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Today, materials theory is a full-fledged partner in
the development of new materials [1,2]. Bonds, struc-
tures, and other properties come out impressively
well, a clear success of the now “standard” density-
functional theory (DFT), present for hard materials,
like diamond. However, soft matter is just as abun-
dant and important to understand. Here we con-
sider the weak physical interactions in graphite, a
textbook-prototype soft layered material with large
interlayer separation. First the failure of the stan-
dard DFT is documented. Then we apply our re-
cently proposed general density functional [3] that
meets the requirement to include nonlocal correla-
tions and van der Waals interactions, physical effects
not present in the standard DFT. This revised DFT
gives separations, binding energies, and compressibil-
ities in close agreement with experiment. These num-
bers, together with intrinsic soundness of the new
density functional, open avenues for revised DFT use
for broad classes of soft matter, like polymers and
liquid crystals, chemistry, wet matter, nanoscience,
bioscience and biotechnology.

While standard DFT has an enormous predictive power
for hard and closely packed materials, it has, hitherto, pro-
vided only disinformation on soft matter. Standard DFT of-
fers highly accurate descriptions of hard materials like metals,
semiconductors, dielectric insulators, ionic crystals, ceramics,
magnets, etc. Here we can determine bond lengths within
about 1 per cent [4], proper stable structures with an edge
of 30 meV/atom compared to competing structures [5], dif-
fusion barriers in crystal growth with an accuracy of about
10 meV [6], and compressibilities typically within 10 per cent
of measured numbers [4]. Standard DFT is equally successful
for hard-material surfaces. These are strong driving forces
to develop an improved DFT, as they provide meeting places
for numerous accurate experimental techniques and advanced
theory, thus enabling detailed comparisons on the quantum
level between experiment and theory [7]. However, being
based on local and semilocal electron correlations, the stan-
dard DFT omits key physical interactions and cannot provide
a consistent and accurate calculations for sparsely packed soft
matter—a class of materials at least as abundant and impor-
tant as the hard ones.

This letter reports results for graphitic systems that open
the way for broad applications of a revised DFT to soft mat-
ter, i.e. to the sparse systems that define most physical, chem-
ical, and biological phenomena. Materials such as biomacro-
molecules, biosurfaces, polymers, liquid crystals, and mem-
branes (not to speak of many common substances like mica,
ice cream, and ski wax), and phenomena such as lubrication,
physisorption, adhesion, van der Waals complexes, van der
Waals bonds in crystals, liquids, liquid crystals, biomolecules,
biosurfaces, and most other organic-molecule interactions are

FIG. 1. The hexagonal layered structure of graphite. The
intraplanar (a/

√
3) bond length (adjacent atoms in foreground)

is shorter than in diamond, whereas the interplanar (d = c/2)
bond length (distance between adjacent layers) is large.
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FIG. 2. The graphene-graphene binding-energy curve calcu-
lated with standard DFT and with our new nonlocal-correlation
corrected functional [3]. A pseudopotential code and a semilo-
cal approximation [8] are used to calculate the standard DFT
energy. The new correlation functional [3] is simply replacing
the correlation energy of the standard calculation, and the new
energy is calculated as Enew = Estandard − Estandard

c + Enew
c ,

using the standard-DFT densities as input. The new correlation
functional is composed of local and nonlocal parts [3], where the
latter is laterally averaged. The system-specific component of
the correction is fixed by a separate calculation of the induced
surface charge [3].
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FIG. 3. Total-energy contour plot (10 meV line spacing) for
graphite in the c–a plane, calculated with standard DFT. The
lattice parameters are defined in Fig. 1. An all-electron projec-
tor augmented-wave method [17,16] and a semilocal approxi-
mation [8] are used. The dashed curve shows how a variation is
performed with the constraint of a constant volume, equal to the
experimental volume, indicating the likely procedure of Ref. [18].

characterized by and, in fact, operate through the weak ubiq-
uitous van der Waals interaction. A DFT approach that also
accounts for these important van der Waals forces is in great
demand. Since these forces are, indeed, present in the ex-
act DFT, the challenge is to provide an approximate van der
Waals density functional that is generally applicable, efficient,
and accurate, and that has a nonlocal density dependence.
We have proposed successively more versatile functionals with
such properties [9–11,3], and so have others [12–14]. Here our
systematic and tractable van der Waals density functional [3]
is applied successfully to graphitic systems. In view of the re-
cent implementation for arbitrary geometries [15], it achieves
this goal of a revised or new-standard DFT materials the-
ory using just the standard-DFT electron densities, for which
accurate and efficient algorithms exist.

We choose graphite for our study of soft matter because of
its simplicity and because of its juxtaposition with diamond,
another solid composed solely of the element carbon. Whereas
graphite is one of the softest minerals, diamond is the hardest;
graphite is opaque and black, while pure diamond is transpar-
ent and colorless; and graphite is a conductor, while diamond
is an insulator. Graphite’s technological importance also pro-
vides a motivation. Applications include fuel cells, sealing
materials, powdered metallurgy, friction products, shapes,
steel-mill and foundry products, lubricants, and plastics, not
to mention pencils. The prime reason for choosing graphitic
systems, however, is the textbook-sharp distinction between
regions for covalent and van der Waals bonding, respectively,
in these systems.

The structure of graphite is that of a staggered stack-
ing of flat layers of carbon atoms a distance d ≈ 3.34 Å
apart [19] (Fig. 1). Individual layers, referred to as
“graphene” sheets [20], are composed of strongly bonded car-
bon atoms at the vertices of a network of regular hexagons
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FIG. 4. Total-energy contour plot (10 meV line spacing) for
graphite in the c–a plane, calculated with a nonlocal-correlation
corrected DFT, as described in Fig. 2.

of side a/
√

3 in a honeycomb pattern with lattice constant
a ≈ 2.46 Å [21]. Graphene, alone, is not only an ideal
test system, but it is also materialized in nature, for exam-
ple in collapsed carbon nanotubes [22] and on surfaces [23].
In graphite, the graphene layers are weakly bonded to each
other.

It is surprising that there have been no published reports
that standard (semilocal) DFT gives results for graphite in
strong disagreement with experiment, with the only publica-
tion [18] being incomplete and unfortunately misleading (en-
ergy minimum likely searched with the constraint of a con-
stant volume). All this may be due to the fact that for a
long period, the early (local-density) version of DFT was re-
peatedly shown to give reasonable predictions at equilibrium
separations [24–26,5,27,28], thus obscuring the fortuitousness
of this result and providing demotivation for further work.
Here the complete breakdown of the current standard DFT is
documented, and a generalization that includes the applicable
physical mechanism is applied.

First the binding-energy curve of two parallel graphene
sheets is calculated, i.e. the difference in the total-energy
values at separation d and at infinite separation, respec-
tively, for varying d (Fig. 2). The standard-DFT curve is
completely wrong. The indications of van der Waals ef-
fects from semilocal standard DFT [29] are thus nullified by
this result. With results from our van der Waals correction
added, the ”revised-DFT” method, a binding-energy value of
34 (35 ± 10) meV/atom at the equilibrium interplanar dis-
tance 3.5 (3.35) Å is obtained in the ABAB stacking, where
the values within parenthesis are experimental numbers, ob-
tained from collapsed carbon nanotubes [22].

The second application is on graphite. The total-energy
E(c, a), calculated in standard DFT, is shown in Fig. 3 as
energy contours in the c–a plane. It documents that stan-
dard DFT gives unphysical results. Its minimum, if any, ap-
pears for c � 3a. Experimentally, 2.7 ≤ c/a ≤ 2.73 [19,5].
The revised-DFT binding-energy curve for varying lattice con-
stant c differs negligibly from that for two parallel graphene
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sheets (Fig. 4). It gives the potential-energy minimum at 34
meV/atom at the equilibrium interplanar distance c = 2.85a.

The concept of softness gets ample illustration by the fol-
lowing bulk-modulus values. For graphite, the early-standard
DFT gives values for the bulk modulus that are too high (∼ 51
GPa), the current standard gives values too low (∼ 7 GPa),
while the revised form gives a value (33 GPa) close to the
experimental one (33 GPa) [30] On the other hand, the cor-
responding diamond values are much closer to each other and
an order of magnitude higher (440 GPA).

In summary, with the key examples of graphene-graphene
and graphite, the standard DFT is shown not to be applica-
ble for calculating properties of soft matter. Use of our van
der Waals density functional [3] seems to be one way to pro-
ceed. As the outcome is so positive, we judge that we have in
our hands the first practically working version of such a func-
tional [3]. This is a very promising development for a broad
range of applications.
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