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Abstract. We describe the first instance of an approach for control
programming of humanoid robots, based on evolution as the main adap-
tation mechanism. In an attempt to overcome some of the difficulties
with evolution on real hardware, we use a physically realistic simulation
of the robot. The essential idea in this concept is to evolve control pro-
grams from first principles on a simulated robot, transfer the resulting
programs to the real robot and continue to evolve on the robot. The
Genetic Programming system is implemented as a Virtual Register Ma-
chine, with 12 internal work registers and 12 external registers for I/O
operations. The individual representation scheme is a linear genome, and
the selection method is a steady state tournament algorithm. Evolution
created controller programs that made the simulated robot produce for-
ward locomotion behavior. An application of this system with two phases
of evolution could be for robots working in hazardous environments, or
in applications with remote presence robots.

1 Introduction

Dealing with humanoid robots requires supply of expertise in many different ar-
eas, such as vision systems, sensor fusion, planning and navigation, mechanical
and electrical hardware design, and software design only to mention a few. The
objective of this paper, however, is focused on the synthesizing of biped gait.
The traditional way of robotics locomotion control is based on derivation of an
internal geometric model of the locomotion mechanism, and requires intensive
calculations by the controlling computer, to be performed in real time. Robots,
designed in such a way that a model can be derived and used for controlling,
shows large affinity with complex, highly specialized industrial robots, and thus
they are as expensive as conventional industrial robots. Our belief is that for
humanoids to become an everyday product in our homes and society, affordable
for everyone, there is needed to develop low cost, relatively simple robots. Such
robots can hardly be controlled the traditional way; hence this is not our pri-
mary design principle.
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A basic condition for humanoids to successfully operate in human living environ-
ment is that they must be able to deal with unpredictable situations and gather
knowledge and information, and adapt to their actual circumstances. For these
reasons, among others, we propose an alternative way for control programming
of humanoid robots. Our approach is based on evolution as the main adaptation
mechanism, utilizing computing techniques from the field of Evolutionary Algo-
rithms.
The first attempt in using a real, physical robot to evolve gait patterns was
made at the University of Southern California. Neural networks were evolved
as controllers to produce a tripod gait for a hexapod robot with two degrees
of freedom for each leg [6]. Researchers at Sony Corporation have worked with
evolving locomotion controllers for dynamic gait of their quadruped robot dog
AIBO. These results show that evolutionary algorithms can be used on complex,
physical robots to evolve non-trivial behaviors on these robots [3] and [4].
However, evolving efficient gaits with real physical hardware is a challenge, and
evolving biped gait from first principles is an even more challenging task. It
is extremely stressing for the hardware and it is very time consuming [17]. To
overcome the difficulties with evolving on real hardware, we introduce a method
based on simulation of the actual humanoid robot.
Karl Sims was one of the first to evolve locomotion in a simulated physics en-
vironment [13] and [14]. Parker use Cyclic Genetic Algorithms to evolve gait
actuation lists for a simulated six legged robot [11], and Jakobi et al has devel-
oped a methodology for evolution of robot controllers in simulator, and shown
it to be successful when transferred to a real, physical octopod robot [7] and
[9]. This method, however, has not been validated on a biped robot. Recently, a
research group in Germany reported an experiment relevant to our ideas, where
they evolved robot controllers in a physics simulator, and successfully executed
them onboard a real biped robot. They were not able to fully realize biped
locomotion behavior, but their results were definitely promising [18].

2 Background and Motivation

In this section we summarize an on-line learning experiment performed with
a humanoid robot. However this experiment was fairly successful in evolving
locomotion controller parameters that optimized the robot’s gait, it pointed out
some difficulties with on-line learning. We summarize the experiment here in
order to exemplify the difficulties of evolving gaits on-line, and let it serve as an
illustrative motivation for the work presented in the remainder of this paper.

2.1 Robot Platform

The robot used in the experiments is a simplified, scaled model of a full-size
humanoid with body dimensions that mirrors the dimensions of a human. It
was originally developed as an alternative, low-cost humanoid robot platform,
intended for research [17]. It is a fully autonomous robot with onboard power
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supply and computer, and it has 14 degrees of freedom.
The robot has the 32-bit micro-controller EyeBot MK3 [2] onboard, carrying it
as a backpack. All signal processing, including control, vision, and evolutionary
algorithm, is carried out on the EyeBot controller itself. In its present status,
the robot is capable of static walking.

Fig. 1. Image of the real humanoid robot ’elvina’.

2.2 Gait Control Method

The gait control method for this robot involves repetition of a sequence of in-
tegrated steps. Considering fully realistic bipedal walk, two different situations
arise in sequence: the statically stable double-support phase in which the robot
is supported on both feet simultaneously, and statically unstable single-support
phase when only one foot of the robot is in contact with the ground, the other
foot being transferred from the back to front position. When this sequence of
transitions has been repeated twice, one can consider a single gait cycle to be
completed. That is, the locomotion mechanism’s posture and limb’s positions
are the same after the completion as it was before it started to move, and hence
it’s internal state is the same.
If we now study only static walk, i.e. the projection of the center of mass of the
robot on the ground always lie within the support polygon formed by feet on the
ground, there is obviously a number of statically stable postures in between the
internal state of the robot and it’s final state, during completion of a single gait
cycle. By interpolation between numbers of such, statically stable, consecutive
states it is possible to make the robot to complete a single gait cycle. Then, by
continually looping, biped gait is produced.
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2.3 Evolutionary Gait Optimization Experiment

This experiment was performed in order to optimize a by hand developed set of
state vectors, defining a static robot gait. The evolutionary algorithm used was
a tournament selection, steady state evolutionary strategy [1] and [16] running
on the robot’s onboard computer. Individuals were evaluated and fitness scores
automatically determined using the robots onboard digital camera and proxim-
ity sensor.
A population of 30 individuals, stemming from a manually developed individual
was created with a uniform distribution over a given search range. The best-
evolved individual and the manually developed individual were independently
tested, and their performances were compared to each other’s. The former one
received a fitness score, averaged over three trials, of 0.1707, and the latter one,
tested under equal conditions, got a fitness of 0.1051. Within this context, a
higher fitness value means a better individual, and thus the best-evolved indi-
vidual outperformed the manually developed individual both in its ability to
maintain the robot in a straight course and in robustness, i.e. with a lesser
tendency to fall over [17].

2.4 Observations

To run such an evolutionary experiment as described above span over several
days, and requires manual supervision all this time. Between each generation of
four individuals evaluated, the experiment was paused for about 15 minutes in
order to spare the hardware and especially the actuators. The main reason for
this is that the actuators accumulate heat when they are running continuously
under heavy stress. They then run the risk of getting overheated and gradually
destroyed. One way to handle this problem was, as mentioned above, to run
the robot intermittent so that the servos maintain an approximately constant
temperature.
Evolving efficient gaits with real physical hardware is a challenging task. During
the experiments, the torso and both the ankle actuators were exchanged once as
well as the two hip servos. The most vulnerable parts of the robot were proved
to be the knee servos. Both these servos were replaced tree times.
Obviously there are a number of difficulties related with evolving biped walking
behavior on a real, physical robot. In an attempt to overcome some of the prob-
lems, we want to use a physically realistic simulation of the robot. The central
idea in this concept is to evolve control programs from first principles on a sim-
ulated robot, transfer the resulting programs to the real robot and continue to
evolve efficient gait on the real robot. Of course, there will arise other problems
applying this method, as simulation systems always imply some simplifications
of the real world.

3 Evolution of Control Programs

Our primary goal is to utilize Genetic Programming [5] and [8] for evolving
locomotion control programs from first principles for our simulated biped robot,
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i.e. with no a priori knowledge for the robot on how to walk, information of
morphology etc. The evolved programs take the robot’s current internal state
parameter values as input vector and return a vector predicting it’s next internal
state parameter values, in order to produce robust biped gait.

3.1 Dynamic Physics Simulation

The Open Dynamics Engine (ODE) is a free library for simulating articulated
rigid body dynamics, developed by Russell Smith [15]. An articulated structure
is created when rigid bodies of various shapes are connected together with joints
of various kinds.
The robot model is qualitatively consistent with the real robot in the aspect of
geometry, mass distribution, and morphology. See [17] for details of the robot.
It consists of 12 actuated joints and 13 body elements. It is constructed with
its mass concentrated to the main body elements, which in the real robot cor-
respond to the servo actuators, batteries and computer. The plastic body parts,
interconnecting the servos to each other, are not rendered in the simulation,
since their mass is very low compared to the total mass.

Fig. 2. Snapshot of the simulated humanoid robot. The body elements are directly
connected to each other, although this is not visualized here.

3.2 Virtual Register Machine

The Genetic Programming representation used for this problem of robot control
program induction is an instance of a Virtual Register Machine, VRM(k, l) [10].
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It has k I/O registers and l internal work registers. In the current implementation
of our system, l equals k. The function set consists in the present of arithmetic
functions ADD, SUB, MUL, DIV, where DIV is protected division, and SINE.
We now define a register state vector Reg ≡ [Reg1, ..., Regk] of k integers, each
of the elements corresponding to one of the actuated joints of the simulated
robot. All program input/output is communicated through the states of the
I/O registers. That is, program inputs are supplied in the initial state Reg,
and output is taken from the final register state Reg′. Further, the I/O register
state vector is initially copied into the internal work registers. We can do this
in a straight forward manner, since we have imposed that the number of I/O
registers, k, equals the number of work registers, l. The Virtual Register Machine
is allowed writing only to the internal work registers when looping the program
instructions. The I/O registers are write-protected in this phase, and their final
state is updated after the end of the program execution cycle, before they are
passed to the robot and then updating it’s internal state.

3.3 Linear Genome Representation

Each individual is composed of simple instructions between input and output
parameters. Each instruction consists of four elements, encoded as integers, and
the whole individual is a linear list of such instructions:

8, 22, 3, 12,

19, 11, 2, 16,

15, 12, 3, 12,

8, 3, 4, 19,

12, 12, 4, 21,

1, 6, 5, 12,

20, 3, 1, 19,

9, 12, 2, 21,

23, 5, 3, 19,

16, 9, 3, 14,

13, 21, 5, 19,

6, 13, 5, 14,

16, 22, 3, 16,

16, 3, 4, 18,

8, 19, 2, 13,

20, 5, 3, 20,

13, 6, 1, 14,

The encoding scheme is as follows; the first and second elements of an instruc-
tion refers to the registers to be used as arguments, the third element corresponds
to the operator, i.e. ADD=1, SUB=2, MUL=3, DIV=4, and SINE=5, and the
last element is a register reference for where to put the result of the operation.
The meaning of the first line (instruction) here is: multiply register 8 with reg-
ister 22 and put the result in register 12. The operators take two arguments,
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except when the operator is SINE, which of course only take one argument. In
this case, the SINE operator is applied to the first element in the instruction,
and the second element is simply discarded. A mutation on that element will
thus have no effect on that individual’s genotype. The register references 1-11
are assigned to I/O-registers, and register references 12-23 are assigned for the
internal work registers. Parsing the individual above, and print out the first three
instructions in ’C-style’ looks like this:

Reg12 = Reg8 * Reg22;

Reg16 = Reg19 - Reg11;

Reg12 = Reg15 * Reg12;

3.4 Evolutionary Algorithm

At the beginning of the evolutionary process, the population is filled with ran-
domly created individuals. The length, or number of instructions, of an individual
is chosen randomly with Gaussian distribution, with expectation value 20. The
maximum length is restricted to 256 instructions. The genes are created with
a uniform distribution over their respective search range; 1-23 for the two first
genes of an instruction, 12-23 for the last gene, and 1-5 for the third gene, which
corresponds to the function set.
Our GP-system is a steady state tournament selection algorithm, with the fol-
lowing execution cycle:

1. Select four members of the population for tournament.

2. For all members in tournament do:

a. Create an instance of the simulated robot.

b. Record the position in 3d-space of all the robot’s limbs.

c. Execute the individual for 2500 simulation time steps.

d. Record the final position of all the robot’s limbs.

e. Compute the fitness value (see below).

f. Destroy the simulated robot.

3. Perform tournament selection.

4. Apply genetic operators on the winners to produce two children.

5. Replace the two losers in the population with the offspring.

6. Go to step 1.

The individuals are evaluated (evaluation cycle starting with point 2a. above)
under identical conditions, since the simulation is entirely deterministic. They
all start from the same standing upright pose, with the same orientation. The
execution time for individuals are 2500 simulation time steps (corresponding
to approx. 20 seconds of real time simulation), and if an individual cause the
robot to fall before this time is completed, the evaluation is terminated. In
the beginning of an experiment, a great majority of individuals are terminated
before the intended time. Looping an individual once does not correspond to
a single simulation time step, but to moving the robot’s limbs between two
consecutive internal states (’states’ being referred to as in the subsection Gait

Control Method).
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Table 1. Koza style tableau, showing parameter settings for the evolution of locomo-
tion control programs for the simulated humanoid robot.

Parameter Value

Objective Approximate a function that produce robust biped gait
Terminal Set 24 integer registers,
Function Set ADD, SUB, MUL, DIV, SINE
Raw Fitness According to eq. (2), scalar value
Standardized Fitness Same as Raw Fitness
Population Size 800
Initialization Method Random
Simulation Time 2500 simulation time steps
Crossover Probability 100%
Mutation Probability 80%
Initial Program Length Gaussian distribution, expectation value 20.
Maximum Program Length 256 instructions
Maximum Tournament Number None
Selection Scheme Tournament, size 4
Termination Criteria None (determined by the experimenter)

Fitness Calculation As in all GP-applications, finding a proper fitness func-
tion that guides the artificial evolution in the desired direction is of great im-
portance. The primary goal for the experiment was to produce a ”human-like”,
bipedal gait without the robot falling. To accomplish this task, the individual
controlling the robot should; (i) locomote the robot as straight forward as possi-
ble, and (ii) keep the robot in an upright pose during the movement. Hence, the
proper measurements to feed the fitness function with are related to the height
maintained by the robot, and the covered distance during simulation. Explicitly
formulated in mathematical terms, the proper fitness function was found to be:

f =W

[

1.0−
hstart

hstop

]

+ (dleft + dright) (1)

where hstart is the height of the robot at the starting position, hstop is the
height when evaluation terminates (either the simulation is fully completed, or
it is terminated before the intended time, caused by the robot falling). The
height measure is applied to the position of the robot’s head, however one could
take the height of any body part. The second term is a measure of the distance
covered by the robot during evaluation, applied to its feet. The robot is always
starting with its feet in origo (in xy-plane). The first term will give a positive
contribution to fitness if hstop > hstart, negative contribution in the case when
hstop < hstart, and zero contribution if hstop = hstart. Thus we have a fitness
function rewarding forward locomotion and keeping the upright pose, and pun-
ishing backward movements and falling. The W in the first term is a weight,
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scaling the mutual relation of rewarding and punishing. After some tweaking, it
was found to work best when set to a value in the order of 10.

Genetic Operators We use only two-point string crossover, with 100% prob-
ability for crossover, divided mutually on the rate 4:1 on homologous and non-
homologous crossover.
When an individual is chosen for mutation, the mutation operator works by ran-
domly selecting one single instruction from the individual, and make a change
in the selected instruction. It makes that change either by changing any of the
register references to another randomly chosen register reference from the regis-
ter set, or the operator in the instruction may be changed. The probability for
an individual to undergo mutation is 80%.

4 Results

When observing the experiments in run-time, it is compelling how quickly the
simulated robot learns. In the first couple of hundred tournaments, a great major-
ity of the individuals cause the robot to fall almost immediately in the beginning
of the evaluation cycle, and the greater part of them tip over backwards. Maybe
one out of ten individuals fall to the fore, which is a good starting point of taking
a step ahead. Rather soon, however, one can observe the opposite situation, one
out of ten individuals’ overturn backwards and the rest fall ahead. This was not
the desired goal for the evolution, but we regard this as being the first refined
behavior that emerged.
The next observable stage of development in the evolution is when a large frac-
tion of individuals is keeping the robot at a standstill, almost motionless, on its
feet. In the beginning of our experiments, we faced some problems with evolu-
tion converged to this state. By increasing the population size and making some
adjustments to the fitness function (mainly by decreasing the weight w, giving
lesser punishment for tipping over), we could guide the evolution towards the
desired goal. The mix of individuals showing this behavior, and individuals with
a more ’energetic’ behavior guarantee sufficient diversity of the population for
evolution to proceed.
The final results of these experiment was indeed consistent with our initial ob-
jectives. That is, evolution created controller programs that made the simulated
robot produce forward locomotion behavior. Some of the resulting programs
made the robot walking forward in a spiral manner, with small movements, and
others produced gait patterns with more lively movements. When tested, some
of the individuals managed to keep the robot on its feet for the whole evalua-
tion time (2500 simulation time steps), but when executed for a longer time, the
robot usually ended up overturned. Nevertheless, a division of evolved programs
could accomplish the task during the test run, without ever tipping over the
robot.
Figures 3 and 4 displays some statistics from a representative run. In these exper-
iments we did more than thirty independent runs, ranging from a few thousand
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Fig. 3. a,Fitness value of over all best individual in the population (left) and b,fitness
value of the best individual in every tournament (right).

tournaments, up to more than 80000 tournaments. The way fitness was defined
(eq. 2), a fitness value < 0 correspond to the robot falling backward, and a
small positive value (typically ranging from ∼ 0.3 to ∼ 0.6) correspond to the
robot immediately falling ahead, while a value around 1.5 indicate a standstill.
In figure 3a, one can observe how the best individual performed those behaviors;
falling backward in the first few hundred tournaments, falling ahead in the first
thousand tournaments, and standing still up to the 3000 tournaments. Fitness
values in the range of ∼ 1.5 to ∼ 2.5 indicate some good locomotion, but usually
ended up with the robot overturned, and fitness > 2.5 was successful locomotion
behavior.
As depicted in figure 3a, the currently best individuals in the population showed
progress from the beginning of the evolution and continued to develop over time.
The program length typically decrease below the initialization length in the be-
ginning of a run, but after a short while it starts to increase above that threshold,
and finally it stabilize around some value. See figure 4. In all experiments we
used the same initialization program length, with gaussian distribution and ex-
pectation value 20. It was observed that the program length, averaged over the
whole population, did never go below the value 13, and never above 50, and it
usually stabilized somewhere around 30.

5 Summary and Conclusions

We describe the first instance of an approach for control programming of hu-
manoid robots. It is based on evolution as the main adaptation mechanism,
utilizing computing techniques from the field of Evolutionary Algorithms. The
central idea in this concept is to evolve control programs from first principles
on a simulated robot, transfer the resulting programs to the real robot and con-
tinue to evolve efficient gait on the real robot. As the key motivation for using
simulators, we briefly describe an on-line learning experiment performed with a
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Fig. 4. Average genome length of all individuals in the population, length being defined
as the number of instructions in an individual.

biped humanoid robot.
The Evolutionary Algorithm is an instance of Genetic Programming, imple-
mented as a Virtual Register Machine with 12 internal work registers and 12
external registers for I/O operations. The individual representation scheme is a
linear genome, encoded as an array of integers. The selection method is a steady
state tournament algorithm, with size four. The final results of these experiment
was consistent with our initial objectives. That is, evolution created controller
programs that made the simulated robot produce forward locomotion behavior.
Current versions of the simulation system and the robot, however, do not allow
the evolved programs to be directly downloaded to the robot. Further inves-
tigations and improvements are needed. To begin with, we must implement a
subsystem of the simulated robot’s control system and program interpreter on
the real robots micro controller. Further, the real robot has an active feedback
system, consisting of a color camera and a distance sensor, which will be imple-
mented on the simulated robot as well. The development of the robot platform
is an ongoing process, hence other sensors will be implemented on the robot.
Then, the simulated robot should of course reflect all aspects, morphological
and perceptual, of the real robot.
With this system of two phases of evolution, it will be possible to have a flexible
adaptation mechanism that can react to hardware failures in the robot, e.g. if
an actuator or sensor break down. By extracting information about malfunc-
tioning parts and do off-line evolution with a modified model of the robot, it
will become possible to react to the changes in the robot morphology. Another
approach in this spirit, called Punctuated Anytime Learning, has been proposed
by Parker [12]. For robots working in hazardous environments, or in applications
with remote presence robots, this feature would be very useful.
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