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Unified treatment of asymptotic van der Waals forces

Erika Hult, Henrik Rydberg, and Bengt I. Lundqvist
Department of Applied Physics, Chalmers University of Technology aiebGmy University, S-412 96 Gaborg, Sweden

David C. Langreth
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019
(Received 11 May 1998

In a framework for long-range density-functional theory we present a unified full-field treatment of the
asymptotic van der Waals density functional by doing the full, self-consistent electrodynamics for atoms,
molecules, surfaces, and other objects. The only input needed consists of the electron densities of the inter-
acting fragments and the static polarizability or the static image plane, which can be easily evaluated in a
ground-state density-functional calculation for each fragment. Results for separated atoms, molecules, and for
atoms/molecules outside surfaces are in agreement with those of other, more elaborate, calculations.
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The ubiquitous van der Waals interaction needs an effiperturbation theory in the interactidfy,, between two sepa-
cient and accurate description in many contexts such as irrated objectsa andb, the ACF can be cast into the fofrt?
teracting noble-gas atoms, van der Waals complexes, phys-
isorption, interacting macroscopic neutral bodies, liquid-
crystal interactions, solute-solvent interactions, and soft- AEXC(R):Eic_f f f f d®r 1 d% dr 5dr
condensed matter. For dense matter the density-functional

theory (DFT),! with its local-density® and generalized- =du
gradient approximatiorfs;’ is a clear success. Ground-state XVap(R+T1=1)Vap(R+13—T4) o2
and thermodynamic properties of increasingly more complex

systems are now being calculated with a practically very use- XTI (rq,rg;iu)IIp(ro,rg;iu). 2

ful accuracy. As the world contains far more objects than just

hard solids, a generalization of these methods to also accou@ur evaluation of this energy is based on two approxima-
for the van der Waals forces is in great demand. These forca®ns. First, we introduce a local dielectric function that de-
are an inherent property of the exact D¥@nd it is thus a pends on the local electron density. Second, we limit the
guestion of providing an approximate van der Waals densitwolumes of the interacting objects by using a cutoff, an idea
functional that is generally applicable, efficient, and accuirst introduced by Rapcewicz and Ashcr&ftputside which
rate, and that per definition is a functional of the densitythe response to an electric field is defined to be zero. We thus
only. Earlier wé'° and others"*? have proposed such func- have the dielectric function

tionals and shown them to give useful results in significant

applications. For a review of our approach, see Ref. 13. Until w2(n(r))
now, however, there hgs been a certain asymmetry in our e(w;n(r))zl—K(n(r))p—z; 3)
treatment of “small” objects, e.g., atoms and molecules be- ®

ing described with an approximate electrodynamiemd

“large” ones, with the exact electrodynamics for, e.g., where

surfaces?° This will be remedied in this paper with a uni-

fied treatment of the asymptotic van der Waals forces, apply- wﬁ(n(r))=4we2n(r)/m. (4
ing the exact electrodynamics to all the interacting objects.

The starting point for our functionals is the exact expres-The cutoff is implemented via the functior(n(r)), which is
sion for the exchange-correlation enery; as an integral  ejther unity or zero, following the notion discussed eaflier
over the coupling constante®, the so-callechdiabatic con-  that the local approximation for dielectric response greatly
nection formuld™ (ACF) exaggerates the response in the low-density tails, where it is
better to assume no response at all.

£ R LR These approximations are common for all of our three
Exdn]= Ef d*rd°r |r—r’|fo dAL(N(rINCr )Y o model systems—interacting atoms or molecdl&san atom
or molecule interacting with a planar surfa@é8and finally
= 8(r=r"){n(r))], (1)  two interacting surfaceS. However, we have earlier treated
o R the electrodynamics on different levels for “small” and
wheren=n—n,n being the density operator, add- - ), “large” objects. Normally, local electrodynamics means a

means that the integration is performed with a potential local relationship between the temporal Fourier transforms of
present, keeping the density equalnig). To second-order the polarizationP and the total electric field,
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1
P(r, )=, —[e(w;n(r))—1]E(r, o), (5 a(iu)=
which we use for surfaces. For atoms, however, the calcula-
tions get somewhat more complicated than in the surface
case when using Ed5). For instance, the electrodynamics
must be solved numerically for each frequency. Our earlier

approach for atoms and molecules has approximated the lo- (1D

cal polarization by

. 1 . Eappliec(rrw)
P(r,w)= E[E(w,n(r))—l]m, (6)
which implies the relation
E(r:w):Eappliec(ryw)/é(w;n(r))i (7

which we can immediately evaluate using E8). The latter
approach is thus computationally extremely simple, but it
does not give very good results for large objects. In this
paper we show that the exact electrodynamic treatment im-
proves the results considerably.

The cutoff functionx(n(r)) must however first be de-
fined. For surfaces, the cutoff is found by taking the static
limit of the surface respons8which implies that the cutoff

which is strikingly wrong for macroscopic objects, but gives should be defined by the static image plat®). In order to

surprisingly good results for atoms and moleciiiés?° To

have a common cutoff scheme for atoms, molecules, and

obtain a unified treatment for different objects, and also tcsurfaces, and in addition to implement the requirement intro-
test our approximation for the dielectric function, this paperduced for surfaces that the static polarization response be

presents the electrodynamics using HE5). also for atoms

accurate, it is expedient to simplify the scheme used previ-

and molecules. We apply it to the asymptotic van der Waalsusly for atoms and molecules. This is done by choosing the
interaction of separated atoms, molecules, and paralladutoff function x according to
surface$’ and show the results to be in agreement with those

of other, more elaborate, calculations.

k(r)y=60(n(r)—c), (12

For two widely separated atoms or molecules the van defherec is a constant

Waals energy is given b, qw=—Cs/R®, where the van
der Waals coefficient 322

3 (=
CG:;fo dUQl(iu)az(iu) (8)

and «;(iu) is the polarizability at imaginary frequenay
=iu of atomj. To calculatea(iu) we solveV-D(r,iu)

For atoms and molecules, compared with the original
scheme that uses both the density and its gradient, the prac-
tical effect of Eq.(12) is to eliminate any cutoff in the in-
trashell regions. We have found that inclusion of the cutoff
in the intrashell regions as before results in a median reduc-
tion of the predicted values of thg coefficients of 12% for
the atom pairs calculated here. The extent to which these
intrashell corrections should be included even in principle is

=0, for each frequency in the presence of a spatially uniformyrguable, and since they are small, we have therefore opted

applied electric fieldEppiedr,iu) =Eq(iu)z. The displace-
ment D(r,iu) is given by e(iu;n(r))E(r,iu) and E(r,iu)
=—V¢(r,iu). Thus we solve the equation

V- [e(iu;n(r))Ve(r,iu)]=0, 9

wheree(iu;n(r)) is given by Egs(3) and (4) and with the
boundary condition thaE(r,iu) approachefo(iu)i at in-
finity.

Assume for simplicity that we have solved HE) for an
atom, where the applied field is directed along zlais with
magnitudeEy(iu). We then obtainx(iu) from the relation
p(iu)=«a(iu)Ey(iu), where the dipole momenp(iu) is
given byp(iu)=fd3P(r,iu). From Eq.(5) we get

1
Eo(iu)

fd:"rP(r,iu)

a(iu)=

= 1 3 . - .
——mf d>r[e(iu;n(r))—1]z-V¢(r,iu),

(10

for the simpler schemél2). Adapting the analogue of the
procedure used when the full-field scheme is applied to
surfaces? we fix the constant in Eqg. (12) so that the static
polarizibilities are accurate. For a spherically symmetric spe-
cies, this means that the volumé inside which the step
function in Eq. (12) is nonvanishing is simplyV
=(47/3)a(0). Forspecies without spherical symmetry, we
choosec so that the isotropic polarizabilities(0) [see Eg.
(14)] are correct. This scheme seems to underestimate the
anisotropy of the molecular polarizability; if an accurate an-
isotropy is important, the cutoff function should be modified
so that the elements of the diagonalized static polarizability
tensor are reproduced.

The solution of Eq.(9) is done with a finite element
method with an adaptive nétin this way we have a general
method for all geometries. To secure a reasonable numerical
accuracy(5%) at small frequencies, here we represe(itu)
by the expressiom-+b/(1+u?/c?), wherea, b, andc are
fixed by a smooth continuation of high-frequency results. In
Table | calculated van der Waals coefficients for a number of
pairs of identical atoms are given, together with the static
polarizability used when defining the cutoff. In Fig. 1 calcu-

where for each frequency we first must solve numerically fodated Cg values both for identical and mixed pairs of atoms
¢. In the old scheme, using E¢6) we instead obtain the are plotted against results from more accurate calculations.

expression

The values compare very well with results from other calcu-
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TABLE I. van der Waals coefficient€g for pairs of identical 1.5 - T - T .
atoms(Ry atomic unit$. The static polarizabilities used for defining
the cutoff are given in the second coluraomic unit$ and results
from other calculations in the sixth one. The third column gives the —— Reference
frequencyu, obtained from the London formula, EQ.3). For com- T 1ok ¥ ——— Our approximation
parison, previous resuli®Ref. 9 using the approximate electrody- 8
namics are included in the fifth column. 2
s}
a0 oy G c  cF 8
ks
He-He 138 181 258 4 2.99 g 08y
Ne-Ne 267 2.80 15.0 12 13.8
Ar-Ar 11.1% 1.56 143 126 134
Kr-Kr 16.72 1.37 291 245 268
Xe-Xe 273 115 663 520 597 000
H-H 4.5° 0.70 10.6 12 18
Li-Li 164 © 0.14 2830 1335 2780 FIG. 2. Our calculatedx(iu) for He, compared with a more
Na-Na 15¢ 016 3000 1849 3080  accurate calculatiofRef. 37.
K-K 293¢ 0.13 8400 5640 7890 . .
CalculatedCg values for a few molecules are given in
Be-Be 37 59 0.41 429 582 428 Table 1l with results agreeing very well with literature val-
Mg-Mg 70N 0.34 1230 1513 1240 ues. The largest molecule fqr .whic.:h we have so far calcu-
Ca-Ca 154 0.25 4430 4500 4010 lated the van der Waals coefficient is fullereng (Recently

8Reference 38.
bReference 30.
‘Reference 33.
dReference 29.
®Reference 39.
Reference 34.
9Reference 35.
hReference 40.

lations, with the close agreement indicated by the narrow

the dispersion energy between two fullerenes has been com-
puted from first principles in time-dependent DFT, which
gives the van der Waals coefficie@= 253 kRya$.?* Ear-

lier, simpler methods have been used to estimate the polar-
izability and the van der Waals coefficient. A summation of
C-C interactions give€s=200 kRya$,?® and for a calcu-
lation of dipole modes using a discrete dipole model the
result isCq= 350 kRya$.? Using «(0)=570a3 (experimen-

tal value from Ref. 2pwe getCg=302 kRyag, a result that
lies in the same range as those from the other calculations.
In Tables | and Il the characteristic frequencigscorre-

spread of the points around the diagonal. Especially the responding to London’s empirical formifia
sults for alkali and alkaline-earth atoms are much improved

compared with our earlier calculatiohsn Figs. 2 and 3 the uPruB
dynamic polarizability from our calculations are compared C6:aA(O)aB(O)%, (13
with reference calculations. Figure 2 for He is a worst-case 2(ug+Ug)

example with a 12% error il€g, while Fig. 3 for Be is a

best-case example with@ right on the reference value. whereA andB denote the two fragments, are also given. This

formula provides an easy way of estimating isotropic van der

10000 ¢ - - -

E 40.0 T T T T
@ 13
3 ' '
‘© 1000 ¢ E 300 Lt ® Reference
5 - . ———Qur approximation

3
8 3 A
2 100E 4 Z .
o : T 200 F ]
) S \
= S .
o 5 \
g 10 ¢ 3 a \
= 100 - ) .
O %
N
LN
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Coefficients from the literature 0.0 20 4.0 6.0
u (a.u.)

FIG. 1. Calculated van der Waals coefficieltg (Ry atomic
units) for all possible pairs of the atoms in Table | plotted against
corresponding values from other calculati¢Refs. 30 and 33-36

FIG. 3. Our calculatedy(iu) for Be, compared with a more
accurate calculatiofRef. 35.
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TABLE Il. van der Waals coefficient€g for pairs of identical 7.0 g - . . 1 - .
molecules(Ry atomic unity. The static polarizabilities used for
defining the cutoff are given in the second coluaomic unity 6.0 (9 E
and values from the literature in the fifth one. The third column F O Our approximation
gives the frequency, obtained from the London formula, E(.3). ~50r-Y 0 - Fit to data -
3 L < Reference ]
a(0) Up Cs Cgef ::; 40 - —— Fit to reference -
H,-H, 5412 098 215 24.F § 30 L
N,-N, 11.77°  1.44 149 147 5 A
CO-CO 13.1° 1.37 176 163 Q20
HF-HF 5529  1.77 404 38
H,0-H,0 9.64" 140 974 o3 1.0 1
Ceo-Ceo 5709 1.24 30% 200k, "253k, ' 350k " 00 L . 60 r e
:Reference 20. 0.0 2.0 4.0u o )6. 8.0 10.0
Reference 41.
‘Reference 42. FIG. 4. Our calculatedy,(iu) for H,, compared with a more
dreference 43. accurate calculatiofRef. 37).
‘Reference 44.
'Reference 45. 1 (=
9Mean value of estimates from Ref. 26. C’é=3—ﬂ_f0 duld aq(iu)Aas(iu). (18

PReference 25.

i
Reference 24. Calculating the anisotropic coefficients fét,, we obtain

Cg/Cg=0.08 and C{/Cg=0.007. Accurate values are

Waals coefficients for mixed pairs of atoms and . .
molecule<® 2 P C4/Cs=0.1 andC}/C¢=0.01% The anisotropy is thus un-

In Table Il we have only given the isotropic dispersion derestimated slightly with the simple cutoff scheme de-

coefficients for the molecules: that is, we have used the ay2cribed above. In Figs. 4 and 5 our calculateg(iu) and

T a(iu) for H, are compared with accurate results.
eraged polarizabilityx(iu) in Eq. (8), where For an atom or molecule a distandeoutside a surface,

the asymptotic van der Waals energy is giveri*by

a(iu) =3 anliu)+ ayy(iu) + a,{iu)]. (14)
It is easy, however, to calculate the anisotropic corrections, E o Cs (19
in addition. A simple example is for two interacting identical vaw™ (d—ZO)3’
linear molecules, where the anisotropic coefficie@fsand
Cg control the orientation-dependent part of the long-rangavhere the van der Waals coefficient is
interaction according 8
Co 1 fmd —. Eb(iu)_l 20
Evaw(R, 0,05, ¢4, d8) Ky R ua(lu)eb(iu)+1' (20)
4 .
= —| Cg+Cg{P,(cosbp) + P,(coshg)}+ ?cg and with the van der Waals plane
2 5.0 ‘ T T T T
X 3 (3= ImDYI(00.90)Y2 (0. ) [R
40 - & © Our approximation b
(19 . L Fit to data
. 3 \ © Reference
where 6,(6g) is the angle between the vectBr from the <30 O Fit to reference .
center of moleculé\ to the center oB and the axis of mol- =
eculeA(B). The other anglepa(¢g) describes the rotation g
of moleculeA(B) aboutR. With §20r
o L
Aa(iu)=a,[iu) —ay(iu) (16) 1.0 -
these coefficients can be writfén
0.0
0.0

Cé=%f:du;1(iu)Aa2(iu) (17)

FIG. 5. Our calculatedy,,(iu) for H,, compared with a more
and accurate calculatiofRef. 37).



4712 HULT, RYDBERG, LUNDQVIST, AND LANGRETH PRB 59

TABLE Ill. van der Waals coefficien€3 and the van der Waals Including the orientational dependence that results from
plane positionZ, (Ry atomic unit for He and H interacting with  the anisotropy of the molecular polarizability, the energy for

jellium. For H, also the ratio between the anisotropic coefficient g homonuclear diatomic molecule is to first order giveﬁzby
c{? andCy) is given
3 3~ IS given.

rs  Cg cy' cPre® oz, zg Evanl(0)=— %[cg‘” +C2P,(cosb)], (22)
He 2 010 0.16 0.78 074
3 0064 0.064 062 0.64 where 6 is the angle between the molecule axis and the sur-
4 0045 0.048 053 059 face normalC{Y is given by Eq.(20) and
H, 2 031 0.32 0.040 091 0.88
3 022 0.22 0.044 070 0.7% 2 1 (" o g(iu)—1
4 016 016 0046 059 0.6% Cs :EJO dube(iv) a1 (23

%Reference 31.

PReference 46 In Table Il the ratioC?)/C{”) is given for H, outside jel-

lium. We find this ratio to be around 0.05 in agreement with

1 . i —1 : Ref. 32.
Zo=—J du(x(iu)eb(fu) Ek,’(lu) d(iu). We have in this paper refined the electrodynamical treat-
4mCsJo ep(iu)+1 ep(iu)+1 ment of atoms and molecules within our previously pre-

(21 sented density-functional framework, thereby unifying our
In these expressions(iu) is the bulk dielectric function approaches for objects of different sizes. The calculated po-
b ' larizabilities and van der Waals coefficients are in good

and d(iu) is the centroid of the induced-surface charge reement with results in the literature. This gives a possi-
caused by an electric field oriented perpendicular to the su 29 ) 9 P

face and varying in time like"'. Our earlier calculatiori&18 bl_Iity to easily calculate these quantities for complex systems
of C3 andZ, have used the exact electrodynamics, &), with useful accuracy.
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