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Tractable nonlocal correlation density functionals for flat surfaces and slabs
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A systematic approach for the construction of a density functional for van der Waals interactions that also
accounts for saturation effects is described, i.e., one that is applicable at short distances. A very efficient
method to calculate the resulting expressions in the case of flat surfaces, a method leading to an order reduction
in computational complexity, is presented. Results for the interaction of two parallel jellium slabs are shown to
agree with those of a recent, more elaborate calculafidh Dobson and J. Wang, Phys. Rev. L8#&. 2123,

(1999]. The method is easy to use; its input consists of the electron density of the system, and we show that
it can be successfully approximated by the electron densities of the interacting fragments. Results for the
surface correlation energy of jellium compare very well with those of other studies. The correlation-interaction
energy between two parallel jellia is calculated for all separattynand substantial saturation effects are
predicted.

[. INTRODUCTION The DFT expresses the ground-state energy of an inter-
acting system in an external potentialr) as a functional
The density-functional theoryDFT),} with its local- E[n] of the particle density(r), which has its minimum at
density (LDA) (Refs. 2 and Band semilocal generalized- the true ground-state densityrhe Kohn-Sham form of the
gradient approximation€3GA),*~"is not only successful in functional makes the scheme a tractable one, as it leads to
numerous applications to individual molecules and dens@quations of one-electron type, and accounts for the intricate
solids. It is also under intense development, for instance, ifteractions among the electrons with an exchange-
order to include nonlocal effects, such as van der Waal§Orrelation functionalE,Jn].? This functional can be ex-
(vdW) forces®'® The latter are needed in order to allow Pressed exactly as an integral over a coupling constent (
DFT to describe sparse matter. A unified treatment of vdw(Refs. 20, 3, and 2land imaginary frequencys(=iu), the
forces at large and asymptotic molecular separations i§0-called adiabatic connection formula,
available'® and a description at short distances and at over- ) g
lap is striven for. An accurate calculation for the interaction *“au .
ofptwo He atoms has been givéhand recently the first Bxe= fo dx jo 27 XMWV = Eeer, D
random-phase approximatidRPA) of the vdW interaction
between two jellium slabs has been reported and given whereV(r,r')=1/r—r’| and where the density-density cor-
density-functional accoutibw98).1* The ultimate challenge relation function is denoted by(r,r’,iu;\) (Ref. 22. Eqgys
is to construct an approximate vdW functional that is generis the Coulomb self-energy of all electrons, which is exactly
ally applicable, efficient, and accurate. cancelled by a corresponding term i{\,iu)V. Equation
We here propose an explicit form for the vdW functional (1) shows a truly nonlocal exchange-correlation interaction
that applies to flat surfaces, test it successfully against thand is a starting point for approximate treatments: local
recent slab results, and apply it to two parallel flat semi-(LDA), semilocal(GGA), and nonlocal.
infinite metal surfaces. This is a case with relevance for The LDA and GGA are completely unable to express the
many physical situations, including wetting and atomic-forcevdW interaction in a physically sound way. The exact
microscopy. Compared to the DW98 functiohdthe virtues  exchange-correlation functional, on the other hand, of course
of our approach are the computational simplifications gaine&ncompasses such interactiGrihe basic problem of mak-
from choosing a particular subclass of response functionsng DFT a working application tool also for sparse matter is
utilizing a differential formulation and sparse matrices, andto express the truly nonlocal vdW interactions between the
recognizing the insensitivity to the details of the density pro-electrons in the form of a simple, physical, and tractable
files, simplifications that might transfer even to three dimen-density functional. Equationfl) is then the starting point.
sions. Along these lines, we have proposed extensions of the DFT
The ubiquitous van der Waals force plays an importanto include van der Waals interactioh&!'13®with very
role in numerous physical, chemical, and biological systemspromising results for the interaction between two atoms or
such as physisorptiolf;}” vdWw complexes® and vdW molecules, an atom and a surface, and two parallel surfaces,
bonds in crystals, liquids, adhesion, and soft condensed matespectively. This now-unified approactapplies for sepa-
ter (e.g., biomacromolecules, biosurfaces, polymers, andated systems, i.e., when the electrons of the interacting frag-
membranes'®° ments have negligible overlaps.
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The corresponding asymptotic expressions have singularenient to introduce the polarizability or dielectric function
behaviors at short separatiasyet one knows that the vdW ~instead ofy. The polarizability (a matrix in the spatial
forces are finit€> They should go smoothly over to the positiong is defined by the relatioR= a- E, whereP is the
exchange-correlation forces that apply in the interior of eachyo|arization. We have
electron system. This phenomenon is often called damping,

or saturation®*~2® Approximate saturation functions have Sh=-V.P=-V.a-E=V-a- VO, (4)
been proposed, in particular for the cases of vdW _ -
molecule$* and physisorbed particlé32° so that from the definition of, one hasy=V-a- V. In turn

The key difficulty in extracting the vdW functional from the dielectric function is given by=1+4ma. In terms ofe,
Eqg. (1) is the computational complexity. A direct solution EQ.(3) then transforms to
gives simply too many operations on the computer. The
guideline for our reduction of the number of such operations
is to exploit analytical advantages of RPA-like approxima-
tions, to focus on the key quantity, to recast the integral ) )
formulation into a differential ondeading to a sparse-matrix Where we have |ntrod2uced the Coulomb Green’s function
computation, and to make maximal use of symmetry. G=—V/4r and usedv°G=1. The TfIn] expression gives
Our exploratory study here concerns cases with vdwereat advantage forthe_further analytical and_ numerical treat-
forces between two flat parallel model systems. We first tes€nt. The only approximation made so far is the neglect of
our approximate functional on the model system of two selfthe coupling constant dependenceyoivhen doing the cou-
consistent jellium slabs, utilizing the recent RPA restfits, pling constant integration. This is not an additional approxi-
which gives the size of the correlation-interaction energy pemation either in the RPA or for the approximats we use
unit area, showing saturation. We then test our functionahere.
against accurate calculations of the surface correlation In order to develop long-range functionals, one may sub-
energy?”?8showing an excellent agreement. After these sucstitute approximations for the dielectric function based on
cessful tests we make predictions on two parallel semithe free electron gas into E¢p). To obtain tractable expres-
infinite jellia. sions it will normally be necessary to make still further ap-
proximations. In this case it is desirable to use the additional
Il. GENERAL THEORY approximations only for the nonlocal part &, so as to
avoid destroying the accuracy of the LDA in the high-density
The\ integration of Eq(1) can be performed analytically regions. Ideally one would subtract from E@) the LDA
in some cases, such as in the RPA. In 1957 Gell-Mann andersion of thesameapproximation, and would envisage add-
Brucknef® presented the RPA correlation energy as a seing back a better version of the LDA. Here we make a simi-
lected summation of ring diagrams, which gives a logarith-ar but more tractable subtraction in terms of the isotropic
mic form3° Their study concerns theomogeneouslectron  dielectric functione (e=33i€ 1),
gas, where equations simplify thanks to the three- '
dimensional translational invariance and plane waves. Here o =du
we treat systems with less symmetry. Exe= fo 5 Re(TIIn(e) ]} — Eser- (6)
By virtue of the fluctuation-dissipation theorem, the
density-density correlation functiop is equal to the density ESC has the property that it is a good approximation for a
changedn induced by anexternal potential @, i.e., 5n  slowly varying system, becoming exact for a uniform sys-

=du
Exc:f 2—Re{TI’[|n(V-G'VG)]}_Eselfa ®)
(4

= xDoy. It satisfies tem. For density variations slow on the scale of the range or
5 5 width of €(r,r’), it agrees with the LDA, the trace in E()
XN iu) = x(iu) +Xx(iu)Vy(\,iu), (2) replacing the integral over density.

~ Subtracting Eq(6) from Eq. (5), one obtains
wherey is the density response to a fully screened potential

®, i.e., 5n=y®d. We assume here that the coupling depen-

dence ofy can be neglected when performing thentegral
in Eq. (1). This is true in the random-phase approximation,
where’y is the density response function far=0, and is
also true for the approximate dielectric functions that we us
here. Equatior{l) then becomes

=du
EQL=f Z—Re{Tr[ln(e—lv-e-VG)]}. 7
(4

We will call this the nonlocal exchange-correlation energy,
although for models more general than those used in this
%aper, an additional short-range correction must be applied
to makeEgC correspond precisely to the LDA, and hence to
~du _ makeEQ. the deviation from the LDA.
EXC=J Z—Re(Tr{Ioglo[l—X(iu)V]})— Eeertrn, 3 The models considered in this paper are based on isotro-
0 £m pic dielectric functions and contain no nonlocal exchange
where the real part means the principal branch. component, in effect making E‘F7) our approximation for
To simplify this expression and to get a functional in the nonlocal correlation enerds)' . Using this fact, together
terms of the electron density(r), we have to focus on the With Tr{Inx]=In(detx) andV*G=1, we obtain
key target(the nonlocal pajt introduce key quantities, and
rewrite the expressions_,,_in order to ma_ke physically sound EQI: fooﬂln|de(1+e 1V, e]-VG)|, @)
and computationally efficient approximations. It is more con- 02w
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where the notatiofA,B] means the commutator. We will In Eq. (14), the determinant is given in terms of integral

later use the fact that E8) involves only the determinant to operators. To take advantage of the locality of the Laplacian,

good advantage. we use ¢2—k?)G,=1 to express it in terms of differential
operators

Ill. METHOD FOR PLANAR GEOMETRIES

Now we are in a situation to discuss whato use. We det(1+1d,Gy) = ¢£ (15)
will in this paper concentrate on the simple case of jellium 0
systems. Our aim is to find aefficientway of exploring the ~Where
planar translational invariance of the jellium system—not 2 12
only a way to decrease the number of spatial integrations. p=de(d;—k*+1,3,), (16)

Thg mgjor difsficglty in evaluating Eq8) i; the determinant, whereg, is the empty spacee=1) value of Eq.(16).
which is O(N®) in the general casé being the number of e step from Eq(14) to Eq. (15) requires that the differen-
grid points in a discrete representation. This holds true evef) operators are defined throughout the whole space.
in one dimension. So, instead of allowing a completely gen- o yjtrafast method is made possible by the observation
eral e, we aim at approximations resulting differential Op-  {nat the determinants in E¢15) can be written down, not
erators only, for which the determinant is known to®N),  only for the full system, but also for a subdivision of it.
hence significantly simpler to calculate. ~~ Rejated determinants for the subsystem satisfy a simple
In the particular case of planar translational invariancegecond-order differential equation as a function of subsystem

i.e., for planar surfaces or slabs, we use an approximate forg,. Thus by a simple renormalization, one may evaIE@'te

';gi:s made local in the coordinate perpendicular to the SUlwith the same effort as finding the charge induced by an

applied electric field. A similar relation holds also in several
dimensions, which will be explored in another paper.
e(2)elk (=), 9) To make this more concrete, let us suppose #ér)
2 varies only in the interval & z<L (which will eventually be

extended to infinity and takes the same value at either end

wherek is a wave vector parallel to the surface. Keeping the,nint This is the case for parallel surfaces or slabs of iden-
fully nonlocal form along the symmetry plane allows, €.9.(ica| materials. Then for each value afwe can define a

the effect of the cutoff, which was introduced artificially in determinanis(z) for the subsystem extending from 0zolt

. . - . 15 .
prlewousI a:pprlclmmatlons of this typ&2°to occur in a natu- is clear then from Eqs14), (15), and(16) that E"' is given
ral way laterally. by

The first thing we note about Eq9) is that we easily
form the inverse,

d%k
)

e(r,r’)z&(z—z’)j 2

ae pim [FOU[ Sk BL)
EC/A_LIIan jo 277[ (Zw)zln ¢o(L) (17

As discussed in Appendix A, the determinant$z) and
¢o(2) individually have oscillating signs that do not occur in

their quotient. However, the envelope determinahts) and

2k . ,
efl(r,r’)zé(z—z’)f (jw)zek(z)le'k'(rr ). (10

Evaluating the commutator then yields

- d’k € (2) . , $o(2) can be scaled so that they satisfy the simple differen-
-1 _ ) k-(r—r") . .
e [V,el=28(z-z )f (2m? &2 e, (11 tjal equation
where theprimeindicates differentiation with respect oin (exd’) =K?ec b, (18)
what follows we shall substituté(z)=In[e(2)], yielding ) . ~
1'(2) = €' (2)] €(2). together with the boundary conditions th&{0)=0 and
In the same basis we express the Green’s function, ¢(L)=1. In terms of¢, we obtain
G(r—r) f P ek, 12 EN/A=— lim fmd”f Pk 2O g
r—r’)= z—-27')e , =- 5= TSin=—.
(2m? ¢ ¢ L 0 27) (2m)2 " g(0)
where where theprime indicates differentiation with respect
which in this case is the subsystem size. However, note that
Gu(z—2")=— ie7k|zfz’\ (13) ¢ is also just the electrostatic potential as a function of dis-
k 2k ' tancez, within a system having a potential difference across

it along with a prescribed variation in Thus the calculation
of the determinant becomes a simple electrostatic problem
that is easily solved.
To illustrate this, consider the case of two identical paral-
wdu r d? IeI_ surfaces a distanakapart, Whe_rd is much Iarge_r than the
EQI/AZJ _f In|de(1+1,9,Gy)|. (14 thicknesses of the surface-healing layers. Solving &8
02m) (2m)2 for the described boundary conditions then becomes a trivial

Since the logarithm of Eq.7) can be expanded in powers,
the integration ovek may be singled out, and we may ex-
press the nonlocal correlation energy per surface @kgas
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matching problem(see Appendix B which after insertion Alternatively, Eq.(23) may be viewed as an interpolation
into Eq. (19) immediately leads to the Lifshitz formia'®>  between the exact small- and largebehavior of the
Lindhard expression for the frequency-dependent dielectric
~du d2k function. However, we see little point in using such an elabo-
Erc"/Azf o > In|1—Pze*2kd| +2yn. (20 rate expression, since our concern here is to investigate how
0emJ) (2m) well local approximations to the dielectric function work in
highly nonuniform systems.

In directions parallel to the surface, our approximation,
Eq. (23), allows fully** for the nondiagonality ok with re-
spect to the corresponding spatial coordinates, as implied by
a Fourier transform with respect to the parallel wave vector
k. However, in directions perpendicular to the surface, our

; i enl ; _
Since, by co_nstructlorEc —O_for a uniform @=0) system, ._approximation takes to be diagonal in the coordinatesind
v, May equivalently be defined as the nonlocal correlation

o : . Z'. It is thus taken to be local not only in this sense, but in
contribution to the surface tension of a single surface. o L .
- ; ; the additional sense that it is a function only of the local
The original Eqg.(1) is now reduced to a set of simple

electrostatic calculations, each one being?4N) operation density. To compensate, we retain the corresponding compo-

instead ofO(N?), a major simplification. Of course the suc- nef:%mzft;hic\)’v;\({; \észtroq L”e:hi_“gzhf'g e\?\/feEt?w(usz)t:Ee
cess of the method depends on how well we can reproduc /p © b r tant ywherq _f | qith hiclis
the true dielectric function using our approximate form Eq. d, to be a constant measure of iength over whec

(9). The only approximation made so far is the assumption o ffect.ively nonlqca}l. The dispersion perpendicular to the sur-
a local dielectric function perpendicular to the surface. ace in Eq.(22) is in this way replaced by a parameter that
we will fix to some length scale appropriate for the surface.

For physical reasons such a length scale should be asso-
IV. APPROXIMATE DIELECTRIC FUNCTION ciated with intrinsic electron-gas parameters, like the screen-
Equation(17) or (19) provides the basis for a functional ing length or the extent of the correlation hole. There are, of

that describes the van der Waals interaction between plangPUrse: several choices available. It must be kept in mind

objects. To turn these equations into density functionals, w&'at We are after long-range surface properties in a variety of
have to introduce quantities that depend on the dengity. environments. These properties are determined by various

Our suggestion is based on an approximate dielectric funcr—‘?Sp(l)r'ste functions introduced by Feibelnaof which the
tion €, that depends on the local densityr). It utilizes simplest,
experiences from the homogeneous electron gas and from

Herep=(e,—1)/(ep+1), €, being the bulk dielectric func-
tion, andvy,, is defined by

ya=[EQ(d—o)—EZ(0)]/2A. (21)

experimental studies of the dynamical structure factor f dzzn,y(iu,z)
S(q,w)Im[1/e(q,w)—1], wherefiq and i w are the mo- d(iu)= , (24)
mentum and energy losses, respectively, of a photon or a fdzﬂ (iu,2)

charged particle being scattered while passing a bulk sample. ndt T

There is a peak i§(q,w), the plasmon peak, sharp in the iq the centroid of induced charge when a uniform electric

ideal elecf[ron gas and of varying width in real materials. Thisggq is applied perpendicularly to the surface. However, for
peak carries most of the spectral strength anddasiual 10 he yan der Waals properties of a planar surface, a related
the plasma frequenay, asq—0, and then a dispersion with ¢, tion D(iu) as defined by Hulet al, !

a limiting behaviorquqZ/Zm, the kinetic energy of one
electron in the impulse approximation, which is valid in the _ ep(iu)—1  ep(iu)
Compton-scattering limitg—c. In the electron-plasmon D(iu)=— :

. . iy ep(iu)+1 ey(iu)+1
coupling one focuses on thmagnitudeand position of the
sharp plasmon peak and neglects the broadening,eiis., is more important®3”2°3n particular theD function arises
described in a plasmon-pole approximatidrA dispersion  in connection with the calculation of van der Waals planes,
law like which are determined not only by tH2 of the surface in

question, but also by a response function of dieer body.
wg=wh+ (ved) %3+ (g?/2m)? (220 For example, for a surface in the vicinity of an isotropic
atom, the van der Waals plageis given by°2%3811
has been shown to efficiently account for the average behav-
ior of plasmonlike excitations and for correlation properties
of the homogeneous electron gdsntroducing the electron
density viawj(2) =47n(z) andve(2)=[37n(2)]"*3 n(2) o o _
being the electron density profile in this planar case, the ditheréa(iu) is the polarizability of the atom an@s is the
electric function can be written as coefficient of the leading #? term in the asymptotic form of
the interaction energy. In order for the surface calculation to
scale correctly for a wide variety of atoms with different
(23) a(iu)’s, it is obviously important for our approximation to
u?+ov2[n]g¥3+q*4’ well reproduceD(iu). Similarly, for two parallel surfaces
labeled A and B, the van der Waals plane for surface A is
where the imaginary frequenay=iu is used. given by

d(iu), (25

1 o
Zvdw:mfo dua(iu)D(iu), (26)

w2
e[n](qg,iu)=1+ L]
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1 o0
zA =—f dupB(iu)DA(iu)+AZ”, (2 \
= e )o p-(iu)D7(iu) 7) AN ]

wherepB(iu) is the long wavelength surface response func- 12L 0\ i
tion of surface B,pB(iu)=[ep(iu)—1]/[eC(iu)+1], and \
C, is the coefficient of the leading Z/ term in the _ 10} \ . .
asymptotic form of the interaction energy. The main differ- 3 \, j gj;e:;:lalc‘“a“"n

ence in cases such as this one, where two infinite bodies arz 0.8 | \ OTDLDA .
involved, is that terms involving multiple reflections no & \
longer vanish in the asymptotic limit, and should be explic- 06 T
itly included as indicated by th&Z* term in Eq.(27). How-
ever, it is common experience that in the asymptotic limit, 04 | ]
multiple reflection terms are typically small enough to treat

R

in perturbation theory>**a conclusion that we agree with. 92T o 1
Therefore, the first term in Eq27) is dominant, and the . . . . o S -
conclusion thatD(iu) is the key quantity to obtain accu- 0.00.0 02 04 06 08 10 12 14 16 18 20
rately remains. Note, however, that in the numerical calcula- ufo,

tions presented later, the full form of E@7), including all

multiple reflectiongsee Eqs(8) and(9) of Ref. 13, is used. FIG. 1. TheD function D(iu) for a jellium profile ofrs=2.

Thus we opt to choosg, based on the premise that the Solid_ line: Present calculation. Dott_ed line: Ref. 11. Circles:
function should be reproduced accurately. We implemenfunction based on a TDLDA calculatiofiRef. 40.
this by choosingg, so thatD(0) agrees exactly with full
LDA calculations of this quantity, a procedure precisely
analogous to that of Ref. 15. In this way, the paramgter
may be indirectly determined as a function of the electro
gas parameterg (1/n=477r§/3). This determination gives

Table | shows how the quantitig3(0) and Z,qy vary
with rg, using the parameterization E@®8). In the fourth
nand fifth columns, the values of the present method for the
van der Waals plang, , are compared to those of Ref. 13.
—1r .~ ke as expected from previous arquments Although the slightly larger coefficients are expected from
q s _°F P P 9 ) considerations earlier in this section, the fact that the num-

The constantj;, smoothly limits the response at smaéll . )
. bers come out almoshdependenbf rg is somewhat of a
and smallu values. It thus replaces the sharp cutoff used in

the earlier schem®. In doing this, we consciously violate surprise.
the Lifshitz limit, obtaining somewhat smaller vdW coeffi-
cients than Ref. 13, since the choige>0 affects thek

—0 limit of Eq. (23). This also means according to E¢&6) To test our approximate functional, defined by E4s),
and(27) that the van der Waals planes will be predicted to be(lg)’ (23), and(28), we solve for a known system that con-
somewhat too far from the surfaces in this approximationgjsts of two parallel jellium slabs of,=2.07, separated by a
Thed function, i.e., Eq(24), will also be too large, signifi- jistanced. Figure 4 shows results in ergs/&rgergs/cn
cantly so at small. =0.6423,uHa/a§) for the nonlocal correlation-interaction

Far more important, though, is the fact that our simple ey enl
dielectric function reproduces the dynamic properties of the or9Y PET surface aredc (d) ~ Bc () J/A. The results are

D function very well, as shown in Figs. 1 and 2, compared ,,
with  a time-dependent local-density approximation I
(TDLDA).*® Thus the overall scaling properties of our theory 129
in a variety of nonuniform van der Waals environments |
should continue to be correct.

In order to investigate the approximation with regard to
key properties, we use as input to our functional a set of _
self-consistent single-surface jellium densities in the metallic;} 0.8
range ¢s=2-5). The exact form of the density profiles is, & -
however, not that important; by construction, a nonlocal en-& 0. -
ergy is expected to depend less sensitively on the exact forn
of the density, and results in this paper show that this is g4 |
indeed the case.

The optimalq, values found by fitting to the values of

V. RESULTS

1.0

—— Present calculation
---- Hultetal.
O TDLDA

g 1 0.2 - i
D(0) of Ref. 41 are shown in Fig. 3 as a function of the I
electron-gas parameteg, well accounted for by the simple 0.0 . . . R v e
interpolation formula 700 02 04 06 08 10 12 14 16 1.8 20

u/o,
q, =0.416" %2154+ 0.168. (28)
FIG. 2. TheD function D(iu) for a jellium profile ofrs=4.
The variation is roughly 50% over the whole metallic range,Solid line: Present calculation. Dotted line: Ref. 11. Circles:

indicating a rather small overall sensitivity. function based on a TDLDA calculatiaiRef. 40.
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[ T T T T T 0 T T
0.45 E

-100
0.43 &
- g
0.40 g, -200 &
T 8
~ 0.38 i -300 -
8 T
4 0.35 =1
= | h," —400 — Present
0.33 3 % Present, self-consistent densities
I O ¢, from LDA data Ty ORPA-LDA
030 | —— g1 =0.416¢702171.0.168 o = 500 & DW98—LDA .
0.28 I J -600 J
0.25 _700
2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5 8 7 8 9 10 11 12
rs (au.) d (a.n.)
FIG. 3. Optimal values of, , calculated for jellium surfaces of FIG. 4. Small-separation(d) variation of the nonlocal
different densities, described by. Circles: Optimalky, as a func-  correlation-interaction energy (ergs/&nbetween two parallel jel-
tion of r¢, calculated from LDA datéRef. 4. Solid line: Eq.(28). lium slabs ofr;=2.07 and width 5 a.uURef. 14. Solid line: Present

calculation. Stars: Same calculation but using the self-consistent

compared to those of a recent RPA calculation on the Sam%ensities of Ref. 14. Circles: RPALDA of Ref. 14. Diamonds:
system by Dobson and Ward$jas well as to those of the DW98~LDA of Ref. 14.

DW98 functional. The saturation effects are found to be sub-

o . . . . circles, are due to our somewhat crude treatment of the
stantial in this small-separation region, and we judge all th‘%Nidth of the exchange-correlation hole perpendicular to the

proposed density functionals in.the figure to give good ac. urface, a small price one has to pay for a tractable func-
counts of the nonlocal correlation energy. The agreemerﬁIonal '

with DW98 reflects the inherent similarities between DW98 . . .
Another important property is the surface correlation en-

and our approximation. The tractability of the latter is, how-ergy This quantity has recently been calculated for a jellium
ever, not reflected in the table but has to be stated (adb@ut surface within the RPAE an approximation thought to give

a thousand times faster than DW98.for this part|cullar SyStem[’ne long-range correlation effects accurately. The long-range
due to the overall lower computational complexity of our

method, together with the claim that this gives great pros-girrzém% l;n agugt? aiggaitr?glgingo::reibggg ?; Egtga%ned
pects for a tractable future general functional. oY g

The calculation presented in Fig. 4 is performed using aquantity. In Table II, the resufcolumn 3 is compared with

simple superposition of the densities of two separate slab@’ apprommaﬂon(cqlumn 2, calculated as the npnlocal
(obtained fromd= 12 data as input. The difference between Correlation energy given by Eq¢19) and (23) for single-

the nonlocal correlation energy for the self-consistent densit g;fea?r?a{etlgzr?wi[ ;anr%lj(sin:/;ligiz 3%2?'22 Eye.gg)e. \kgveonl

of the slab system and that obtained by superposition turns, . PP L ge by only

out to be very small, as indicated by the stars in Fig. 4. 3%. This is perhaps the strongest indication that indeed the
The minor deviations at, close to zero between our re-

. . TABLE Il. Nonlocal correlation contribution to the surface en-
sults (solid curve and those of the full RPA calculation

ergy of the jellium surfacey, (ergs/cm), as function ofrg, cal-
culated from Eqgs(19) and (23) together with Eq.(28) and self-
TABLE |. Static and dynamic image-plane positiofsu) of  consistent single-surface LDA densities. Comparison is made with

the jellium surface, calculated as a functionrgf results fory,, obtained by subtracting the LDA contribution to the
surface correlation energfRef. 27 from results of self-consistent
s D(0)* D(0)° Zygw® Zyaw” RPA calculations for a jellium surfad@ef. 28.
2.00 1.57 1.57 1.15 0.96 e il Yo
2.07 1.55 1.15
2.30 1.48 1.15 2.00 451 476
2.66 141 1.14 2.07 408 435
3.00 1.35 1.35 1.13 0.87 2.30 300 332
3.28 1.32 1.14 2.66 196 226
4.00 1.24 1.25 1.12 0.79 3.00 138 163
5.00 1.17 1.17 1.09 3.28 106 129
_ 4.00 60 74
:ThIS work. 5.00 31 39
Reference 41.
“This work. aNonlocal correlation energy for single-surface jellium.

dReference 13. PRPA-LDA (in the RPA of Refs. 28 and 27.
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FIG. 5. Small-separation(d) vgrlatlon of the nonlocal FIG. 6. Small-separatio(d) variation of the normalized nonlo-
correlation-interaction energy (ergs/gnfor two semi-infinite jel- .1 correlation-interaction energyEZ'(d)—EQ'(OO))/ZAym, for a

lium surfaces.ofrs=2.Q7 (SLDA density; solid curvg calculated range ofr, values. They,, values are presented in Table II.
from our functional defined by Eq&19), (23), and(28). The results
are compared to the corresponding interaction between two 5 a.u. VI. CONCLUDING REMARKS
slabs with edge separatiah(same as in Fig. 4; dashed cuyv&he . . .
dotted curve shows the asymptotic form of the interactin, In_summary, we have Stud'ed the_ basis  for a d_enSIty-
=~ C,/(d—2Zyq)? With C,=1.34 mHa andZ,qy=1.15 a.u., functional accounting for vdW interactions by starting in the
calculated as in Ref. 13 but with the dielectric function E28). manner of our préevious work but V\.”th ess.em'al _generallza-
tions to small separations between interacting objects. A sys-
tematic approach for the construction of such a functional is
physical approximations made in this paper are robust.  described, together with a very efficient method of calculat-
A remarkable fact, already indicated in Fig. 4, is that theing the resulting expressions. In the case of flat surfaces,
nonlocal correlation energy is quite insensitive to the exactesults for the interaction of two parallel jellium slabs are
form of the density profile. To further test this assumption,shown to agree with those of a recent RPA calculatfamd
we use a linear superposition of two identical self-consistentve show that input densities can be successfully approxi-
LDA single-surface densitie€SLDA) to calculate the non- mated by a superposition of the electron densities of the in-
local correlation surface energy according to E2fl). The teracting fragments. Results for the surface energy of jellium
result closely follows the column 2 result of Table II, with a are compared favorably with other studféss a prediction
mean error of only 3 percent. This observation adds to th@f the theory, the interaction energy between two parallel
accumulated findings supporting the use of superpositions dellia is calculated for all separatiors and in the whole
single-fragment densities in a future general functional. ~ Metallic range. The well-known asymptotic behavidt (
After these successful tests of the predictive power of thé* 1/2°) is obtained for larged, and asd becomes smaller,
functional, defined by Eqg19), (23), and(28), applications ~ Substantial saturation effects are predicted.
to other systems where no other results are available might 1he major significance of these results is the demonstra-

be done with confidence. Here we present results of an aF5|_on that such numbers can be calculated accurately at a re-
duced computational complexity and hence greatly improved

plication to two semi-infinite jellia of identicalg that have ° |
their parallel surfaces a distandepart(Figs. 5 and & The speed. We hav<_a shown tha.t for a subclass of dielectric func-
input densities are obtained by linear superposition of twdions the resulting expressions for _the nonlocal correlation
self-consistent single-surface LDA densitiéSLDA). We  €nergy may be calculated very efficiently and that even a

stress that our functional is very fast; obtaining a single valugimple approximation to the dielectric function yields valu-

for a given density profile and a given separation only take&ble insight and reproduces several physical pro_per_ties of flat
a few seconds on a typical workstation of today. surface and slab models. Furthermore, we have indicated that

Figure 5 shows the variation of the calculated nonlocadeneralizations to three-dimensional systems are possible

correlation-interaction energy for two semi-infinite jellia of @nd that the results here suggest such an attempt may be

r=2.07 as a function of the separatidnlt illustrates two fruitful. In this way there should be a basis for applications

facts: the significant deviation from the corresponding quani® numerous physical, chemical, and biological systems in
tity for two thin jellium slabs(same as in Fig. 4; 5 a.u. witle which vdW bonds are a factor, such as crystals, liquids, ad-

and the substantial saturation effects, the latter by comparing€sion, soft condensed matterg., biomacromolecules, bio-
with the results of the asymptotic vdw formufaapplying Surfaces, polymers, and membranesd scanning-force mi-

the dielectric function Eq(23). croscopy.
In Fig. 6, we present the normalized nonlocal correlation-
interaction energy[E(d)—E()]/2Ay, in the metallic ACKNOWLEDGMENTS
range, showing how the interaction varies with. The We thank J. Dobson for providing us with several numeri-

curves depend only weakly @y when scaled in this manner. cal density profiles obtained in Ref. 14 for parallel slabs, and



7004

RYDBERG, LUNDQVIST, LANGRETH, AND DION

PRB 62

J. Perdew for providing computer code to generate densitwith Sp=1. Using (A2), we see that in the continuutm
profiles for isolated jellium surfaces. Work at Rutgers was—0 limit, (A5) becomes
supported in part by NSF Grant No. DMR 97-08499. Finan-

cial support from the Swedish Natural Science Research
Council and the Swedish Foundation for Strategical Re-
search through Materials Consortium no. 9 is also acknowl

edged.

APPENDIX A: DETAILS OF THE EVALUATION
OF THE DETERMINANTS ¢ AND ¢,

Here we show how ratios of determinants like Efj)

can be efficiently evaluated. To eliminate the oscillating sign, 55 no effect on the final result. Otherwise, the argument of

ds(z)

1
4z~ 2«(2)8(2), (AB)

with the boundary conditio®(0)= 1. Equation(A6) has the
solution

fk(Z))m
e(0))
This means that ik, (L) = €,(0), then the scaling due t8

S(z)= ( (AT)

problem mentioned in the main text, we need to first go to gy, logarithm in Eq(19) should be multiplied byS(L) ob-

discrete representation for the operat@ﬁf k?+1.0,) oc-
curring in Eq.(16). Specifically we takeéN points between 0
and L (for the full determinant n points between 0 and
(for subsystem determinantsso thatz=(n/N)L, with the

spacing between points=L/N. We use a similar represen-

tation for the empty space operatcsﬁe k?). Thus, replacing
the subsystem determinag{z) by the individually distinct
¢,, we have

a; b 0 0
Cl a2 t. :
¢n=det O b, 0 |, (A1)
: e Ch-2 @an-1 bn—l
o ... 0 c¢ho1 &,
where
a,=—2—h?k?
b,=1+ =1,
anl_illi,mrl' (A2)

along with a similar relation for the empty space determinant

tained from(A7).

The difference equation fap is obtained by use ofA4)
and(A5) in (A3), yielding

bn+1:2’n+l+an+1;bn+cnan71=01 (A8)

with
bo=1 (A9)

and
b1~ do=—(1+a,/by). (A10)

Substitution of(A2) into (A8) yields

- B
(¢n+1_2¢n+¢n—l)_h K ¢n+§|k,n+1(¢n+l_¢n—l)

=0. (A11)

In the continuum K—0) limit, this becomes

$"(2)—K*d(2)+11(2) ' (2)=0.
This equation is the same as HG8) in the main text, al-

though there we used the notatigrfor a particular solution,
while in this appendix it represents the general solution.
This general solution to Eg18) can be written in the

(A12)

¢on- Being tridiagonal, the determinant can be evaluated irfform

O(N) time, as contrasted to th@(N?) time applicable for a
general determinant.

The determinant is readily expanded by minors, giving

the recursion formula

bnr1=an+1Pn—bpCrbn_1, (A3)
with ¢g=1 and¢,=a;. It is clear from(A3) and(A2) that

D(2)=ad,(2)+Bds(2) (A13)

where $,(0)=1 and ¢,(L)=0, while ¢,(0)=0 and
¢5(L)=1. The boundary conditiofA9) implies thata=1,
while (A10) combined with(A2) implies that¢’ (0)=1/h as
h approaches zero. This means tig} can be neglected,

¢, oscillates in sign from order to order, an oscillation that issince 8 will be of order 1h. Specifically we havep’(0)

cancelled in the ratio Eq15) by a similar oscillation ing,,.
However, the envelope determinant {)"¢,, satisfies a

simple differential equation in the continuum limit. To make
the exact form of this differential equation identical to Eq.

(18), we further scale the envelope determingntthrough

$n=(—1)"S1¢n. (A4)
where the scaling functioB,=II]_,b; satisfies
Sh=DbnSh-1, (A5)

—B¢p(0)=1/h, so that

(A14)

The large coefficient€ 1/h) cancels out in the ratio ¢A14)

and the analogous free-space expression, so we may write

$6,5(0)
S(L)=="—"5(L),
0

¢(L) _ (L)
do(L)  Bo(L)

(A15)
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where the continuum version ¢f4) was used to obtain the Pp=ae", (B1)
first identity, after noting that the oscillating signs of the
numerator and denominator cancel in the ratio, and that th
free space value db is unity. Finally substituting this into

being an arbitrary constant. Note that the wanted quantity
0(0)/¢'(0) equals 1. On the boundary between the left

. : bulk and the middle regionp must be continuous, ang’
Eq. (17), we obtain, usingA7), must have a discontinuous step with the sizepfreflecting
" 2 ~ 1y the fact that the displacement fietg¢»’ must also be con-
EN= _J ﬂf d’k In $5(0) V(L) (A16) tinuous. The solution in the middle region now becomes
2 27 N '
° (2m)" ¢op(0)Ve(0) ¢m=a[coshkz)+ e, sinh(kz)]. (B2)

Trr‘]is is our most general r:eSl_"t* r\]/vhich_reduces to Ell?) He The same matching conditions apply between the middle re-
when €,(0)= €(L). Note that in the main text we used the gion and the right bulk, although here we only need to con-
notation¢ and ¢, for the particular solutions that are called sider the solution growing to the right, since we want to

@, and ¢, » here. match ¢ to the value ofg, infinitely far into the right bulk.
P bop
’ Obeying the matching conditions means the solution in the
APPENDIX B: DETAILS ON THE LIFSHITZ LIMIT right bulk becomes
Let e(z)=1 in between two surfaces a distarttapart, garoving_ dm(d)k+ ¢p(d)/ e oy ©3)

and lete,(z) =€y, in the bulk of each surface. Furthermore, 2k

let d be large enough SO we can assume sharp_ bounda”%squatingcﬁo with (B3) determines the coefficient a, and the
between the three regions. Then, the interaction energy | iion becomes

[EN(d) —EM()]/A may be calculated exactly. Note that al-

though the interaction energy may be calculated this way, the dm(dk+ o (d)/ ey, 1—p2e2kd
constant component contributing to the surface energy may ¢q(0)/¢'(0)= & = >
not, but it needs a much more involved calculation. 2ka 1-p B4)

The matching problem becomes solving E@8) for ¢
and ¢, in the regions left bulklb), middle region(m), and  with p=(e,—1)/(e,+1). It is clear from(B4) that the con-
right bulk (rb). Let ¢o=e*X, with the origin lying on the stant contribution to lfysy(0)/¢’(0)] and hence to the surface
boundary between the left and middle regions. Now we wangnergy is given by—In(1—p?). As discussed earlier in this
to find the ¢ that approaches zero far into the left bulk andappendix, that is not the correct constant and should be ex-
e** far into the right bulk. In the left bulk, we must have  cluded, yielding Eq(20).
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