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which illustrate that a useful accuracy can be achieved. A virtue of the scheme is that

to get the forces between two objects, only the electron densities of each object are

needed as input. This implies an applicability to systems of growing complexity far

beyond what other, more fundamental methods can achieve.

Typically, for most of the experimental results presented so far, the interest is

in intermediate-range van der Waals interactions. Here our present results should

be adequate. However, some surface experiments, for example, selective-adsorption

di�raction and scanning-force microscopy, point at the relevance of the close contact

region. In particular, it would be very desirable to account for the region, where the

attractive van der Waals interaction goes over into Pauli repulsion at short distances.

To provide a general method for this transition region is an important task for the

continued research on van der Waals functionals.
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separation between the two surfaces, which are assumed to be sharp. We have derived a

modi�ed expression [78], valid also for soft surface pro�les, where van der Waals planes

are introduced in the same way as in the case of a molecule outside a surface.

For the cases of atom{atom and atom{surface interactions, the second-order per-

turbation theory formula (4) is applicable and gives the right van der Waals expressions.

For the interaction between two parallel surfaces, on the other hand, we cannot treat

the Coulomb interaction as a perturbation, since there will be an in�nite number of

reections going back and forth between the surfaces. The adiabatic-connection ex-

pression (1) can still be used [30], though, giving an interaction at large separations z

between two surfaces A and B as [78]

EvdW = � C2

(z � ZA � ZB)2
: (27)

In this expression the van der Waals coe�cient is

C2 =
1

32�2

Z 1

0
duF (iu) ; (28)

where

F (!) =

Z 1

0

dxx2 e�x�
�A(!)+1

�A(!)�1

� �
�B(!)+1

�B(!)�1

�
� e�x

; (29)

and the outward displacements of the van der Waals planes from the respective jellium

edges are given by

ZA=B =

R1
0 du

�A=B(iu)

�A=B(iu)+1
d(iu)F (iu)R1

0 duF (iu)
: (30)

The expression for C2 agrees with the standard one [11], while the expression for ZA=B

appears to be a new result of Ref. [78]. Since the expressions for C2 and ZA=B contain

the same components as the corresponding atom{surface expressions we can use the

same approximation here. Calculations have been done for jellium and the low-indexed

aluminum surfaces [30], using the expressions above with surface electron densities and

static image plane positions as input. In that process the same cut-o� as used previously

for surfaces was applied. The value ZA for an aluminum surface A interacting with a

similar aluminum surface B is very close the corresponding values of Z0 obtained when

the surface A interacts with molecules. The displacements ZA=B are larger for the more

open surfaces [78].

Experimental data or better calculations for making comparisons with the results

we have obtained are lacking. On the other hand, it might be fruitful to incorporate the

result (27) into an interpolation formula like that of Ref. [79] in an attempt to obtain

a formula useful at closer distances.

SUMMARY AND OUTLOOK

In this review we have described a simple, general, and approximate scheme to ac-

count for van der Waals interactions in density functional theory. This should provide

the basis for numerous applications on interacting microscopic particles, such as atoms,

molecules, and molecular complexes, and on macroscopic objects, such as atoms and

molecules interacting with solid surfaces, parallel surfaces, and ultimately more gener-

ally shaped macroscopic objects. We give examples of results for the van der Waals

interactions at intermediate distances, before the onset of the e�ect of retardation,
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Table 6. The van der Waals reference plane

positions Z0 (atomic units) for H2 outside

the low-indexed Al faces. Values used for

d(0) are also given. After Ref. [35].

face d(0) Z0 Zref0

111 1.05 0.69 0.61
100 1.32 0.87 0.83
110 2.08 1.32 1.27

d(0) and Zref
0 from Ref. [22, 74]

di�erent faces of the same material thus have the same C3-value but di�erent Z0-values.

Of course the jellium model is rather unphysical for the high-density (small rs)

surfaces, because the bulk seeks to be at a lower density, and the surface seeks to increase

its area (negative surface tension). The result is that electrons spill out, making the

selvage layer unphysically thick, and the d(!) values unphysically large. As rs increases,

the unphysical spill-out decreases, and the image plane in this model moves closer to

the jellium edge. The values of Z0 follow this trend and also become smaller with

increasing rs. In addition to this spurious density dependence of Z0, the possibility for

dependence on crystalline face is missing entirely.

To test our approximation in a physically correct setting, we have applied it to

a case [35], where there are results available that include the e�ects of the lattice in

a realistic way, namely for the interaction between a hydrogen molecule and the low-

indexed aluminum surfaces [22, 74]. The densities and the static image-plane for the

Al surfaces are taken from a self-consistent DFT-calculation for jellium with laterally

averaged pseudopotentials representing the ions in the four outermost layers [22, 74].

From this input we calculated the Z0 values shown in Table 6. These turn out very

close to those obtained by M. Persson [22, 74] in another approximation,x as also shown

in the table.

A simpler way of introducing more realistic features and also face-dependent den-

sity pro�les is to use a stabilized-jellium model with face corrugation [75, 76]. Hult

and Kiejna [77] have recently calculated the van der Waals coe�cient and the van

der Waals plane for a large number of atoms and molecules outside face-dependent

stabilized-jellium surfaces. The stabilized-jellium model gives increasing image-plane

positions d(0) with increasing rs [76], as opposed to the jellium model. This is reected

in the results for the van der Waals plane, where in the more realistic stabilized-jellium

model the dependence on rs is rather weak, while the face-dependence is pronounced.

The more open the surface is, the larger the value of Z0. For fcc-metals the van der

Waals plane is located at the smallest distance for the close-packed (111) surface and

at the largest one for the open (110) surface. For the bcc-metals the (110) surface gives

the smallest van der Waals plane and (111) the largest.

Parallel Surfaces

The van der Waals interaction between two surfaces is of interest for adhesion and

scanning-force microscopy, among other examples. The standard reference in this case

is the Lifshitz theory for dispersion [11], giving EvdW = �C2=d
2, where d is now the

xThis calculation [74] used an interpolation formula [71] in the manner of Eq. (2) of Ref. [67]. The
parameter � in the interpolation formula was �xed from the stress sum rule [70, 71], which was gen-
eralized to the case of the quasi-one-dimensional pseudopotential model used to get self-consistently
calculated electron densities.
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Table 5. Results for some of our homo-nuclear atom{atom van der Waals

interactions (unmarked) compared with results we obtain (marked by �) by

using �rst-principles static polarizabilities �(0)� to de�ne the cut-o� radii,

r�c . C
ref
6 is from �rst-principles calculations. (Ry atomic units).

�(0) �(0)� rc r�c C6 C�
6 Cref

6

He 2.1 1.4a 1.8 1.7 4 2.6 2.9b, 3.6f , 2.9g

Ne 2.9 2.8d, 3.0f 2.1 2.1 12.0 12.4 12b

Ar 14 11d, 12f 3.5 3.2 126 108 134b, 132f , 130g

Kr 22 18f 4.1 3.8 245 194 266b

Be 62 40d, 37c 5.7 4.8 582 326 416c

Mg 119 70d 7.1 6.0 1513 907 1237c

Ca 242 154c 9.0 7.6 4500 2810 4010c

a Ref. [72], b Ref. [52], c Ref. [55], d Ref. [73], e Ref. [56], f Ref. [53], g Ref. [54] (exp't.)

Thus it is not surprising that our results for the van der Waals plane for jellium, given

in Table 4, are in good agreement with more accurate calculations. This comparison is

hindered by the fact that the two calculations used di�erent atomic �'s; the di�ering

values of C3 are of course due entirely to this di�erence. To eliminate this e�ect for

the purpose of testing the surface aspects of our approximation scheme alone, we have

calculated the van der Waals plane position using the same atomic polarizabilities as

those used in the reference calculations. These results are displayed in the �nal column

of Table 4. Note that the jellium model is used only for the purpose of comparison.

To give a realistic account of the surface response, improved models are needed, as

discussed later.

As in the atomic case high-frequency sum rules fail to be satis�ed exactly [35].

This is due to the small fraction of the electrons in the tail that are not counted. For

example, for an rs = 2 jellium surface the value of d(1) is not zero as it should be,

but rather �0:1 a.u., with still larger deviations for lower electronic densities. Similarly
the stress sum rule [70, 71] is not ful�lled, although for rs = 2 the deviation was

completely negligible. In the expression (24) these deviations introduce only a minor

error, however, because the integral over ! = iu is heavily weighted at small values

of u.

We have also tried the RA type of cut-o� (20) used in the atom{molecule case.

It gives values for the van der Waals planes that are somewhat too large. We do not

understand yet, why cut-o� (20) is better for atoms and molecules than for surfaces.

Possibly it relates to the use of the approximation (13) for the �rst case and (14) for

the second. If this is so, the answer will have to await the implementation of (14) in the

atomic case. Perhaps, on the other hand, the cut-o� for the atomic case should be �xed

by the value of �(0) from �rst-principles calculations. As illustrated by Table 5, the

values for the van der Waals coe�cient C6 come out with a reduced but still interesting

agreement with the more accurate numbers. A comparison with both the more accurate

electrodynamic treatment and an �(0) based cut-o� would be desirable.

While waiting for good answers to these questions, we feel that one can use the

approximations in their present form without unacceptably large errors to calculate

the van der Waals coe�cients and planes for various combinations of simple metals

and rather complex molecules. One should thereby obtain useful results in cases where

better ab initio calculations are unavailable and too expensive to perform.

From Eqs. (23) { (25) it is clear that the van der Waals coe�cient C3 depends only

on the bulk electron density, while the position of the van der Waals plane Z0 depends

in addition on the induced surface charge density. The interactions of an atom with
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Table 4. The van der Waals coe�cient C3 and the van der Waals plane

position Z0 (Ry atomic units) for He, Be and H2 outside jellium. In the

second and fourth column results from other calculations are given. The

van der Waals plane obtained using polarizabilities as in Ref. [67], Z�
0 , is

also given. After Ref. [35].

rs C3 Cref
3 Z0 Zref

0 Z�
0

He: 2 0.13 0.10a 0.83 0.74b 0.77
3 0.086 0.064a 0.67 0.64b 0.61
4 0.062 0.045a 0.56 0.59b 0.53

Be: 2 1.4 1.5c 1.2 1.1c

4 0.96 0.97c 0.8 0.79c

H2: 2 0.36 0.32a 0.97 0.85b 0.88

3 0.26 0.22a 0.76 0.71b 0.68
4 0.20 0.16a 0.63 0.64b 0.57

a Ref. [31], b Ref. [67], c Ref. [69]

and

Z0 =
1

4�C3

Z 1

0
du�(iu)

�b(iu)� 1

�b(iu) + 1

�b(iu)

�b(iu) + 1
d(iu) ; (24)

where �(!) is the atomic or molecular polarizibility as de�ned previously, and �b(!) is

the dielectric function deep in the bulk. The quantity d(!) is the usual perpendicular

surface response function de�ned by Feibelman [48]. It is proportional to the surface

dipole moment per unit area induced by a normal electric �eld. The normalization is

chosen [48] so that Re d(!) is the centroid of the induced charge measured relative to

the jellium edge, which we take as the origin. We might note that the simpli�ed form

of our functional based on (13) rather than (14) gives [68] expressions whose integrands

agree with those in (23) and (24) only for the regions where �b � 1 is small, e.g., large

imaginary frequencies. The values thereby obtained for C3 and Z0 are therefore not as

accurate as those reported here.

Since our original approach gives good results for dimers, we continue to approxi-

mate �(!) according to Eqs. (18) and (11). Within our approximation (14), it is trivial

to calculate the polarization Pz induced by a perpendicular applied �eld from a charge

sheet at in�nity. One �nds [35]

Pz(z; !) =
1

4�

�(!;n(z))� 1

�b(!) + 1

2�b(!)

�(!;n(z))
Eapplied
z (!) ; (25)

from which d(!) is obtained as

d(!) =
1

Pz(�1; !)

Z
dz z

 
�dPz(z; !)

dz

!
: (26)

As discussed above for the atom{atom case, the replacement of the true response

function by a local approximation cannot be justi�ed in the tails of electron distri-

butions. Following the same line here, we should multiply the surface response (25)

by a step function. For a at surface we would then multiply the right hand side of

Eq. (25) by a factor �(zc � z). Doing this, however, and taking the static limit shows

zc to equal d(0). Since static image planes d(0) are rather easy to calculate within time

independent DFT, we thus choose to replace the cut-o� parameter zc by d(0).

Our approximation for d(!) compares favorably with time-dependent LDA calcu-

lations [67] for jellium (Fig.2), for the imaginary ! values important for the energy.
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Figure 2. Our approximation for D(iu) = [�b(iu)(�b(iu) � 1)=(�b(iu) + 1)2] d(iu) compared with
time-dependent LDA calculations [67]. Reprinted from Ref. [35].

have a low anisotropy, typically about 8% [65]. There are various types of results

with which we compare our results for the van der Waals coe�cients: From second-

order perturbation theory the C6-coe�cient for the interaction between two molecules

is obtained as a coupling between their respective polarizabilities taken at imaginary

frequencies [66]; Using ab initio methods such as time-dependent coupled Hartree-Fock

or many-body perturbation theory, molecular polarizabilities can be obtained with very

good accuracy, but this method is applicable only to small molecules, because of an

unfavorable scaling of computational e�ort with system size; �nally, C6-coe�cients are

sometimes calculated as sums of atom{atom interactions for large molecules.

With increasing complexity of the van der Waals complexes, the possibilities for

describing them accurately using �rst-principles quantum-chemical methods decrease

rapidly. This fact puts our approach in a favorable position. It is characteristic for the

DFT approach that the price for simplicity is a less detailed insight. The relatively good

accuracy (see Table 2) of the atomic polarizabilities calculated from Eq. (18) opens up

possibilities for an increased insight, however.

Atom or Molecule Outside a Surface

In the approach applied to two microscopic fragments, the electric �eld that is

caused by the polarization of the medium is taken to be a local function of the applied

�eld. As discussed earlier, this is bound to be an inadequate approximation when one

or both of the bodies is macroscopic. Therefore, although still using the same local

approximation for response functions, we now treat the electrodynamics within the

approximation (14) exactly, rather than approximately according to Eq. (13). For an

atom or molecule outside a planar surface, this is implemented simply by using the

�(r; r0; !) implied by Eq. (14) directly in Eq. (4). Then, following Zaremba and Kohn

[31], one obtains the standard expressions:

EvdW = � C3

(z � Z0)3
; (22)

where the van der Waals coe�cient, C3, and the displacement, Z0, of the van der Waals

plane from the jellium edge are given by

C3 =
1

4�

Z 1

0
du�(iu)

�b(iu)� 1

�b(iu) + 1
(23)

11



Table 3. Some representative results for molecule{molecule van

der Waals coe�cients C6 (Ry atomic units).

our C6 C6 other calculations Reference

HCl{HCl 277 211, 261a [18], [18]
O2{O2 137 117.0 [60]
O2{H2O 123 106 [60]
H2O{H2O 102 97.6, 66.7, 91a [61], [18], [18]
H2O{CO 139 131.8 [62]
NH3{H2O 152 133.4 [62]
NH3{CO 201 180.4, 207 [62], [63]
CO{CO 189 178, 126, 163a [61], [18], [18]
CO2{CO2 265 322, 283, 246, 317a [61], [63], [18], [18]
CH4{CH4 268 225, 259a [18], [18]
CH3OH{CH3OH 442 362, 444 [18], [18]
C3H7OH{C3H7OH 1747 1671, 1955 [18], [18]
C2H6{NH3 396 386 [61]
C2H2{H2O 228 191 [64]
C2H2{C3H7OH 947 890 [64]
C6H6{C2H2 1102 1186 [64]
C6H6{CH7OH 2057 2586 [64]
aexperiment

odd electron number which we considered fell into this category, we applied the 100%

spin-polarized cut-o� (21) to these cases, thus improving the predictions over those

from the non-polarized theory. The more general case is more complicated, however,

and has not yet been implemented. In particular, all the molecular calculations were

made with the form of the theory involving only the total density rather than the spin

density, and hence used the cut-o� (20).

In Fig. 1 our calculated van der Waals coe�cients C6 for interactions between a

large number of atoms and molecules are compared to various �rst-principles results.

Some representative results for atoms are shown numerically in Table 1. Even the values

of �(!) for imaginary ! are in fair agreement with ab initio calculations, as illustrated

in Table 2. Finally we show some representative molecule{molecule calculations in

Table 3. We have made calculations for almost all systems that have been considered in

�rst-principles calculations in the literature, and these are all shown in Fig. 1, although

not in the tables. The calculations for atom{atom interactions have been made using

Hartree-Fock atomic wave functions [34, 57] as input for the electron densities, while we

have calculated electron densities for the molecules [58] using DFT-based commercial

software [59]. The van der Waals coe�cients obtained for the molecules are almost

unbelievably consistent with the \better" calculations, and nurture our belief that the

method should have good predictive power, when applied to systems too large for such

better calculations, which are discussed in the paragraph below, to be feasible.

Systems of stable molecules are termed van der Waals complexes [15]. The last

ten years have seen an explosion of calculations and experiments on van der Waals

complexes, thanks to a rapid development of theoretical and experimental methods

for investigating such systems. Another signi�cant reason is an increasing interest

in systems like molecular solids and liquids, polymers, and membranes. The van der

Waals interaction we consider here arises from a correlation between uctuating dipoles.

More generally there might also be interactions between a permanent dipole on one

molecule and the induced dipole on a second, but this case is not the focus here.

This interaction potential is often anisotropic. In the calculations done so far only

the isotropic van der Waals coe�cient has been considered. Many systems, though,
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Table 2. Atomic polarizabilities �(iu) (Ry atomic units).

Results from Eq. (18) in left columns and ab initio results

from Ref. [53] in right columns. Reprinted from Ref. [34].

u Ne Na+ Ar K+ Kr

0 2.83 2.97 1.15 1.08 14.17 12.15 6.55 5.60 22.27 17.55
1 2.09 2.29 1.01 0.94 5.80 7.22 3.91 4.45 7.56 9.78
2 1.42 1.55 0.81 0.81 3.10 3.64 2.36 2.77 3.71 4.59
4 0.67 0.74 0.47 0.54 1.35 1.28 1.08 1.15 1.69 1.48
6 0.40 0.47 0.34 0.34 0.81 0.61 0.61 0.54 0.94 0.61
8 0.27 0.27 0.27 0.27 0.47 0.27 0.40 0.34 0.67 0.27
10 0.20 0.20 0.20 0.20 0.34 0.13 0.27 0.20 0.47 0.13

from electron densities. It is not quite as obvious how ld should be de�ned. This

parameter can be identi�ed with the � used by Langreth and Mehl [49, 50] to de�ne

a wave vector q = ��1 when going beyond the LDA. We use the expression for q that

they arrive at, q = jrnj=6n. The cut-o� criterion (that the approximation for the

response should be set to zero whenever ld < ls) is ful�lled by multiplying the response

function by a step function in real space, which makes sure that no contribution from

such regions is included. In practice this means that the integration in Eqs. (19) is

carried out only in regions V1 and V2 where

�����rn(r)6n(r)

����� <
p
4me2

 
n(r)

9�

!1=6

; (20)

where individual molecular electron densities n(r) are used. This is precisely the same

cut-o� criterion as the one derived by RA [33] for van der Waals interactions between

uctuations in the bulk, using somewhat di�erent arguments. We believe that the

scaling of the above cut-o� with size and nuclear charge for neutral atoms and molecules

is correct. The precise numerical de�nitions of the length scales and hence the overall

constant on one side of the inequality (20) are, of course, arbitrary to a limited extent.

It is true that the imposition of this cut-o� is crucial for obtaining accurate results, and

that the predictions are sensitive to the choice made. Therefore one could probably

obtain a more accurate functional if the constant in Eq. (20) were optimized by �tting

to the experimental database which we have now collected. Nevertheless, in all our

calculations (except for sensitivity tests and the case discussed in the next paragraph),

we have kept the RA cut-o� of Eq. (20), as discussed above.

The method described above, similarly to the local-density approximation for close-

packed matter, is based on the total electronic density. For the latter systems, it is

well known that the LDA results can be improved by a theory based on the electronic

spin density [26] for atoms with spin polarization. For our case, it is particular easy to

implement a spin-dependent theory in the case of 100% spin polarization, by adjusting

the expression for vF in ls for the fact that there are twice as many electron states

inside the Fermi-sphere for an unpolarized electron gas as for a polarized one. Then vF
is replaced by 21=3vF in the cut-o� criterion, and (20) is replaced by

�����rn(r)6n(r)

����� <
p
2me2

 
2n(r)

9�

!1=6

: (21)

For the purposes of calculating the van der Waals coe�cient, an atom with one electron

outside a closed shell can be considered approximately 100% spin-polarized, because

the �(!) is dominated by the contribution from the outer shell. Since all the atoms with

9



Table 1. Some representative results for atom{atom van der

Waals coe�cients C6 (Ry atomic units).

our C6 C6 from other calculations Reference

He{He 4.0 2.9, 3.6, 2.9a [52], [53], [54]
Ne{Ne 12 13, 14, 13a [52], [53], [54]
Ar{Ar 126 134, 132, 130a [52], [53], [54]
Kr{Kr 245 266, 262, 262a [52], [53], [54]
Xe{Xe 520 522 [52]
Ar{Xe 253 258 [52]
Ne{Ar 37 41 [52]
Mg{Mg 1513 1237 [55]
Mg{Ca 2592 2224 [55]
H{H 12 13, 13 [52], [55]
H{K 189 218, 209 [52], [55]
Na{Na 1849 3020, 2944, 3080 [52], [56], [55]
H{Ne 10 11 [52]
Li{He 46 45 [52]
K{Ne 136 150 [52]
Na{Kr 486 562 [52]
K{Xe 1327 1338 [52]
aexperiment

the approximation is that the exact �(!) is replaced by the local approximation

�(!) =
Z
Vi

d3r �(!;n(r)) ; (18)

where � is given by Eq. (11).

When integration over the complex frequency in Eq. (17) is carried out, and the

�i are expressed using the atomic charge densities, the long-range interaction between

the two separated fragments of matter becomes

Enon�local

xc =
6e

4(4�)3=2m1=2

Z
V1

d3r1

Z
V2

d3r2

q
n1(r1)n2(r2)q

n1(r1) +
q
n2(r2)

1

jr1 � r2j6
; (19)

where n(ri) is the charge density of fragment i, and the integration is carried out over

volumes determined by the cut-o� described below.

The replacement of the exact polarizibility by a local approximation, as described

above, is reasonable in the interior of a charge distribution. In the outer regions,

however, the length scale ld for density variations gets much shorter than the screening

length ls of the electron gas, causing the approximation to overestimate the response.

To cure this we cut o� the response in regions where ld < ls, assuming on good grounds

that the true response is small and thus much more accurately approximated by zero

than by the local approximation. This argument is, however, not correct at very high

frequencies, and imposing the cut-o� causes a failure of our approximation to �(!) to

satisfy the limiting high-frequency form or f -sum rule. The size of this deviation varies

considerably among the dozen atoms we have tested it on, but is normally not large

(median fractional error �0.2), since the cut-o� occurs well outside the bulk of the

atomic electrons.

The electron gas screening length ls must be inversely proportional to the Thomas-

Fermi wave vector kTF, given by k2TF = 4me2(3n=�)1=3. For total-energy calculations

the analysis of Ref. [41] suggests that the choice ls = (kTF=
p
3)�1 = vF=!p is most

appropriate, where vF is the Fermi velocity. It is thus a quantity that is easily evaluated
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Figure 1. Our results for the van der Waals coe�cients for atom{atom,
atom{molecule and molecule{molecule interactions, compared with
�rst-principles results.

APPLICATION TO MODEL SYSTEMS

There are three distinct classes of systems that require three successively more so-

phisticated levels of approximation. These are (i) interaction between two microscopic

bodies, (ii) interaction between one microscopic and one macroscopic body, and (iii)

interaction between two macroscopic bodies. Each has a simplest prototype problem,

which we discuss. For (i), it is the interaction between two atoms or molecules; for (ii),

it is the interaction between an atom or molecule and a planar surface; and for (iii), it

is two parallel surfaces. The transition between (i) and (ii) requires an improved treat-

ment of the electrodynamics as discussed earlier. The transition between (ii) and (iii)

is an even larger step, because second-order perturbation theory in the inter-electron

Coulomb interaction [Eq. (4)] fails to give the asymptotic form of the interaction cor-

rectly. We treat the prototypes for these three cases in the three sub-sections below.

Two Atoms or Molecules

Our expression (9) for the electron-electron interaction can be identi�ed with the

London expression [2, 4] for the van der Waals interaction between two atoms, each

having only one important frequency for electron excitations,

ELondon

vdW
= � 3e4

2m2

ZaZb

!a!b(!a + !b)

1

R6
: (16)

Moreover, Eq. (10) applied to two atoms at large separation R becomes

Enon�local

xc (R) = � 1

R6

3

�

Z 1

0
du�1(iu)�2(iu) = �

C6

R6
; (17)

which is the standard expression for the van der Waals interaction in terms of atomic

polarizabilities [51, 2] (C6 is the atom{atom van der Waals coe�cient). The essence of
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electrodynamics to mean a local relationship between P and the total electric �eld E:

4�P(r; !) = [�(!;n(r))� 1]E(r; !) : (14)

On a macroscopic scale, such a relationship is normally true. However, because �elds

from the induced polarization can act at macroscopically large distances, the applied

�eld and the polarization do not bear a local relationship to each other. The rela-

tionship E(r; !) = Eapplied(r; !)=�(!;n(r)) implied by the comparison of (13) and (14)

should be expected to be inadequate for inhomogeneous systems of macroscopic size.

The exception is the case when the polarization is weak (e.g., due to large !), in which

case the approximation (13) or (10) provides the leading term in an expansion in the

size of the dielectric response. Therefore, in the case where one or both of the frag-

ments is macroscopic, one generally needs to treat the electrodynamics exactly, and

use (14) instead of (13). This is done simply by substituting into (4) the �(r; r0; !)

implied by (14), instead of using (10). For a planar surface case the implementation of

this procedure is simple. Our application of the better electrodynamics to atoms and

molecules is still pending,z although the present results in this case are so good that

one could hardly hope for improvement thereby.

The second approximation above, that of a local-density type of approximation for

the electrodynamic-response functions, is a venerable one. In the context of van der

Waals interactions, an early work [32] from the mid-1970's proposed an approximation

of the form

4�P(r; !) =
Z
d3r0 [�(r� r0; !;ne�)� �(r� r0)]E(r0; !): (15)

and showed that a van der Waals interaction would result. Here �(r� r0; !;ne�) is the

fully non-local electron gas dielectric function at density ne�. Thus the electrodynamics

is non-local as it should be, but the actual response function is taken to be given by

a local-density type of approximation. Ref. [32] actually proposed a speci�c approxi-

mation for the e�ective-medium density ne�(r; r
0), while here, for more generality, we

leave it unspeci�ed. Here the choice would presumably be less critical than in Eq. (7)

where the speci�cation was required to be sensible even over macroscopic distances.

Later, a number of proposals in a context somewhat di�erent from density func-

tional theory, were put forth [44, 45, 46, 47], which in some sense could be regarded as

approximations to (15), more like (14). To determine the actual detailed behavior of

the �elds as a function of frequency and position, this type of approximation has severe

limitations [48]. Exact non-local theories should be used for systems simple enough to

permit their application. One should therefore be reminded not to over-interpret our

results and use them for more than total-energy calculations. A �nal point in this re-

gard is that the earlier attempts at this type of approximation did not have the bene�t

of a density-functional motivated cut-o� scheme, which has been proven by experience

to be e�ective [49, 50, 33]. The cut-o�, which we have found to be crucial for getting

good results, presumably mimics some of the non-local aspects. This is discussed in

detail in the next section.

zThe procedure requires solving r � [�(!;n(r))E(r)] = 0, with r � E(r) = 0, for each frequency in
the presence of an external �eld (and with �(!;n(r)) replaced with unity in the region speci�ed by
the cut-o� criterion). This is no problem for spherical atoms, and in general certainly much simpler
in the approximation (14), than in the more general situation when � is non-local. Hopefully, when
these tests are done, the approximation (13) will prove su�cient in atoms and molecules, because
otherwise the potential attractiveness for the use of our functional for the largest systems could be
diminished. For an illuminating pedagogical discussion of dielectric screening in the context of atoms
and molecules in more general approximation schemes, see Ref. [43].
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The concept of an e�ective medium is very useful, because it can be used in

attempts to extend (6) beyond its rigorous range of validity. In our case we would

like a choice for the e�ective density, ne�, that gives the correct form for the energy in

both the uniform and separated fragment limits. With the application to the interaction

between atoms and molecules in mind, we introduce the replacement for the RA e�ective

density by

ne� =
1

22=3

�q
n(r1)n(r2)

�q
n(r1) +

q
n(r2)

��2=3
: (8)

Following the analysis of RA, the long-range interaction between two electrons in an

electron gas in the high-density, small-momentum limit then is

�(r1; r2) = �
3e4

2m2

1

!p(n(r1)) !p(n(r2)) [!p(n(r1)) + !p(n(r2)) ] jr1 � r2j6
; (9)

with !2
p(n) = 4�ne2=m.

The interaction between two separated fragments of matter is obtained by inte-

grating the electron-electron interaction over the electron densities of the two bodies.

Finally, `undoing' the frequency integral over the imaginary frequency iu yields the

long-range interaction

Enon�local

xc = � 3

�

Z
V1

d3r1

Z
V2

d3r2

Z 1

0
du

�1(iu;n(r1))�2(iu;n(r2))

jr1 � r2j6
(10)

between the two macroscopic fragments. Here the dielectric susceptibility is given by

�(!;n(r)) =
1

4�

"
1� 1

�(!;n(r))

#
; (11)

where �(!;n) is the exact dielectric function at zero wave vector and frequency ! for a

uniform electron gas of density n:

�(!;n) = 1 �
!2
p(n)

!2
: (12)

Since the �'s are functions of the local density in each of the fragments, Eq. (10)

de�nes that part of the full density functional that obtains when the fragments are

disjoint. Eq. (10) is of course close to what one gets exactly [30] from Eq. (1). The

approximations are (i) the introduction of �nite volumes V1 and V2 de�ned by the

cut-o� below, (ii) the approximate expression (11), and the introduction of the local

density. The approximations (ii) and (iii) are common in the collective descriptions of

atoms [42], while (i) is an important innovation introduced by RA [33].

The nature of these approximations deserves some further discussion. A compari-

son between Eqs. (4) and (10) shows that insofar as these total-energy expressions are

concerned, we are assuming that the local polarization in a fragment is given by

P(r; !) = �(!;n(r))Eapplied(r; !) : (13)

This is a doubly local approximation within the fragment. First, it is local in the sense

that � is taken to be the electron gas value at the local density; it is thus a local-density

approximation for the dielectric response. Second, it is local in that the electrodynamics

is assumed local; this is a separate approximation. Normally one would de�ne local
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DFT [23, 24]. However, when using LDA and GGA in DFT schemes, the van der Waals

interaction is not present. The power-law decay of interaction energies at large separa-

tions caused by van der Waals interactions is replaced by an exponential decay. In the

light of the locality imposed on the treatment of exchange and correlation within those

schemes it is not very surprising that the van der Waals interaction, being non-local

correlation, is lost. In the LDA, in particular, the treatment of an electron system as

being `pointwise homogeneous' removes all e�ects of interactions taking place between

points of di�erent density|they are instead treated as if occurring at the same den-

sity. In GGA's, the gradient of the electron density is supposed to bring such e�ects

back into the models, but since the exchange and correlation holes are cut o� in these

schemes, long-ranged e�ects still are lost.

OUR APPROACH

A number of authors [30, 32, 33, 29, 34, 35, 36] have addressed the problem of

restoring the van der Waals interaction in DFT methods. We have developed an ap-

proach to this problem that we will describe and prove to be useful by giving physical

results for various model systems. It is reassuring that both Refs. [35] and [36] have

reached similar conclusions. The latter approach is described in the article by Dobson

and Dinte [37] in this volume.

In the original works on DFT [38, 39] the exchange-correlation energy to second

order in the density inhomogeneity is expressed using an exchange-correlation kernel,

Kxc(r� r0; n),

Exc[n] =

Z
d3r n(r)�xc (n(r))� 1

2

Z Z
d3rd3r0Kxc(r� r0;n) [n(r)� n(r0)]

2
: (6)

We focus on the non-local interaction between two distant perturbations of the charge in

an otherwise uniform electron gas and thereby de�ne a non-local exchange-correlation

kernel,

Enon�local

xc =

Z Z
d3r1d

3r2K
non�local

xc (r1; r2)�n(r1)�n(r2) ; (7)

where �n(r) is the deviation from the background density at point r. The long-range

part of Knon�local

xc has been calculated by Langreth and Vosko (LV)y [41], Rapcewicz and

Ashcroft (RA) [33] and others. RA argue that since the screened interaction is present

in this term and therefore screens the interaction between the electrons at r1 and r2,

the important uctuations take place within a screening length of the electron. In

the slowly-varying electron gas, where the density varies over distances large compared

with the screening length, these uctuations might be assumed to occur at the local

densities at r1 and r2. The screened interaction is here mediated by plasmon-exchange

between r1 and r2, an exchange that RA view as occurring in a medium with the

e�ective electron density, ne� =
q
n(r1)n(r2) .

yThe 1=R6 long-range part of Kxc(R) is controlled by the non-analyticity in the variable q2 at small
q in its Fourier transform, Kxc(q) = Kxc(0) + (�e2=16k4F)Z(q)q

2; this is Eq. (4) of LV with the
factor of 2 error, previously pointed out [40], corrected. At small q, one can show analytically from
LV's expressions that Z(Q) ! Z(0) � (3�2=8)Q, where Q is the dimensionless form of q de�ned by
LV. Fourier transformation back to real space gives �(R) � 2Kxc(R) ! �(3e2=4m2!3p)(1=R)

6 in
agreement with Eq. (9) in the present chapter. It was not made clear in LV that Eq. (8) was an
analytic �t to the small q numerical points, and not the analytic limiting form.
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VAN DER WAALS INTERACTIONS IN DENSITY FUNCTIONAL

THEORY

Our starting point is the well known adiabatic-connection formula for the exchange-

correlation energy as de�ned in DFT [25, 26, 27],�

Exc[n] =
e2

2

Z Z
d3r d3r0 n(r)

1

jr� r0jnxc(r; r
0) : (1)

The exchange-correlation hole, nxc, is expressed as

nxc(r; r
0 � r) = n(r0)

Z 1

0
d� [gn(r; r

0;�)� 1] ; (2)

where � is a coupling constant multiplying the e2 in the interparticle Coulomb inter-

action, and gn is the pair-correlation function. The latter should be calculated in the

presence of a �-dependent external potential that maintains the density n(r) at its

physical value.

Systems where van der Waals forces are important can to a good approximation

be divided into subsystems a and b [28]. The Hamiltonian may then be written

H = Ha +Hb + Vab ; (3)

where Vab is the Coulomb-interaction operator. We will consider subsystems separated

by a vector R, su�ciently large for this to be valid, but still not large enough for

retardation e�ects to be signi�cant (R � c=!, where ! is a characteristic excitation

frequency for the fragments).

Using perturbation theory to second order in the interaction Vab, the adiabatic-

connection expression Eq. (1) for the exchange-correlation interaction energy can be

cast [29, 30] into the form [31]

�Exc(R) = E1
xc �

Z Z Z Z
d3r1d

3r2d
3r3d

3r4 V (R+ r1 � r2)V (R+ r3 � r4)�Z 1

0

du

2�
�a(r1; r3; iu)�b(r2; r4; iu) ; (4)

where �i is the linear response function giving the density change induced in the sub-

system i by an applied potential vapplied oscillating with frequency !:

�ni(r; !) =
Z
d3r0 �i(r; r

0;!) vapplied(r
0; !) : (5)

Since the van der Waals expressions for di�erent model systems can be obtained from

the DFT exchange-correlation energy expression, we conclude that the van der Waals

interaction is included within DFT [30]. Thus the inability of currently used calcu-

lational schemes to account for it is merely a shortcoming of the local and semi-local

approximations used for exchange-correlation.

Absence of van der Waals Interactions in Local and Semi-local DFT Schemes

The local-density approximation (LDA) and the various generalized-gradient ap-

proximations (GGA's) for the exchange-correlation energy have enabled the success of

�The equations in the text are in Gaussian units, but with �h = 1. The tables and �gures measure
energy in Rydberg units and lengths in units of the Bohr radius.

3



non-polar systems, where it, in fact, is the only source of attraction. Examples [14] of

physical phenomena that are governed by van der Waals attraction are adhesion and

cohesion of less densely packed matter, for example, liquid crystals, layered compounds,

polymers, and biomolecular surfaces. The van der Waals interaction is relevant both for

microscopic and macroscopic objects. Interactions between atoms and molecules are

interesting per se. In addition, in studies of more complex systems, such as molecular

solids, liquids, polymers, biomacromolecules, and membranes [15], sometimes called soft

matter, a prerequisite is an understanding of such binary interactions. For instance,

studies of van der Waals molecules and complexes are sometimes motivated by getting

van der Waals interaction potentials as a bridge between microscopic and macroscopic

properties [16]. The van der Waals interaction also plays a key role in such modern

experimental tools as scanning-force microscopy [17].

Basic experimental data has been scarce in the past, but is now burgeoning. We

give a few examples from di�erent areas: The interplay between experiment and the-

ory on dimers of atoms, molecules, and molecular complexes is expanding [18, 16]. The

van der Waals force between a ground-state atom and a dielectric wall has recently

been obtained in a direct-force measurement [19]. In studies of the forces between

macromolecules in liquids, and in particular in water solution, the interplay between

the attractive van der Waals forces and the repulsive, basically electrostatic, hydration

forces is an area of recent study and progress [20]. A most detailed experimental char-

acterization of the van der Waals potential in the full distance range has been obtained

in surface physics, e.g., from the di�ractive scattering of beams of light molecules o�

metal surfaces [21, 22]. There is a hope that the generally limited experimental data

should increase substantially in the near future.

On the theoretical side, the magnitude of the van der Waals interaction is very

small compared to other contributions to the total energy of a typical system. At the

same time, the correlations responsible for the van der Waals e�ects are subtle ones.

These aspects make it di�cult to calculate van der Waals interaction energies. A proper

and accurate theoretical treatment quickly gets quite demanding with growing size or

complexity of the system. To some extent this is reected in the fact that accurate

published calculations on explicit atomic, molecular, or larger objects are relatively

few. This scarcity is particularly pronounced when seen alongside of the great number

of physical, chemical, and biological systems for which the ubiquitous van der Waals

interaction is essential. A simple scheme for calculating the van der Waals interactions,

to be used for real systems, would be very desirable.

Density functional theory (DFT) has proved to be an extremely useful tool for

many types of calculations. The only approximation needed in a DFT scheme is the

one for the exchange and correlation energy. An e�ect of common local and semi-

local approximations for this quantity is that van der Waals interactions are lost. The

commonly used local-density (LDA) and generalized-gradient approximations (GGA)

have been successful beyond expectation for densely-packed systems [23, 24]. Although

DFT embraces the notion of van der Waals interactions in principle, actual usable

approximations that make use of this capability have been non-existent.

In this review we describe a practical density functional theory for the calculation

of van der Waals interactions. Although its derivation makes approximations that are

crude by the most rigorous standards, the resulting density functional scheme is shown

by comparison with ab initio calculations to give useful results in a wide variety of

circumstances. Because it can be easily used on systems that are way too large or

complex to be subjected to the corresponding ab initio calculations, it should have

enormous predictive power.
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INTRODUCTION

The history of van der Waals or dispersion forces dates a long way back [1, 2]. The

recent book Van der Waals and Molecular Sciences [1] gives a detailed account of van

der Waals's own contributions and life-long interest in the �eld. It is interesting to note

that this truly quantum-mechanical problem [3, 4, 5] has been addressed by theorists

long before the birth of quantum mechanics. The force between atoms, molecules,

clusters, complexes, surfaces, and other fragments of matter is dominated by the weak

but long-ranged van der Waals interactions at large separations. This is the region that

has been primarily addressed. Calculations of the interaction potential between neutral

species were �rst done for molecules [6, 7], leading to the well known asymptotic R�6

form of London [5]. The asymptotic z�3 form of the interaction potential between a

neutral atom and a surface was �rst identi�ed by Lennard-Jones [8], with subsequent

re�ned treatments of the atom and surface polarizabilities [9, 10]. For the interaction

between solid bodies, general formulas have been derived [11], which for at surfaces a

long distance d apart give an interaction energy that varies as d�2 [12]. For very large

distances, where the limited magnitude of the velocity of light matters, retardation

e�ects are important [13]. Such relativistic e�ects are physically interesting but beyond

the scope of the present work.

In electron systems the attractive van der Waals interaction is always present.

Its signi�cance relative to other types of interactions is particularly large for neutral
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