A Brute-Force Approach to
Automatic Induction of Machine Code
on CISC Architectures

Felix Kiihling, Krister Wolff, and Peter Nordin

Chalmers Technical University, Physical Resource Theory, S-41296 Goteborg, Sweden

Abstract. The usual approach to address the brittleness of machine
code in evolution is to constrain mutation and crossover to ensure syn-
tactic closure. In the novel approach presented here we use no constraints
on the operators. They all work blindly on the binaries in memory but
we instead encapsulate the code and trap all resulting exceptions using
the built-in error reporting mechanisms which modern CPUs provide to
the operating system. Thus it is possible to return to very simple genetic
operators with the objective of increased performance. Furthermore the
instruction set used by evolved programmes is no longer limited by the
genetic programming system but only by the CPU it runs on. The map-
ping between the evolution platform and the execution platform becomes
almost complete, ensuring correct low-level behaviour of all CPU func-
tions.

1 Introduction

Automatic induction of machine code refers to the generation of machine code
programmes using genetic programming techniques, where the machine pro-
gramme itself is interpreted as the linear genome. This method was first de-
veloped on RISC architectures [12] with fixed instruction length which makes
the implementation straightforward. It was later extended to CISC architectures
[13] with variable instruction length using sophisticated techniques to ensure
that genetic operators cannot compromise the integrity of the generated ma-
chine programmes. On the other hand modern CPUs have built-in mechanisms
for detecting errors and reporting them to the operating system. The idea here is
to make the genetic operators as simple as possible and leave the error checking
to the CPU. Syntactic correctness of programmes is then just one additional fit-
ness criterion. Apart from performance issues this approach can potentially use
all the capabilities of the underlying CPU as opposed to previous approaches.
Even syntactically correct programmes can cause damage to other processes
in a multi-tasking environment, the file system or even the hardware. Therefore
it is necessary to provide a secure environment for evolved programmes which
isolates them from the rest of the system. Our first approach was to write a small
operating system that would run on a dedicated machine for hosting evolved
programmes, but we decided to use an existing multi-tasking OS, Linux, which

provides a stable and well tested memory and IO protection scheme. However, it
was still necessary to prevent evolved programmes from accessing the file system,
network and other operating system services such as memory management or
inter-process communication.

In this paper we will first introduce the implementation of a genetic program-
ming system which takes the approach described above, explain how it ensures
that evolved programmes cannot compromise the system stability and briefly
describe the evolutionary algorithm. Then we will present a classification prob-
lem, which has been used to test the genetic programming system and compare
the performance of our system to that of an existing one, using the “traditional”
way of machine code genetic programming. The aim is to have a proof of con-
cept showing that our approach to genetic programming is efficient in principle,
though there remains much room for improvements.

2 Method

As mentioned in the introduction our machine code genetic programming system
is based on Linux. The idea is to have the evolved programmes run in a separate
process from the one controlling the evolution. Subsequently the two processes
will be referred to as master and slave. Errors in the slave process will be handled
by the master.

The following problems have to be solved in order to have the slave process
safely execute evolved programmes:

— hide other code like shared libraries from the evolved programmes in order
to limit the executed code to the evolved one and to guarantee reproducible
runs

— prevent evolved programmes from accessing operating system services

— transfer evolved programmes and data between the master and slave pro-
cesses

— handle errors of the slave process in the master

— determine the execution time of evolved programmes

— limit the execution time of evolved programmes

The following subsections describe technical details of a mechanism that ad-
dresses all these problems.

2.1 Slave Process Setup

Figure 1 gives an overview of the slave-startup procedure. The idea is to start a
slave process only once and then use it to execute all evolved programmes whose
fitness has to be evaluated. This eliminates the overhead of starting one new
process for each fitness evaluation.

First the master allocates a shared memory segment that will be shared by
master and slave process. It will contain the evolved programmes, any data and
some space for a stack.

M aster Slave

‘ get shared memory segment ‘

i

fork

|
\

install signal handlers
(USR1, USR2, VTALRM)

‘ ptrace (TRACEME) ‘
I

signal myself to notify parent ‘

wait for signal to child
deliver modified signal to child

e
wait for own signa
original: exit, modified: ok

munmap all memory
(except the shared memory)

on exit of child’s munmap:
slaveis ready for evolved progs

Fig. 1. Slave-startup procedure

Then a new child process, the slave is created. It first installs signal handlers
for SIGUSR1 and SIGUSR2 which will be used to check whether the master can
really control the slave and SIGVTALRM which can be used to limit the runtime
of the slave.

Then it calls ptrace (PTRACE_TRACEME) in order to allow the master to control
it via the ptrace system call. This is an interface intended for debuggers. It
allows the master to access the slave’s registers and to gain control whenever the
slave receives a signal or issues a system call. The master can hide a signal from
the slave or deliver a modified signal. On system calls the master is notified on
entry and exit.

In order to notify the master, the slave sends a SIGUSR1 to itself. Now the
master gains control, delivers SIGUSR2 to the slave and returns control to it
asking for notification about system calls at the same time. If the slave receives
an unmodified SIGUSR1 it assumes that something failed and exits.

Otherwise it goes on using the munmap system call in order to unmap all
memory except the shared memory segment from its address space. On exit
from the system call the return address is no longer accessible since it is inside
the address space which has just been unmapped. Therefore the slave relies on
the master taking control of its execution. This happens as the slave is stopped
on exit from the system call before it returns from the kernel to the unmapped
user address space.

2.2 Executing a System Call in the Slave

It will be necessary for the master to make system calls in the context of the
slave process. The procedure is described here once and will be referred to later.

System calls transfer control to kernel address space, which is not directly
accessible for normal programmes, in order to use operating system services. In
Linux on a x86 compatible machine this is done by executing a “int $0x80”
instruction. The system call number and parameters are passed in the CPU
registers.

In order to make a system call in the slave process’s context, ptrace is used
to copy the system call number and parameters into the slave’s register set.
The “int $0x80” instruction followed by “int $3” is copied to the beginning
of the shared memory. In order to have this executed by the slave its instruction
pointer is set to the start of the shared memory segment before having it resume
execution. The “int $3” instruction, which is intended for debuggers for setting
breakpoints, will cause a SIGTRAP signal to be sent to the slave, which will return
control to the master.

For system calls which accept or return data in memory, referenced by a
pointer in a register, that memory must be in the slave process’s address space.
Using the shared memory for this eliminates the necessity of copying data be-
tween the slave’s and the master’s address space. The error status of the system
call is returned in the register jeax. It is read by the master using ptrace and
returned as if the system call was performed in the master itself.

2.3 Preparing to Run a Programme

Before starting an evolved programme in the slave we set up a timer, which
will interrupt the slave, when it runs longer than up to a certain deadline. This
is done by calling the setitimer system call from within the slave process as
described above. Because of the low resolution of the Linux timer and for the
performance impact of the extra control transfer to the slave, it is often useful,
to set a deadline once, limiting the accumulated runtime of the evaluation of
several fitness cases.

Then the programme and any data is copied into the shared memory segment
and all the remaining shared memory is cleared. The registers can be used to
pass parameters to the evolved programme as well. The segment registers, stack
pointer, instruction pointer and certain flags cannot be specified by the user. The
stack pointer is always set to the end of the shared memory segment, since the
stack grows to lower addresses. The instruction pointer is set to the beginning.

2.4 Running a Programme

Now the slave process is allowed to resume execution with the master being
notified when the slave receives a signal or makes a system call. The signal can
be either an error indication (SIGSEGV, SIGILL), a normal exit through “int
$3” (SIGTRAP) or a timer.

2.5 Getting the Results

Results returned in the shared memory do not need any special treatment. The
registers are read using ptrace. The time spent running a programme can be
determined by calling the getrusage system call from the slave.

2.6 Population Initialisation

We have tried three different methods for initialising the population, (1) random
instructions from a very limited instruction set which uses only registers, (2) a
sequence of random, but syntactically correct integer instructions, using all ad-
dressing modes with jump offsets and memory references bounded to the shared
memory segment and (3) random bytes. Note that this refers only to the initial
programmes. Evolution can and will “invent” other instructions and addressing
modes.

2.7 The Evolutionary Algorithm

The evolutionary algorithm is a steady state tournament of size four. In each
step the winners of two competitions are allowed to generate two offsprings
overwriting the losers. Reproduction is achieved by two-point string crossover.
With 50% probability one child is mutated by replacing one byte with a new
random byte.

3 Experiments

The evolutionary system was tested on a classification problem which has been
previously studied using Discipulus and a connectionist machine learning ap-
proach. Discipulus is a machine learning software that uses the AIM-GP ap-
proach described in [13] on a x86 architecture. The following quote is taken from
the data set’s .names-file.

1. Title: Pima Indians Diabetes Database
2. Sources:
(a) Original owners: National Institute of Diabetes and Digestive
and Kidney Diseases
(b) Donor of database: Vincent Sigillito (vgs@aplcen.apl.jhu.edu)
Research Center, RMI Group Leader Applied Physics Labora-
tory The Johns Hopkins University Johns Hopkins Road Laurel,
MD 20707 (301) 953-6231
(c) Date received: 9 May 1990
3. Past Usage: [...]
Results: Their ADAP algorithm makes a real-valued prediction be-
tween 0 and 1. This was transformed into a binary decision using
a cutoff of 0.448. Using 576 training instances, the sensitivity and
specificity of their algorithm was 76% on the remaining 192 instances.

Relevant Information: [...]

Number of Instances: 768

Number of Attributes: 8 plus class

For Each Attribute: (all numeric-valued)

(1) Number of times pregnant, (2) Plasma glucose concentration a 2

hours in an oral glucose tolerance test, (3) Diastolic blood pressure

[mm Hg], (4) Triceps skin fold thickness [mm)], (5) 2-Hour serum in-

sulin [mu U/ml], (6) Body mass index [weight in kg/(height in m)~2],

(7) Diabetes pedigree function, (8) Age [years], (9) Class variable [0

or 1]

8. Missing Attribute Values: None

9. Class Distribution: (class value 1 is interpreted as ”tested positive
for diabetes”) Class 0: 500, Class 1: 268

10. Brief statistical analysis: [...]

N ot

3.1 Data Preparation for the Integer ALU

Input values were passed to the evolved programmes through the CPU registers.
Due to the limited number of available registers some attributes had to be left
out. In order to include all relevant values several training runs were performed
in Discipulus looking at which input attributes were used by good solutions.
Finally attributes 1-3 and 6-8 were included and written into %eax, %ebx, %ecx,
%esi, %edi, %ebp. The stack pointer %esp and %edx were not used, the latter
one, because it is overwritten as a side effect of most multiplication and division
instructions.

Some of the attributes are obviously real numbers. In order to represent them
properly in integer registers they were multiplied with 65536 before converting
them to integers. This way they were converted to a fized point format with 16
bits integer and 16 bits fractional part, which can be handled by the integer unit.

3.2 The Fitness Function

The fitness function averages fitness values of single fitness cases. If a programme
runs without errors for a fitness case its fitness value is the absolute distance
from the target value plus an extra punishment for misclassification. The target
value is 0 for class 0 and 65536, the equivalent of “1” in the fixed-point encoding,
for class 1. The punishment for misclassification is 65536. If a programme was
terminated due to an error, its fitness is the worst possible fitness of a correct
programme. Since one deadline was used for the accumulated runtime of all
fitness cases, an expired deadline is treated like a programme error for this and
all the remaining fitness cases, which have not been and will not be evaluated.

3.3 Other Settings

The population’s size was 1000 individuals. The length of the genome was allowed

to vary between 32 and 256 bytes. The cumulative deadline was set to 1(1J_0 s

which corresponds to Linux’s timer resolution. One run consisted of 100,000
tournaments. With each of the three population initialisation methods described
in Sect. 2.6 ten runs were performed.

For comparison ten runs with Discipulus were performed on the same data. In
order to make the comparison as fair as possible the following settings were cho-
sen: population size 1000, maximum programme length 256, crossover frequency
100%, mutation frequency 50%, homologous crossover 0%, DSS off, maximum
number of tournaments 100,000.

3.4 Performance Test

As a performance test one programme, which terminates immediately was ex-
ecuted repeatedly for 10 million times without applying any genetic operators,
setting a deadline or determining the runtime. In order to find out how much
time is due to task switches and system calls which set the slave’s registers, and
control its execution, another run was performed with all these system calls left
out. The experiment was conducted on an AMD Duron 1 GHz.

4 Results

The final fitness in terms of the validation hit rate at the end of the runs ranged
from 61.5% to 73.4%. Table 1 shows the results for the different initialisation
methods. Figs. 2 and 3 show the development of the average fitness, training
and validation hit rate during the evolution in different cases.

In the performance test the empty programme was started 10 million times
consuming 34.53 s user and 30.57s system time. Thus, the maximum number of
evaluations of single fitness cases is limited to W =~ 150,000 % The run
without system calls took 14.86s user and 0.03 s system time. This would result

in approximately 650, 000 %

5 Discussion

With all initialisation methods it was possible to get a validation hit rate of more
than 70%, comparable to the best result of Discipulus. The small difference may
be because Discipulus uses the floating point instruction set which provides much
more sophisticated functions like square root and trigonometric functions. With
different settings, homologous crossover and longer runs final validation hit rates
of up to 76% could be reached with Discipulus. Therefore it seems probable that
our results can be improved by fine tuning the evolutionary algorithm, as well.

The fraction of runs with final validation hit rate over 70% was however
different with different initialisation methods. The best results in these terms
were achieved after initialising the population with programmes consisting of a
large integer instruction set. We shall note here that there is a significant differ-
ence between this method and purely random initialisation, which may not be

Table 1. Experiment Results

runs with final val-

Small Instruc- Large Instruc-

idation HR (hit rate) tion Set tion Set Random Discipulus
=61.5% 0 1 1 0
< 70% 7 4 7 6
> 70% 3 5 2 4
Initial training HR 66.3 — 70.5% 00.0 - 66.3% 66.3 — 66.7% 62.5 — 67.7%
Initial validation HR 00.6 — 71.4% 00.0 - 61.5% 61.5 — 61.5% 59.9 - 61.5%
Final training HR 67.0 - 72.9% 66.3 — 74.3% 68.2 — 74.1% 71.1 - 77.8%
Final validation HR. 62.0 — 73.4% 61.5 — 72.9% 61.5 — 71.9% 62.5 — 74.5%
1 T - .
Avarage Fithness ———
Best Training Hit Rate ————
08 ! Best Validation Hit Rate -~

40000 60000

0 20000 80000 100000

Fig. 2. Average fitness, training and validation hit rate over 100,000 tournaments
with the small initial instruction set. Note that fitness is not identical to hit rate
(see Sect. 3.2). The scale for the average fitness is x1.5 - 10°

Avafage Fitness —— Avafage Fitness ——
Best Training Hit Rate Best Training Hit Rate ———
08 | Best Validation Hit Rate - | 08 | Best Validation Hit Rate -
|
0.6
04 |
0.2
0 0 . h ! Y
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

Fig. 3. Average fitness, training and validation hit rate over 100,000 tournaments with
the large initial instruction set. The scale for the average fitness is x2.15 - 10°. The
RHS plot indicates a trivial solution (see Sect. 5)

obvious at first sight. Random initialisation will favour one-byte opcodes, since
there are only few one-byte values reserved as first byte of multi-byte opcodes.
Furthermore the use of registers is preferred since there are some frequently used
instructions which encode one register operand in the opcode itself.

With random and small instruction set initialisation the best hit rate starts
at 61.5% or even above in most runs. This means that there is at least one correct
programme in the initial population. Since we often encountered the same initial
hit rate of 61.5% it is reasonable to assume that this is a trivial solution which
classifies all instances into the larger class 0. After initialising the population
with a large instruction set the starting hit rate was zero in most cases. Almost
all programmes produced errors since most addressing modes use a base or index
register giving a high probability of accessing unmapped addresses.

It is not surprising that the average fitness starts at a much higher value with
random and large instruction set initialisation than with the small instruction
set. In the first two cases memory accesses are possible, which can potentially
access unmapped addresses causing SIGSEGV exceptions. During the first 10,000
tournaments the average fitness value decreases rapidly indicating that most
incorrect programmes are removed from the population. After that it exhibits
rather large fluctuations around 4 x 108 which can be explained by the de-
structiveness of the genetic operators and the hard punishment for programme
errors. It is however striking that the average fitness becomes much smaller in
the runs which produce only the trivial solution with 61.5% validation hit rate
(see Fig. 3). This indicates that the population adapts to the destructiveness
of the genetic operators rather than solving the problem. Such an adaptation
could be to use mainly single-byte instructions, which cannot be damaged by
the crossover operator.

The overhead revealed by the performance test means that one programme
execution involves about 6666 CPU cycles. As the run without system calls
shows, about 75% of that time are spent in library functions or the kernel which
is out of the scope of optimisation in our source code. On the other hand, con-
sidering that each programme execution in the slave process requires two task
switches on a single processor machine the results are even surprisingly good,
and given the performance speed-up of machine code GP it is still a very efficient
system.

6 Future Work

Powerful parts of the instruction set have not been used at all so far, namely
floating point and MMX/3DNow /SSE instructions. The latter ones are partic-
ularly interesting since a single instruction can operate on multiple data words.
They are usually not used by higher level language compilers. The use of these
instruction sets would have to be encouraged by including them in the initial
instruction set and passing arguments and results through the floating point,
MMX or SSE registers.

7 Summary

A novel approach to automatic induction of machine code on CISC architec-
tures was presented, which uses the error checking mechanisms of modern CPUs
in order to ensure the correctness of generated machine programmes. This way
it is possible to return to very simple genetic operators with the advantage of
increased performance. Furthermore the instruction set used by evolved pro-
grammes is no longer limited by the genetic programming system but only by
the CPU it runs on. The mapping between the evolution platform and the execu-
tion platform becomes almost complete, ensuring correct low-level behaviour of
all CPU functions. An example implementation based on Linux was introduced
showing the applicability of the approach on a standard classification task.

References

1. Advanced Micro Devices: 3DNow!™ Technology Manual (2000). http://
www.amd.com /us-en/Processors/DevelopWithAMD/0,,30-2252_739.1102,00.html

2. Advanced Micro Devices: AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets — Manual (2000). http://www.amd.com/us-en/Processors/
DevelopWithAMD/0,,30_2252_739_1102,00.html

3. Aivazian, T., Hellwig, C., Weight, R. and Cao, M.: Linux Kernel 2.4 Internals
(2001). http://www.linuxdoc.org/LDP /lki/index.html

4. Banzhaf, W., Nordin, P., Keller, R. E. and Francone, F. D.: Genetic Program-
ming — An Introduction. On The Automatic Evolution Of Computer Programs
and its Applications (1998). Morgan Kaufmann, San Francisco, USA and dpunkt,
Heidelberg, Germany.

5. Brumm, P., Brumm, D., Scanlon and J.: 80486 Programming (1991). Windcrest,
Blue Ridge Summit, Pa., USA

6. Crawford, J. H. and Gelsinger, P. P.: Programming the 80386 (1987). SYBEX, San
Francisco, USA

7. Dunlap, R.: Linux 2.4.x Initialization for IA-32 HOWTO (2001).
http://www.linuxdoc.org/HOWTO/Linux-Init- HOWTO.html

8. Goldt, S., van der Meer, S., Burkett, S. and Welsh, M.: The Linux Programmer’s
Guide (1995). http://www.linuxdoc.org/LDP /Ipg/index.html

9. Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual (2001).
http://developer.intel.com/design /pentium4 /manuals/245470.htm

10. Johnson, M. K., Rubini, A. and Scalsky, S.: Linux Kernel Hacker’s Guide (1997).
http://www .linuxdoc.org/LDP /khg /HyperNews/get /khg.html

11. Loosemore S., Stallman, R. M., McGrath, R., Oram, A. and Drepper U.: The GNU
C Library Reference Manual (1999), Free Software Foundation, Boston, USA

12. Nordin, P.: Evolutionary Program Induction of Binary Machine Code and its Ap-
plication (1997). Krehl Verlag, Miinster, Germany.

13. Nordin, P., Banzhaf, W., Francone, F. D.: Efficient Evolution of Machine Code for
CISC Architectures Using Instruction Blocks and Homologous Crossover (1999). In
Advances in Genetic Programming, Volume 3, L. Spector, W. B. Langdon, U.-M.
O’Reilly, P. J. Angeline (ed.), pp. 275-299.

