkeley.edu/∼ronf/mfi.html



2.2 IMPLEMENTATION

The implementation is a simple linear evolutionary
system. All source code is written in MSVC. We have
used some MS Windows-specific functions, meaning
that the program is not possible to run from any other
platform without some changes in the code. The MS
Windows components that are used in the EA class are
first; writing to the serial port and second; a function
returning the mouse cursor coordinates.

2.2.1 Algorithm

The algorithm use tournament selection of the parents.
In this algorithm, only four individuals are selected for
the tournament. The fitness is compared in pairs and
the winners breed to form new offspring that replaces
the losers. This means that there are no well-defined
generations but a successive change of the population
[Banzhaf et al, 1998] and [Nordin, 1997].

2.2.2 Population storage and program

interpreter

However individuals are of random length, there
is a maximum length which the individuals are
not allowed to exceed. The possible instructions are:

0: Do nothing.

1: Move wings forward to a given angle.

2: Move wings up to a given angle.

3: Twist wings to angle.

Because of these limited possibilities, this imple-
mentation cannot form individuals of any other
kind even after a change in the fitness function.
These evolved individuals are represented as a data
structure and cannot be executed without the special
interpreting program. This solution has the advantage
of not having to wait for a compilation of the code.
Of course, it is possible to create compilable code
by generating a header, a series of strings from
the information from the structure and finally the
footer, but this have not yet been implemented.
The program is not computationally efficient but
there is no need for that. Since an evaluation of
one individual can take up to 5 seconds, it does
not matter if the rest of the computation takes ten
milliseconds instead of one. The interpreter translates
the information of the data structure to commands to
the control card of the robot. The different stages are:

1. All the instructions of the program are sent
to the robot without any delays. This sets the robots
starting position at the same as its final. If we do not
do that, the individual could benefit from a favorable
position from the last program executed.

2. The interpreter waits for one second to let
the robot reach the starting position and to let it
come to a complete standstill.

3. The cursor is set to the middle of the screen.

4. The instructions are sent to the robot at a
rate of 20 instructions per second. Meanwhile, the
cursor position is registered every 5 millisecond.
The cycle of the program is repeated three times
to find out if the program is efficient in continuous run.

The resulting array of mouse cursor position is
then passed to the fitness function for evaluation.

2.2.3 Fitness function

The fitness is calculated from the series of mouse cur-
sor coordinates, from the interpretation of the pro-
gram. Our first intention was to use the average of
these coordinates as the only fitness function but we
had to add some penalty for ”cheating” behaviors.

3 HARDWARE

3.1 ACTUATORS

The robot is assembled with standard off-the-shelf
R/C servomotors as actuators. This kind of servo
has an integrated closed loop position control circuit,
which detects the pulse-code modulated signal that
emanates from the controller board for commanding
the servo to a given position [Jones et al, 1999]. The
signal consists of pulses ranging from 1 to 2 millisec-
onds long, repeated 60 times a second. The servo
positions its output shaft in proportion to the width
of that pulse. In this implementation, each servo is
commanded to a given position by the robot control
program by addressing it an integer value within the
interval {0, 255}.

3.2 ROBOT

Five servomotors are used for the robot. They are
arranged in such a way that each of the two wings has
three degrees of freedom. One servo controls the two
wings forward/backward motion. Two servos control
up/down motion and two small servos control the twist



of the wings. The robot can slide vertically on two steel
rods. The wings are made of balsa wood and solar,
which is a thin, light air proof film used for model
aircrafts, to keep them lightweight. They are as large
as the servos can handle, 900 mm.

Figure 3: The robot mounted on its sliding rods.

Figure 4: Schematic orientation of the actuators.

3.3 CONTROLLER BOARD

A controller board called Mini SSC II (Serial Servo
Controller) from Scott Edwards Electronics Inc. was
used as the interface between the robot and the PC
workstation, via serial communication. It is possible
to connect up to eight servomotors to a single Mini
SSC II controller board. The communication protocol
consists of three bytes: first byte is a synchronization
byte, the second is the number of a servo (0-7), and
the last is a position-proportional byte (0-255). The
controller board maintains the actuators position ac-
cording to the last given command, as long as there
are no new commands sent.

The robot is placed on two rigid steel rods and is free
to slide vertically. In vertical direction, the robot is
supported by an elastic rubber band and a string con-
nects the robot to the mouse, which is used to detect
fitness during the evolutionary experiments.

Figure 5: Picture of the robot and the experimental
environment.

3.4 FEEDBACK

An ordinary computer mouse gives feedback to the
computer, which is a measure of the vertical position
of the robot. The mouse takes care about the con-
version from the analogue outside world to the digital
computer. The mouse is placed above the robot, which
is connected to the Y-direction detection wheel of the
mouse via a thin string. When the robot moves in
vertical direction, the mouse detects the changes in
position and the program simply reads the cursor po-
sition on the screen [Nordin and Banzhaf, 1995] and
[Andersson et al, 2000].

4 RESULTS

The robot was very fast to find ways to cheat. First,
it noticed that if it made a large jerk, it could make
the thread between the mouse and the robot slide and
therefore make the mouse unable to detect its real po-
sition. Once, the robot managed to make use of some
objects that had, by mistake, been left on the desk
underneath the robot. After a few hours the robot
was completely still and had twisted one wing so it
touched the objects and thereby pressed himself up.
It also invented motions that kept it hanging on the
rods without sliding down.

Initially, all individuals consist of completely random
movements. The fitness of an individual is the average
cursor position during the run. At the beginning of
the run, the cursor is set to 384, half the height of the
screen. A fitness of 200 or lower means that the robot
is producing enough lift to carry its weight; i.e. to fly.



Figure 6: Series of pictures showing the best individual
of Experiment 1.

4.1 EXPERIMENT 1, VERTICALLY

Immediately the individuals achieve lower fitness. Af-
ter a couple of minutes all individuals has a better
result then just hanging still, which would give the fit-
ness 384. For a couple of hours, the average fitness
continues to decrease but finally the result does not
improve any more. The lengths of the individuals in-

crease to a certain program length, where they remain
fixed. At the random construction of the code, the
length is set to somewhere between one and half the
maximum program length.

0 50 100 150 200 250
320

330

340

350

360

370

380

390

Time Steps
F

itn
es

s

Figure 7: Fitness values from a representative run.
Average fitness (top) and best individual fitness (bot-
tom). The time scale is 2.5 hours.

0 50 100 150 200 250 300
320

330

340

350

360

370

380

Time Steps

F
itn

es
s

Figure 8: Fitness values of a longer run of 5 hours.
Average fitness (top) and best individual fitness (bot-
tom).

The resulting individuals did come up with the result
one should have expected. A down stroke with no
twist angle of the wings and an up stroke with wings
maximally twisted to minimize the resulting downward
force.



0 50 100 150 200 250 300
0

5

10

15

20

25

30

Time Steps

Le
ng

th

Figure 9: Average program length of the same run as
shown in figure 8.

4.2 EXPERIMENT 2, HORIZONTALLY

The second experiment aimed at exploring the possi-
bilities to have the robot to fly in horizontal direction.
The experimental set-up is shown in figure 9. The
robot is attached to a sleigh, which is free to move
along a horizontal rod.

Figure 10: Horizontally flying experiment set-up.

The fitness function in this experiment was set to the
average horizontal velocity of the sledge/robot. This
function did cause some trouble since the population
could not get an over all increasing fitness due to the
fact that the track was not infinitely long. The wires
to the robot were left hanging to generate an increas-
ing backward force as the robot travels further away.
Therefore the fitness of an individual was dependent
on the result of the last evaluated individual. As seen
in figure 10, the fitness only increases for one hour but
the resulting individuals were still getting better. The
position of the robot was recorded every tenth second
for two minutes and, as shown in figure 11, the evolu-

tion is still in progress even after that the fitness has
come to a standstill.
This experiment resulted in two different flying be-
haviors, both present in the small population of 50
individuals after two hours. The two types were one
”flying” and one ”rowing” program.

0 200 400 600 800
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time Steps

F
itn

es
s

Figure 11: Average fitness of experiment 2, horizon-
tally. The time scale is 2.5 hours.

1
2

3
4

5
61 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

Time
Horizontal Position [dm]

O
bs

er
va

tio
ns

Figure 12: Diagram showing the position of the robot.
The position is the distance in horizontal direction
from the starting point.

5 SUMMARY AND CONCLUSIONS

We have demonstrated the first instance of a real on-
line robot learning to develop feasible flying (flapping)
behavior, using evolution. Using evolutionary robotics
in the difficult field of ornithopters could be a fruitful
way forward.



Figure 13: Behavior of the two resulting individuals
in experiment 2, horizontally. ”Flying” behavior (top)
and ”rowing” behavior (bottom).

The most interesting future approach would be to sup-
ply the robot more power compared to its weight,
which should give the robot a reasonable chance of
flying. To achieve this, conventional R/C servomotors
is not likely to be used as actuators, since they have a
rather poor power-to-weight ratio.
Furthermore, providing the robot with a more sophis-
ticated feedback system would give it the possibility
to practice balancing in space. Another future devel-
opment stage is to make the robot autonomous, e.g.
carrying its energy source and control system.

References

S. Nolfi and D. Floreano (2000). Evolutionary
Robotics: The Biology, Intelligence, and Technology of
Self-Organizing Machines. Massachusetts: The MIT
Press.

W. B. Langdon and J. P. Nordin (2001). Evolving
Hand-Eye Coordination for a Humanoid Robot with
Machine Code Genetic Programming. In Proceeding

of EuroGP 2001, (pp 313-324). Lake Como, Milan,
Italy: Springer Verlag.

R. Karlsson, J. P. Nordin and M. G. Nordahl (2000).
Sound Localization for a Humanoid Robot using Ge-
netic Programming. In Proceedings of Evoiasp2000.

Edinburgh, Scotland: Springer Verlag.

P. Dittrich, A. Burgel and W. Banzhaf (1998). Learn-
ing to move a robot with random morphology. Phil
Husbands and Jean Arcady Meyer, editors, First Eu-

ropean Workshop on Evolutionary Robotics, (pp. 165-
178). Berlin: Springer-Verlag.

K. Wolff and J. P. Nordin (2001). Evolution of Effi-
cient Gait with Humanoids Using Visual Feedback. In
Proceedings of the 2nd IEEE-RAS International Con-

ference on Humanoid Robots, Humanoids 2001, (pp.

99-106). Waseda University, Tokyo, Japan: Institute
of Electrical and Electronics Engineers, Inc.

J. P. Nordin, W. Banzhaf and M. Brameier (1998).
Evolution of World Model for a Miniature Robot
using Genetic Programming. International Journal

of Robotics and Autonomous systems, North-Holland,
Amsterdam.

J. P. Nordin and W. Banzhaf (1997). An On-line
Method to Evolve Behavior and to control a Minia-
ture Robot in Real Time with Genetic Programming.
The International Journal of Adaptive Behavior, (5)
(pp. 107 - 140). USA: The MIT Press.

F. M. Olmer, J. P. Nordin and W. Banzhaf (1995).
Evolving Real-Time Behavioral Modules for a Robot
with Genetic Programming. In Proceeding of ISRAM

1996. Montpelier, France.

W. Banzhaf, J. P. Nordin and F. M. Olmer (1997).
Generating Adaptive Behavior using Function Regres-
sion with Genetic Programming and a Real Robot. In
Proceedings of the Second International Conference on

Genetic Programming. Stanford University, USA.

W. Banzhaf, J. P. Nordin, R. E. Keller and F. D. Fran-
cone (1998). Genetic Programming An Introduction:
On the Automatic Evolution of Computer Programs
and Its Applications. San Francisco: Morgan Kauf-
mann Publishers, Inc. Heidelberg: dpunkt verlag.

J. P. Nordin (1997). Evolutionary Program Induction
of Binary Machine Code and its Applications. Muen-
ster, Germany: Krehl Verlag.

J. L. Jones, A. M. Flynn and B. A. Sieger (1999).
Mobile Robots: Inspiration to Implementation. Mas-
sachusetts: AK Peters.

J. P. Nordin and W. Banzhaf (1995). Controlling an
Autonomous Robot with Genetic Programming. In
Proceedings of 1996 AAAI fall symposium on Genetic

Programming. Cambridge, USA.

B. Andersson, P. Svensson, J. P. Nordin and M. G.
Nordahl (2000). On-line Evolution of Control for a
Four-Legged Robot Using Genetic Programming. In
Stefano Cagnoni, Riccardo Poli, George D. Smith,
David Corne, Martin Oates, Emma Hart, Pier Luca
Lanzi, Egbert Jan Willem, Yun Li, Ben Paechter and
Terence C. Fogarty, editors, Real-World Applications

of Evolutionary Computing, volume 1803 of LNCS,
(pp. 319-326). Edinburgh, Scotland: Springer Verlag.


