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Tractable nonlocal correlation density functionals for flat surfaces and slabs
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A systematic approach for the construction of a density functional for van der Waals interactions that also
accounts for saturation effects is described, i.e., one that is applicable at short distances. A very efficient
method to calculate the resulting expressions in the case of flat surfaces, a method leading to an order reduction
in computational complexity, is presented. Results for the interaction of two parallel jellium slabs are shown to
agree with those of a recent, more elaborate calculation@J.F. Dobson and J. Wang, Phys. Rev. Lett.82, 2123,
~1999!#. The method is easy to use; its input consists of the electron density of the system, and we show that
it can be successfully approximated by the electron densities of the interacting fragments. Results for the
surface correlation energy of jellium compare very well with those of other studies. The correlation-interaction
energy between two parallel jellia is calculated for all separationsd, and substantial saturation effects are
predicted.
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I. INTRODUCTION

The density-functional theory~DFT!,1 with its local-
density ~LDA ! ~Refs. 2 and 3! and semilocal generalized
gradient approximations~GGA!,4–7 is not only successful in
numerous applications to individual molecules and de
solids. It is also under intense development, for instance
order to include nonlocal effects, such as van der Wa
~vdW! forces.8–15 The latter are needed in order to allo
DFT to describe sparse matter. A unified treatment of vd
forces at large and asymptotic molecular separations
available,15 and a description at short distances and at ov
lap is striven for. An accurate calculation for the interacti
of two He atoms has been given,12 and recently the first
random-phase approximation~RPA! of the vdW interaction
between two jellium slabs has been reported and give
density-functional account~DW98!.14 The ultimate challenge
is to construct an approximate vdW functional that is gen
ally applicable, efficient, and accurate.

We here propose an explicit form for the vdW function
that applies to flat surfaces, test it successfully against
recent slab results, and apply it to two parallel flat sem
infinite metal surfaces. This is a case with relevance
many physical situations, including wetting and atomic-for
microscopy. Compared to the DW98 functional,14 the virtues
of our approach are the computational simplifications gai
from choosing a particular subclass of response functio
utilizing a differential formulation and sparse matrices, a
recognizing the insensitivity to the details of the density p
files, simplifications that might transfer even to three dime
sions.

The ubiquitous van der Waals force plays an import
role in numerous physical, chemical, and biological syste
such as physisorption,16,17 vdW complexes,18 and vdW
bonds in crystals, liquids, adhesion, and soft condensed
ter ~e.g., biomacromolecules, biosurfaces, polymers,
membranes!.18,19
PRB 620163-1829/2000/62~11!/6997~10!/$15.00
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The DFT expresses the ground-state energy of an in
acting system in an external potentialv(r ) as a functional
E@n# of the particle densityn(r ), which has its minimum at
the true ground-state density.1 The Kohn-Sham form of the
functional makes the scheme a tractable one, as it lead
equations of one-electron type, and accounts for the intric
interactions among the electrons with an exchan
correlation functionalExc@n#.2 This functional can be ex-
pressed exactly as an integral over a coupling constantl)
~Refs. 20, 3, and 21! and imaginary frequency (v5 iu), the
so-called adiabatic connection formula,

Exc52E
0

1

dlE
0

` du

2p
Tr@x~l,iu !V#2Eself, ~1!

whereV(r ,r 8)51/ur2r 8u and where the density-density co
relation function is denoted byx(r ,r 8,iu;l) ~Ref. 22!. Eself
is the Coulomb self-energy of all electrons, which is exac
cancelled by a corresponding term inx(l,iu)V. Equation
~1! shows a truly nonlocal exchange-correlation interact
and is a starting point for approximate treatments: lo
~LDA !, semilocal~GGA!, and nonlocal.

The LDA and GGA are completely unable to express
vdW interaction in a physically sound way. The exa
exchange-correlation functional, on the other hand, of cou
encompasses such interactions.8 The basic problem of mak
ing DFT a working application tool also for sparse matter
to express the truly nonlocal vdW interactions between
electrons in the form of a simple, physical, and tracta
density functional. Equation~1! is then the starting point
Along these lines, we have proposed extensions of the D
to include van der Waals interactions,8,9,11,13,15 with very
promising results for the interaction between two atoms
molecules, an atom and a surface, and two parallel surfa
respectively. This now-unified approach15 applies for sepa-
rated systems, i.e., when the electrons of the interacting f
ments have negligible overlaps.
6997 ©2000 The American Physical Society
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The corresponding asymptotic expressions have sing
behaviors at short separationsd. Yet one knows that the vdW
forces are finite.23 They should go smoothly over to th
exchange-correlation forces that apply in the interior of e
electron system. This phenomenon is often called damp
or saturation.24–26 Approximate saturation functions hav
been proposed, in particular for the cases of vd
molecules24 and physisorbed particles.25,26

The key difficulty in extracting the vdW functional from
Eq. ~1! is the computational complexity. A direct solutio
gives simply too many operations on the computer. T
guideline for our reduction of the number of such operatio
is to exploit analytical advantages of RPA-like approxim
tions, to focus on the key quantity, to recast the integ
formulation into a differential one~leading to a sparse-matri
computation!, and to make maximal use of symmetry.

Our exploratory study here concerns cases with v
forces between two flat parallel model systems. We first
our approximate functional on the model system of two s
consistent jellium slabs, utilizing the recent RPA results14

which gives the size of the correlation-interaction energy
unit area, showing saturation. We then test our functio
against accurate calculations of the surface correla
energy,27,28showing an excellent agreement. After these s
cessful tests we make predictions on two parallel se
infinite jellia.

II. GENERAL THEORY

Thel integration of Eq.~1! can be performed analyticall
in some cases, such as in the RPA. In 1957 Gell-Mann
Bruckner29 presented the RPA correlation energy as a
lected summation of ring diagrams, which gives a logari
mic form.30 Their study concerns thehomogeneouselectron
gas, where equations simplify thanks to the thre
dimensional translational invariance and plane waves. H
we treat systems with less symmetry.

By virtue of the fluctuation-dissipation theorem, th
density-density correlation functionx is equal to the density
changedn induced by anexternal potential Fext, i.e., dn
5xFext. It satisfies

x~l,iu !5x̃~ iu !1lx̃~ iu !Vx~l,iu !, ~2!

wherex̃ is the density response to a fully screened poten
F, i.e., dn5x̃F. We assume here that the coupling depe
dence ofx̃ can be neglected when performing thel integral
in Eq. ~1!. This is true in the random-phase approximatio
where x̃ is the density response function forl50, and is
also true for the approximate dielectric functions that we
here. Equation~1! then becomes

Exc5E
0

` du

2p
Re„Tr$ log10@12x̃~ iu !V#%…2Eself, ~3!

where the real part means the principal branch.
To simplify this expression and to get a functional

terms of the electron densityn(r ), we have to focus on the
key target~the nonlocal part!, introduce key quantities, an
rewrite the expressions, in order to make physically sou
and computationally efficient approximations. It is more co
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venient to introduce the polarizability or dielectric functio
instead ofx̃. The polarizabilitya ~a matrix in the spatial
positions! is defined by the relationP5a•E, whereP is the
polarization. We have

dn52“•P52“•a•E5“•a•“F, ~4!

so that from the definition ofx̃, one hasx̃5“•a•“. In turn
the dielectric function is given bye[114pa. In terms ofe,
Eq. ~3! then transforms to

Exc5E
0

` du

2p
Re$Tr@ ln~“•e•“G!#%2Eself, ~5!

where we have introduced the Coulomb Green’s funct
G52V/4p and used¹2G51. The Tr@ ln# expression gives
great advantage for the further analytical and numerical tr
ment. The only approximation made so far is the neglec
the coupling constant dependence ofx̃ when doing the cou-
pling constant integration. This is not an additional appro
mation either in the RPA or for the approximatee’s we use
here.

In order to develop long-range functionals, one may s
stitute approximations for the dielectric function based
the free electron gas into Eq.~5!. To obtain tractable expres
sions it will normally be necessary to make still further a
proximations. In this case it is desirable to use the additio
approximations only for the nonlocal part ofExc , so as to
avoid destroying the accuracy of the LDA in the high-dens
regions. Ideally one would subtract from Eq.~5! the LDA
version of thesameapproximation, and would envisage ad
ing back a better version of the LDA. Here we make a sim
lar but more tractable subtraction in terms of the isotro
dielectric functione (e5 1

3 ( ie i ,i),

Exc
0 5E

0

` du

2p
Re$Tr@ ln~e!#%2Eself. ~6!

Exc
0 has the property that it is a good approximation for

slowly varying system, becoming exact for a uniform sy
tem. For density variations slow on the scale of the range
width of e(r ,r 8), it agrees with the LDA, the trace in Eq.~6!
replacing the integral over density.

Subtracting Eq.~6! from Eq. ~5!, one obtains

Exc
nl 5E

0

` du

2p
Re$Tr@ ln~e21

“•e•“G!#%. ~7!

We will call this the nonlocal exchange-correlation energ
although for models more general than those used in
paper, an additional short-range correction must be app
to makeExc

0 correspond precisely to the LDA, and hence
makeExc

nl the deviation from the LDA.
The models considered in this paper are based on iso

pic dielectric functions and contain no nonlocal exchan
component, in effect making Eq.~7! our approximation for
the nonlocal correlation energyEc

nl . Using this fact, together
with Tr@ ln x#5ln(detx) and¹2G51, we obtain

Ec
nl5E

0

` du

2p
lnudet~11e21@“,e#•“G!u, ~8!
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PRB 62 6999TRACTABLE NONLOCAL CORRELATION DENSITY . . .
where the notation@A,B# means the commutator. We wi
later use the fact that Eq.~8! involves only the determinant to
good advantage.

III. METHOD FOR PLANAR GEOMETRIES

Now we are in a situation to discuss whate to use. We
will in this paper concentrate on the simple case of jelliu
systems. Our aim is to find anefficientway of exploring the
planar translational invariance of the jellium system—n
only a way to decrease the number of spatial integratio
The major difficulty in evaluating Eq.~8! is the determinant,
which is O(N3) in the general case,N being the number of
grid points in a discrete representation. This holds true e
in one dimension. So, instead of allowing a completely g
erale, we aim at approximations resulting indifferentialop-
erators only, for which the determinant is known to beO(N),
hence significantly simpler to calculate.

In the particular case of planar translational invarian
i.e., for planar surfaces or slabs, we use an approximate f
that is made local in the coordinate perpendicular to the
face,

e~r ,r 8!5d~z2z8!E d2k

~2p!2
ek~z!eik•(r2r8), ~9!

wherek is a wave vector parallel to the surface. Keeping
fully nonlocal form along the symmetry plane allows, e.
the effect of the cutoff, which was introduced artificially
previous approximations of this type,31,15 to occur in a natu-
ral way laterally.

The first thing we note about Eq.~9! is that we easily
form the inverse,

e21~r ,r 8!5d~z2z8!E d2k

~2p!2
ek~z!21eik•(r2r8). ~10!

Evaluating the commutator then yields

e21@“,e#5 ẑd~z2z8!E d2k

~2p!2

ek8~z!

ek~z!
eik•(r2r8), ~11!

where theprime indicates differentiation with respect toz. In
what follows we shall substitutel (z)5 ln@e(z)#, yielding
l 8(z)5e8(z)/e(z).

In the same basis we express the Green’s function,

G~r2r 8!5E d2k

~2p!2
Gk~z2z8!eik•(r2r8), ~12!

where

Gk~z2z8!52
1

2k
e2kuz2z8u. ~13!

Since the logarithm of Eq.~7! can be expanded in power
the integration overk may be singled out, and we may e
press the nonlocal correlation energy per surface area~A! as

Ec
nl/A5E

0

` du

2pE d2k

~2p!2
lnudet~11 l k8]zGk!u. ~14!
t
s.

n
-

,
m
r-

e
,

In Eq. ~14!, the determinant is given in terms of integr
operators. To take advantage of the locality of the Laplac
we use (]z

22k2)Gk51 to express it in terms of differentia
operators

det~11 l k8]zGk!5
f

f0
, ~15!

where

f5det~]z
22k21 l k8]z!, ~16!

and wheref0 is the empty space (e51) value of Eq.~16!.
The step from Eq.~14! to Eq.~15! requires that the differen
tial operators are defined throughout the whole space.

Our ultrafast method is made possible by the observa
that the determinants in Eq.~15! can be written down, not
only for the full system, but also for a subdivision of i
Related determinants for the subsystem satisfy a sim
second-order differential equation as a function of subsys
size. Thus by a simple renormalization, one may evaluateEc

nl

with the same effort as finding the charge induced by
applied electric field. A similar relation holds also in seve
dimensions, which will be explored in another paper.

To make this more concrete, let us suppose thatek(z)
varies only in the interval 0,z,L ~which will eventually be
extended to infinity! and takes the same value at either e
point. This is the case for parallel surfaces or slabs of id
tical materials. Then for each value ofz we can define a
determinantf(z) for the subsystem extending from 0 toz. It
is clear then from Eqs.~14!, ~15!, and~16! that Ec

nl is given
by

Ec
nl/A5 lim

L→`
E

0

` du

2pE d2k

~2p!2
ln

f~L !

f0~L !
. ~17!

As discussed in Appendix A, the determinantsf(z) and
f0(z) individually have oscillating signs that do not occur
their quotient. However, the envelope determinantsf̃(z) and
f̃0(z) can be scaled so that they satisfy the simple differ
tial equation

~ekf̃8!85k2ekf̃, ~18!

together with the boundary conditions thatf̃(0)50 and
f̃(L)51. In terms off̃, we obtain

Ec
nl/A52 lim

L→`
E

0

` du

2pE d2k

~2p!2
ln

f̃8~0!

f̃08~0!
, ~19!

where theprime indicates differentiation with respect toz,
which in this case is the subsystem size. However, note
f̃ is also just the electrostatic potential as a function of d
tancez, within a system having a potential difference acro
it along with a prescribed variation ine. Thus the calculation
of the determinant becomes a simple electrostatic prob
that is easily solved.

To illustrate this, consider the case of two identical par
lel surfaces a distanced apart, whend is much larger than the
thicknesses of the surface-healing layers. Solving Eq.~18!
for the described boundary conditions then becomes a tri
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7000 PRB 62RYDBERG, LUNDQVIST, LANGRETH, AND DION
matching problem~see Appendix B!, which after insertion
into Eq. ~19! immediately leads to the Lifshitz formula32,13

Ec
nl/A5E

0

` du

2p E d2k

~2p!2
lnu12r2e22kdu12gnl . ~20!

Herer5(eb21)/(eb11), eb being the bulk dielectric func-
tion, andgnl is defined by

gnl5@Ec
nl~d→`!2Ec

nl~0!#/2A. ~21!

Since, by construction,Ec
nl50 for a uniform (d50) system,

gnl may equivalently be defined as the nonlocal correlat
contribution to the surface tension of a single surface.

The original Eq.~1! is now reduced to a set of simpl
electrostatic calculations, each one being anO(N) operation
instead ofO(N2), a major simplification. Of course the su
cess of the method depends on how well we can reprod
the true dielectric function using our approximate form E
~9!. The only approximation made so far is the assumption
a local dielectric function perpendicular to the surface.

IV. APPROXIMATE DIELECTRIC FUNCTION

Equation~17! or ~19! provides the basis for a functiona
that describes the van der Waals interaction between pl
objects. To turn these equations into density functionals,
have to introduce quantities that depend on the densityn(r ).
Our suggestion is based on an approximate dielectric fu
tion ek that depends on the local densityn(r ). It utilizes
experiences from the homogeneous electron gas and
experimental studies of the dynamical structure fac
S(q,v)}Im@1/e(q,v)21#, where\q and \v are the mo-
mentum and energy losses, respectively, of a photon
charged particle being scattered while passing a bulk sam
There is a peak inS(q,v), the plasmon peak, sharp in th
ideal electron gas and of varying width in real materials. T
peak carries most of the spectral strength and hasv equal to
the plasma frequencyvp asq→0, and then a dispersion wit
a limiting behaviorvq→q2/2m, the kinetic energy of one
electron in the impulse approximation, which is valid in t
Compton-scattering limit,q→`. In the electron-plasmon
coupling one focuses on themagnitudeand position of the
sharp plasmon peak and neglects the broadening, i.e.,e is
described in a plasmon-pole approximation.33 A dispersion
law like

vq
25vp

21~vFq!2/31~q2/2m!2 ~22!

has been shown to efficiently account for the average be
ior of plasmonlike excitations and for correlation propert
of the homogeneous electron gas.33 Introducing the electron
density viavp

2(z)54pn(z) andvF(z)5@3p2n(z)#1/3, n(z)
being the electron density profile in this planar case, the
electric function can be written as

e@n#~q,iu !511
vp

2@n#

u21vF
2@n#q2/31q4/4

, ~23!

where the imaginary frequencyv5 iu is used.
n

ce
.
f

ar
e
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a
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s

v-
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Alternatively, Eq.~23! may be viewed as an interpolatio
between the exact small- and large-q behavior of the
Lindhard expression for the frequency-dependent dielec
function. However, we see little point in using such an elab
rate expression, since our concern here is to investigate
well local approximations to the dielectric function work
highly nonuniform systems.

In directions parallel to the surface, our approximatio
Eq. ~23!, allows fully34 for the nondiagonality ofe with re-
spect to the corresponding spatial coordinates, as implied
a Fourier transform with respect to the parallel wave vec
k. However, in directions perpendicular to the surface, o
approximation takese to be diagonal in the coordinatesz and
z8. It is thus taken to be local not only in this sense, but
the additional sense that it is a function only of the loc
density. To compensate, we retain the corresponding com
nentq' of the wave vectorq in the right side of Eq.~23! as
a parameter, so that everywhereq25k21q'

2 . We thus take
1/q' to be a constant measure of length over whiche is
effectively nonlocal. The dispersion perpendicular to the s
face in Eq.~22! is in this way replaced by a parameter th
we will fix to some length scale appropriate for the surfa

For physical reasons such a length scale should be a
ciated with intrinsic electron-gas parameters, like the scre
ing length or the extent of the correlation hole. There are
course, several choices available. It must be kept in m
that we are after long-range surface properties in a variet
environments. These properties are determined by var
response functions introduced by Feibelman,35 of which the
simplest,

d~ iu !5

E dzznind~ iu,z!

E dznind~ iu,z!

, ~24!

is the centroid of induced charge when a uniform elec
field is applied perpendicularly to the surface. However,
the van der Waals properties of a planar surface, a rela
function D( iu) as defined by Hultet al.,11

D~ iu !5
eb~ iu !21

eb~ iu !11

eb~ iu !

eb~ iu !11
d~ iu !, ~25!

is more important.36,37,25,38In particular theD function arises
in connection with the calculation of van der Waals plan
which are determined not only by theD of the surface in
question, but also by a response function of theother body.
For example, for a surface in the vicinity of an isotrop
atom, the van der Waals planeZ is given by36,25,38,11

ZvdW5
1

4pC3
E

0

`

dua~ iu !D~ iu !, ~26!

wherea( iu) is the polarizability of the atom andC3 is the
coefficient of the leading 1/z3 term in the asymptotic form of
the interaction energy. In order for the surface calculation
scale correctly for a wide variety of atoms with differe
a( iu)’s, it is obviously important for our approximation t
well reproduceD( iu). Similarly, for two parallel surfaces
labeled A and B, the van der Waals plane for surface A
given by
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ZvdW
A 5

1

~4p!2C2
E

0

`

durB~ iu !DA~ iu !1DZA, ~27!

whererB( iu) is the long wavelength surface response fu
tion of surface B,rB( iu)5@eb

B( iu)21#/@eb
B( iu)11#, and

C2 is the coefficient of the leading 1/z2 term in the
asymptotic form of the interaction energy. The main diffe
ence in cases such as this one, where two infinite bodies
involved, is that terms involving multiple reflections n
longer vanish in the asymptotic limit, and should be expl
itly included as indicated by theDZA term in Eq.~27!. How-
ever, it is common experience that in the asymptotic lim
multiple reflection terms are typically small enough to tre
in perturbation theory,39,13 a conclusion that we agree with
Therefore, the first term in Eq.~27! is dominant, and the
conclusion thatD( iu) is the key quantity to obtain accu
rately remains. Note, however, that in the numerical calcu
tions presented later, the full form of Eq.~27!, including all
multiple reflections@see Eqs.~8! and~9! of Ref. 13#, is used.

Thus we opt to chooseq' based on the premise that theD
function should be reproduced accurately. We implem
this by choosingq' so thatD(0) agrees exactly with full
LDA calculations of this quantity, a procedure precise
analogous to that of Ref. 15. In this way, the parameterq'

may be indirectly determined as a function of the elect
gas parameterr s (1/n54pr s

3/3). This determination gives
q';1/r s;kF as expected from previous arguments.

The constantq' smoothly limits the response at smallk
and smallu values. It thus replaces the sharp cutoff used
the earlier scheme.15 In doing this, we consciously violate
the Lifshitz limit, obtaining somewhat smaller vdW coeffi
cients than Ref. 13, since the choiceq'.0 affects thek
→0 limit of Eq. ~23!. This also means according to Eqs.~26!
and~27! that the van der Waals planes will be predicted to
somewhat too far from the surfaces in this approximati
The d function, i.e., Eq.~24!, will also be too large, signifi-
cantly so at smallu.

Far more important, though, is the fact that our sim
dielectric function reproduces the dynamic properties of
D function very well, as shown in Figs. 1 and 2, compar
with a time-dependent local-density approximati
~TDLDA !.40 Thus the overall scaling properties of our theo
in a variety of nonuniform van der Waals environmen
should continue to be correct.

In order to investigate the approximation with regard
key properties, we use as input to our functional a set
self-consistent single-surface jellium densities in the meta
range (r s52 –5). The exact form of the density profiles i
however, not that important; by construction, a nonlocal
ergy is expected to depend less sensitively on the exact f
of the density, and results in this paper show that this
indeed the case.

The optimalq' values found by fitting to the values o
D(0) of Ref. 41 are shown in Fig. 3 as a function of t
electron-gas parameterr s , well accounted for by the simple
interpolation formula

q'50.416e20.217r s10.168. ~28!

The variation is roughly 50% over the whole metallic rang
indicating a rather small overall sensitivity.
-

-
re

-

,
t
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t

n

n

e
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e
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f
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-
m

is
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Table I shows how the quantitiesD(0) and ZvdW vary
with r s , using the parameterization Eq.~28!. In the fourth
and fifth columns, the values of the present method for
van der Waals planeZvdW are compared to those of Ref. 1
Although the slightly larger coefficients are expected fro
considerations earlier in this section, the fact that the nu
bers come out almostindependentof r s is somewhat of a
surprise.

V. RESULTS

To test our approximate functional, defined by Eqs.~18!,
~19!, ~23!, and~28!, we solve for a known system that con
sists of two parallel jellium slabs ofr s52.07, separated by a
distanced. Figure 4 shows results in ergs/cm2 (ergs/cm2

50.6423mHa/a0
2) for the nonlocal correlation-interactio

energy per surface area,@Ec
nl(d)2Ec

nl(`)#/A. The results are

FIG. 1. TheD function D( iu) for a jellium profile of r s52.
Solid line: Present calculation. Dotted line: Ref. 11. Circles:D
function based on a TDLDA calculation~Ref. 40!.

FIG. 2. TheD function D( iu) for a jellium profile of r s54.
Solid line: Present calculation. Dotted line: Ref. 11. Circles:D
function based on a TDLDA calculation~Ref. 40!.
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compared to those of a recent RPA calculation on the s
system by Dobson and Wang,14 as well as to those of the
DW98 functional. The saturation effects are found to be s
stantial in this small-separation region, and we judge all
proposed density functionals in the figure to give good
counts of the nonlocal correlation energy. The agreem
with DW98 reflects the inherent similarities between DW
and our approximation. The tractability of the latter is, ho
ever, not reflected in the table but has to be stated here~about
a thousand times faster than DW98 for this particular syst
due to the overall lower computational complexity of o
method!, together with the claim that this gives great pro
pects for a tractable future general functional.

The calculation presented in Fig. 4 is performed usin
simple superposition of the densities of two separate s
~obtained fromd512 data! as input. The difference betwee
the nonlocal correlation energy for the self-consistent den
of the slab system and that obtained by superposition tu
out to be very small, as indicated by the stars in Fig. 4.

The minor deviations atd, close to zero between our re
sults ~solid curve! and those of the full RPA calculatio

FIG. 3. Optimal values ofq' , calculated for jellium surfaces o
different densities, described byr s . Circles: Optimalq' as a func-
tion of r s , calculated from LDA data~Ref. 41!. Solid line: Eq.~28!.

TABLE I. Static and dynamic image-plane positions~a.u.! of
the jellium surface, calculated as a function ofr s .

r s D(0)a D(0)b ZvdW
c ZvdW

d

2.00 1.57 1.57 1.15 0.96
2.07 1.55 1.15
2.30 1.48 1.15
2.66 1.41 1.14
3.00 1.35 1.35 1.13 0.87
3.28 1.32 1.14
4.00 1.24 1.25 1.12 0.79
5.00 1.17 1.17 1.09

aThis work.
bReference 41.
cThis work.
dReference 13.
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~circles!, are due to our somewhat crude treatment of
width of the exchange-correlation hole perpendicular to
surface, a small price one has to pay for a tractable fu
tional.

Another important property is the surface correlation e
ergy. This quantity has recently been calculated for a jelli
surface within the RPA,28 an approximation thought to give
the long-range correlation effects accurately. The long-ra
part (gnl) may be extracted, using the data of Kurth a
Perdew,27 by subtracting the LDA contribution to the sam
quantity. In Table II, the result~column 3! is compared with
our approximation~column 2!, calculated as the nonloca
correlation energy given by Eqs.~19! and ~23! for single-
surface jellium at various values ofr s using Eq.~28!. We
note that the two approximations differ on average by o
13%. This is perhaps the strongest indication that indeed

FIG. 4. Small-separation~d! variation of the nonlocal
correlation-interaction energy (ergs/cm2) between two parallel jel-
lium slabs ofr s52.07 and width 5 a.u.~Ref. 14!. Solid line: Present
calculation. Stars: Same calculation but using the self-consis
densities of Ref. 14. Circles: RPA2LDA of Ref. 14. Diamonds:
DW982LDA of Ref. 14.

TABLE II. Nonlocal correlation contribution to the surface en
ergy of the jellium surface,gnl (ergs/cm2), as function ofr s , cal-
culated from Eqs.~19! and ~23! together with Eq.~28! and self-
consistent single-surface LDA densities. Comparison is made w
results forgnl obtained by subtracting the LDA contribution to th
surface correlation energy~Ref. 27! from results of self-consisten
RPA calculations for a jellium surface~Ref. 28!.

r s gnl
a gnl

b

2.00 451 476
2.07 408 435
2.30 300 332
2.66 196 226
3.00 138 163
3.28 106 129
4.00 60 74
5.00 31 39

aNonlocal correlation energy for single-surface jellium.
bRPA2LDA ~in the RPA! of Refs. 28 and 27.
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physical approximations made in this paper are robust.
A remarkable fact, already indicated in Fig. 4, is that t

nonlocal correlation energy is quite insensitive to the ex
form of the density profile. To further test this assumptio
we use a linear superposition of two identical self-consist
LDA single-surface densities~SLDA! to calculate the non-
local correlation surface energy according to Eq.~21!. The
result closely follows the column 2 result of Table II, with
mean error of only 3 percent. This observation adds to
accumulated findings supporting the use of superposition
single-fragment densities in a future general functional.

After these successful tests of the predictive power of
functional, defined by Eqs.~19!, ~23!, and~28!, applications
to other systems where no other results are available m
be done with confidence. Here we present results of an
plication to two semi-infinite jellia of identicalr s that have
their parallel surfaces a distanced apart~Figs. 5 and 6!. The
input densities are obtained by linear superposition of t
self-consistent single-surface LDA densities~SLDA!. We
stress that our functional is very fast; obtaining a single va
for a given density profile and a given separation only ta
a few seconds on a typical workstation of today.

Figure 5 shows the variation of the calculated nonlo
correlation-interaction energy for two semi-infinite jellia
r s52.07 as a function of the separationd. It illustrates two
facts: the significant deviation from the corresponding qu
tity for two thin jellium slabs~same as in Fig. 4; 5 a.u. wide!
and the substantial saturation effects, the latter by compa
with the results of the asymptotic vdW formula,13 applying
the dielectric function Eq.~23!.

In Fig. 6, we present the normalized nonlocal correlatio
interaction energy@E(d)2E(`)#/2Agnl in the metallic
range, showing how the interaction varies withr s . The
curves depend only weakly onr s when scaled in this manne

FIG. 5. Small-separation~d! variation of the nonlocal
correlation-interaction energy (ergs/cm2) for two semi-infinite jel-
lium surfaces ofr s52.07 ~SLDA density; solid curve!, calculated
from our functional defined by Eqs.~19!, ~23!, and~28!. The results
are compared to the corresponding interaction between two 5
slabs with edge separationd ~same as in Fig. 4; dashed curve!. The
dotted curve shows the asymptotic form of the interaction,E
52C2 /(d22ZvdW)2, with C251.34 mHa andZvdW51.15 a.u.,
calculated as in Ref. 13 but with the dielectric function Eq.~23!.
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VI. CONCLUDING REMARKS

In summary, we have studied the basis for a dens
functional accounting for vdW interactions by starting in t
manner of our previous work but with essential generali
tions to small separations between interacting objects. A s
tematic approach for the construction of such a functiona
described, together with a very efficient method of calcul
ing the resulting expressions. In the case of flat surfac
results for the interaction of two parallel jellium slabs a
shown to agree with those of a recent RPA calculation,14 and
we show that input densities can be successfully appr
mated by a superposition of the electron densities of the
teracting fragments. Results for the surface energy of jelli
are compared favorably with other studies.27 As a prediction
of the theory, the interaction energy between two para
jellia is calculated for all separationsd and in the whole
metallic range. The well-known asymptotic behavior (E
}1/z2) is obtained for larged, and asd becomes smaller
substantial saturation effects are predicted.

The major significance of these results is the demons
tion that such numbers can be calculated accurately at a
duced computational complexity and hence greatly impro
speed. We have shown that for a subclass of dielectric fu
tions the resulting expressions for the nonlocal correlat
energy may be calculated very efficiently and that eve
simple approximation to the dielectric function yields val
able insight and reproduces several physical properties of
surface and slab models. Furthermore, we have indicated
generalizations to three-dimensional systems are poss
and that the results here suggest such an attempt ma
fruitful. In this way there should be a basis for applicatio
to numerous physical, chemical, and biological systems
which vdW bonds are a factor, such as crystals, liquids,
hesion, soft condensed matter~e.g., biomacromolecules, bio
surfaces, polymers, and membranes!, and scanning-force mi-
croscopy.
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APPENDIX A: DETAILS OF THE EVALUATION
OF THE DETERMINANTS f AND f0

Here we show how ratios of determinants like Eq.~14!
can be efficiently evaluated. To eliminate the oscillating s
problem mentioned in the main text, we need to first go t
discrete representation for the operator (]z

22k21 l k8]z) oc-
curring in Eq.~16!. Specifically we takeN points between 0
and L ~for the full determinant!, n points between 0 andz
~for subsystem determinants!, so thatz5(n/N)L, with the
spacing between pointsh5L/N. We use a similar represen
tation for the empty space operator (]z

22k2). Thus, replacing
the subsystem determinantf(z) by the individually distinct
fn , we have

fn5detS a1 b1 0 . . . 0

c1 a2 � � A

0 � � bn22 0

A � cn22 an21 bn21

0 . . . 0 cn21 an

D , ~A1!

where

an5222h2k2,

bn511
h

2
l k,n8 ,

cn512
h

2
l k,n118 , ~A2!

along with a similar relation for the empty space determin
f0,n . Being tridiagonal, the determinant can be evaluated
O(N) time, as contrasted to theO(N3) time applicable for a
general determinant.

The determinant is readily expanded by minors, givi
the recursion formula

fn115an11fn2bncnfn21 , ~A3!

with f051 andf15a1. It is clear from~A3! and~A2! that
fn oscillates in sign from order to order, an oscillation tha
cancelled in the ratio Eq.~15! by a similar oscillation inf0.

However, the envelope determinant (21)nfn satisfies a
simple differential equation in the continuum limit. To mak
the exact form of this differential equation identical to E
~18!, we further scale the envelope determinantf̃n through

fn[~21!nSnf̃n , ~A4!

where the scaling functionSn[P i 51
n bi satisfies

Sn5bnSn21 , ~A5!
ty
s
-
h
-
l-

n
a

t
n

.

with S051. Using ~A2!, we see that in the continuumh
→0 limit, ~A5! becomes

dS~z!

dz
5

1

2
l k8~z!S~z!, ~A6!

with the boundary conditionS(0)51. Equation~A6! has the
solution

S~z!5S ek~z!

ek~0! D
1/2

. ~A7!

This means that ifek(L)5ek(0), then the scaling due toS
has no effect on the final result. Otherwise, the argumen
the logarithm in Eq.~19! should be multiplied byS(L) ob-
tained from~A7!.

The difference equation forf̃ is obtained by use of~A4!
and ~A5! in ~A3!, yielding

bn11f̃n111an11f̃n1cnf̃n2150, ~A8!

with

f̃051 ~A9!

and

f̃12f̃052~11a1 /b1!. ~A10!

Substitution of~A2! into ~A8! yields

~f̃n1122f̃n1f̃n21!2h2k2f̃n1
h

2
l k,n118 ~f̃n112f̃n21!

50. ~A11!

In the continuum (h→0) limit, this becomes

f̃9~z!2k2f̃~z!1 l k8~z!f̃8~z!50. ~A12!

This equation is the same as Eq.~18! in the main text, al-
though there we used the notationf̃ for a particular solution,
while in this appendix it represents the general solution.

This general solution to Eq.~18! can be written in the
form

f̃~z!5af̃a~z!1bf̃b~z! ~A13!

where f̃a(0)51 and f̃a(L)50, while f̃b(0)50 and
f̃b(L)51. The boundary condition~A9! implies thata51,
while ~A10! combined with~A2! implies thatf̃8(0)51/h as
h approaches zero. This means thatf̃a can be neglected
since b will be of order 1/h. Specifically we havef̃8(0)
→bfb8 (0)51/h, so that

f̃~L ![b5
1

hf̃b8 ~0!
. ~A14!

The large coefficient (}1/h) cancels out in the ratio of~A14!
and the analogous free-space expression, so we may wr

f~L !

f0~L !
5

f̃~L !

f̃0~L !
S~L !5

f̃0,b8 ~0!

f̃b8 ~0!
S~L !, ~A15!
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where the continuum version of~A4! was used to obtain the
first identity, after noting that the oscillating signs of th
numerator and denominator cancel in the ratio, and that
free space value ofS is unity. Finally substituting this into
Eq. ~17!, we obtain, using~A7!,

Ec
nl52E

0

` du

2pE d2k

~2p!2
ln

f̃b8 ~0!Aek~L !

f̃0,b8 ~0!Aek~0!
. ~A16!

This is our most general result, which reduces to Eq.~19!
whenek(0)5ek(L). Note that in the main text we used th
notationf̃ andf̃0 for the particular solutions that are calle
f̃b and f̃0,b here.

APPENDIX B: DETAILS ON THE LIFSHITZ LIMIT

Let ek(z)51 in between two surfaces a distanced apart,
and letek(z)5eb in the bulk of each surface. Furthermor
let d be large enough so we can assume sharp bound
between the three regions. Then, the interaction ene
@Ec

nl(d)2Ec
nl(`)#/A may be calculated exactly. Note that a

though the interaction energy may be calculated this way,
constant component contributing to the surface energy m
not, but it needs a much more involved calculation.

The matching problem becomes solving Eq.~18! for f
andf0 in the regions left bulk~lb!, middle region~m!, and
right bulk ~rb!. Let f05ekx, with the origin lying on the
boundary between the left and middle regions. Now we w
to find thef that approaches zero far into the left bulk a
ekx far into the right bulk. In the left bulk, we must have
e

an

ev

ys

n-

s

e

ies
y

e
y

t

f lb5aekx, ~B1!

a being an arbitrary constant. Note that the wanted quan
f08(0)/f8(0) equals 1/a. On the boundary between the le
bulk and the middle region,f must be continuous, andf8
must have a discontinuous step with the size ofeb , reflecting
the fact that the displacement fieldebf8 must also be con-
tinuous. The solution in the middle region now becomes

fm5a@cosh~kz!1eb sinh~kz!#. ~B2!

The same matching conditions apply between the middle
gion and the right bulk, although here we only need to co
sider the solution growing to the right, since we want
matchf to the value off0 infinitely far into the right bulk.
Obeying the matching conditions means the solution in
right bulk becomes

f rb
growing5

fm~d!k1fm8 ~d!/eb

2k
ek(x2d). ~B3!

Equatingf0 with ~B3! determines the coefficient a, and th
solution becomes

f08~0!/f8~0!5
fm~d!k1fm8 ~d!/eb

2kaekd
5

12r2e22kd

12r2
,

~B4!

with r5(eb21)/(eb11). It is clear from~B4! that the con-
stant contribution to ln@f08(0)/f8(0)# and hence to the surfac
energy is given by2 ln(12r2). As discussed earlier in this
appendix, that is not the correct constant and should be
cluded, yielding Eq.~20!.
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