
 Evolution of Efficient Gait with an Autonomous Biped Robot Using
Visual Feedback

Krister Wolff

Peter Nordin

Department of Physical Resource Theory
Chalmers University of Technology

S-412 96 Göteborg, Sweden
E-mail: {wolff, nordin}@fy.chalmers.se

Abstract
In this paper we present the autonomous,
walking humanoid robot ELVINA and the first
experiments in genetic programming performed
with it. A steady state evolutionary strategy is
running on the robot’s onboard computer.
Individuals are evaluated and fitness scores are
automatically determined using the robots
onboard digital camera and near-infrared range
sensor. The experiments are performed in order
to optimize a by hand developed locomotion
controller. By using this system, we evolved gait
patterns that locomote the robot in a straighter
path and in a more robust way, than the
previously manually developed gait did.

1 INTRODUCTION
The applications of robots with human-like dimensions
and motion capabilities -humanoid robots are plentiful.
Humanoid robots constitute both one of the largest
potentials and one of the largest challenges in the fields of
autonomous agents and intelligent robotic control. In a
world where man is the standard for almost all
interactions, humanoid robots have a very large potential
acting in environments created for humans. Both in
industry and in academia walking humanoid robots
attracts an accelerating interest [Nordin & Nordahl,
1999]. In 1996, Honda Corporation presented the P21
humanoid robot which is a biped robot that can walk like
a human, even up and down stairs. A smaller and lighter
robot, P31, was introduced in 1997 and recently, they
presented the humanoid robot ASIMO1, which is
conceived to function in an actual human living
environment in the near future. The Sony Corporation
announced in November 2000 the development of a small

biped walking robot, SDR-3X2, which is a platform for
exploration of new possibilities for entertainment robots.

1 http://world.honda.com/robot/

In traditional robot control programming, an internal
model of the system is derived and the inverse kinematics
can be calculated. The trajectory for movement between
given points in the working area of the robot is then
calculated from the inverse kinematics. Even though this
still is a very common approach, we propose for several
reason the concept of genetic programming for control
programming of so-called bio-inspired robots [Dittrich et
al, 1998] as e.g. a humanoid. The traditional geometric
approach to robot control, based on modeling of the robot
and derivation of leg trajectories, is computationally
expensive and requires fine tuning of several parameters
in the equations describing the inverse kinematics [Nolfi
& Floreano, 2000]. Conventional industrial robots are
designed in such a way that a model can be easily derived,
but for the development of bio-inspired robots, this is not
a primary design principle. Thus, a model of the system is
very hard to derive or to complex so that a model-based
calculation of actuator commands requires to much time
for reactive tasks [Dittrich et al, 1998]. For a robot that is
conceived to operate in an actual human living
environment, it is impossible for the programmer to
consider all eventualities in advance. The robot is
therefore required to have an adaptation mechanism that
is able to cope with unexpected situations.
The primary goal for our work presented in this paper is
to evolve a gait pattern, using genetic programming and
especially evolutionary strategies [Banzhaf et al, 1998].
To do this, one has to choose between two main
alternatives: using a real robot for the evolution, or using
a simulated robot. Several experiments with simulations,
with different approaches, have been reported recently.
Anytime learning can make use of evolutionary
computation in a learning module for the robot to adapt to
changes in the robot’s capabilities without the use of

2 http://www.sony.co.jp/en/SonyInfo/News/Press/200011/00-057E2/

internal sensors [Parker & Mills, 1999]. A methodology
for developing simulators for evolution of controllers in
minimal simulations has been proposed and shown to be
successful when transferred to a real, physical octopod
robot [Jakobi, 1998]. This was also compared with a
controller that was evolved with a real octopod robot
[Gomi & Ide 1998]. It was found that it matched better
the physical constraints of the robot hardware. Using
simulation, ball-chasing behavior has been evolved and
successfully transferred to a real AIBO3 quadruped robot
dog [Hornby* et al, 2000]. The collisions between the
robot and ball had different results in the real world than
in the simulated world, however it did not affect ball-
chasing performance. When a high degree of accuracy is
necessary, it is desirable to be able to evolve with a
physical robot. We want to show that evolution of
controllers with complex, physical robots can be carried
out in reality, although evolving with a simulator would
do it many times faster.
The first attempt in using a real, physical robot to evolve
gait patterns was made at the University of Southern
California [Lewis et al, 1992]. Neural networks were
evolved as controllers to get a tripod gait for a hexapod
robot with two degrees of freedom for each leg. Recently,
a group of researchers at Sony Corporation presented the
results of their work with evolving locomotion controllers
for dynamic gait of their quadruped robot dog AIBO
[Hornby et al, 1999] and [Hornby et al, 2000]. These
results show that evolutionary algorithms can be used on
complex, physical robots to evolve non-trivial behaviors
on those robots. In previous evolution with physical
robots has a humanoid, biped robot not been used.
Our test problem is that of developing locomotion
controllers for static gaits for our biped robot ELVINA.
Evolution of static walking with a biped robot is much
more difficult than it is with a robot that has a greater
number of legs. A static gait requires that the projection
of the center of mass of the robot on the ground lies
within the support polygon formed by feet on the ground
[Nolfi & Floreano, 2000]. This is obviously easier to
fulfill with a robot that got four, six, eight or more legs.
However, dealing with biped locomotion leads us into a
partly different problem domain. When a biped robot is
walking (static), it is supported only by one foot at the
ground during an appreciable period of time. Only this
single foot then constitutes its support polygon. For a
biped robot, the area of the support polygon is relatively
small, compared to the altitude of where its center of mass
is located. The corresponding measure for a robot that got
four or more legs is relatively larger. Therefore it is easier
for a robot with many legs to maintain balance than it is
for a biped robot, as the motion of walking dynamically
changes the stability of the robot.
The rest of this paper is organized as follows. Section 2
consists of a description of our robot ELVINA. Section 3
describes the evolutionary algorithm used for our

evolution. In section 4, we describe the setup of our
experiment and how the robot’s sensors are used. In
section 5, we present the results of our experiments. We
discuss these results in section 6. Finally, section 7 is a
conclusion of this work.

3 http://www.aibo.com/

2 ROBOT PLATFORM
The robot used in our experiments is ELVINA, which is a
simplified, scaled model of a full-size humanoid with
body dimensions that mirrors the dimensions of a human.
The ELVINA humanoid is a fully autonomous robot with
onboard power supply and computer, but many
experiments are performed with external power supply. It
is 28cm tall and it weights about 1490g including
batteries. Each of the two legs has 5 degrees of freedom,
of which 4 DOF is active and 1 DOF is passive. The head,
the torso and the arms has 1 DOF each, giving a total of
14 DOF. The robot is equipped with a digital CMOS
color camera, mounted in its head. The computer is
attached to the back of the robot’s body. The body also
houses a near-infrared PSD (position sensitive detector)
which is used to determine distances to nearby objects. In
its present status, the robot is capable of static walking.

Figure 1. Pictures of the ELVINA Humanoid.

2.1 BODY
The body structure of the robot is constructed with the
actuators as the main elements. The actuators that
constitute the different sections of the body are connected
to each other with parts made of 6mm thick PVC board so
that they together form the robot body. See figure 1. This
PVC material fulfills all necessary requirements since it is
inexpensive and lightweight, yet strong and durable.

2.2 ACTUATORS
The robot is assembled with standard off-the-shelf R/C
servomotors as actuators. This kind of servo has an
integrated closed loop position control circuit which
detects the pulse-code modulated signal that emanates
from the controller board for commanding the servo to a

given position. In this implementation, each servo is
commanded to a given position by the robot control
program by addressing it an integer value within the
interval {0, 255}. Two different sizes of servomotors are
used for ELVINA. For the four ankle and hip joints we
use the stronger ones with an output torque of 8.8 kgcm
and for the other eight joints we use servomotors with an
output torque of 3.9 kgcm.

2.3 POWER SUPPLY
Since the actuators are very energy consuming, the power
supply of the robot turns into a delicate problem. The
power source must meet requirements such as high
capacity, low weight and reasonable costs. Although the
controller board can provide power at a constant voltage,
a separate power circuit for the actuators is preferable.
Noise and power glitches produced by the high currents
of these components must not be allowed to interfere with
the controller board circuits. The robot is equipped with
four 1.2 volt, 1700 mAh NiMH cells as power source for
the actuators and a single 9 volt alkaline battery for the
controller board, altogether with a weight of 150g. This
gives the robot an effective operating time of
approximately twenty minutes.

2.4 CONTROLLER BOARD
The robot has the EyeBot MK34 controller onboard,
carrying it as a backpack. The EyeBot MK3 consists of a
32-bit micro-controller board with a graphics display and
four push buttons for user input. The camera is directly
connected to the controller board without a frame grabber.
The EyeBot MK3 also has a serial communications
interface. The robot control programs are developed on a
host computer. After a cross-compilation they are
downloaded, in executable code format, to the EyeBot
controller. The serial line is then only used for uploading
experimental data to the host computer since all signal
processing is carried out on the EyeBot controller itself.

2.5 VISION SYSTEM
Vision is the most important sensor of this robot.
Therefore, it is equipped with a full color 24 bit digital
camera, which is based on CMOS technology. The
camera is directly connected to the controller board, and
physically attached to an actuator on top of the robots
torso. This arrangement gives the camera, relatively to the
robot’s body, one degree of freedom in the horizontal
plane and a camera sweep angle of 85 degrees.

2.6 INFRARED PSD RANGE SENSOR
A single camera cannot be used to accurately measure the
distance to a nearby object. This is instead achieved with
a near-infrared PSD range sensor, which consists of an IR
emitter and a position sensitive detector in a single

4 http://www.ee.uwa.edu.au/~braunl/eyebot/

package. The principle of this sensor is based on
triangulation, which means that the sensor is relatively
insensitive to the texture and color of the object at which
it is pointed. The emitter, placed below the detector in the
package, illuminates a small spot on an obstacle with
modulated IR light. A lens forms an image of the spot on
the active element at the back of the detector. The output
of the detector element is a function of the position on
which the image is falling [Jones et al 1999]. Within the
range of about eight to 40 centimeters distance to the
object, a value of sufficient accuracy (resolution < 1
millimeter) is produced.

2.7 FIRMWARE AND SOFTWARE
The EyeBot MK3 controller board is running an operating
system that consists of two main parts, the RoBIOS
(robot basic I/O system) and the HDT
(hardware description table). The same RoBIOS is shared
by all hardware configurations of a robot controlled by an
EyeBot, but the HDT differs to account for different
sensors or actuators connected to the actual hardware.
Each actuator has a unique workspace according to its
position on the robot [Ziegler et al, 2001]. The
workspaces for all actuators are specified in the HDT file
by setting suitable values.
In order to control the movements of a limb, the partial
movements of all involved joints must be coordinated and
synchronized to get the desired motion. For this reason, a
servo locomotion module has been developed. The idea
behind it is that a complete gait cycle is specified by nine
integer-valued vectors, each of the vectors specifying
given positions of the robot’s limbs. Each of the vectors
consists in fact of a set of control parameters, a position
value for each actuator and two time constants. The first
of the vectors in the set correspond to the robot’s initial
position and the second vector corresponds to the second
position of the robot and so on. By interpolation from the
values of one vector to the values of another vector the
robot’s limbs is caused to smoothly move from one
position to another position. The first time constant
specifies how fast the limbs should move between
consecutive positions and the other constant specifies
time delay before the position of the limbs is updated. To
obtain a complete gait cycle the set of vectors specifying
it is interpolated once and the robot is made to
continuously walk by iteration. All robot control
programs that we have developed is implemented in C
language.

3 EVOLUTIONARY ALGORITHM
The evolutionary algorithm used is a steady state
evolutionary strategy [Banzhaf et al, 1998], running on
the robot‘s onboard computer. A population that stems
from a manually developed individual is created with a
uniform distribution over a given search range. Then four
individuals are randomly selected from this initial
population. These individuals are evaluated and their

fitness is measured. The two individuals with the better
fitness values are considered as parents and the two
individuals with the lower fitness are replaced by the
offspring’s of the parent individuals. The selection,
evaluation and reproduction phases of the evolutionary
strategy is then repeated until the maximum number of
trials is reached.

3.1 INITIALIZATION
The initial population is composed of 30 individuals with
126 genes randomly created with a uniform distribution
over a given search range. The 126 integer-valued
parameters used as genes are listed in table 1 together
with their initial search range.

Table 1: Parameter List

Parameter
type

Number
of values

Unit Initial
Range

Search
Range

Speed 9 Time
(0.01s)

3-4 0-2

Delay 9 Time
(0.01s)

20-200 0-150

Servo
position

108 Angle
(1/256)

4-253 0-2

The search range for each parameter type (e.g. speed,
delay and servo position) is determined from experience
in manually developing gaits. The search range, see table
1, is defined as the magnitude of the Euclidean distance
between a certain gene in the manually developed
individual and the corresponding gene in a randomly
created individual. The search ranges are set to suitable
values in order to produce a sufficient amount of
individuals in the population that are capable of good
performance in the evaluation. Especially when the servo
position parameters are set to a wider range, many
individuals resulted in the robot falling over almost
immediately in the evaluation phase. When an initial
population was created evolution began.

3.2 TOURNAMENT SELECTION
A tournament selection is used to select individuals for
parents and the individuals to be replaced by their
offspring. Four different individuals are randomly picked
from the population and then evaluated one at a time. The
two individuals who get the higher fitness are considered
as parents and their offspring, produced by recombination
and mutation, replaces the two individuals with the lower
fitness in the population. The number of generations a
certain individual can be selected to be in the tournament
is unrestricted.

3.3 REPRODUCTION
For reproduction both mutation and recombination is
used. Recombination takes the two individuals considered
as parents, p1 and p2, and creates two child individuals, c1i
and c2i. Each gene of the child cki then gets the value

()iikikiki pppc 21 −+= α

where cki is the ith gene of the kth child individual, pki is
the ith gene of the kth parent individual, p1i and p2i are the
ith gene of the two parents p1 and p2. The αki is a number
randomly chosen to be either –1 or +1.
In each of the child individuals produced, 20 % of the
genes are mutated by a small amount. The genes in these
two individuals are selected by random to undergo
mutation and it is possible for a gene to be mutated
several times. The gene to be mutated gets a value
according to the equation

kikikimutateki mcc δ+=,

where cki,mutate is the mutated ith gene of the kth child
individual, cki is the gene to be mutated. The δki denotes a
number randomly chosen to be either –1 or +1. The mki
are a random number with uniform distribution that
determines how much each gene should be mutated and it
is set proportional to each parameter type‘s search range.
That is, for the delay parameter, mki values are set to
maximum 6% of its search range and for the speed and
servo position parameters, mki values are, in a similar
way, set to 33% maximum respectively.

4 EXPERIMENTAL METHOD
The aim in short term for our experiments is to optimize a
set of integer values, used as control parameters for a
biped robot gait. They should move the robot faster,
straighter and in a more robust manner than the
previously manually developed set of parameter values
did. Our intention with this section of the paper is to
describe how these experiments were performed and how
individuals were evaluated.

4.1 EXPERIMENTAL SETUP
The experimental environment is shown in figure 2. The
robot is placed on top of a table with a surface of
relatively low friction during the evolution. A target wall
of 50cm height and white color is placed at one end of the
table and to mark the center of that end there is a vertical
black stripe on the wall. Right above the robot (65cm
above the table surface) there is a horizontal beam, used
as a carrier for the power supply cables and for the
security chain. In order to minimize the cable‘s influence
on the robot during locomotion there is a counterweight
connected to the cables via a string that is extended

around a pulley. The purpose of this arrangement is that
the counterweight drags the cables and the security chain
as the robot moves forward.

Figure 2. The experimental setup.

4.2 EVALUATION
Each individual evaluates under as equal conditions as
possible. The robot‘s starting position is at a distance of
about 40cm from the wall and facing it. The experimenter
centers the robot according to the black line by using its
onboard camera. Once centered, the robot measures its
distance with the PSD infrared range sensor and starts to
locomote towards the wall. After a fixed number of gait
cycles it stops. Again it measures its distance from the
wall and pans its head (camera) to search for the black
line on the wall. Using these measurements and the time
required for the locomotion trial, it calculates a fitness
value for this actual individual. The robot is then
manually reseted to its starting position by the
experimenter for the next individual to be evaluated.

4.3 USE OF CAMERA
The primary task for the onboard camera is to provide a
precise tool for determination of direction. Initially, the
camera is set to continuos image mode, whereas the
frames are put to the EyeBot‘s LCD screen and thus made
visible to the experimenter. The robot is considered as
centered when the image of the black line appears near
the center of the LCD display. A single snapshot is then
analyzed by the software image processing routines to
precisely determine the robots position relative the black
stripe. In detail, this is made by first converting the image
to a grayscale image. Next, the Sobel operator is applied
to each pixel of this image in order to perform an edge
detect operation [McKerrow, 1991]. The originally color
image is then converted into an ordinary bitmap image,
where the edges of the black stripe produces two parallel,
vertical lines. The average point, in horizontal direction,
between those lines is then easily calculated by the
software. This value is then stored for later use.

After an individual has performed a trial, the camera is
again used to determine how straight the robot moved
during the trial. As the robot body remains fixed the
camera pans from left to right in steps, where it takes one
snapshot between each step and analyze each of the
images in the same way as described above. One step
corresponds approximately to an angle of 3 degrees. For
each snapshot the new calculated average point between
the lines is compared with the earlier obtained average
point and when the difference between these is less than
1, the camera stops moving. When the initial average
point was calculated, the camera servo was in its middle
position. The difference between the value obtained when
the camera stops panning and the middle position value is
considered as the angular deviation θ from the desired
(straight) path of locomotion.

4.4 USE OF THE PSD RANGE SENSOR
While the robot uses its onboard camera for determination
of direction, distances are measured using a near-infrared
PSD range sensor located at the robot’s chest. Initially the
robot is manually moved to a specific starting point, about
40cm from the target wall. At this fixed position, the start
distance is determined by averaging six consecutive PSD
sensor readings, with 0.2s interval between the readings.
After an individual has performed a trial successfully (i. e.
without falling) it stops and again uses the PSD sensor to
determine its stopping distance from the wall.
The PSD sensor returns a raw value (between 0 and 999)
that from about 10 to 40 cm is almost linear with distance.
These raw values are easily converted into millimeters by
creating an internal distance conversion table for the
HDT. To do this, the robot was placed at a fixed distance
from the target wall and slowly moved towards the wall
while 128 sensor readings were taken and its distance
from the wall was measured in millimeters. However,
since the PSD sensor output is linear with distance and the
resolution of the sensor is less than 1 millimeter in the
actual range, the raw value was instead used in the fitness
calculations.

4.5 FITNESS
To determine an individuals fitness score both its average
velocity during the trial and its ability to move in a
straightforward path is taken into account for. The fitness
score function is defined as

() ()ff dstddvscore ,,,0 θ×=

where v (d0, df, t) is the average velocity of the robot
during the trial and s(θ, df) is the straightness function.
The d0 and the df denote the initial and the final distances
to the target wall respectively and t is the time passed
during the trial. The straightness function is dependent of

both the angular deviation θ and the robot’s final distance
to the target wall and it is thus defined as

Here, f (θ) is a normalization function to convert θ into a
0 – 1 measure. The values 150 and 10 are used as
constants for the straightness function because they are
raw values corresponding to the maximum and minimum
measurable distances for the PSD sensor. The straightness
function accounts for the robot’s final distance from the
black target strip - with the robot at a fixed orientation θ
being larger when the robot stops closer to the target wall.
Finally, the average velocity function is defined as

In the case when an individual does not maintain the
robot’s balance during a complete trial (e.g. the robot
falls) it receives a score of zero. This has to be done
manually by the experimenter, since the experimental
system is not equipped with any device for detecting that
kind of occurrence. If the robot’s gait causes it to turn so
sharply that it cannot pan its head far enough to face the
black target strip, the actual individual then automatically
receives a zero fitness score.

5 RESULTS
For this evolutionary strategies experiment we used an
initial population of 30 individuals and ran for nine
generations. The best-evolved individual received a
fitness score of 0.1707. The manually developed
individual was also tested and received a fitness score,
averaged over three trials, of 0.1051. The best-evolved
individual outperformed the manually developed
individual both in its ability to maintain the robot in a
straight course and in robustness, i.e. with a less tendency
to fall over. The qualities of different individuals were
also tested in other ways than direct fitness measuring. To
evaluate one generation, consisting of four individuals,
took approximately 30 minutes in this experiment.

Table 1: Evolved Parameter List

Parameter
type

Number
of values

Unit Initial
Range

Evolved
Range

Speed 9 Time
(0.01s)

3-4 2-5

Delay 9 Time
(0.01s)

20-200 42-300

Servo
position

108 Angle
(1/256)

4-253 3-253

() ()()
140

101501
,

θθ
θ

ffd
ds f

f

−+−
=

()

()
128

1
θ

θ −=f

5.1 FITNESS
In figure 3 the average fitness scores for each generation
is shown as dots and the line is produced by statistical
analysis, i.e. linear regression, of the dots. Since the slope
of the line is positive, we observe a tendency towards
better and better fitness values.

()
t

dd
tddv f

f

−
= 0

0 ,,

Figure 3.The Resulting Average Fitness Scores

5.2 SPEED
There was no improvement observed in the robot’s speed
of locomotion. The best-evolved individual and the
manually developed individual could both move the robot
in a speed of approximately 10.5cm/minute. They were
tested over a 100cm run, which took 9.5 minutes each.

5.3 STRAIGHTNESS AND ROBUSTNESS
How well the individuals performed were tested both on
the same flat table surface as the evolutionary experiment
was made on, as well as on a high friction rubber surface.

On the low friction table surface the manually developed
individual behaved unstable and was not able to keep the
robot in a straight course, since it caused the robot to
suddenly make sharp turns in an unpredictable way. This
lack of accuracy decreased when the surface was changed
to a high friction, rubber surface. The robot then proved to
have a sidewise deviation of about 33cm on a 100cm
distance. When the best-evolved individual was tested, it
moved the robot forward on both types of surfaces with a
sidewise deviation of less than 5cm on a 100cm distance.

6 DISCUSSION
An observation made when manually developing gaits
was that, in order to determine if a certain set of gait
parameters i.e. an individual is of sufficient quality, it
must be iterated in more than one step. That is because the
mechanical structure of the robot is non-rigid. When
moving a limb (e.g. a leg), the trajectory, thus the limb’s
final position, is affected by from which position the
movement started. How much the torso leans also affects
the resulting position of the robot. Therefore, the final
position of the robot’s movements depends on if it was
moved to the starting position by itself or if it was
manually put there. To account for the behavior in the
phase when the robot is moving from the last position in
the first iteration to the initial position in the next
iteration, each individual had to be iterated three times.

Figure 4. Series of pictures showing a complete gait

cycle, from top left to bottom right.
Evolved parameters are showing good performance in
some ways, yet not in others. In the beginning of the
evolution, many individuals were moving the robot both
fast and in a robust manner, except for in the single phase
of moving the center of mass in order to stand on one leg

and lift the other to take a step. The torso was not leaning
enough towards the standing leg side, which resulted in
that the robot fell when it lifted the other leg. An
individual showing this tendency then received a zero
fitness score. As the evolutionary process went on this
type of behavior decreased and gradually died out.
To run an evolutionary experiment took about 30 minutes
for each generation, so the 9-generations experiment that
we present in this paper went on for almost five hours.
Between each generation of four individuals evaluated,
we paused the experiment for about 15 minutes in order to
spare the hardware and especially the actuators. The main
reason for this is that the actuators accumulate heat when
they are running continuously under heavy stress. They
then run the risk of getting overheated and gradually
destroyed. We also observed that the position control
circuit of the servomotors is sensitive to temperature.
When commanding a servomotor to a given position by
addressing it a fixed integer value within the interval {0,
255}, the physical angle of the servo’s output shaft
dislocates over time as the temperature of the servo
increases. Since the robot’s feet are coupled to each other
via nine actuators their relative positions are then affected
so much by this drift that it could cause the robot to fall.
One way to handle this problem is, as mentioned above,
to run the robot intermittent so that the servos maintain an
approximately constant temperature.
Evolving efficient gaits with real physical hardware is a
challenging task. In the six months of manually
developing gaits and testing the evolutionary algorithm,
frequent maintenance of the robot was indeed necessary.
The torso and both the ankle actuators were exchanged
once as well as the two hip servos. The most vulnerable
parts of the robot were proved to be the knee servos. Both
these servos were replaced tree times.

7 CONCLUSIONS
The work presented in this paper constitutes of two main
parts, the construction of a small humanoid walking robot
and a genetic programming experiment performed on it.
By manually developing locomotion module parameters,
the robot was made capable of autonomous static walking
in a first stage. In the next stage we performed a genetic
programming experiment on the robot in order to improve
the manually developed gait. For this, we used a steady
state evolutionary strategy that was run on the robot’s
onboard computer. This algorithm evolved an individual
that outperformed the previously manually developed set
of parameter values in a sense that it moved the robot in a
straighter path and in a more robust way.
We believe that the ELVINA robot platform is capable of
development. In future research we aim to improve the
hardware and software of the ELVINA, resulting in a
more robust and durable robot platform. Then it will be
possible to do more genetic programming experiments in
order to have the robot to accomplish tasks that are more
complicated. Such could be using vision to navigate,

collaborate and interact with other robots of this kind and
balancing and walking on an inclined plane.

References
P. Nordin and M. G. Nordahl (1999). An evolutionary
architecture for a humanoid robot. Proceedings of the
Fourth International Symposium on Artificial Life and
Robotics (AROB 4th 99). Oita, Japan.
P. Dittrich, A. Burgel and W. Banzhaf (1998). Learning to
move a robot with random morphology. Phil Husbands
and Jean Arcady Meyer, editors, First European
Workshop on Evolutionary Robotics (pp. 165—178).
Berlin: Springer-Verlag.
S. Nolfi and D. Floreano (2000). Evolutionary Robotics:
The Biology, Intelligence, and Technology of Self-
Organizing Machines. Massachusetts: The MIT Press.
W. Banzhaf, P. Nordin, R. E. Keller and F. D. Francone
(1998). Genetic Programming~ An Introduction: On the
Automatic Evolution of Computer Programs and Its
Applications. San Francisco: Morgan Kaufmann
Publishers, Inc. Heidelberg: dpunkt verlag.
G. B. Parker and J. W. Mills (1999). Adaptive hexapod
gait control using anytime learning with fitness biasing.
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’99) (pp. 519-524).
San Francisco: Morgan Kaufmann Publishers, Inc.
N. Jakobi (1998). Running across the reality gap: octopod
locomotion evolved in a minimal simulation. Phil
Husbands and Jean Arcady Meyer, editors, First
European Workshop on Evolutionary Robotics (pp. 39—
58). Berlin: Springer-Verlag.
T. Gomi and K. Ide (1998). Emergence of gait of a legged
robot by collaboration through evolution. P. K. Simpson,
editor, IEEE World Congress on Computational
Intelligence. New York: IEEE Press.
G. S. Hornby*, S. Takamura, O. Hanagata, M. Fujita and
J. Pollack (2000). Evolution of controllers from a high-
level simulator to a high dof robot. J. Miller, editor,
Evolvable Systems: from biology to hardware;
proceedings of the third international conference (ICES
2000) (Lecture Notes in Computer Science; Vol. 1801 pp.
80-89). Berlin: Springer-Verlag.
M. A. Lewis, A. H. Fagg and A. Solidum (1992). Genetic
programming approach to the construction of a neural
network for control of a walking robot. Proceedings of the
IEEE International Conference on Robotics and
Automation. New York: IEEE Press.
G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto and
O.Hanagata (1999). Autonomous evolution of gaits with
the Sony quadruped robot. Proceedings of the Genetic
and Evolutionary Computation Conference. San
Francisco: Morgan Kaufmann Publishers, Inc.
G. S. Hornby, S. Takamura, J. Yokono, O.Hanagata, T.
Yamamoto and M. Fujita (2000). Evolving robust gaits

with AIBO. IEEE International Conference on Robotics
and Automation. pp. 3040-3045.
J. L. Jones, A. M. Flynn and B. A. Sieger (1999). Mobile
Robots: Inspiration to Implementation. Massachusetts:
AK Peters.
J. Ziegler, K. Wolff, P. Nordin and W. Banzhaf (2001).
Constructing a small humanoid walking robot as a
platform for the genetic evolution of walking. In print.
P. J. McKerrow (1991). Introduction to Robotics.
Wollongong: Addison-Wesley.

	INTRODUCTION
	ROBOT PLATFORM
	BODY
	ACTUATORS
	POWER SUPPLY
	CONTROLLER BOARD
	VISION SYSTEM
	INFRARED PSD RANGE SENSOR
	FIRMWARE AND SOFTWARE

	EVOLUTIONARY ALGORITHM
	INITIALIZATION
	TOURNAMENT SELECTION
	REPRODUCTION

	EXPERIMENTAL METHOD
	EXPERIMENTAL SETUP
	EVALUATION
	USE OF CAMERA
	USE OF THE PSD RANGE SENSOR
	FITNESS

	RESULTS
	FITNESS
	SPEED
	STRAIGHTNESS AND ROBUSTNESS

	DISCUSSION
	CONCLUSIONS
	
	References

