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Abstract 
In this paper we present the autonomous, 
walking humanoid robot ELVINA and the first 
experiments in genetic programming performed 
with it. A steady state evolutionary strategy is 
running on the robot’s onboard computer. 
Individuals are evaluated and fitness scores are 
automatically determined using the robots 
onboard digital camera and near-infrared range 
sensor. The experiments are performed in order 
to optimize a by hand developed locomotion 
controller. By using this system, we evolved gait 
patterns that locomote the robot in a straighter 
path and in a more robust way, than the 
previously manually developed gait did. 

1 INTRODUCTION 
The applications of robots with human-like dimensions 
and motion capabilities -humanoid robots are plentiful. 
Humanoid robots constitute both one of the largest 
potentials and one of the largest challenges in the fields of 
autonomous agents and intelligent robotic control. In a 
world where man is the standard for almost all 
interactions, humanoid robots have a very large potential 
acting in environments created for humans. Both in 
industry and in academia walking humanoid robots 
attracts an accelerating interest [Nordin & Nordahl, 
1999]. In 1996, Honda Corporation presented the P21 
humanoid robot which is a biped robot that can walk like 
a human, even up and down stairs. A smaller and lighter 
robot, P31, was introduced in 1997 and recently, they 
presented the humanoid robot ASIMO1, which is 
conceived to function in an actual human living 
environment in the near future. The Sony Corporation 
announced in November 2000 the development of a small 

biped walking robot, SDR-3X2, which is a platform for 
exploration of new possibilities for entertainment robots.  
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In traditional robot control programming, an internal 
model of the system is derived and the inverse kinematics 
can be calculated. The trajectory for movement between 
given points in the working area of the robot is then 
calculated from the inverse kinematics. Even though this 
still is a very common approach, we propose for several 
reason the concept of genetic programming for control 
programming of so-called bio-inspired robots [Dittrich et 
al, 1998] as e.g. a humanoid. The traditional geometric 
approach to robot control, based on modeling of the robot 
and derivation of leg trajectories, is computationally 
expensive and requires fine tuning of several parameters 
in the equations describing the inverse kinematics [Nolfi 
& Floreano, 2000]. Conventional industrial robots are 
designed in such a way that a model can be easily derived, 
but for the development of bio-inspired robots, this is not 
a primary design principle. Thus, a model of the system is 
very hard to derive or to complex so that a model-based 
calculation of actuator commands requires to much time 
for reactive tasks [Dittrich et al, 1998]. For a robot that is 
conceived to operate in an actual human living 
environment, it is impossible for the programmer to 
consider all eventualities in advance. The robot is 
therefore required to have an adaptation mechanism that 
is able to cope with unexpected situations. 
The primary goal for our work presented in this paper is 
to evolve a gait pattern, using genetic programming and 
especially evolutionary strategies [Banzhaf et al, 1998]. 
To do this, one has to choose between two main 
alternatives: using a real robot for the evolution, or using 
a simulated robot. Several experiments with simulations, 
with different approaches, have been reported recently. 
Anytime learning can make use of evolutionary 
computation in a learning module for the robot to adapt to 
changes in the robot’s capabilities without the use of 

 
2 http://www.sony.co.jp/en/SonyInfo/News/Press/200011/00-057E2/ 



internal sensors [Parker & Mills, 1999]. A methodology 
for developing simulators for evolution of controllers in 
minimal simulations has been proposed and shown to be 
successful when transferred to a real, physical octopod 
robot [Jakobi, 1998]. This was also compared with a 
controller that was evolved with a real octopod robot 
[Gomi & Ide 1998]. It was found that it matched better 
the physical constraints of the robot hardware. Using 
simulation, ball-chasing behavior has been evolved and 
successfully transferred to a real AIBO3 quadruped robot 
dog [Hornby* et al, 2000]. The collisions between the 
robot and ball had different results in the real world than 
in the simulated world, however it did not affect ball-
chasing performance. When a high degree of accuracy is 
necessary, it is desirable to be able to evolve with a 
physical robot. We want to show that evolution of 
controllers with complex, physical robots can be carried 
out in reality, although evolving with a simulator would 
do it many times faster.  
The first attempt in using a real, physical robot to evolve 
gait patterns was made at the University of Southern 
California [Lewis et al, 1992]. Neural networks were 
evolved as controllers to get a tripod gait for a hexapod 
robot with two degrees of freedom for each leg. Recently, 
a group of researchers at Sony Corporation presented the 
results of their work with evolving locomotion controllers 
for dynamic gait of their quadruped robot dog AIBO 
[Hornby et al, 1999] and [Hornby et al, 2000]. These 
results show that evolutionary algorithms can be used on 
complex, physical robots to evolve non-trivial behaviors 
on those robots. In previous evolution with physical 
robots has a humanoid, biped robot not been used. 
Our test problem is that of developing locomotion 
controllers for static gaits for our biped robot ELVINA. 
Evolution of static walking with a biped robot is much 
more difficult than it is with a robot that has a greater 
number of legs. A static gait requires that the projection 
of the center of mass of the robot on the ground lies 
within the support polygon formed by feet on the ground 
[Nolfi & Floreano, 2000]. This is obviously easier to 
fulfill with a robot that got four, six, eight or more legs. 
However, dealing with biped locomotion leads us into a 
partly different problem domain. When a biped robot is 
walking (static), it is supported only by one foot at the 
ground during an appreciable period of time. Only this 
single foot then constitutes its support polygon. For a 
biped robot, the area of the support polygon is relatively 
small, compared to the altitude of where its center of mass 
is located. The corresponding measure for a robot that got 
four or more legs is relatively larger. Therefore it is easier 
for a robot with many legs to maintain balance than it is 
for a biped robot, as the motion of walking dynamically 
changes the stability of the robot. 
The rest of this paper is organized as follows. Section 2 
consists of a description of our robot ELVINA. Section 3 
describes the evolutionary algorithm used for our 

evolution. In section 4, we describe the setup of our 
experiment and how the robot’s sensors are used. In 
section 5, we present the results of our experiments. We 
discuss these results in section 6. Finally, section 7 is a 
conclusion of this work.    

                                                           
3 http://www.aibo.com/ 

2 ROBOT PLATFORM 
The robot used in our experiments is ELVINA, which is a 
simplified, scaled model of a full-size humanoid with 
body dimensions that mirrors the dimensions of a human. 
The ELVINA humanoid is a fully autonomous robot with 
onboard power supply and computer, but many 
experiments are performed with external power supply. It 
is 28cm tall and it weights about 1490g including 
batteries. Each of the two legs has 5 degrees of freedom, 
of which 4 DOF is active and 1 DOF is passive. The head, 
the torso and the arms has 1 DOF each, giving a total of 
14 DOF. The robot is equipped with a digital CMOS 
color camera, mounted in its head. The computer is 
attached to the back of the robot’s body. The body also 
houses a near-infrared PSD (position sensitive detector) 
which is used to determine distances to nearby objects. In 
its present status, the robot is capable of static walking.  
 

 
Figure 1. Pictures of the ELVINA Humanoid. 

2.1 BODY 
The body structure of the robot is constructed with the 
actuators as the main elements. The actuators that 
constitute the different sections of the body are connected 
to each other with parts made of 6mm thick PVC board so 
that they together form the robot body. See figure 1. This 
PVC material fulfills all necessary requirements since it is 
inexpensive and lightweight, yet strong and durable.  

2.2 ACTUATORS 
The robot is assembled with standard off-the-shelf R/C 
servomotors as actuators. This kind of servo has an 
integrated closed loop position control circuit which 
detects the pulse-code modulated signal that emanates 
from the controller board for commanding the servo to a 



given position. In this implementation, each servo is 
commanded to a given position by the robot control 
program by addressing it an integer value within the 
interval {0, 255}. Two different sizes of servomotors are 
used for ELVINA. For the four ankle and hip joints we 
use the stronger ones with an output torque of 8.8 kgcm 
and for the other eight joints we use servomotors with an 
output torque of 3.9 kgcm. 

2.3 POWER SUPPLY 
Since the actuators are very energy consuming, the power 
supply of the robot turns into a delicate problem. The 
power source must meet requirements such as high 
capacity, low weight and reasonable costs. Although the 
controller board can provide power at a constant voltage, 
a separate power circuit for the actuators is preferable. 
Noise and power glitches produced by the high currents 
of these components must not be allowed to interfere with 
the controller board circuits. The robot is equipped with 
four 1.2 volt, 1700 mAh NiMH cells as power source for 
the actuators and a single 9 volt alkaline battery for the 
controller board, altogether with a weight of 150g. This 
gives the robot an effective operating time of 
approximately twenty minutes.  

2.4 CONTROLLER BOARD 
The robot has the EyeBot MK34 controller onboard, 
carrying it as a backpack. The EyeBot MK3 consists of a 
32-bit micro-controller board with a graphics display and 
four push buttons for user input. The camera is directly 
connected to the controller board without a frame grabber. 
The EyeBot MK3 also has a serial communications 
interface. The robot control programs are developed on a 
host computer. After a cross-compilation they are 
downloaded, in executable code format, to the EyeBot 
controller. The serial line is then only used for uploading 
experimental data to the host computer since all signal 
processing is carried out on the EyeBot controller itself.   

2.5 VISION SYSTEM 
Vision is the most important sensor of this robot. 
Therefore, it is equipped with a full color 24 bit digital 
camera, which is based on CMOS technology. The 
camera is directly connected to the controller board, and 
physically attached to an actuator on top of the robots 
torso. This arrangement gives the camera, relatively to the 
robot’s body, one degree of freedom in the horizontal 
plane and a camera sweep angle of 85 degrees. 

2.6 INFRARED PSD RANGE SENSOR 
A single camera cannot be used to accurately measure the 
distance to a nearby object. This is instead achieved with 
a near-infrared PSD range sensor, which consists of an IR 
emitter and a position sensitive detector in a single 
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package. The principle of this sensor is based on 
triangulation, which means that the sensor is relatively 
insensitive to the texture and color of the object at which 
it is pointed. The emitter, placed below the detector in the 
package, illuminates a small spot on an obstacle with 
modulated IR light. A lens forms an image of the spot on 
the active element at the back of the detector. The output 
of the detector element is a function of the position on 
which the image is falling [Jones et al 1999]. Within the 
range of about eight to 40 centimeters distance to the 
object, a value of sufficient accuracy (resolution < 1 
millimeter) is produced.  

2.7 FIRMWARE AND SOFTWARE 
The EyeBot MK3 controller board is running an operating 
system that consists of two main parts, the RoBIOS 
(robot basic I/O system) and the HDT 
(hardware description table). The same RoBIOS is shared 
by all hardware configurations of a robot controlled by an 
EyeBot, but the HDT differs to account for different 
sensors or actuators connected to the actual hardware. 
Each actuator has a unique workspace according to its 
position on the robot [Ziegler et al, 2001]. The 
workspaces for all actuators are specified in the HDT file 
by setting suitable values.  
In order to control the movements of a limb, the partial 
movements of all involved joints must be coordinated and 
synchronized to get the desired motion. For this reason, a 
servo locomotion module has been developed. The idea 
behind it is that a complete gait cycle is specified by nine 
integer-valued vectors, each of the vectors specifying 
given positions of the robot’s limbs. Each of the vectors 
consists in fact of a set of control parameters, a position 
value for each actuator and two time constants. The first 
of the vectors in the set correspond to the robot’s initial 
position and the second vector corresponds to the second 
position of the robot and so on. By interpolation from the 
values of one vector to the values of another vector the 
robot’s limbs is caused to smoothly move from one 
position to another position. The first time constant 
specifies how fast the limbs should move between 
consecutive positions and the other constant specifies 
time delay before the position of the limbs is updated. To 
obtain a complete gait cycle the set of vectors specifying 
it is interpolated once and the robot is made to 
continuously walk by iteration. All robot control 
programs that we have developed is implemented in C 
language. 

3 EVOLUTIONARY ALGORITHM 
The evolutionary algorithm used is a steady state 
evolutionary strategy [Banzhaf et al, 1998], running on 
the robot‘s onboard computer. A population that stems 
from a manually developed individual is created with a 
uniform distribution over a given search range. Then four 
individuals are randomly selected from this initial 
population. These individuals are evaluated and their 



fitness is measured. The two individuals with the better 
fitness values are considered as parents and the two 
individuals with the lower fitness are replaced by the 
offspring’s of the parent individuals. The selection, 
evaluation and reproduction phases of the evolutionary 
strategy is then repeated until the maximum number of 
trials is reached. 

3.1 INITIALIZATION 
The initial population is composed of 30 individuals with 
126 genes randomly created with a uniform distribution 
over a given search range. The 126 integer-valued 
parameters used as genes are listed in table 1 together 
with their initial search range. 
 

Table 1: Parameter List 

Parameter 
type 

Number 
of values 

Unit Initial 
Range 

Search 
Range 

Speed 9 Time 
(0.01s) 

3-4 0-2 

Delay 9 Time 
(0.01s) 

20-200 0-150 

Servo 
position 

108 Angle 
(1/256) 

4-253 0-2 

 
The search range for each parameter type (e.g. speed, 
delay and servo position) is determined from experience 
in manually developing gaits. The search range, see table 
1, is defined as the magnitude of the Euclidean distance 
between a certain gene in the manually developed 
individual and the corresponding gene in a randomly 
created individual. The search ranges are set to suitable 
values in order to produce a sufficient amount of 
individuals in the population that are capable of good 
performance in the evaluation. Especially when the servo 
position parameters are set to a wider range, many 
individuals resulted in the robot falling over almost 
immediately in the evaluation phase. When an initial 
population was created evolution began.   

3.2 TOURNAMENT SELECTION 
A tournament selection is used to select individuals for 
parents and the individuals to be replaced by their 
offspring. Four different individuals are randomly picked 
from the population and then evaluated one at a time. The 
two individuals who get the higher fitness are considered 
as parents and their offspring, produced by recombination 
and mutation, replaces the two individuals with the lower 
fitness in the population. The number of generations a 
certain individual can be selected to be in the tournament 
is unrestricted. 

3.3 REPRODUCTION 
For reproduction both mutation and recombination is 
used. Recombination takes the two individuals considered 
as parents, p1 and p2, and creates two child individuals, c1i 
and c2i. Each gene of the child cki then gets the value  

( )iikikiki pppc 21 −+= α
 
where cki is the ith gene of the kth child individual, pki is 
the ith gene of the kth parent individual, p1i and p2i are the 
ith gene of the two parents p1 and p2. The αki is a number 
randomly chosen to be either –1 or +1.  
In each of the child individuals produced, 20 % of the 
genes are mutated by a small amount. The genes in these 
two individuals are selected by random to undergo 
mutation and it is possible for a gene to be mutated 
several times. The gene to be mutated gets a value 
according to the equation  

kikikimutateki mcc δ+=,

 
where cki,mutate is the mutated ith gene of the kth child 
individual, cki is the gene to be mutated. The δki denotes a 
number randomly chosen to be either –1 or +1. The mki 
are a random number with uniform distribution that 
determines how much each gene should be mutated and it 
is set proportional to each parameter type‘s search range. 
That is, for the delay parameter, mki values are set to 
maximum 6% of its search range and for the speed and 
servo position parameters, mki values are, in a similar 
way, set to 33% maximum respectively. 

4 EXPERIMENTAL METHOD  
The aim in short term for our experiments is to optimize a 
set of integer values, used as control parameters for a 
biped robot gait. They should move the robot faster, 
straighter and in a more robust manner than the 
previously manually developed set of parameter values 
did. Our intention with this section of the paper is to 
describe how these experiments were performed and how 
individuals were evaluated.  

4.1 EXPERIMENTAL SETUP 
The experimental environment is shown in figure 2. The 
robot is placed on top of a table with a surface of 
relatively low friction during the evolution. A target wall 
of 50cm height and white color is placed at one end of the 
table and to mark the center of that end there is a vertical 
black stripe on the wall. Right above the robot (65cm 
above the table surface) there is a horizontal beam, used 
as a carrier for the power supply cables and for the 
security chain.  In order to minimize the cable‘s influence 
on the robot during locomotion there is a counterweight 
connected to the cables via a string that is extended 



around a pulley. The purpose of this arrangement is that 
the counterweight drags the cables and the security chain 
as the robot moves forward.  

 
Figure 2. The experimental setup. 

4.2 EVALUATION 
Each individual evaluates under as equal conditions as 
possible. The robot‘s starting position is at a distance of 
about 40cm from the wall and facing it. The experimenter 
centers the robot according to the black line by using its 
onboard camera. Once centered, the robot measures its 
distance with the PSD infrared range sensor and starts to 
locomote towards the wall. After a fixed number of gait 
cycles it stops. Again it measures its distance from the 
wall and pans its head (camera) to search for the black 
line on the wall. Using these measurements and the time 
required for the locomotion trial, it calculates a fitness 
value for this actual individual. The robot is then 
manually reseted to its starting position by the 
experimenter for the next individual to be evaluated.  

4.3 USE OF CAMERA 
The primary task for the onboard camera is to provide a 
precise tool for determination of direction. Initially, the 
camera is set to continuos image mode, whereas the 
frames are put to the EyeBot‘s LCD screen and thus made 
visible to the experimenter. The robot is considered as 
centered when the image of the black line appears near 
the center of the LCD display. A single snapshot is then 
analyzed by the software image processing routines to 
precisely determine the robots position relative the black 
stripe. In detail, this is made by first converting the image 
to a grayscale image. Next, the Sobel operator is applied 
to each pixel of this image in order to perform an edge 
detect operation [McKerrow, 1991]. The originally color 
image is then converted into an ordinary bitmap image, 
where the edges of the black stripe produces two parallel, 
vertical lines. The average point, in horizontal direction, 
between those lines is then easily calculated by the 
software. This value is then stored for later use.  

After an individual has performed a trial, the camera is 
again used to determine how straight the robot moved 
during the trial. As the robot body remains fixed the 
camera pans from left to right in steps, where it takes one 
snapshot between each step and analyze each of the 
images in the same way as described above. One step 
corresponds approximately to an angle of 3 degrees. For 
each snapshot the new calculated average point between 
the lines is compared with the earlier obtained average 
point and when the difference between these is less than 
1, the camera stops moving. When the initial average 
point was calculated, the camera servo was in its middle 
position. The difference between the value obtained when 
the camera stops panning and the middle position value is 
considered as the angular deviation θ from the desired 
(straight) path of locomotion.  

4.4 USE OF THE PSD RANGE SENSOR 
While the robot uses its onboard camera for determination 
of direction, distances are measured using a near-infrared 
PSD range sensor located at the robot’s chest. Initially the 
robot is manually moved to a specific starting point, about 
40cm from the target wall. At this fixed position, the start 
distance is determined by averaging six consecutive PSD 
sensor readings, with 0.2s interval between the readings. 
After an individual has performed a trial successfully (i. e. 
without falling) it stops and again uses the PSD sensor to 
determine its stopping distance from the wall. 
The PSD sensor returns a raw value (between 0 and 999) 
that from about 10 to 40 cm is almost linear with distance. 
These raw values are easily converted into millimeters by 
creating an internal distance conversion table for the 
HDT. To do this, the robot was placed at a fixed distance 
from the target wall and slowly moved towards the wall 
while 128 sensor readings were taken and its distance 
from the wall was measured in millimeters. However, 
since the PSD sensor output is linear with distance and the 
resolution of the sensor is less than 1 millimeter in the 
actual range, the raw value was instead used in the fitness 
calculations. 

4.5 FITNESS 
To determine an individuals fitness score both its average 
velocity during the trial and its ability to move in a 
straightforward path is taken into account for. The fitness 
score function is defined as  
 

( ) ( )ff dstddvscore ,,,0 θ×=
 
 
where v (d0, df, t) is the average velocity of the robot 
during the trial and s(θ, df) is the straightness function. 
The d0 and the df denote the initial and the final distances 
to the target wall respectively and t is the time passed 
during the trial. The straightness function is dependent of 



both the angular deviation θ and the robot’s final distance 
to the target wall and it is thus defined as 
  

 

 
 
 
Here, f (θ) is a normalization function to convert θ into a 
0 – 1 measure. The values 150 and 10 are used as 
constants for the straightness function because they are 
raw values corresponding to the maximum and minimum 
measurable distances for the PSD sensor. The straightness 
function accounts for the robot’s final distance from the 
black target strip - with the robot at a fixed orientation θ 
being larger when the robot stops closer to the target wall. 
Finally, the average velocity function is defined as  
 

 
 
In the case when an individual does not maintain the 
robot’s balance during a complete trial (e.g. the robot 
falls) it receives a score of zero. This has to be done 
manually by the experimenter, since the experimental 
system is not equipped with any device for detecting that 
kind of occurrence. If the robot’s gait causes it to turn so 
sharply that it cannot pan its head far enough to face the 
black target strip, the actual individual then automatically 
receives a zero fitness score.  

5 RESULTS 
For this evolutionary strategies experiment we used an 
initial population of 30 individuals and ran for nine 
generations. The best-evolved individual received a 
fitness score of 0.1707. The manually developed 
individual was also tested and received a fitness score, 
averaged over three trials, of 0.1051. The best-evolved 
individual outperformed the manually developed 
individual both in its ability to maintain the robot in a 
straight course and in robustness, i.e. with a less tendency 
to fall over. The qualities of different individuals were 
also tested in other ways than direct fitness measuring. To 
evaluate one generation, consisting of four individuals, 
took approximately 30 minutes in this experiment.  
 

Table 1: Evolved Parameter List 

Parameter 
type 

Number 
of values 

Unit Initial 
Range 

Evolved 
Range 

Speed 9 Time 
(0.01s) 

3-4 2-5 

Delay 9 Time 
(0.01s) 

20-200 42-300 

Servo 
position 

108 Angle 
(1/256) 

4-253 3-253 

( ) ( )( )
140

101501
,

θθ
θ

ffd
ds f

f

−+−
=

( )

( )
128

1
θ

θ −=f
 
 

5.1 FITNESS 
In figure 3 the average fitness scores for each generation 
is shown as dots and the line is produced by statistical 
analysis, i.e. linear regression, of the dots. Since the slope 
of the line is positive, we observe a tendency towards  
better and better fitness values.  

( )
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f

−
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Figure 3.The Resulting Average Fitness Scores 

 

5.2 SPEED 
There was no improvement observed in the robot’s speed 
of locomotion. The best-evolved individual and the 
manually developed individual could both move the robot 
in a speed of approximately 10.5cm/minute. They were 
tested over a 100cm run, which took 9.5 minutes each.  

5.3 STRAIGHTNESS AND ROBUSTNESS 
How well the individuals performed were tested both on 
the same flat table surface as the evolutionary experiment 
was made on, as well as on a high friction rubber surface.  



On the low friction table surface the manually developed 
individual behaved unstable and was not able to keep the 
robot in a straight course, since it caused the robot to 
suddenly make sharp turns in an unpredictable way. This 
lack of accuracy decreased when the surface was changed 
to a high friction, rubber surface. The robot then proved to 
have a sidewise deviation of about 33cm on a 100cm 
distance. When the best-evolved individual was tested, it 
moved the robot forward on both types of surfaces with a 
sidewise deviation of less than 5cm on a 100cm distance.   

6 DISCUSSION 
An observation made when manually developing gaits 
was that, in order to determine if a certain set of gait 
parameters i.e. an individual is of sufficient quality, it 
must be iterated in more than one step. That is because the 
mechanical structure of the robot is non-rigid. When 
moving a limb (e.g. a leg), the trajectory, thus the limb’s 
final position, is affected by from which position the 
movement started. How much the torso leans also affects 
the resulting position of the robot. Therefore, the final 
position of the robot’s movements depends on if it was 
moved to the starting position by itself or if it was 
manually put there. To account for the behavior in the 
phase when the robot is moving from the last position in 
the first iteration to the initial position in the next 
iteration, each individual had to be iterated three times. 
 

 
Figure 4. Series of pictures showing a complete gait 

cycle, from top left to bottom right.  
Evolved parameters are showing good performance in 
some ways, yet not in others. In the beginning of the 
evolution, many individuals were moving the robot both 
fast and in a robust manner, except for in the single phase 
of moving the center of mass in order to stand on one leg 

and lift the other to take a step. The torso was not leaning 
enough towards the standing leg side, which resulted in 
that the robot fell when it lifted the other leg. An 
individual showing this tendency then received a zero 
fitness score. As the evolutionary process went on this 
type of behavior decreased and gradually died out. 
To run an evolutionary experiment took about 30 minutes 
for each generation, so the 9-generations experiment that 
we present in this paper went on for almost five hours. 
Between each generation of four individuals evaluated, 
we paused the experiment for about 15 minutes in order to 
spare the hardware and especially the actuators. The main 
reason for this is that the actuators accumulate heat when 
they are running continuously under heavy stress. They 
then run the risk of getting overheated and gradually 
destroyed. We also observed that the position control 
circuit of the servomotors is sensitive to temperature. 
When commanding a servomotor to a given position by 
addressing it a fixed integer value within the interval {0, 
255}, the physical angle of the servo’s output shaft 
dislocates over time as the temperature of the servo 
increases. Since the robot’s feet are coupled to each other 
via nine actuators their relative positions are then affected 
so much by this drift that it could cause the robot to fall. 
One way to handle this problem is, as mentioned above, 
to run the robot intermittent so that the servos maintain an 
approximately constant temperature.  
Evolving efficient gaits with real physical hardware is a 
challenging task. In the six months of manually 
developing gaits and testing the evolutionary algorithm, 
frequent maintenance of the robot was indeed necessary. 
The torso and both the ankle actuators were exchanged 
once as well as the two hip servos. The most vulnerable 
parts of the robot were proved to be the knee servos. Both 
these servos were replaced tree times. 

7 CONCLUSIONS 
The work presented in this paper constitutes of two main 
parts, the construction of a small humanoid walking robot 
and a genetic programming experiment performed on it. 
By manually developing locomotion module parameters, 
the robot was made capable of autonomous static walking 
in a first stage. In the next stage we performed a genetic 
programming experiment on the robot in order to improve 
the manually developed gait. For this, we used a steady 
state evolutionary strategy that was run on the robot’s 
onboard computer. This algorithm evolved an individual 
that outperformed the previously manually developed set 
of parameter values in a sense that it moved the robot in a 
straighter path and in a more robust way.  
We believe that the ELVINA robot platform is capable of 
development. In future research we aim to improve the 
hardware and software of the ELVINA, resulting in a 
more robust and durable robot platform. Then it will be 
possible to do more genetic programming experiments in 
order to have the robot to accomplish tasks that are more 
complicated. Such could be using vision to navigate, 



collaborate and interact with other robots of this kind and 
balancing and walking on an inclined plane.   

References 
P. Nordin and M. G. Nordahl (1999). An evolutionary 
architecture for a humanoid robot. Proceedings of the 
Fourth International Symposium on Artificial Life and 
Robotics (AROB 4th 99). Oita, Japan.  
P. Dittrich, A. Burgel and W. Banzhaf (1998). Learning to 
move a robot with random morphology. Phil Husbands 
and Jean Arcady Meyer, editors, First European 
Workshop on Evolutionary Robotics (pp. 165—178). 
Berlin: Springer-Verlag. 
S. Nolfi and D. Floreano (2000). Evolutionary Robotics: 
The Biology, Intelligence, and Technology of Self-
Organizing Machines. Massachusetts: The MIT Press. 
W. Banzhaf, P. Nordin, R. E. Keller and F. D. Francone 
(1998). Genetic Programming~ An Introduction: On the 
Automatic Evolution of Computer Programs and Its 
Applications. San Francisco: Morgan Kaufmann 
Publishers, Inc. Heidelberg: dpunkt verlag. 
G. B. Parker and J. W. Mills (1999). Adaptive hexapod 
gait control using anytime learning with fitness biasing. 
Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO ’99) (pp. 519-524). 
San Francisco: Morgan Kaufmann Publishers, Inc. 
N. Jakobi (1998). Running across the reality gap: octopod 
locomotion evolved in a minimal simulation. Phil 
Husbands and Jean Arcady Meyer, editors, First 
European Workshop on Evolutionary Robotics (pp. 39—
58). Berlin: Springer-Verlag. 
T. Gomi and K. Ide (1998). Emergence of gait of a legged 
robot by collaboration through evolution. P. K. Simpson, 
editor, IEEE World Congress on Computational 
Intelligence. New York: IEEE Press. 
G. S. Hornby*, S. Takamura, O. Hanagata, M. Fujita and 
J. Pollack (2000). Evolution of controllers from a high-
level simulator to a high dof robot. J. Miller, editor, 
Evolvable Systems: from biology to hardware; 
proceedings of the third international conference (ICES 
2000) (Lecture Notes in Computer Science; Vol. 1801 pp. 
80-89). Berlin: Springer-Verlag. 
M. A. Lewis, A. H. Fagg and A. Solidum (1992). Genetic 
programming approach to the construction of a neural 
network for control of a walking robot. Proceedings of the 
IEEE International Conference on Robotics and 
Automation. New York: IEEE Press. 
G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto and 
O.Hanagata (1999). Autonomous evolution of gaits with 
the Sony quadruped robot. Proceedings of the Genetic 
and Evolutionary Computation Conference. San 
Francisco: Morgan Kaufmann Publishers, Inc. 
G. S. Hornby, S. Takamura, J. Yokono, O.Hanagata, T. 
Yamamoto and M. Fujita (2000). Evolving robust gaits 

with AIBO. IEEE International Conference on Robotics 
and Automation. pp. 3040-3045.  
J. L. Jones, A. M. Flynn and B. A. Sieger (1999). Mobile 
Robots: Inspiration to Implementation. Massachusetts: 
AK Peters. 
J. Ziegler, K. Wolff, P. Nordin and W. Banzhaf (2001). 
Constructing a small humanoid walking robot as a 
platform for the genetic evolution of walking. In print.  
P. J. McKerrow (1991). Introduction to Robotics. 
Wollongong: Addison-Wesley. 
 
 
 
 
 
 
 
 


	INTRODUCTION
	ROBOT PLATFORM
	BODY
	ACTUATORS
	POWER SUPPLY
	CONTROLLER BOARD
	VISION SYSTEM
	INFRARED PSD RANGE SENSOR
	FIRMWARE AND SOFTWARE

	EVOLUTIONARY ALGORITHM
	INITIALIZATION
	TOURNAMENT SELECTION
	REPRODUCTION

	EXPERIMENTAL METHOD
	EXPERIMENTAL SETUP
	EVALUATION
	USE OF CAMERA
	USE OF THE PSD RANGE SENSOR
	FITNESS

	RESULTS
	FITNESS
	SPEED
	STRAIGHTNESS AND ROBUSTNESS

	DISCUSSION
	CONCLUSIONS
	
	References



