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Abstract

A previously proposed and tested [Phys. Rev. Lett. 76, 102 (1996), Phys. Rev.
Lett. 77, 2029 (1996)] van der Waals density functional is applied to van
der Waals complexes. Dynamic polarizabilities, o(iu), and dispersion
coefficients, Cs, are obtained with a useful accuracy and at a low com-
putational cost using ground-state electron densities as input. We compare
results for Cg for small and medium-sized molecules with existing results
obtained using more cumbersome methods. The computational simplicity
of the functional opens up the possibility to treat large systems of real interest
within different fields of physics, chemistry and biology. This is illustrated by
the application to Cg. We present results for the static polarizability o
and the dispersion coefficient Cs for two such molecules.

1. Introduction

While bonding within molecules mainly is of covalent
character, interactions between molecules are governed
by van der Waals forces. Recent development of theoretical
and experimental tools have made studies of weak interac-
tions possible. When a thorough understanding of the inter-
action in binary van der Waals complexes is attained, it
will be possible to proceed to more complex systems that
are of interest within physics, chemistry and biology.
Examples of such systems are molecular solids, liquids,
polymers and membranes [1].

Much work has been invested in the construction of mol-
ecular interaction potentials with input from calculations
and from experiments. Such potentials are used in simulations
of systems of large numbers of molecules and thus act as a
bridge between theory and experiment and between micro-
scopic and macroscopic properties.

The asymptotic non-retarded interaction energy between
two molecules at a distance R is generally written on the
form -3, C,/R". For van der Waals molecules, accurate
values for the coefficients C,, are needed for the construction
of interaction potentials. Using quantum-mechanical
perturbation- and variational schemes [2], these coefficients
can be calculated with very high accuracy only for atoms
and small and medium-sized molecules. It is not tractable
to apply such methods to large molecules [3].

The density-functional theory (DFT) [4] is an alternative to
such schemes. It has proved to be useful beyond all expec-
tations of its founders [5,6], and DFT calculation schemes
with local and semi-local approximations (LDA, GGA)
for the unknown exchange-correlation energy have been suc-
cessfully applied to atoms, molecules and solids [4,7]. One
shortcoming of such schemes is their inability to correctly
describe van der Waals interactions.
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The aim of our work is to construct a van der Waals density
functional that can be included in DFT calculation schemes
without any significant increase in computational effort. A
van der Waals density functional has been proposed [8,9]
and tested successfully on atom-atom [8], atom-—surface
[9] and surface—surface [31] interactions.

In this report we show that our approach is applicable also
to van der Waals complexes by comparing dispersion
coefficients, Cg, obtained using our functional with other,
more elaborate, methods. This should be viewed as a critical
test of the functional, since a failure would limit its
applicability.

Ry atomic units are used throughout this paper.

2. van der Waals complexes

The interaction energy between two molecules can be written
as [1],

Vint — Vshort + Velec + Vind + Vdisp. (1)

The first, short-ranged term, accounts for the repulsion that
falls off exponentially with distance. V¢ is the energy from
the interaction between the ground-state electron distrib-
utions of the molecules. When the Coulomb interaction
operator is treated as a perturbation, this contribution is
obtained as a first-order term. The induction energy
originates from interactions between induced -electric
moments and ground-state charge distributions, and is a
second-order term [10]. The dispersion interaction, finally,
accounts for correlation between instantaneous electric
moments of the two charge densities. Like the induction
energy, it is obtained to second order in the Coulomb inter-
action [10]. Both the induction and the dispersion energies
are proportional to R% at large separations between two
molecules. For most interactions, induction is much less
important than dispersion [1,11].

We consider the van der Waals interaction to be the disper-
sion interaction, that is the interaction between instantaneous
fluctuating dipole moments. It is the only source of attraction
between two molecules with filled subshells and no perma-
nent dipole moments. In a wider sense, the van der Waals
interaction also embraces the induction that arises when per-
manent dipole moments are present [12].

Two or more stable molecules held together by induction or
dispersion interaction are called a van der Waals complex
[1,2]. Sometimes hydrogen bonded systems are also referred
to that group.
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Van der Waals bond energies are typically very small — of
the order of thermal energies, KT [13]. The interaction-energy
minimum for the He dimer, which is one of the most weakly
bound van der Waals complexes, is 70 uRy [14], which is
vanishingly small compared to that of the covalently bonded
H, molecule, 350 mRy [15].

The interaction potential between two molecules in a van
der Waals complex is often anisotropic. For many systems,
though, the dispersion interaction energy is less anisotropic
than other contributions to the interaction. A typical degree
of anisotropy is about 8% [17].

3. Method

In the standard treatment [10] of intermolecular interactions
at large separations, R, a multipole expansion of the
Coulomb interaction leads to an inverse power series,

=_5_8_ZI0_ )

The leading R~® term comes from the dipole—dipole inter-
action and the van der Waals coefficient, C¢ obtained using
second order perturbation theory is [10]

Ce = %/000 du oy (iu)ap (1u), 3)

where o;(ix) is the polarizability of molecule i at imaginary
frequency.

Several authors [18-22] have directed their attention
towards the problem of how to treat the long-ranged van
der Waals interaction in DFT calculation schemes. In order
to construct a van der Waals density functional we have
followed and extended an approach by Rapcewicz and
Ashcroft (RA) [20], describing long-ranged electron-electron
interaction in terms of plasmon propagation. An expression
for the long-ranged electron-electron interaction, obtained
first by RA from diagrammatic perturbation theory, has been
modified [8,23]. The result is a very useful local approximation
for the response of an electron system. Within this
approximation, the molecular polarizability in Eq. (3) is

(@) = /V &r y(r: ), @

where y(r) is the long-wavelength density response of a homo-
geneous electron gas of density

2
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In the expression above the plasmon frequency wy, is related
to the electron density n(r) via the electron-gas expression
wp(r) = 4ne’n(r)/m [24]. The van der Waals interaction is thus
described by the ground-state electron densities of the
interacting species.

In the outer regions of a molecule, the length scale /; for
density variations is shorter than the screening length I
of the electron gas. This causes our approximation Eq. (5)
to overestimate the response. Since the true response in those
regions is small, we instead approximate it by zero in regions
where /y < . Following the analysis of Ref. [25] we use
Iy = (kte/V3) "' = ve/wp, where the Thomas-Fermi wave
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vector is kg = 4me*(3n/n)'/? and vg is the Fermi velocity.
For the density variations we use the same definition as
Langreth and Mehl, /7! = |Vn|/6n [26,27]. In practice this
means that the integration in Eq. (4) is carried out only in
the region V' where

vn(r)
6n(r)

1/6
- W(Q) , )

using the molecular electron density n(7).

The functional forms of the length-scales are of course
unique, although it could be argued that the overall constants
are not. This leaves, in principle, a free parameter to be fit to
known data. The dispersion coefficients, however, are in gen-
eral very sensitive to the cut-off criterium Eq. (6), and the fact
that our calculations based on that criterium agree so well
with known results strongly supports the above analysis.

4. Implementation

Combining Eq. (4), Eq. (5) and Eq. (6) yield the following
numerical integration:

4n(r)

SN 3
a(iu) = /d rx(r) 16mn(r) + 12"

(7
where n(r) is the electron density, and x(r) is the cut-off
condition given by

) |v10g(n(r))|>.

Cnl/5(r) ®)

K(r) = 9(1
Here 0(x) is the Heaviside step function, and C is derived
from Eq. (6). We have integrated Eq. (7) on a uniform grid,
with a quadrature calculated from cubic splines. The input
to our calculations is merely the electron density. With
the accuracy of approximation Eq. (7) in regard, we have
omitted the effect of small variations in the density profile,
due to different approximations of the exchange-correlation
energy, such as LDA, GGA, and the various
parametrizations therein. The overall accuracy of the
calculation is streamlined to provide sufficient data for
the aim of this work, showing the statistical correlation
between our simple approach and more -elaborate
calculations.

5. Results

We calculate isotropic dispersion coefficients for a number of
combinations of atoms and molecules by evaluating Eqgs.
(3-6). The results are presented and compared with others
in Fig. 1 and in Tables I-IV. In Tables V-VI, we mainly
present predictions that might be of interest. Average
deviations of the relative differences are included in the
tables. Molecular electron densities are calculated within
DFT, using the DMol program, which is part of the Biosym
program package [32], while Hartree-Fock electron densities
are used for the atoms [33].

In particular, van der Waals complexes formed through the
interaction of molecules with rare-gas atoms are of special
interest, since the rare gas atom can be thought of as a probe
of the molecular potential [11], giving information valid also
for the molecule in a more complex environment. In addition,
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Fig. 1. Summary of our values for Cs of the about 100 van der Waals
complexes studied, compared with other results.

there are only three intermolecular degrees of freedom, since
the rare gas atom is spherically symmetric. Many ab initio
studies have accordingly concerned such systems.

We have made calculations for most systems that we have
found first-principles results for. Among those are rare gas
atoms interacting with HE HCI, HBr, O,, N,, H,O, H,S,
NH;, Cl,, CO, CO,, C,H, and CcHg, as well as interactions
between these molecules. We also give dispersion coefficients
for rare gas atoms interacting with the Cgp molecule, for which
there exist no concluding results.

5.1. Comparison with other results

There are various types of first-principles calculations with
which we may compare our results. Questions still exist con-
cerning the best methods to use for calculating dispersion
interaction energies [3]. Using ab initio methods such as
time-dependent coupled Hartree-Fock (TDCHF) [34] or
many-body perturbation theory (MBPT) [35,36], molecular
dynamic polarizabilities can be obtained with very high
accuracy. These are used to calculate the Cy coefficient
via Eq. (3).

One problem with such methods is that they scale
unfavorably with the number of electrons (N* or worse [2]),
making their applicability restricted to small molecules [2].
The prospects for application of semi-empirical methods
to van der Waals interactions are not encouraging, the
methods being too crude [2].

Calculation of the total interaction energy between two
molecules as a function of separation is a very demanding
task, but in return yields extensive structural and energetic
information. If the calculation is carried out for sufficiently
large separations, van der Waals coefficients can be extracted.
Also here TDCHF and MBPTare used. The basis sets need to
be very large, though, and large numbers of polarization
functions are required [11]. MBPT gives a better description
of correlation than TDCHF does, but is on the other hand
more time-consuming.

Potential-energy surfaces have been calculated for a
number of small van der Waals complexes [37,38]. Such results
contain much information, but in order to study the dynamics
of a certain complex, analytical representations of the
potentials are required [38]. These are in general written as
the sum of a repulsive part and an attractive van der Waals
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part on the form —Cg/R°. Parameters extracted for such
potentials are often rather poor measures of the van der Waals
dispersion coefficient, since they in most cases are obtained
through an optimization of the total potential at equilibrium
separation. The R~® term is often used to correct for
deficiencies of the repulsive potential, and also to account
for the absence of R~% and R~!° terms, which are of signifi-
cant importance at equilibrium separation. A close agreement
between our results for the dispersion coefficients and such
potential parameters should thus not be expected.

5.1.1. Ab initio MBPT

In Ref. [40], Hettema et al. use ab initio MBPT to calculate
dynamic polarizabilities for N,, Cl,, CO, HCI and HBr.
They are combined with the polarizabilities for rare gas
atoms to give anisotropic (and isotropic) dispersion
coefficients via Eq. (3).

We compare our results with those of Hettema et al. in
Table I. For interactions of HCI, HBr and CO with rare
gas atoms, our results are a few percent below, while those
for N, are a few percent above. For Cl,, though, the
coeflicients are on average 28% larger than those of Ref. [40].

Rijks et al. [41,42] present Cs values for small molecules,
calculated using MBPT. Our corresponding coefficients are
on average 13% larger than theirs (see Table 1I).

Table 1. vdW-coefficients Cg (Ry atomic units).

Our result Ref. [40]

HCIl-He 31 28
HCI-Ne 56 56
HCI-Ar 185 190
HCI-Kr 261 276
HCl-Xe 376 412
ave. dev. 5.5%

HBr-He 39 36
HBr-Ne 69 73
HBr-Ar 230 248
HBr-Kr 325 362
HBr-Xe 470 543
ave. dev. 9.3%

Cl,-He 48 53
Cl,—Ne 85 109
Cl,-Ar 276 369
Cl,-Kr 360 539
Cl,—Xe 558 808
ave. dev. 28.0%

CO-He 27 24
CO-Ne 48 50
CO-Ar 153 163
CO-Kr 215 236
CO-Xe 308 351
ave. dev. 8.9%

N,-He 26 21
N,-Ne 47 44
N,-Ar 149 142
N,—Kr 209 205
N,—Xe 299 303
ave. dev. 7.2%
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Table I1. vdW-coefficients Cg (Ry atomic units).

Table II1. vdW-coefficients Cq (Ry atomic units)

Our result Refs. [41,42] Our result Ref. [43]
0,-0, 133 117 HF-Ne 27 23
O,-He 24 18 HF-Ar 83 73
O,—Ne 41 40 HF-Kr 116 104
O,-H, 64 53 ave. dev. 13.2%
O,-NH3 163 144
0,-H,0 116 106 H,O-H,0 101 98
ave. dev. 14.0% H,O0-N, 134 124
ave. dev. 5.4%
H,O-He 20 17
H,0O-Ne 35 35 CO-CO 188 178
H,O-H, 56 50 CO-Ar 153 154
H,0-CO 138 132 CO-Kr 215 212
ave. dev. 8.0% ave. dev. 2.5%
NH;-H,0 143 133 C,Hg-C,Hs 698 794
NH;-He 24 22 C,He-H, 148 150
NH;-Ne 48 47 C,Hs-CO, 430 504
NH;-H, 80 68 C,HsNH; 378 386
NH37N2 190 164 CzH(,*NzO 541 542
NH;-CO 195 180 ave. dev. 6.5%
ave. dev. 9.5%
N,>—Ne 48 43
CO-He 27 22 Ny-Ar 149 140
CO-Ne 48 47 N,—Kr 209 201
CO-H, 78 67 ave. dev. 7.0%
CO-N, 183 164
ave. dev. 12.2% N>O-N,O 421 372
CO,-CO, 267 322
HF-HF 55 42 ave. dev. 15.5%
HF-H, 41 31
HF-N, 99 80
E;%H% 13? ;(6) action potential for the simpler van der Waals complex
HF-H,O0 75 63 CO,—Ar has been studied within various schemes, however,
HF-CO 102 86 and since the interaction between CO, and Ar atoms is
ave. dev. 21.5% believed to be similar to those with N, and O,, such inter-

5.1.2. Time-dependent DFT

Van Gisbergen and co-workers [43,44] have recently
reported on the calculation of polarizabilities within a
time-dependent density-functional scheme, employing the
adiabatic local density approximation, scaling as N* They
extract Cg coefficients using the calculated polarizabilities
and find them to be somewhat larger than results from
TDCHF and MBPT. The rather unfavorable scaling and
the necessity to use large basis sets still makes this method
unrealistic for large molecules [43,44]. The results given
in Table III on average deviate 9% from those obtained
by Van Gisbergen and co-workers.

5.2. Some particularly interesting systems

5.2.1. COZ *Al", N2 and 02

Interactions of CO, with other gas atoms, in particular N,
and O,, are of great interest because of their importance
in atmospheric chemistry [37]. What is relevant to study
in this context is how the IR-spectrum for CO, depends
on collisions with other molecules present. This can be simu-
lated with scattering calculations, using intermolecular
potentials. There is a practical problem, though, in that
no accurate studies of the long-ranged interaction between
CO; and N,, or O, have been performed, due to limitations
of quantum-chemical calculational schemes [37]. The inter-
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action potentials are of interest. Several potentials have been
constructed for the CO,-Ar complex [37] by fitting to
experimental results, none of which has been of satisfactory
quality.

Our result for the CO,—Ar dispersion coeflicient is 183 Ry
a$, which is close to the similar systems CO,-N, and
CO,-0,, shown in Table V. Thus the idea to use CO,—Ar
as a model system for CO,-N, and CO,-O, seems
reasonable.

5.2.2. Benzene

Interactions between a benzene molecule and a rare gas atom
or a water molecule have also been the subject of a number of
theoretical studies, stretching quantum chemistry to the
limit of its capability [45]. Much attention has also been
directed towards studies of solid benzene, where empirical
intermolecular potentials have been used [46].

One reason for the interest in such systems is that the ben-
zene ring is the prototype for aromatic n-electron systems,
which play important roles in many biological systems.
Examples are the tertiary structure of proteins, base-base
interactions in DNA, and the intercalation of drugs into
DNA [45].

Benzene—rare gas atom complexes are held together by
dispersion interaction. The contribution from induction is
negligible [47]. In Ref. [48] two different types of inter- mol-
ecular potentials on Lennard-Jones form for benzene-rare
gas atom complexes are extracted by fitting to measured pro-
perties. For the benzene—Ar complex, the potential most
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Table IV. vdW-coefficients Cg¢ (Ry atomic units).

Our result Ref. [49]

C,H,-O 131 108
C,H,-He 42 33
C,H,—Ne 74 67
CoH,-Ar 249 227
Csz*Kr 353 324
C,H,—Xe 512 483
C,H,-HF 164 121
C,H,-HCl 380 326
Csz*HBr 477 420
C,H,-H, 127 99
C,H,-N, 298 242
C,H,-0, 256 220
C,H,-NO 280 235
C,H,-N,O 461 386
C,H,-H,O 227 191
C,H,-H,S 378 420
C,H,-NH; 325 270
C,H,-CO 308 256
C,H,-CO, 363 356
C,H,-CH,4 371 325
C,H,-C,Hg 596 558
C,H,-CH;0H 468 422
C,H,-C,HsOH 711 657
C,H,-C3H,0OH 939 890
ave. dev. 14.2%

Ce¢He—CsHg 2324 3446
Ce¢He—O 286 312
C¢Hg—He 93 96
C¢He—Ne 167 194
Ce¢Hg-Ar 538 660
Ce¢Hg—Kr 755 940
Ce¢He—Xe 1084 1400
C¢Hs—HF 357 350
Ce¢Hg—HCI 802 948
Ce¢Hs—HBr 1000 1221
Ce¢He—SO, 1214 1418
C¢He—H,» 269 288
Ce¢He—N> 641 703
C¢He-O, 554 641
C¢He—NO 605 685
C¢Hg—N,O 989 1122
Ce¢He—H>S 961 1220
C¢He—H,O 485 554
Ce¢He—NH3 687 782
C¢Hg—CO 661 744
Ce¢He—CO, 786 1026
Ce¢He—CHy4 789 944
Ce¢He—C,Hg 1272 1620
C¢He—C,H, 1088 1186
C¢He—CH;0H 1005 1230
C¢He—C,HsOH 1521 1910
C¢He—C5H,OH 2011 2586
ave. dev. 16.6%

appropriate for describing van der Waals interactions has a Cg
coeflicient of 628 Ry a$, which is quite close to our result of
538 Ry a$. In Ref. [49], dipole—dipole isotropic dispersion
coefficients are calculated from dipole oscillator strength dis-
tributions, which in turn are constructed using quantum
mechanical  constraint  techniques combined  with
experimental data. Isotropic van der Waals coefficients for
a large number of interactions of acetylene and benzene with
themselves and with other molecules are considered. Our
results for acetylene interacting with rare gases, inorganic
molecules and hydrocarbons are on average 14% larger than
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Table V. vdW-coefficients C¢ (Ry atomic units).

Our result Ref. [16]
CO,-Ar 183 202
COx-N, 218 -
C0,-0, 189 -

Table VI. vdW-coefficients C¢ (kRy atomic units).

Our result Ref. [54]
Cs0—Coo 130 200, 350
C607HC 0.71 -
Cgo—Ne 1.28 -
CsofAl‘ 4.05 -
Ceo—Kr 5.67 -
C607XC 8.11 -

those reported in Ref. [49] (see Table IV). For corresponding
interactions for benzene, our results are on average 17%
too small.

6. Ceo

Much effort has been put into studies of the properties of the
fascinating Cgy molecule [50,51]. None of the first-principles
methods described above can be applied to this system con-
sisting of 60 carbon atoms. Simpler methods have been used,
though, ranging from the summation of atom—atom interac-
tions [52,53] and summation of multipole fields [54], to
self-consistent treatments of the response function of Cg( [55].

We have calculated the electron density for Cgo using the
density-functional-based program DMol [32]. Our result
for the static polarizability, «(0), is 530 a3, which is in agree-
ment with the experimental result o(0) =520 — —620 a;,
determined from data for the solid phase of Cgo [56]. An
approach where a single shell model is used to calculate
the linear response of a Cgo molecule [57] yields «(0) =770 ag.

Our calculated dispersion coefficient for the interaction
between two Cgo molecules is 130 kRy ag. There exist various
results for this quantity obtained from the treatments
mentioned above. Girard et al. [54] present results for Cg
obtained both from a summation of C-C interactions,
¢6/r°, and from a calculation of dipole modes using a discrete
dipole model. The former value, Cs = 200 kRy a§, is depen-
dent of the choice of C-C interaction parameter, Cg. The dis-
crete dipole model yields Cs = 350 kRy a$.

7. Summary and Conclusions

Van der Waals interactions between molecules are governed
by their respective polarizabilities. The latter are quite subtle
functions of frequency, determined by the excitation fre-
quencies and oscillator strengths. It is interesting that our
easily computed van der Waals density functional captures
the physics of such subtle interactions. Earlier we have
showed that dynamic polarizabilities compare favorably
with first-principles calculations [8].

Summarizing our results, our van der Waals coefficients on
average deviate less than 20% from benchmark results cover-
ing four orders of magnitude. The latter are first-principles
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calculations, when available (mostly for small molecules), or
potential fits to measured quantities. Our van der Waals den-
sity functional is thus able to describe small and
medium-sized molecules with reasonable accuracy. Since it
has previously been shown to work well also for atom-atom
and atom-surface interactions, it is now time to apply it to
systems too complex to be treated using quantum chemistry.
In order to illustrate the possibilities that open up with the
use of our functional we have applied it to the Cgo molecule.
Other examples of interesting systems are proteins, DNA
bases, liquid crystals, polymers and biosurfaces.

The strength of our approach is that it gives polarizabilities
and Cg values with a useful accuracy, only uses ground-state
electron densities as input, and is very easily evaluated.
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