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Abstract

In this paper we present our first efforts to make an ultra low phase noise oscillator
at 10.4GHz. The oscillator is based on a sapphire loaded cavity resonator. We describe
a numerical procedure to accurately calculate the high Q) quasi TM Whispering Gallery
Modes. Based on these calculations a resonator has been made with a very sharp
resonance (the WG Hs11 mode) at 10.4GHz. Based on Leeson’s model for the oscillator
phase noise, the integration of the sapphire resonator in an oscillator loop, is expected
to yield a phase noise below -140dBc/Hz at 1kHz offset.

1 Introduction

In this paper a description of a Whispering Gallery Mode (WGM) sapphire oscillator will be
given. The simplest topology of this oscillator is presented in figure 1. Here, we have shown
the three essential components which are present in the loop: A resonator characterized by
coupling factors (; and (3; at ports 1 and 2 and loaded quality factor @r. An amplifier
with gain factor G at steady oscillation, which counteracts the loss in the passive part of
the loop. Finally, we need a component to be able to tune the frequency of oscillation.
Here, this component has been chosen to be a voltage controlled phaseshifter [7]. The simple

loop arrangement allows for a very accurate analysis of the resulting phase noise of the
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Figure 1: Simple oscillator circuit.
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Figure 2: Left: An illustration from CST Microwavestudio of the inside of the SLC. The
surrounding cavity has not been shown for clarity. Right: The electric field of the WG M54
mode shown at a z cross section at the top of the sapphire cylinder.

oscillator, however, there exist more advanced loop topologies for an improved phase noise
performance [9]. The simplest model to illustrate the importance of the various parameters
in the oscillator loop is Leeson’s model [6] giving an expression for the single sideband phase
noise (SSPN):

SSPN(Af) = ;<(2C2J;0Af)2+1)(fl/AfScG) +1)FIIZT "

Here, Af is the offset from the carrier frequency (fo), fi/s is the frequency where the
flicker noise of the active element equals the thermal noise and F, k, T, P are the noise
figure, Boltzmann’s constant, the temperature, and the signal power, respectively. This
model is based on an assumption of a linear time invariant response around the loop. More
sophisticated models incorporating for instance the time dependency exist [3, 5], however,
in our experiments so far the measured phase noise has been in very good accordance with
Leeson’s model. The model shows the importance of having a resonator with a high @ and
an active element with low flicker noise. This noise typically has a strong dependence on
the level of compression, or equivalently the resulting gain factor in the oscillating circuit.
Therefore a combined optimization of Q1 and fi,7(G) should be made. The correlation
between the two parameters comes through the fact that an increase in Q) is made by a
reduction in the coupling strength and thus, a higher gain in the amplifier will be required
for the oscillation to start.

The method to realize a resonator with a very high unloaded @), is by exciting a Whispering
Gallery Mode in a sapphire loaded cavity (SLC). The SLC consists of a mono crystalline
sapphire pill inserted in an evacuated cavity made from a good conducting material (e.g.
Cu, Ag or a superconducting material if in a cryogenic environment) see figure 2 (left).
The WGMs are modes that primarily reside inside the periphery of the sapphire crystal.
The power density in the electromagnetic field drops polynomially or exponentially as we

move towards the cylinder axis (r — 0) or towards the cavity boundary, respectively. Thus,
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the dominating factor in the damping of the resonance is the dielectric loss in the sapphire
crystal. The reason why we can get extremely high quality factors is that this loss is the
lowest for any known material and furthermore, the loss has a T° temperature dependence
in a range from around 70K-300K. Therefore the resonator is highly improved if operated

under cryogenic conditions.

The paper is organized as follows. Firstly, the resonator is treated. To be able to find
appropriate designs and dimensions of the resonator, we need to be able to compute the
resonances in an inhomogeneous and anisotropic media with cylindrical symmetry. A simple
numerical procedure is sketched and the specific class of resonances - the Whispering Gallery
Modes - are described. Based on such calculations we have made a resonator with a sharp
resonance at 10.4 GHz, and we compare experimental and numerical results. Secondly, we
describe the active element of our choice, and last, a section will be devoted to the phase

noise measurement techniques.

2 The Sapphire Loaded Cavity Resonator

Sapphire mono crystal is an anisotropic material. Therefore, the SLC resonator involves
both an anisotropic media and inhomogeneities due to the presence of both vacuum and
sapphire in the cavity. Therefore, we cannot calculate the electromagnetic eigen modes in
the resonator analytically. Thus, a numerical calculation is required to be able to design
the resonator to have a high @ resonance at a desired frequency. The initial design was
done with a commercial program (CST Microwave Studio) which solves Maxwell’s equations
both in a time and frequency domain involving 3D geometries. In the frequency domain the

program computes all the resonances or eigen modes up to a predefined frequency.

The resonances that we seek are the Whispering Gallery Modes that as mentioned have most
of their energy confined close inside the periphery of the sapphire cylinder. Just as in the
case of an empty cavity supporting transverse electric or magnetic (T'E or T'M) modes the
WGMs are grouped in the classes WGH (for a predominantly transverse magnetic mode) and
WGE (for a predominantly transverse electric mode). Furthermore, the modes are indexed
according to the number of maxima in the azimuthal, the radial, and the z-direction. The
mode that we are currently employing in our resonator is a WG Hs11, which indicates that
there are 5 waves in the azimuthal direction and 1 maxima in both the radial direction and
the z-direction. The electric field of this mode is depicted in figure 2 (right). The WG Hs14 is
the 60’th mode found by CST after the fundamental T Ey15 mode used in ordinary dielectric
resonators. As such, the post processing of the data produced by CST is prolonged by the
search for the desired mode. Furthermore, the resonances gets increasingly confined in the
sapphire cylinder with increasing azimuthal index, and thus in later designs we may consider
employing a higher order WGM, which will require too much computation time, storage
capacity and postprocessing for CST to be a useful tool in the design process. Therefore we

were motivated to make our own program able to find only the relevant resonances.
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Firstly, the geometry is cylindrically symmetric and thus we can assume a e"™? azimuthal
dependence of all field components, and furthermore we only need to compute the eigen
modes in the (r,z)-plane. From the inspection of the solutions found by CST, we notice
that especially in the WGH class of modes that there is a very obvious decoupling of the z
component of the electric field, E,, and H,, i.e. E, # 0 and H, = 0. This is the motivation
to search for a scalar partial differential equation to find F,. This scalar equation will be
an approximation since the dielectric discontinuity at the boundary between the sapphire

crystal and the vacuum gives rise to a coupling between F,, E,., H, and H,.

Using the four Maxwell equations, the e’? azimuthal dependence and neglecting the dis-
continuities of the dielectric constant we arrive at the following set of decoupled equations
for the z-component of the electric and magnetic field giving rise to either a genuine TE or

a genuine TM class of modes:
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where E, = E.(r,2)e™?® and H, = H.(r,z)e"™?, and ky = wQGH(r, 2)eopo and k; =
w?e, (r, z)eopo. The (r,2) dependency of the dielectric constant is of course only present
at the boundary between the sapphire and the vacuum and only in the sapphire crystal will
€1 # € due to the anisotropy. The scalar equations have been solved numerically by the
Finite Element Method (FEM). A good description of this method is given by Wait and
Mitchell [8]. If the fully consistent set of coupled (vectorial) equations are to be solved a
so-called Mixed-FEM method could be used. This method is described for waveguide ge-
ometries in [1], but can be rather easily adapted to be able to deal with the SLC. We used
a triangular mesh arranged so that no element would cover a region both in the sapphire
and in the vacuum (see figure), and therefore a fixed dielectric constant could be used in the
integration over each element. The basis function employed was the Lagrangian 1.st order
function and thus the solution was approximated by a continuous function made of piecewise
linear planes. The Galerkin method was employed to obtain a set of algebraic equations.
These were arranged in a general matrix equation, Ax = ABx, where A and B are N x N
matrices with known coefficients, A is the eigen value (related to the eigen frequency) and
x is the corresponding eigen vector yielding either the values of F, or H, at the nodes of
the mesh. The implementation of the numerical scheme was done in MatLab 6.5, so the

solution to the general matrix problem was found using the MatLab function eigs.

In figure 3 a comparison between the WG Hs11 E. component computed in MatLab and
by CST has been shown at the right half of the (r, z)-cross section. A rather good corre-
spondence is seen between the two results although our model gives rise to discrepancies
at the top and bottom boundary between the sapphire crystal and vacuum. In table 1 a
comparison between the CST and our results for the WGH modes is shown. The deviation

between the two methods is seen to be below 4% and it decreases for increasing azimuthal
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Figure 3: E. component of the WGHs1; mode. a: Computation in Matlab. b: Computation
by CST.

index. This behavior is expected since the dielectric discontinuity becomes less and less im-
portant due to the increased confinedness of the electromagnetic power in the sapphire with
increased azimuthal index. The pseudo TE modes found by CST also displayed a significant
E, component. Therefore, the correlation between our program and CST was not very good.
Currently we are working on implementing the Mixed-FEM scheme, so that we can both
have the accuracy of CST for all modes and the short computation and post-processing time
of our scalar implementation.

The new program is very easy to use. Input data consist of a description of the geometry
and the desired azimuthal index m. Like CST it will compute as many modes as the user
likes. The difference is, however, that all these modes will have the desired azimuthal index
and the first mode (with lowest eigen frequency) will be the WG H,,,1; mode. The program
therefore considerably speeds up the design process. The final design uses a sapphire cylinder
of height 15.2mm and diameter of 21.2mm. All surfaces are polished. The sapphire crystal

Mode MatLab CST % dev.
WGH31¢ 5.702 GHz 5.894 GHz 3.26
WGH31¢ 7.234 GHz 7.4056 GHz 2.31
WGH411 8.796 GHz 8.908 GHz 1.26
WGHs51 | 10.347 GHz 10.401 GHz 0.52
WGHg11 | 11.882 GHz 11.864 GHz 0.15

Table 1: Calculation of the eigen frequencies of various WGH modes by CST and MatLab.
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Figure 4: Permittivity of crystalline sapphire (from [4]). a: In the (a,b) plane of the crystal
corresponding to the (r, ¢)-plane of the cylinder in the SLC and b: Along the crystal c-axis
which is aligned with the z-axis of the SLC.

¢ axis is oriented along the symmetry axis (the z-direction). Centrally, there is a 4mm hole
to facilitate a mounting of the crystal onto a 7.5mm high stag using a Cu screw. The Cu
cavity has a height of 30.5mm and diameter of 40mm. This design should have a WG Hg1; at
10.40GHz. To couple power into and out of the cavity two small antennas have been inserted
in the cavity. One in the top plate and one in the bottom plate. Using a Network Analyzer
a very sharp resonance has been detected at 10.41GHz (unloaded @ of around 120,000 at
300K). It has not been experimentally verified that this is in fact the WG Hs11 mode we are
probing. Such an experiment could for instance be made by having an antenna that could be
moved along the periphery of the sapphire which could facilitate a counting of the number

of standing waves.

As mentioned in the introduction, the dielectric properties of sapphire are highly dependent
on temperature. In figure 4 the dielectric constant vs. temperature has been shown (from
[4]). The almost linear dependence on temperature down to around 100K facilitates a slow
tuning of the resonance frequencies by changing the temperature of the resonator. By cool-
ing our resonator down to 240K the frequency of the W (G Hs11 resonance shifted to around
10.44GHz. In figure 5 the dielectric loss or tand of the sapphire has been shown (also from
[4]). When the WGMs are employed the loss of energy primarily takes place in the sapphire
and thus, the @ of the resonance is determined by the loss in the sapphire, i.e. @ ~ 1/tanJ.
Therefore, @s in the excess of several billions can be achieved by cooling the resonator down
to say 4.2K.

The simple oscillator based on figure 1 has been analyzed analytically and experimentally
by Galani et al [9]. Here, it is found that in order to minimize the phase noise, the coupling
coefficient at the two ports should be 0.5, thus giving the resonator a loaded @ of half the

300
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value of the unloaded Q. To maintain the coupling coefficients at 0.5 during the process of
cooling it is necessary to be able to change the length of the small antennas in the cavity.

This is done by a mechanical actuator attached to each antenna.

3 The active element

Due to the up-conversion of the 1/f noise in the amplifier giving rise to the 1/f3 phase noise
around the oscillator center frequency it is important to design the amplifier not only to
have a good noise figure F', but also to have the minimum 1/f noise. However, the noise
of the amplifier is of course limited by the properties of the applied transistor. Here, a
compromise has to be made. Field effect transistors (FET)generally give good noise figures
and can be used at high frequencies, however, their 1/f noise is high. High electron mobility
transistors (HEMT) and MESFETSs have shown better 1/f performance. Currently, however,
the best choice of transistor for use in up to 10GHz oscillators are the bipolar transistors
and the heterojunction bipolar transistor (HBT). Disadvantages are the rapid drop in the
gain of these transistors at increasing frequencies and the higher noise figure as compared
to the FETs. The transistor that we have chosen for our oscillator is a Silicon Germanium
(SiGe) HBT, LPT16ED, delivered by SiGe Semiconductor. Measured at 10GHz, I. = bmA
and Vop = 1V this device has a residual phase noise below -160dBc/Hz at 10kHz offset.
There are numerous references to this device in the literature, for instance in [2] a 4.85 GHz
oscillator has been built based on a sapphire resonator and the SiGe HBT and they measure

the lowest phase noise ever achieved for a single loop, free running microwave oscillator
(-133dBc/Hz at 1kHz offset).
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Figure 5: The loss-tangent of sapphire vs. temperature (from [4])
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Figure 6: Measurement of phase-noise

4 Phase noise measurements

In figure 6, a schematic diagram of the phase noise measurement procedure has been shown.
To measure the phase noise of an arbitrary oscillator another oscillator operating at the
same frequency with at least the same or lower noise is required. In the diagram the two
oscillators are phase locked to each other by a standard Phase Locked Loop circuit. The lock
is maintained using a very narrowband lowpass filter, so effectively we only have a frequency
lock. The beat signal therefore contains the sum of the noise around the carrier frequency of
the two oscillators. To find the noise produced by the state-of-the-art oscillators we therefore
need to have two of them. The baseband signal will then consist of approximately twice the
noise of one of the oscillators. This means that we just have to subtract 3dBc/Hz from the

baseband spectrum of the beat signal to obtain the phase noise of one oscillator.

As yet we have not measured the phase noise of the oscillator based on the cryogenic SLC and
the SiGe HBT transistor. We have, however, measured various room temperature oscillators
based on both low and high @ resonators and amplifiers using different transistors. Here,
we found good accordance with the results predicted by Leeson’s model in equation 1. We
expect to reach lower than -140dBc/Hz at 1kHz offset from the carrier with the improved
resonator and amplifier.

This work was partially sponsored by the Hartman Foundation and INTAS 2001-0809,-
0686.
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