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A scheme within Density Functional Theory is proposed
that provides a basis for systematic improvements beyond the
local (LDA) and semilocal density approximations (GGA), to
incorporate medium- and long-ranged correlations, including
the van der Waals forces. The exchange-correlation energy is
exactly decomposed into a ”regular” part, simply expressed
in terms of a generalized polarization operator, known in the
uniform limit, and a remaining nonlocal correlation part, ex-
pressed in the same generalized polarization operator. The
resulting power series is proven to converge very rapidly under
certain useful conditions. An explicit nonlocal density func-
tional utilizing this decomposition is developed, and tested on
several prior studies.
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FIG. 1. Universal nonlocal correlation-interaction func-
tion εnl(γ, x), obtained using a simple model of the gener-
alized polarization operator, derived in this report. The fig-
ure shows the spherical average of the interaction function
between points r and r′, as a function of scaled distance
x = qeff |r− r′|, and inhomogeneity measure γ. Both qeff

and γ are functions of the density, and defined in Sec. V.

I. INTRODUCTION

Densely-packed materials are today described very
well with regard to properties like cohesion, bonds and
structures.1–4 This success story of the Density Func-
tional Theory (DFT)5,6,1 is performed worldwide with
approximate local and semilocal density functionals for
the exchange-correlation (XC) functional Exc[n].6 The
driving force behind this impressive development is the
desire to treat first largely homogeneous systems like
simple metals and semiconductors, where LDA6,7 is
appropriate, and secondly inhomogeneous systems like
compounds, surfaces, and interfaces, where members of
the GGA family8–10 give improved descriptions. Soft,
sparsely-packed materials are at least as abundant. In
such systems there are interparticle separations, where
nonlocal interactions such as van der Waals (vdW) forces
are influential.

The DFT5,6,1 expresses the ground-state energy of an
interacting system in an external potential v(r) as a func-
tional E[n] of the particle density n(r), and this energy
has its minimum at the true ground-state density.5 The
intricate interactions among the electrons are exactly ac-
counted for in terms of the XC potential vxc[n](r) =
δExc[n]/δn(r).6 The vxc[n] acts locally on each electron,
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and thus propagates the interactions only through its de-
pendence on the density. To treat sparsely packed sys-
tems, where long-ranged forces originating in the quan-
tum correlations between electrons are important, it is
nescessary to also account for the nonlocal effects in Exc.

There are several approximate functionals proposed
to account for these effects,11–15 approaching the prob-
lem from different directions, and with different virtues.
Apart from the obvious requirements that the functional
should be general and sufficiently well understood to al-
low physical insight, the practical requirement on such a
functional is that it must be simple enough to allow ef-
ficient computations. None of the so-far-proposed func-
tionals encompasses all these requirements.

In order to address the nonlocal XC energy, it is expe-
dient to decompose Exc into two parts; one regular part
representing the present knowledge of the functional, and
one containing the nonlocal properties. The word ”reg-
ular” is here used in the sense ”major”, ”simple”, ”pre-
dictable”, ”local” or ”semi-local”, and emphasizes that
the regular portion of the XC energy is large and well
known within the framework of the LDA and GGA.6–10 A
decomposition of this kind has already been suggested,15

and is given formally by

Exc[n] = E0
xc[n] + Enl

c [n]. (1)

The regular part, E0
xc, should be calculated using estab-

lished knowledge and serve as a foundation for the con-
struction of the nonlocal part, Enl

c , which in a sense is
treated as a perturbation. In the uniform limit, E0

xc is
equal to LDA, and in general, it contains all exchange
effects plus a regular piece of the correlation, further dis-
cussed in Sec. V.

A key property of a general XC functional is robust-
ness; as a functional of the density, it should work for
all systems, in particular inhomogeneous ones. Prior
studies12,16,17 have given the asymptotic behavior of Enl

c ,
and a first step towards more medium-ranged interac-
tions in Enl

c ,15 which are important for soft matter. To
date, these long- and medium-range investigations have
been completely separated from more close-ranged18,19

or general13,14 (but intractable) ditto. It goes without
saying that the close-range energetics of the regular en-
ergy gives poor guidance to the asymptotic properties,
but in the intermediate regime that is no longer so.15

As the regimes are merged, the information from both
ends becomes equally important. This is fortunate, be-
cause it means that E0

xc may serve as a powerful tool for
the approximate construction of Enl

c . To that end, it is
desirable to express both E0

xc and Enl
c in the same quan-

tity, so that maximum use can be made of established
knowledge, and to devise a robust approximation to the
nonlocal part Enl

c .
The present approach to Enl

c has the following guiding
principles: (i) Express E0

xc and Enl
c in the same quan-

tity, hereafter called sxc; (ii) Make a simple parame-
terization of sxc, based on previous studies of nonlocal

functionals;12,16,17,15 (iii) Adjust the parameterization to
both regular and nonlocal key properties, utilizing previ-
ous studies of the XC hole.7,8,20,18,19

Step (i) is made in Sec. II, step (ii) in Sec. IV, and
step (iii) in Sec. V. In Sec. VI the resulting functional,
Eq. (63), shown in Fig. 1, is tested against several prior
studies, and Sec. VII, finally, gives some concluding re-
marks.

II. GENERALIZED POLARIZATION OPERATOR
Sxc

In order to arrive at a robust approximation to Exc

for inhomogeneous systems, E0
xc and Enl

c should be ex-
pressed in terms of their common denominator, sxc. In
Ref. 15, the regular energy E0

xc is defined in an RPA-like
approximation as21

E0
xc[n] =

∫ ∞
0

du

2π
Tr [ln(ε)]−Eself , (2)

where ε[n](iu, r, r′) is the isotropic dielectric function,
and Eself is a trivial self energy.15 Eq. (2) becomes the
only contribution in the uniform limit, and can readily be
put on the same general, simple form as LDA and GGA,
making it a suitable starting point. Within the RPA,
ε = 1

3

∑
i ε

KS
i,i , the isotropic dielectric function of the non-

interacting (Kohn-Sham) system, but Eq. (2) is not lim-
ited to isotropic RPA, an issue discussed in Appendix A.
However, a definite advantage of RPA compared with a
more general treatment is that εKS is constructed from
the one-electron KS orbitals, which in turn implicitly de-
pend on the density only. In that sense εKS is regular,
although it may contain long-ranged tails due to delocal-
ized electrons, like in metals. For bounded systems, like
atoms and molecules, it is even localized.

In the same treatment, the nonlocal energy, Enl
c , is

expressed as15

Enl
c [n] =

∫ ∞
0

du

2π
Tr [ln(1 + ∆)] , (3)

with ∆ given by

∆ = ε−1 [∇, ε] ·∇G. (4)

Here, G = −1/4π |r− r′| is the Coulomb Green’s func-
tion such that ∇2G = 1. Although both Eq. (2) and
Eq. (3) are expressed in terms of ε, it enters in such a
way that a direct approximation becomes unwieldy. It
suffices to think of getting ln(ε) or ε−1 from the knowl-
edge of ε only.

From Eq. (2), it is suggestive to make a trivial defini-
tion of sxc as the logarithmic expression

sxc[n] = ln(ε[n]), (5)

which renders E0
xc linear in sxc; the problem of evaluating

ln(ε) is avoided completely if sxc is parameterized directly
in terms of the density.
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With Eq. (5), Eq. (2) is simply expressed in terms of
sxc, and it turns out that also Eq. (3) is expressed quite
conveniently in terms of sxc, via the series

∆ =
∞∑
n=1

1
n!

dn · d0G ≡
∞∑
n=1

∆n, (6)

where

dn+1 = [sxc,dn] , (7)

and the starting criterion, d0 = ∇. In a uniform, trans-
lationally invariant system, Eq. (7) and consequently
Eq. (6) vanishes identically, so that a rapid convergence
of Eq. (6) in a slowly varying system is immediately ap-
parent. As shown in Appendix B 1, this holds true also
for slightly more general conditions.

A. Evaluation of Enl
c

From Eq. (4), it is evident that ∆ is independent of a
simple scaling of ε, and hence depend only on the nonuni-
form character of ε. One could further expect that the
eigenvalues of ∆ in general are small, so that the second-
order expansion of the logarithm in Eq. (3) becomes of
interest,

Tr [ln(1 + ∆)] = Tr [∆]− 1
2

Tr
[
∆2
]

+O(δ3), (8)

where δ is a small measure, discussed in Appendix B 2. A
consistent second-order expansion in δ may be formed by
keeping the terms ∆1 and ∆2 for the first order term, and
∆1 for the second-order term. Evaluating the expressions
one obtains

Tr [∆1] = 0, (9)

Tr [∆2] = Tr
[
s2

xc − sxcd0 · sxcd0G
]
, (10)

Tr
[
∆2

1

]
= 2Tr [∆2] + Tr

[
(d0 · sxcd0G)2 − s2

xc

]
. (11)

Equation (10) is contained also in Eq. (11), simplifying
matters considerably. The final expression for the nonlo-
cal energy becomes

Enl
c =

∫ ∞
0

du

4π
Tr
[
s2

xc − (sxcT)2
]

+O(δ3), (12)

where T ≡ ∇G∇ is the 3x3 dyadic operator such that
T2 = T and the trace over the 3x3 matrix yields 1.

Several points can be made about Eq. (12): (i) It is
positive for all sxc (Sec. IV) and hence the non-local con-
tributions (to second order) are always positive; (ii) It
contains no term linear in sxc, and is therefore a pure
correlation energy; (iii) For a uniform system, it van-
ishes identically, since sxc then commutes with T; (iv) It

is equivalent to the second-order expansion of the par-
ticular approximation used in Ref. 15. Hence, Eq. (12)
is a three-dimensional generalization of that functional,
with the addition of allowing more realistic polarizability
models.

In addition, Eq. (12) can be viewed as a direct gen-
eralization of the traditional dipole expansion which is
applicable at long range.

The remainder of this paper is devoted to the evalua-
tion of Eq. (12), in terms of an explicit formula for the
nonlocal energy Enl

c . The scheme to achieve that goal, in
general, can be stated as: (i) Make a simple, but phys-
ically sound, parameterization of sxc, based on previous
studies of nonlocal functionals;12,16,17,15 (ii) Adjust the
parameterization to both regular and nonlocal key prop-
erties, utilizing previous studies of the XC hole.7,8,20,18,19

III. CONSTRAINTS ON Sxc

The constraints on sxc are numerous. This is fortunate,
however, since it increases the prospects of parameteriza-
tions of sxc to have meaning. What is not so fortunate,
is that the number of parameters must be kept very low
in order to get something practical, something that can
be readily calculated. In any respect, the constraints
tell us more about the nature of sxc, and gives a bet-
ter insight in how to treat the nonlocal corrections, so
to start with, those constraints will here be listed, one
by one. Since what is sought is an understanding of the
nonuniform system, the constraints will also be investi-
gated under small deviations from uniformity, expressed
in the reduced density gradient22

s(r) =
|∇n(r)|
2kFn(r)

. (13)

This s should not be confused with the polarizability op-
erator sxc. The prescriptions later on will be for general
densities, but in order to accurately define various com-
ponents, it is important that the slowly varying limit is
described appropriately.

A. Regular constraints on sxc

The regular energy is expressed in terms of the di-
agonal of sxc, sxc(iu, r, r), on which there are am-
ple requirements via the known approximations to the
exchange-correlation hole (nxc).8,20,18,19 The basic sum
rule is that the total XC hole must integrate to neg-
ative unity. This is by construction respected by sxc

(charge-conservation).15 Another important constraint is
given by the regular exchange-correlation energy. Other,
more elaborate constraints concern the general shape of
the exchange-correlation hole (nxc)7 both in the uniform
limit8,20,18 and in a gradient environment.19
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In the weakly perturbed limit, the exchange energy per
particle is given by

εx[n] = − 3
4π
kF (1 + µxs

2). (14)

The gradient coefficient is known to be µx = 10/81,23

which is different from the earlier estimates,24,25 but it is
believed that the numbers presented here are the correct
ones.22 The coefficient for exchange-correlation is known
in the high-density limit, µxc = −0.1331, yielding a pos-
itive contribution to the energy.26 As devised in Ref. 26,
the correlation coefficient should be µc = µxc − µx =
−0.2566. It is enlightning to also write down the en-
hancement factor Fxc,18

Fxc = F uni
xc + µxcs

2. (15)

Equation (15) states that Fxc should decrease for a small
perturbation, but the prevailing approximation to Fxc,
the GGA,19 always increase with s, for delicate reasons.27

The basic argument is that the term proportional to s2 is
improper for the long-ranged contributions to Exc. An-
other way to state this is: local or semilocal approxima-
tions, like LDA and GGA, cannot by definition account
for the global change due to an applied perturbation, and
therefore the exact global results does not apply, unless
they are really local in nature.

This delicate state of affairs should be possible to im-
prove upon, by investigating how the nonlocal energy
Eq. (3) behaves under small perturbations; it is shown
in Sec. IV that it is always positive. Following the intro-
duction, it is expedient to decompose the enhancement
factor into the two parts

Fxc = F 0
xc + F nl

c , (16)

with gradient coefficients µ0 and µnl, respectively. The
exchange is all contained in F 0

xc, and since Enl
c vanishes

for a uniform system, one obtains in the slowly varying
limit

F 0
xc = F uni

xc + µxs
2 + (µc − µnl)s2, (17)

and

F nl
c = µnls

2. (18)

From Eq. (17) and Eq. (18) it is clear that if µnl ∼ µc,
the effective gradient coefficient for F 0

xc would behave
similarly to the way Fxc is effectively implemented in
the GGA (although F 0

xc is not by any means equal to
the GGA). Apparently, the more regular changes in the
energy should behave as the GGA, and together with
Eq. (3), a full account for the global change should be-
come within reach.

B. Nonlocal constraints on sxc

In the u → 0, q → 0 limit, corresponding to the in-
tegrated sxc, the polarizability and the known small-q

behavior28 puts additional constraints on sxc. The basic
quantities are the polarizabilities and the van der Waals
coefficients, together with more special ones, like the non-
local surface energies.

A simple model of the polarization P = αextEext in
response to an applied field Eext is

αext =
α

1 + 4πα/D
, (19)

where α is the polarization response to the total field,
P = αE. The dimensionality factor D may vary between
different objects. Equation 19 with D = 2 is exact for a
planar step surface, and with D = 3, for hard spheres.
Integrated over space, Eq. (19) is the static polarizabil-
ity, α0, which is restricted to an approximate interval,
corresponding to the range of physical values of D.

In the case of perfect conduction, α→∞, and Eq. (19)
reduces to αext → D/4π. Although true for a uniform,
translationally invariant system, α → ∞ does not hold
in a bounded, finite system.

A principal system, in which gradients plays a negli-
gible role, is the system of two semi-infinite, planar sur-
faces, a distance d apart. The van der Waals attraction
between the two surfaces has been studied,29,15 yielding
an energy on the form −C2/d

2, and specifically, the ef-
fects beyond second-order expansions, the so-called mul-
tiple reflections, are small enough to justify a simple in-
teraction picture. Since Eq. (3) is a second-order expan-
sion in eigenvalues, it does not suffer, in principle, from
the multiple reflection problem. To further simplify mat-
ters, the two surfaces will be taken to be steps, and of the
same kind, so the asymptotic limit of this system may be
evaluated and compared to the devised van der Waals co-
efficients, C2. These have been obtained from the Lifshitz
formula, using a simple model dielectric function,29

C lifshitz
2 =

0.006764

r
3/2
s

, (20)

where rs = (3/4πn)1/3 is the usual electron-gas parame-
ter.

At this stage, it is necessary to discuss the applicability
of the Lifshitz result to bounded systems. In Ref. 15, the
C2 coefficients obtained were substantially smaller than
Eq. (20). It is of course possible that this discrepancy is
due to some general non-account for long-ranged behav-
ior in the dielectric function used,15 but the more plau-
sible explanation is that the true van der Waals forces
actually are damped due to a broadening of the exchange-
hole at the surface edge, an effect not accounted for in
Eq. (20). To what extent this broadening affects the scal-
ing with rs is not known.

The reason for the discussion is that the resulting func-
tional obtained in this paper exhibits a scaling drastically
different from Eq. (20) in the high-density limit. Al-
though the derived result should not be taken as fact,
and there is reason to believe it is in turn underestimat-
ing the response at high density, it points to the possi-
bility of a large discrepancy. It should be safe to state
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the following. Enl
c does not, in general, contain all the

correlation energy, although it should contain all truly
nonlocal interactions, when treated in the RPA. What is
often overlooked is that there are two distinctly different
physical origins for long ranged correlations. One is due
to an overlap of electrons, which occurs in regions of large
densities, even if the density is varying. The other origin
is the Coulombic interaction between points in space sep-
arated by regions of low density. Clearly, the first type
will not survive across regions of small density, and the
latter type should only be a fraction of the former in size.
In the analysis that follows, it should be born in mind
that although this question has been addressed, it has
not been resolved.

IV. MODEL OF Sxc

In order to give a density functional account for the
nonlocal energy, and arrive at an explicit form of εnl ,
a specific model for sxc shall now be adopted, and the
corresponding εnl be derived.

The polarization operator sxc is defined in terms of an
isotropic dielectric function ε as

sxc = ln(ε). (21)

In RPA, ε = εKS, the isotropic non-interacting (Kohn-
Sham) dielectric function.30 In the uniform limit, a useful
approximation is31,15

ε̂(iu, q) = 1 +
ω2
p

u2 + ω̃2
q

, (22)

where ω2
p = 4πn, and ω̃q is an appropriate dispersion

model. The use of Eq. (22) in Eq. (21) gives a logarithmic
form. However, the major objective here is to find a
sufficiently simple, yet physically sound, approximation
to sxc, such that a useful formula for the nonlocal energy
Eq. (3) can be found. To that end, it is more suitable
to ”undo” the integral over the coupling constant λ, to
obtain

ŝuni
xc (iu, q) =

∫ 1

0

dλ
ω2
p

u2 + ω̃2
q + λω2

p

. (23)

By the mean value theorem, Eq. (23) may also be written

ŝuni
xc (iu, q) =

ω2
p

u2 + ω̃2
q + λ̃(iu, q)ω2

p

. (24)

In this way, the λ-dependence is absorbed into the dis-
persion, such that one may write

ŝuni
xc (iu, q) =

ω2
p

u2 + ω2
q(iu)

. (25)

To further simplify the resulting expressions, the
frequency-dependence of ωq will be neglected, thus re-
sulting in an approximation for sxc on the same form as

the simple Eq. (22), although the appropriate dispersion
model in Eq. (25) of course differs from the former.

Crude as this treatment may seem, it is still physical,
for the following reasons: (i) The high-q and high-u lim-
its are correctly accounted for. (ii) The low-u and low-q
limits can not in general be accounted for separately but
collectively. (iii) In many specific cases, the ratio ωp/ωq
is actually small enough so that sxc ≈ 4πα is a valid
approximation. (vi) As a direct, beyond-RPA approxi-
mation to the true sxc, Eq. (25) is on equal footing with
Eq. (22). (v) Neither Eq. (25) nor Eq. (22) is a priori
a good model for the nonuniform system, and hence can
in either case only serve as a hint for the uniform limit;
what is really needed is a reliable approximation for the
nonuniform case.

A. Nonuniform Construction

To find a suitable approximation for the nonuniform
sxc, it is important that it obeys certain basic constraints.
From Eq. (21), it is seen that sxc must be hermitean, since
ε is hermitean, i.e., the reciprocity condition

s∗xc(iu, r′, r) = sxc(iu, r, r′) (26)

must hold. Moreover, sxc should be positive (semi) def-
inite, since the eigenvalues of ε are real and greater or
equal to unity. In the uniform limit, it should reduce
to Eq. (25). An expression obeying these constraints is
sxc = aa†, or explicitly,

sxc(iu, r, r′) =
∫
d3r̄ a(iu, r, r̄)a∗(iu, r′, r̄), (27)

where a is not subject to any particular symmetry con-
straints, and yet to be specified.

As it stands, Eq. (3) involves integrations over four
space variables, which is computationally forbidding. To
make a sufficient simplification, the form of a must be
constrained, in such a way that four reduces to two. To
that end, a(iu, r, r̄) is first decomposed into Fourier com-
ponents,

a(iu, r, r̄) =
∑
q

â(iu, r̄,q)eiq·(r−r̄), (28)

where the summation sign denotes a properly normalized
Fourier integral,

∑
q =

∫
d3q

(2π)3 . Secondly, â(iu,q, r̄) is
approximated by

â(iu, r̄,q) =
ωp(r̄)

iu+ ωq(r̄)
. (29)

An important detail of Eq. (29) is the spatial dependence,
allowed to vary only in the r̄ space coordinate. In this
way, when Eq. (27) is multiplied by a translationally in-
variant operator from either side, only the q-dependence
will change, and the rest will stay intact, reducing the
number of space integrations in Eq. (3) to two. From
Eq. (29) it is easily seen that Eq. (27) reduces to Eq. (25)
in the uniform limit.
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B. Regular energy; E0
xc

The particular form (27,28,29) for sxc yields a particu-
lar approximation to E0

xc, as follows. The regular energy
is given by Eq. (2), involving the diagonal sxc(iu, r, r).
After integrating over u, one obtains

∑
u

sxc(iu, r, r) =
∫
d3r̄

∑
q,q′

ω2
p(r̄)ei(q−q′)·(r−r̄)

ωq(r̄) + ωq′ (r̄)
. (30)

The dependence on r is simple, and the integral can be
performed to yield∫

d3r
∑
u

sxc(iu, r, r) =
∫
d3r

∑
q

ω2
p(r)

2ωq(r)
. (31)

Equation (31) displays an energy precisely on the usual
regular form. The self-interaction Eself may be decom-
posed in the same way, with ωq replaced by

ωself
q = q2/2, (32)

which is just the free-particle dispersion.15 Dividing
Eq. (31) by two, inserting ω2

p = 4πn and subtracting
the decomposed Eself yields the regular energy

E0
xc =

∫
d3r n(r)ε0

xc[n](r), (33)

where ε0
xc[n](r) is the energy per particle,

ε0
xc[n](r) ≡

∑
q

(
π

ωq[n](r)
− π

ωself
q

). (34)

It must be born in mind that although Eq. (34) has a
local appearance, it should still, in principle, contain all
the ”regular” nonlocal dependence on the density; it all
depends on the dispersion model ωq[n], which may in
principle, and arguably should, be nonlocal.

As a comment, Eq. (34) is of course not intended to
replace the LDA, but to serve as a ground point for the
nonlocal energy, which would otherwise risk to become
unphysical. The reasoning is that a model for sxc must
give a reasonable value for E0

xc as well as Enl
c , and the de-

viations should indicate the relative accuracy of the func-
tional. A certain percental error in E0

xc may be totally
unacceptable, but the same error in the much smaller Enl

c

might be more than sufficient.

C. Asymptotic Limit; α(iu) and C2

In the second order approximation, Eq. (3), it is easily
shown that the asymptotic interaction between two well-
separated objects a distance R apart is given by

EvdW = − 1
R6

3
π

∫ ∞
0

duα(iu)α′(iu), (35)

where the prime denotes different species, and the polar-
izabilities α(iu) are given by

α(iu) =
1

4π

∫
d3rd3r′sxc(iu, r, r′), (36)

which after insertion of Eq. (27) becomes

α(iu) =
1

4π

∫
d3r

ω2
p(r)

u2 + ω2
q=0(r)

. (37)

Equation (37) is reminiscent to the standard form,32–34,11

although different in that here ωq does not correspond ex-
actly to the physical dispersion. Nevertheless, Eq. (37)
should come out right in general, and specifically the
static limit, α(0), should be compared with the model
Eq. (19).

In the special case of two flat, parallel, semi-infinite
surfaces, Eq. (35) may be further simplified. The inte-
gration of 1/R6 over the two surfaces yield π/12d2 per
surface area. The interaction between the two surfaces
becomes EvdW = −C2/d

2, with the C2 coefficient

C2 =
n2

0

4

∫ ∞
0

du
1

(u2 + ω2
0)(u2 + ω′0

2)
, (38)

where ω0 is the bulk value, independent of gradients. The
frequency integral can be performed to yield

C2 =
πn2

0

8
1

ω0ω
′
0(ω0 + ω′0)

, (39)

which should be compared with Eq. (20), given a partic-
ular model of ωq.

An issue is whether a local approximation to sxc can ac-
count for Eq. (37) in general, or whether gradient correc-
tions to sxc are needed. Also, there is an issue regarding
the polarizability of a uniform system, which crucially
depends on the macroscopic polarization.35,36 The first
issue will be discussed in Sec. V, whereas the second is
left unanswered in this report.

D. Slowly varying limit; Znl

In the slowly varying, high-density limit, the nonlocal
contribution Enl

c may be found exactly. In that limit,
Eq. (3) becomes, in principle, the exact deviation to Enl

c ,
given the exact sxc. The nonlocal response kernel Knl(q)
is defined via

δEnl
c [n] =

1
2

∑
q

Knl(q) |δnq |2 . (40)

Knl(q) expressed in terms of sxc is easiest found directly
from Eq. (3). Consider a small perturbation from uni-
formity, s1 = s0 + δs0 , inserted into the trace of Eq. (3).
Because [s0,T] = 0, T2 = T and Tr [AT] = Tr [A], for
any scalar operator A, one obtains
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Tr
[
s2

1 − (s1T)2
]

= Tr
[
(δs0)2 − (δs0T)2

]
, (41)

which means it is sufficient to go to first order in δs0

to obtain the second order change in Enl
c . Equation (3)

becomes easier to analyze in ”double Fourier” space,

Enl
c [n] =

1
4

∑
u,k,k′

(1− (k̂ · k̂′)2) |s̃xc(iu,k,k′)|2 , (42)

with further details given in Appendix C. Equation (42)
proves that Enl

c ≥ 0 holds for all systems, and specifically
that Knl(q) ≥ 0.

To ease the comparison with existing calculations,26

the gradient coefficient Znl is defined as

Znl =
4k4
F

3π
∇2
qKnl(q)|q=0, (43)

which puts Znl on the same scale as Z0.26 After some
algebra (Appendix C), one obtains

∇2
qKnl(q)|q=0 =

∑
u,q

2
q2

∣∣∣∣δŝuni
xc (iu, q)
δn

∣∣∣∣2 . (44)

With the definition Eq. (43), the coefficient µnl of Sec. III
becomes µnl = −Znl/9.

E. Evaluation of Enl
c

Consider the trace in Eq. (3) after insertion of Eq. (27).
The cyclic property yields

Tr
[
aa†Taa†T

]
= Tr

[
a†Taa†Ta

]
. (45)

Because of the particular form of a, a†Ta may be evalu-
ated directly,

a†Ta =
∑
q

ωp(r)ωp(r′)T(q)eiq·(r−r′)

(−iu + ωq(r))(iu + ωq(r′))
. (46)

After insertion into Eq. (3), and some algebra given
in Appendix D, Enl

c takes on the form of an effective
electron-electron interaction energy,

Enl
c =

1
2

∫
d3rd3r′ n(r)εnl(r, r′)n(r′), (47)

which is the desired quantity. For a particular and suffi-
ciently simple dispersion model, εnl[n](r, r′) may be read-
ily evaluated and tabulated, hence yielding an explicit
form for the interaction.

In the limit of large separations, εnl(r, r′) tends to

εnl(r, r′)→
(−3/2)

ω0(r)ω0(r′)(ω0(r) + ω0(r′)) |r− r′|6
, (48)

with details given in Appendix D. Eq. (48) is in agree-
ment with Eq. (35) and Eq. (39), and in form, although
as discussed not in detail, to prior results.34

V. DISPERSION MODEL

Given the construction in Sec. IV, the next step is
to pick a particular form of the dispersion ωq(r), and
fit to most or all of the constraints outlined in Sec. III.
Before commencing, the essential features of ωq should
be discussed.

In the long-ranged van der Waals limit, it is utterly im-
portant that the polarizability is finite for all densities.
This is stressed, because naively applying a typical bulk
dielectric function, such as the Drude formula, leads to a
gross overestimate of the response at low densities.37 To
remedy this, the use of some kind of cutoff34 has been
nescessary.11,12,17,15 In this work, the cutoff is built di-
rectly into the dispersion model in a smooth fashion, as
opposed to the prior sharp ones, making the model ap-
plicable also in the intermediate range.

The second essential limit is the large-q, or Coulomb
scattering, limit. In order to cancel the singularity in
Eself , and to produce finite regular energies, ωq → ωself

q ,
must hold as q →∞, i.e., the free-electron model. With
those basic features settled, the goal is to find a reason-
able interpolation between the two extremes, so as to
account for the constraints as accurately as possible.

In order to keep the parameterization of sxc tractable,
ωq should ultimately only depend on one spatial para-
meter, q0(r). The generic dispersion model that will be
investigated here is given the form

ωq(r) = q2/2h(q/q0(r)), (49)

where h(y) is a scaling function. This is of course a se-
vere restriction, but is done out of necessity; the benefits
from having a tractable model for the nonlocal energy
are sufficiently many so as to justify this rather crude
treatment.

From Eq. (37), it is clear that ωq→0(r) must be finite
in order to produce finite static (u = 0) polarizabilities,
so h(y) → y2 as y → 0. For large y, h(y)→ 1, to recover
the free-electron limit.

In the uniform limit, the scaling function h(q) is ex-
actly related to the wave-vector decomposition of the
coupling-constant averaged exchange-correlation hole20

n̄xc(q) as

h(y) = 1 + n̄xc(q0y), (50)

which follows after some manipulations of Eq. (A1).
The quantities of Sec. IV may be simply expressed in

terms of h(y). The regular energy, Eq. (34), becomes

ε0
xc(r) =

q0(r)
π

∫ ∞
0

dy (h(y) − 1), (51)

where the integral is just a number, depending only on
the scaling function h(y). The polarizability Eq. (37)
becomes

α(iu) =
∫
d3r

n(r)
u2 + (q2

0(r)/h′′0)2
, (52)
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FIG. 2. The pair distribution function g(x = kF r), ob-
tained from the Gaussian model, Eq. (55), compared to the
uniform exchange hole (middle). The figure shows g(x) for
two values of f , Eq. (65). Upper curve: f = 1. Lower curve:
f = 1.2.

where h′′0 is the second derivative with respect to y at the
origin. The C2 coefficient, Eq. (39), becomes

C2 =
πn2

16(q2
0/h
′′
0)3

=
k6
F

144π3(q2
0/h
′′
0)3

, (53)

containing only bulk properties. The gradient coefficient
Znl depends more intricately on the scaling function h(y),
and will be treated separately.

Clearly, the value of h′′0 is very important, and should
ultimately be a function of the density. However, this
immediately imposes some problems, since a single-
parameter model is sought, for computational reasons.
Also, it is not clear how much h′′0 affects Eq. (51), for in-
stance, so even with a more general prescription, a great
deal of additional knowledge would need to be added,
knowledge that goes beyond local and semilocal treat-
ments. As an example of this, consider the value of h′′0
in the uniform RPA, obtained from inserting the small-q
expansion of Ref. 20 into Eq. (50),

h′′0
uni−RPA = 3.070q2

0/k
3/2
F . (54)

Inserted into Eq. (53) yields C2 = 0.01723/r3/2
s , a factor

2.5 times larger than the Lifshitz result, Eq. (20). This
suggests that long-ranged behavior may have poor trans-
ferability from the uniform limit to the nonuniform case
– even if the error is due to the approximations made.
In that respect, integrated quantities like energies should
be much more reliable.

Notably, q0 and h′′0 enter both Eq. (52) and Eq. (53) as
q2

0/h
′′
0 , so a consistent treatment of those two quantities

is possible. Equation (51) presumably scales differently
with h′′0 in general. Judging from the argument of the
previous paragraph, it might be better to use in fixing the
scaling of h(y) than the former ones. The most important
property is the gradient coefficient, Znl, however, since it
should both be readily transferable to the nonuniform
case and important to the size of the nonlocal energy, so

the main concern is to choose h(y) such that Znl becomes
reasonable.

A. Scaling function h(y)

A reasonable scaling function h(y) is the simple
Gaussian,

hgauss(y) = 1− e−ηy
2/2, (55)

with h′′0 = η. With Eq. (55), Eq. (51) also scales with
q0/
√
h′′0 , so η may be chosen arbitrarily. A suitable choice

is η = 8π/9, for which Eq. (51) becomes

ε0
xc

gauss[n] = − 3
4π
q0[n] ≡ − 3

4π
kFf [n], (56)

which has the same appearance as Eq. (14). A compar-
ison of the pair distribution corresponding to Eq. (55),
and that of the uniform exchange hole is shown in Fig. 2.
The on-top hole becomes negative for f > 1.35, a docu-
mented flaw of RPA approximations.20

Inserting Eq. (55) into Eq. (44), an explicit expression
for the gradient coefficient, Znl, in terms of the parameter
q0[n], may be obtained. After differentiation of Eq. (25)
and a considerable amount of algebra (not repeated here)
one finds

Zgauss
nl =

rs(1.893 + 0.3687p(rs) + 10.20p2(rs))
f5(rs)

, (57)

where p is the logarithmic derivative p = rsf
′(rs)/f(rs).

B. Evaluation of Enl
c

With Eq. (49), Eq. (47) may be further specified. Let

qeff =
√

(q2
0 + q′0

2)/2, (58)

γ = (q2
0 − q′0

2)/(q2
0 + q′0

2). (59)

Then q0 =
√

1 + γqeff and q′0 =
√

1− γqeff. Further let
x = qeff |r− r′|, and define

νy = y2/2h(y/
√

1 + γx), (60)

ν ′y = y2/2h(y/
√

1− γx). (61)

Using the result of Appendix D, the nonlocal interac-
tion εnl(r, r′) can then be expressed in terms of a simple
function εnl(γ, x),

εnl(r, r′) = εnl(γ, qeff |r− r′|), (62)

where

εnl(γ, x) =
(4π)2

2

∑
y1,y2

v(y1 , y2)
y3

1y
3
2

× 1
(νy1 + ν ′y1

)(νy2 + ν ′y2
)
(

1
νy1 + νy2

+
1

ν ′y1
+ ν ′y2

). (63)
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FIG. 3. The enhancement factor Fxc
10, versus rs. Upper

curve: LDA in the RPA, Eq. (66). Lower curve: LDA, ob-
tained from Ref. 22.

The function v(y1 , y2) is given in Eq. (D7). Equation (63)
is a two-valued function, which can be readily tabulated
as a function of γ and x. Figure 1 shows εnl(γ, x) for
different values of γ. Notably, is is almost independent
of γ at short range, whereas the effect becomes large
at intermediate and long range. The long-range limit
becomes

εnl(γ, x)→ −3
2

1
ν0ν ′0(ν0 + ν ′0)

= − 3η3

4(1− γ2)x6
, (64)

which of course is equivalent to Eq. (48).

C. Uniform scaling; Fxc

Dividing Eq. (56) by the exchange energy one obtains
an expression for f [n] in terms of the regular enhance-
ment factor, Eq. (17),

f [n] = F 0
xc[n]. (65)

In the uniform limit, Eq. (56) is the only contribution
to Exc, F 0

xc = F uni
xc , and since the nonlocal energies are

small, f [n] should in general scale as Fxc[n], although for
nonuniform systems not exactly.

In the high density limit, Fxc → 1, and the XC hole
tends to the exchange hole, suggesting that f should ap-
proach unity. From Eq. (57), it is seen that if f tends
to unity, Znl must tend to zero. For comparison, the
total correlation gradient coefficient, Zc, approaches a
constant as rs → 0.26,38 More severely, C2 approaches
a constant, in sharp contrast to the assumed scaling
Eq. (20). On the one hand, a complete independence
of rs at high densities does not seem quite right, but on
the other hand, Eq. (20) is based on the dielectric func-
tion in the Drude form, and no effect of the broadening of
the exchange-hole has been taken into account, an effect
that is also supported by intermediate-range studies of
the same system.15 Although it would be sufficient for f
to slowly approach zero as rs approaches zero, in order

4 6 8 10 12

0.0005

0.001

0.0015

0.002

FIG. 4. Lower curve: The C2[n] coefficient of Eq. (53) ver-
sus rs, using f [n] = FRPA

xc [n]. Upper curve: Eq. (20).

for C2 to scale like Eq. (20), that seems severely inap-
propriate, since it would mean that the regular energy
approaches zero, which is clearly not the case. With this
and the comment on Eq. (54) in mind, it is judged more
important to assure a reasonable scaling of the regular
energy, and so at present, f → 1, as rs → 0, is adopted.

In the low density limit, the polarizability density
should increase slowly or reach some finite value. C2

should naturally decrease. Moreover, F 0
xc should in-

crease, preferably approaching an upper limit so as to
satisfy the Lieb-Oxford bound.39 However, since the elec-
tron gas undergoes a transition to the nonuniform Wigner
lattice, there are now two energies. This means that the
limit on F 0

xc can be relaxed somewhat, as long as the
nonlocal energy increases at the same rate as the regular
energy decreases. Eq. (53) suggests that f [n] → r

1/4
s , as

rs →∞, roughly in line also with the increase of Eq. (52),
the decrease of Znl, and the increase of Fxc.

At all densities, as stated, the scaling of f [n] should
follow Fxc, which is possible if Fxc scales as described
above. The scaling of Fxc depends on the actual approx-
imation used for the energy of the uniform electron gas.
In the RPA, a simple parameterization may be found,

FRPA
xc [n] = (1 + 0.2534r1/2

s + 0.5484rs)1/4, (66)

which is accurate enough for the present purpose. It
reproduces the known low-density limit of RPA,20 and
does scale as desired. A comparison between Eq. (66)
and the LDA22 is shown in Fig. 3.

As a further consistency check, the C2 coefficient as
a function of rs, obtained using Eqs. (55) and (66), is
shown in Fig. 4, compared to Eq. (20). At rs = 2, the
C2 coefficient is well in line with the findings of Ref. 15.

D. Nonuniform scaling

The rs-dependence of the gradient coefficient Znl(rs) is
shown in Fig. 5. The somewhat unexpected behavior at
small rs is an open question, not resolved in this report.
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FIG. 5. The Znl coefficient of Eq. (57), versus rs.

According to Eq. (17), and using FRPA
xc , f [n] is in the

slowly varying limit given by

f [n] = F uni
xc [n] + µ0[n]s2. (67)

As Eq. (67) correctly suggests, it is inappropriate to im-
plement a response cutoff solely in a local approxima-
tion; the detailed behavior of the static polarizability
density requires a generalization of f [n] to also depend
on the gradient. For large s, it may seem natural to sim-
ply extend Eq. (66) according to the GGA enhancement
factor.10 However, both the LDA and GGA Fxc respects
the Lieb-Oxford bound locally, approaching a constant as
rs → ∞, quite different from FRPA

xc . Moreover, Eq. (67)
would not cut off the response completely if s were sat-
urated, as in the GGA. Equation (67) should be used as
is.

In order to evaluate Eq. (67), the coefficient µ0 needs
to be determined. A complete discussion will not be per-
formed here, but rather a simple straight-forward choice
will be devised and tested. The cutoff becomes important
in the low-density tails at the boundary of a body. In the
low-density region, it is seen from Fig. 5 that Znl(rs) ≈ 2,
the value of the correlation coefficient in the Langreth-
Mehl functional.40 The decrease of Znl for large rs is also
consistent with the known behavior, as calculated by Ra-
solt and Geldart.38 Adding these two observations, one
may conclude that µnl ≈ µc in that region. Further,
adopting the argument of Ref. 10, that in order to retain
the linear response properties of LDA, µxc = 0 must hold
(for small s), it implies that µx = −µnl, which for Znl = 2
becomes very close to the effective exchange gradient co-
efficient, µeff = 0.2195, used in the GGA.10

VI. RESULTS

Using the universal function Eq. (63), and the following
expression for f [n],

f [n] = FRPA
xc [n] + µeffs

2, (68)

TABLE I. Nonlocal jellium surface correlation energies γnl,
obtained by evaluating Eq. (47) using Eq. (63) and Eq. (68).

rs γnl
a γnl

b

2.00 366 472
2.07 366 432
2.30 281 329
2.66 200 223
3.00 154 160
3.28 114 127
4.00 73 72
5.00 40 37

aThis work. bReference 41.

TABLE II. Atomic polariz-
abilities and van der Waals coefficients, obtained from Eqs.
(52) and (68). Roothan-Hartree-Fock densities were used.

Atom α0
a α0

b C6
c C6

d

H 2.42 4.5 2.53 6.5
He 0.71 1.38 0.51 1.46
Li 48.5 164 246 1390
Be 18.4 37.5 78.5 212
Ne 1.26 2.67 2.07 6.9
Mg 32.3 70 186 620
Ar 5.15 11.1 20.1 67
Kr 7.74 16.7 38.4 133
Xe 12.7 27.3 85.9 299
C60 386 570 67k 125k

a This work. b Ref. c This work. d Ref.

where µeff = 0.2195, Eq. (3) may be calculated for ex-
plicit physical systems. The following paragraphs show
some illustrative comparisons to prior results, showing
an overall good agreement.

Table I shows the result for the nonlocal correction
to the surface energy of jellium, compared to other
data.42,43,41 The dependence of f [n] on gradients has a
negligible effect in this case. The discrepancies at smaller
rs are due to the neglect of the change in the regular cor-
relation, reflected in the fact that Znl(rs) 6= Zc, and an
additional regular correlation energy should be added to
retain the full nonlocal correlation energy. The correc-
tions from also taking gradients into account in Eq. (67),
however, are very small.

Table II shows the static polarizability and van der
Waals coefficients C6, calculated from the asymptotic for-
mula, Eq. (52), and using Eq. (68). The coefficients are
much too small, pointing at the difficulty to find a pa-
rameterization, with which the asymptotic behavior and
the intermediate-range behavior are reproduced simulta-
neously. The severe underestimation is in line with what
was previously reported for surfaces and slabs.15 Even if
much of the discrepancy may be remedied by more elab-
orate cutoff functions, Eq. (67), this remains an unsolved
problem.

In Fig. 6, the interaction energy between two slabs of
jellium rs = 2.07 is shown, calculated from Eq. (67) with
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µ = µeff added. The comparison with benchmark data14

can be seen to be generally good.
In Fig. 7, the interaction energy between two laterally

averaged sheets of graphite, graphene, is shown. The
calculation is in close agreement with Ref. 44, which has
an additional parameter, fixed to a DFT calculation, as
input. This indicates that it is possible to find functional
forms with parameters built in in a physical way.

VII. CONCLUSIONS

In conclusion, A DFT scheme is proposed that pro-
vides a basis for systematic improvements beyond the lo-
cal (LDA) and semilocal density approximations (GGA),
to incorporate medium- and long-ranged correlations.
The exchange-correlation energy is decomposed into two
parts, expressed in terms of a generalized polarization op-
erator, sxc. A parameterization is devised, and fitted to
the regular XC energy in the RPA. The relation between
the essential cutoff and the regular enhancement factor is
shown. An explicit nonlocal density functional is devel-
oped, and tested on several prior studies. The parame-
terization does not reproduce the long-ranged behavior
well but yield results for the intermediate-range energies
in close agreement with prior studies.

Although caution is needed, and many issues have been
unanswered in this report, the simplistic nature of the
functional and the excellent results for the intermediate-
ranged regime bring great promise.

APPENDIX A: DETAILS ON THE EXISTENCE
OF ε

To render the treatment of Ref. 15 and Sec. II exact,
ε should satisfy the equation

∇ · ε∇G = e
−
∫ 1

0
dλ χλV , (A1)

where χλ is the exact many-body response function at
coupling-strength λ and V = −4πG. The issue is
whether ε(r, r′) exist, i.e., whether ε can be taken to be
isotropic without loss of generality. It suffices to prove
that there exist a φ such that

∇r ·∇r′φ(r, r′) = ρ(r, r′), (A2)

for an arbitrary bounded, charge-conserving function
ρ(r, r′), i.e., that satisfy∫

d3r ρ(r, r′) =
∫
d3r′ ρ(r, r′) = 0, (A3)

and which vanishes outside some region Ω. In Fourier
space, Eq. (A2) transforms to

(−iq ·∇r + q2)φ̂(r,q) = ρ̂(r,q), (A4)
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where φ̂(r,q) (and analogously ρ̂(r,q)) is defined via

φ(r, r′) =
∫

d3q

(2π)3
φ̂(r,q)eiq·(r−r′). (A5)

One solution to Eq. (A4) is

φ̂(r,q) =
1

2iq

∫ ∞
−∞
dt sgn (t) eiqtρ̂(r + tq̂,q), (A6)

which is proved by inserting Eq. (A6) into Eq. (A4).
Moreover, if ρ is real, φ is also real, since

φ̂∗(r,−q) = − 1
2iq

∫ ∞
−∞

dt sgn (t) e−iqtρ̂∗(r− tq̂,−q)

= − 1
2iq

∫ ∞
−∞
dt sgn (t) e−iqtρ̂(r− tq̂,q)

=
1

2iq

∫ ∞
−∞

dt sgn (t) eiqtρ̂(r + tq̂,q) = φ̂(r,q). (A7)

In the case of translational invariance, ρ̂ becomes inde-
pendent of r, and the t integral of Eq. (A6) may be done,
yielding φ̂(q) = ρ̂(q)/q2, in accordance with Eq. (A4).

To conclude this appendix: there exist at least one
isotropic ε that satisfies Eq. (A1). What was prior15 as-
sumed to be an approximative treatment turns out to be
completely general.

APPENDIX B: DETAILS ON THE
CONVERGENCE OF THE ∆ SERIES

1. Convergence of ∆n

In order for the series Eq. (6) to be interesting it has
to converge rapidly, which is the case at least in the limit
of small variations. To prove this, the use of the energy
norm ||A||2 = Tr

[
A†A

]
turns out useful. First, write sxc

in its diagonal basis,

sxc(iu, r, r′) =
∑
k

sk(iu)ψk(iu, r)ψ†k(iu, r
′). (B1)

In what follows, the frequency dependence is suppressed
for notational clarity. Next, express the energy norm in
the ψk basis,

||dn||2 =
∑
u,i,j

|d|2i,j (si − sj)2n, (B2)

where

di,j =
∫
d3r ψ†i (r)∇ψj(r). (B3)

From Eq. (B2), it is clear that the following inequality
holds,

||dn+1|| ≤ κ||dn||, (B4)

where κ is the difference between the largest and the
smallest eigenvalue of sxc, which is equivalent to the log-
arithm of the condition number of ε, κ = ln(εmax/εmin).
For sufficiently small variations, not necessarily slow,
κ < 1, and the convergence of the sequence dn is expo-
nential. Due to the factorial constant in Eq. (6), together
with Eq. (B4), the series converges extremely fast: only
the first few terms need to be considered. For example,
provided κ < 1/2, the series may be truncated at n = 2,
with less than 5% relative error.

Although for the level of approximation aimed at here,
the above argument is sufficient, Eq. (B4) is not limited
to small variations. For instance, consider a localized
basis ψi on the form Eq. (B1), where each basis function
is localized around a point ri. In such a case, the points
ri form a spatial distribution in space, and both si and
di,j follow the same topology. One could then define
a smooth function s(r), which interpolates between all
the points ri. In the vicinity of each point, then, the
variations in s(r) are bounded by a Leibnitz criterion

|s(r) − s(ri)| ≤ |r− ri| /ld, (B5)

where ld denotes the minimum length scale on which s(r)
varies. In the same manner, di,j can be expressed as
an interpolating function d(r, r′). Since ∇ has compact
support, the decay of d(r, r′) is governed by the decay of
the basis functions ψi. Provided the basis functions are
sufficiently localized, it makes sense to define a length-
scale ls such that d(ri, r) is negligible outside the radius
|r− ri| < ls. Equation (B5) then never exceeds ls/ld,
and inserting into Eq. (B2) yields the inequality

||dn+1|| ≤
ls
ld
||dn||. (B6)

Hence the series Eq. (6) converges rapidly whenever the
”screening length” ls is smaller than ld, the scale of the
variations in sxc. This criterion is for example obeyed by
the particular approximation to ε used in Ref. 15.

There are more properties of dn worth noting. The
odd orders of d2k+1 are hermitian, whereas the even or-
ders d2k are anti-hermitian, which follows directly from
the definition Eq. (7). Hence, it makes little sense physi-
cally to consider more than the two first terms, from the
symmetry argument alone.

To conclude so far: Equation (B4) is the key point,
with κ� 1 at least in the case of sufficiently small vari-
ations, with an argument suggesting that it holds true
also in other, more general cases. A value smaller than
κ < 1/2 leads to such a fast convergence of the series
Eq. (6) that only the first two terms d1 and d2 need to
be considered.

2. Convergence of ln(1 + ∆)

In order for Eq. (8) to have meaning, the error needs to
be small. An exact upper bound may be found using the
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energy norm introduced in Appendix B 1. Let δ = ||∆||.
By virtue of the Cauchy-Schwarz inequality, each power
of ∆ is bounded by δ,∣∣Tr

[
∆k
]∣∣ ≤ ||∆||k ≡ δk. (B7)

Expanding the trace of ln(1+∆)−∆(1+∆/2) in a Taylor
series, one obtains∣∣∣∣∣
∞∑
k=3

(−1)k

k
Tr
[
∆k
]∣∣∣∣∣ ≤

∞∑
k=3

1
k

∣∣Tr
[
∆k
]∣∣ ≤ ∞∑

k=3

1
k
δk

= ln(1/(1− δ)) − δ(1 + δ/2) = O(δ3). (B8)

Eq. (B8) gives a relative error in Eq. (8) smaller than
1% whenever δ < 0.2, roughly. To put δ in context, the
relation to the convergence ratio κ shall now be derived.
Using the triangle inequality and Eq. (6),

δ = ||∆|| ≤
∞∑
n=1

||∆n||. (B9)

From Eq. (B2), it is clear that dn scales with κn for
n > 1, with the addition that sxc is bounded also for
n = 1. Since dn scales with κn, and ∆n is bounded,
there must exist a constant C, independent of κ and n,
such that

||∆n|| =
1
n!
||dn · d0G|| ≤ C κ

n

n!
. (B10)

Inserting Eq. (B10) into Eq. (B9) one obtains the simple
inequality

δ ≤ C(eκ − 1). (B11)

The constant C is system-dependent and cannot be
known a priori, but will here be assumed to be small
enough for Eq. (8) to be valid. For sufficiently small κ,
δ ≈ Cκ, and only terms to second order in κ need to
be kept in Eq. (8). By Eq. (B7), this means keeping
∆1 and ∆2 for the first order term, but only ∆1 for the
second term. Also, at small κ, δ ≈ ||∆1||, which may be
expressed explicitly in fourier space as

δ2 ≈ ||∆1||2 =
∫
d3qd3r

(2π)3q2
|q̂ ·∇r ŝxc(iu, r,q)|2 , (B12)

where ŝxc(iu, r,q) is defined as in Eq. (A5). From
Eq. (B12), it is evident that δ is small for a slowly varying
system. Moreover, because of the 1/q2 term, variations
in sxc at small q will be noticeable, whereas variations at
large q may be forgiven. Since small q measures struc-
ture on a large length scale, the spatial variations are
expected to be smaller, and although here only proven in
the limit of small or slow perturbations, one could sus-
pect that Eq. (B12) is small for a larger class of density
variations.

APPENDIX C: DETAILS ON THE EVALUATION
OF Znl

The ”double fourier” transform of s̃xc(iu,k,k′) is de-
fined as

s̃xc(iu,k,k′) =
∫
d3rd3r′ e−ik·rsxc(iu, r, r′)eik

′·r′ . (C1)

Inserting Eq. (27) into Eq. (C1) one obtains

s̃xc(iu,k,k′) =
∫
d3r̄

ω2
p(r̄)ei(k

′−k)·̄r

(iu+ ωk(r̄))(−iu + ωk′(r̄))
. (C2)

The first-order change of ωk[n] on δn(r), when starting
from the uniform limit, must be a translationally in-
variant function, so according to Eq. (C2), the change
δs̃0(iu,k,k′) must take the form

δs̃0 =
∫
d3r̄d3rei(k

′−k)·̄rwiu,k,k′(r̄− r)δn(r), (C3)

where

wiu,k,k′(r̄− r) =
δ

δn(r)
ω2
p(r̄)

(iu + ωk(r̄))(−iu + ωk′(r̄))
.

(C4)

Substituting r̄→ r̄ + r and doing the integrals yields

δs̃0(iu,k,k′) = ŵiu,k,k′(k′ − k)δn̂(k′ − k), (C5)

where n̂(q) and ŵiu,k,k′(q) are the fourier components of
n(r) and wiu,k,k′(r), respectively. Inserting Eq. (C5) into
Eq. (41) and comparing to Eq. (40) finally yield

Knl(q) =
1
2

∑
u,k

(1− (k̂ · ̂(k + q))2) |ŵiu,k,k+q(q)|2 . (C6)

To obtain the curvature of Knl(q) at the origin, it is most
convenient to differentiate Eq. (C6) with respect to q.
Since

(1− (k̂ · ̂(k + q))2)|q=0 = 0, (C7)

and

∇q(1− (k̂ · ̂(k + q))2)|q=0 = 0, (C8)

and

∇2
q(1− (k̂ · ̂(k + q))2)|q=0 =

4
k2
, (C9)

the gradients of ŵiu,k,k+q(q) with respect to q need not
be evaluated. Moreover, from Eq. (C4) it is seen that
ŵiu,k,k(0) = δŝuni

xc (iu, k)/δn, as defined in Eq. (25). After
a last change of variables one finally obtains

∇2
qKnl(q)|q=0 =

∑
u,q

2
q2

∣∣∣∣δŝuni
xc (iu, q)
δn

∣∣∣∣2 . (C10)
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APPENDIX D: DETAILS ON THE EVALUATION
OF Enl

C

The trace over the 3x3 matrices simply becomes

Tr [T(q)T(q′)] = (q̂ · q̂′)2. (D1)

Inserting Eqs. (46) and (D1) into Eq. (3), the result may
be expressed as

Enl
c =

1
4

∫
d3rd3r′ ω2

p(r)A(r, r′)ω2
p(r′), (D2)

where A is given by (R = r− r′)

A =
∑
u,q,q′

(1− (q̂ · q̂′)2)ei(q−q′)·R

(−iu + ωq)(iu+ ω′q)(−iu + ω′q′ )(iu+ ωq′)

=
∑
q,q′

(1− (q̂ · q̂′)2)ei(q−q′)·R

(ωq + ω′q)(ωq′ + ω′q′)
(

1
ωq + ωq′

+
1

ω′q + ω′q′
). (D3)

The dispersion model ωq shall now be assumed to only
depend on the magnitude of q. It is done here due to
the actual approximation made (Eq. (49)), and does not
present a fundamental restriction. Expressing the coor-
dinates as

q̂ = (
√

1− t21, 0, t1)

q̂′ = (
√

1− t22cos(φ),
√

1− t22sin(φ), t2) (D4)

the integrals over angles may be performed. Doing the
average over φ yields〈

1− (q̂ · q̂′)2
〉

=
1
2

(1 + t21 + t22 − 3t21t
2
2). (D5)

Averaging the two t integrals and making the substitu-
tion q = y1/R and q′ = y2/R yield

A =
∑
y1,y2

v(y1 , y2)
y3

1y
3
2R

6

1
(ωy1/R + ω′y1/R

)(ωy2/R + ω′y2/R
)

×(
1

ωy1/R + ωy2/R
+

1
ω′y1/R

+ ω′y2/R

), (D6)

where

v(y1 , y2) =
2 sin(y1)((3− y2

1)y2 cos(y2) + (y2
1 + y2

2 − 3) sin(y2))
−2y1 cos(y1)(3y2 cos(y2) + (y2

2 − 3) sin(y2)). (D7)

With ω2
p = 4πn, and εnl = (4π)2A/2, Eq. (3) takes

on the form of the effective electron-electron interaction
Eq. (47). For large R values, the integrals over y1 and y2

become independent of ωq, which can then be integrated
analytically, yielding the factor −3/8π2. In the limit of
large R then, εnl(R) tends to

εnl(R)→ −3
2

1
R6

1
ω0ω′0(ω0 + ω′0)

. (D8)

1 R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689
(1989).

2 R. G. Parr and W. Yang, Density Functional Theory of
Atoms and Molecules (Oxford University Press, Oxford,
1989).

3 R. M. Dreizler and E. K. U. Gross, Density Functional
Theory (Oxford University Press, New York, 1990).

4 K. Burke, J. P. Perdew, and M. Levy, in Modern Density
Functional Theory: A Tool for Chemistry, edited by J. M.
Seminaro and P. Politzer (Elsevier, Amsterdam, 1995).

5 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
6 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
7 O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274

(1976).
8 D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884

(1977).
9 J. P. Perdew, in Electronic Structure of Solids ’91, edited

by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin,
1991).

10 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
77, 3865 (1996).

11 B. I. Lundqvist, Y. Andersson, H. Shao, S. Chan, and D. C.
Langreth, Int. J. Quantum. Chem 56, 247 (1995).

12 Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys.
Rev. Lett. 76, 102 (1996).

13 W. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. Lett.
80, 4153 (1998).

14 J. F. Dobson and J. Wang, Phys. Rev. Lett. 82, 2123
(1999).

15 H. Rydberg, B. I. Lundqvist, D. C. Langreth, and M. Dion,
Phys. Rev. B 62, 6997 (2000).

16 Y. Andersson and H. Rydberg, Physica Scripta 60, 211
(1999).

17 E. Hult, H. Rydberg, B. I. Lundqvist, and D. C. Langreth,
Phys. Rev. B 59, 4708 (1998).

18 J. P. Perdew and Y. Wang, Phys. Rev. B 46, 12947 (1992).
19 J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54,

16533 (1996).
20 Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
21 The notation AB for the operation

∫
d3r′′A(r, r′′)B(r′′, r′)

is used throughout the text, Tr means the trace, and δ3(r−
r′) is denoted by 1 where appropriate.

22 J. P. Perdew and S. Kurth, in Density Functionals: Theory
and Applications, edited by D. Joubert (Springer, Berlin
and Heidelberg and New York, 1997).

23 L. Kleinman and S. Lee, Phys. Rev. B 37, 4634 (1988).
24 L. J. Sham, in Computational Methods in Band Theory,

edited by P. J. Marcus, J. F. Janak, and A. R. Williams
(Plenum Press, New York and London, 1971).

25 P. R. Antoniewicz and L. Kleinman, Phys. Rev. B 31, 6779
(1985).

26 D. C. Langreth and S. H. Vosko, Phys. Rev. Lett. 59, 497
(1987).

27 D. C. Langreth and J. P. Perdew, Phys. Rev. B 21, 5469
(1980).

28 D. C. Langreth and S. H. Vosko, in Density Functional
Theory of Many-Fermion systems, edited by S. B. Trickey
(Academic Press, San Diego, 1990).

29 Y. Andersson, E. Hult, P. Apell, D. C. Langreth, and B. I.
Lundqvist, Solid State Commun. 106, 235 (1998).

14



30 H. Rydberg, D. C. Langreth, M. Dion, and B. I. Lundqvist,
Long- and Medium-Ranged Nonlocal Correlations in Den-
sity Functional Theory, in preparation for PRB (2001).

31 B. I. Lundqvist, Phys. Kondens. Materie 9, 236 (1969).
32 H. Margenau and N. R. Kestner, Theory of intermolecular

forces (Pergamon Press, Oxford, 1969).
33 J. Mahanty and B. W. Ninham, Dispersion Forces (Acad-

emic Press, New York, 1976), pages 98-132.
34 K. Rapcewicz and N. W. Ashcroft, Phys. Rev. B 44, 4032

(1991).
35 P. Ghosez, X. Gonze, and R. W. Godby, Phys. Rev. B 56,

12811 (1997).
36 R. M. Martin and G. Ortiz, Phys. Rev. B 56, 1124 (1997).
37 J. F. Dobson and B. P. Dinte, Phys. Rev. Lett. 76, 1780

(1996).
38 D. J. W. Geldart and M. Rasolt, Phys. Rev. B 13, 1477

(1976).
39 E. H. Lieb and S. Oxford, Int. J. Quantum. Chem. 19, 427

(1981).
40 D. C. Langreth and M. J. Mehl, Phys. Rev. Lett. 47, 446

(1981).
41 S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum.

Chem. 75, 889 (1999).
42 J. M. Pitarke and A. G. Eguiluz, Phys. Rev. B 57, 6329

(1998).
43 J. M. Pitarke and A. G. Eguiluz, Phys. Rev. B 63, 045116

(2001).
44 H. Rydberg, N. Jacobsson, S. I. Simak, P. Hyldgaard, B. I.

Lundqvist, and D. C. Langreth, Hard Numbers on Soft
Matter, submitted to Nature (2001).

15


