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ABSTRACT

In Density Functional Theory, the widely used local and semilocal approximations
to the exchange-correlation energy, the local density approximation (LDA) and
the generalized gradient approximations (GGAs), lack a physical description of
truly nonlocal correlation effects, which are absolutely essential for a proper de-
scription of soft matter. A scheme is proposed that provides a basis for systematic
improvements beyond LDA and GGA, including correlations at intermediate and
long range, giving rise to bonds of pure van der Waals type as well as more intri-
cate, intermediate-range correlation bonds. The scheme is developed with regard
to computational efficiency as well as physical soundness, and incorporated into
the standard DFT formalism. The method is applied to a generic set of systems,
illuminating different aspects of nonlocal correlations. Studies of van der Waals
interactions in molecules, of nonlocal correlations between surfaces, and of bonds
in graphite and between graphene layers are included. Successful account of ener-
getics, bond lengths and compressibilities of graphitic systems clearly illustrates
the significance of using approximate exchange-correlation energy functionals that
are based on the true physics of the system. Finally an explicit formula is given
for a general nonlocal correlation density functional, suitable for incorporation
into standard DFT schemes.

Keywords: density-functional theory, functional, nonlocal, DFT, LDA, GGA, vdW, van
der Waals, exchange, correlation, determinants, polarization, graphene, graphite, first princi-
ples, surface states, physisorption, adsorption, adhesion, bonding.
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CHAPTER 1

INTRODUCTION

The subject of this thesis is nonlocal correlations in electron systems, and
how to incorporate the effect of such correlations into the ab initio theory of

materials, the Density Functional Theory (DFT) [1, 2]. Already in its simplest
form, the Local Density Approximation (LDA) [2, 3], and the Local-Spin Density
Approximation (LSDA) [2, 4, 5, 6], has been remarkably successful. It predicts
properties of hard materials such as close-packed metals, semiconductors and in-
sulators [7, 8, 9, 10, 11] well. The extension to account also for soft matter, which
comprise numerous physical, chemical, and biological systems, such as physisorp-
tion, adhesion and liquids, van der Waals (vdW) complexes and polymers, has
proven to be much more difficult. The basic reason for this predicament is to be
found in the energy and length scales involved.

Hard materials are tightly bound, requiring large amounts of energy to distort
or dissociate. The typical binding energy per atom is on the eV scale, and typical
bond lengths are 2 - 3 Å. Since the largest contributions to the binding energies
are well understood, a good account for them may be achieved.

Soft materials, on the other hand, are much more weakly bound. The typical
binding energy per atom is in the meV range, or hundreds of times smaller com-
pared to hard materials, and the corresponding bondlengths are about 4 - 7 Å.
The interactions giving rise to these tiny bonds are not so well described; in fact,
they are completely absent from the for hard materials so successful LDA. It is
not surprising then that it fails to account for them.

A systematic improvement over the LDA has been developed successively dur-
ing the last 20 years, and goes under the collective name of Generalized Gradient
Approximations (GGA) [12, 13, 14, 15, 16]. For a large class of systems it brings
accuracy close to the level of requirements from chemists and materials scientists.
The energy scale that can be accounted for is closing in on tenths of an eV, still
far from the energy scale applicable in the soft regime.

In this thesis, a systematic extension to DFT is proposed that also takes
into account the very weak nonlocal correlations. In the chapters that follow
the concepts behind how to account for these correlations so that systematic
improvement is guaranteed, will be outlined. The theory is the result of an
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2 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

organic development, and the story will be told in a consistent framework and
language, reformulating some of the early results for clarity.

As the remaining story will not strictly follow the evolution of time, a brief
historic account for the work on nonlocal correlations will be given here. For a
more thorough discussion, the reader is referred to the review, paper I.

1.1 BRIEF HISTORY OF NONLOCALITIES

Back in the 70’s, after the introduction of the DFT [1], the exchange-correlation
energy functional Exc, and the first successful approximation to Exc, LDA [2],
attempts were made to increase the accuracy of LDA. Being based on the energy
of the uniform electron gas, it seemed an appropriate cause of action to expand
that energy in powers of gradients (GA) [2]. However, it turned out that a
straightforward such expansion makes the situation much worse [6, 17].

The source of the problem can be understood in terms of the exchange-
correlation hole, nxc(r, r

′), which contains all the many-body effects of the total-
energy density functional. A Fourier analysis [18] of nxc(r, r

′) showed that the
major contribution to the exchange-correlation energy comes from a region of
small q-values, where q → 0 corresponds to the total integral

∫
d3r′n(r, r′) of the

hole, which is fixed to −1 by a simple charge-conserving sum rule [6]. However,
GA severely violates this sum rule, and hence makes a large error in Exc. A
stringent criterion for when the GA actually does work was developed [18].

To overcome these problems, several attempts were made to take advantage
of the gradient corrections, while making sure that the basic sum rules are still
obeyed [19, 12, 20, 21, 22], schemes collectively called GGAs. Although imple-
mented differently, they all in one way or another lean on the rigorous limits
of GA, introducing cutoffs to throw away those parts that can be proven to be
small but badly represented. Due to its simplicity and ease of implementation
into general schemes, the GGAs have been used and tested extensively for atoms,
molecules and solids [23], and are still being improved upon [16, 24, 25].

The GGAs have a semilocal dependence on the density n(r), which can ac-
count for short-ranged fluctuations in the density, meaning, fluctuations smaller
than the average screening length. They cannot, however, by construction, ac-
count for the nonlocal correlations occurring between distant points, such as the
long-ranged van der Waals interactions, or even correlations at more intermediate
ranges but outside the average screening length.

In parallel to the development of GGA, descriptions aiming at the nonlocal
effects were suggested in the form of the Average-Density (ADA) and Weighted-
Density Approximations (WDA) [26]. These schemes have later been applied with
quite some success but they are hampered by computational complexity, since the
interactions need to be considered not only spatially but also self-consistently.

To capture the nonlocal correlations as a whole, focus in the 80’s turned to the
general expression for Exc [6, 18, 23], the Adiabatic Connection Formula, which

2



Chap. 1: Introduction 3

provides a systematic way for studying local and nonlocal correlations.
In the early 90’s, the question of long-ranged nonlocal correlations was ap-

proached in terms of long-wavelength, or plasma oscillations [27, 28], using a
sharp but general and physical cutoff to arrive at an asymptotic electron-electron
interaction identical to the London expression between separated objects. In the
mid 90’s, the approach was used to construct a general density functional for the
asymptotic van der Waals interactions between atoms [29, 30, 31] and shortly
after also for molecules [32], atoms at surfaces [33], and surfaces [34].

Although the proposed method was quite sensitively dependent on the cut-
off, the dynamical properties of the long-wavelength polarizability were well ac-
counted for, and so the sensitivity could be drastically reduced [33, 35] by fitting
to known static polarizabilities, which are much easier to obtain from local the-
ories.

Successful as they were in predicting the asymptotic behaviors, the problem of
seamlessly merging these new findings with the existing DFT schemes remained.
Several formulations of general theories were developed, some utilizing the po-
larizability formulation [31], and some starting from time-dependent DFT [36],
but they all suffered badly from computational complexity. In the late 90’s a
tractable method for non-local density functionals restricted to planar systems
was developed, and the first results reported [37] and compared to benchmark
data [38]. The method was later used to resolve a long-lasting dilemma about the
nonapplicability of LDA and GGA in a system of particular interest, graphite [39].

The problem of finding a general nonlocal correlation functional suitable for
incorporation into existing DFT schemes is addressed in this thesis, and a sys-
tematic theory is proposed for how this problem could be solved in general. An
explicit functional is given as a first instance of this manifold of possibilities, and
is shown to perform well when tested on already reported systems.

1.2 OUTLINE OF THESIS

In a series of articles, my collaborators and I have explored the problem of nonlocal
correlation density functionals, and the bulk of this thesis is devoted to provide
the background and explain the theory behind these articles. The exception is
Chap. 4, which is about soft matter, and where I give most of the results we
have achieved so far (Papers II-V). In Chap. 2, I go through the basic definitions
and major results of DFT, and in Chap. 3, I present a more detailed view of
the concepts behind nonlocal correlations. I give the now-standard definition of
RPA, and report how we have applied, in this approximation, a nonlocal density
functional for surfaces (Paper IV). In Appendix A, I give an extension to multi-
dimensions of the proof found in Paper IV. Chapter 3 also includes a crash-course
in operator algebra.

In the remaining two chapters, I develop further our theory for nonlocal corre-
lations, and give some results, referring to Paper VI. In the last chapter, Chap. 6,

3



4 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

I give the current status of a general exchange-correlation density functional, and
the applications and future development of the functional is discussed.

4



CHAPTER 2

DENSITY FUNCTIONAL THEORY

The appeal of Density Functional Theory (DFT) is that it is simple in theory
and powerful in practice. The theory dates back to the early sixties, and ground-
breaking work done mainly by a handful of actors [1, 2, 6, 18, 15, 11, 16], of
whom the most prominent, Walter Kohn, received the Nobel prize in 1998. The
theory is well documented [7, 8, 9, 40], and will not be repeated in its entirety
here. An account for the prior application of DFT to the problem of long-ranged
interactions may be found in Paper I in this thesis. Here, only the necessary
definitions and results needed will be given.

The exact ground-state energy of a fermionic many-electron system is a com-
binatorial problem, and therefore impossible to find for arbitrarily large systems
– with less computer power than Nature itself provides. The energy E of a system
of N electrons in an external potential v(r) is a functional of v(r) and the many-
body wavefunction Ψ(r1, r2, . . . , rN), required to have nodes (vanish) whenever
two particles coincide, causing Ψ to consequently switch sign along N(N − 1)
lines in a 3N -dimensional space; a mind-boggingly complex topology. But the
problem can, at least conceptually, be immensely simplified.

The probability p(r) to find an electron at a certain position in space, times the
number of electrons N , form the electron density of the system, n(r) = Np(r).
With this at hand, the energy Eext due to an external potential v(r) can be
immediately written down,

Eext[n, v] =
∫
d3r n(r)v(r), (2.1)

measured in the natural atomic units,∗ which are used through out the thesis.

The probability p(r, r′) to find a pair of electrons at positions r and r′ re-
spectively, times the number of pairs N(N −1), form the pair-probability density
n2(r, r′) = N(N − 1)p(r, r′). With this measure, the energy of the Coulomb

∗In the atomic units, h̄ = 1. Distances are measured in bohr, 1 bohr being the size a0 of a
hydrogen atom, 1 bohr = a0 = h̄2/me2 . Energies are measured in hartrees, 1 hartree = e2/a0.
As a consequence, h̄ = a0 = e = m = 1.

5



6 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

interaction Ecoul between all the electrons is given by

Ecoul[n2] =
1

2

∫
d3rd3r′

n2(r, r′)

|r− r′| , (2.2)

dividing by two to avoid double-counting.
The third quantity is somewhat less intuitive; the density matrix γ(r, r′) of the

wave function Ψ measures the correlation (scalar product) of the wavefunction Ψ,
when an electron is fixed at position r, and of Ψ, when the same electron is fixed
at position r′, times the number of electrons, and will be defined later. With this
quantity, the kinetic energy T is conveniently expressed as

T [γ] = −1

2

∫
d3r [∇2γ(r, r′)]r=r′, (2.3)

where the 1/2 is due to the unit system. In spite of the sign, Eq. (2.3) is always
positive.

The total energy of the N -fermion system is simply the sum of the external,
kinetic and potential energies,

E = T [γ] + Ecoul[n2] + Eext[n, v]. (2.4)

Conceptually, Eq. (2.4) is not so difficult to grasp, but the problem has of course
not been simplified. The electron density n(r) is easily expressed in terms of the
pair-density n(r, r′), but the real complexity is hidden in the relation between
n(r, r′) and the density matrix γ(r, r′), which is very, very, complex.

It is not so surprising, then, that there was quite a stir in the physics com-
munity, when it was shown that the total energy E can in fact be expressed as a
functional of the simplest of the quantities, n(r),

E[n, v] = F [n] + Eext[n, v], (2.5)

where F [n] = T [γ] + Ecoul[n2] together is provably a functional of the density
only, but not by themselves [1]. Of course neither does this treatment simplify
matters per se, but the practical benefit of a functional of the density n(r) only,
is that it can be approximated in a sense that could not be done before [2].

2.1 EXCHANGE-CORRELATION ENERGY

Hohenberg and Kohn [1] proved that F [n] of Eq. (2.5) is a functional of the
density only. Kohn and Sham [2] took advantage of that by noting that although
the density matrix γ(r, r′) is a very complex quantity,

γ(r, r′) = N
∫
dR Ψ(r,R)Ψ∗(r′,R), (2.6)

6



Chap. 2: Density Functional Theory 7

where R denotes all the other particles, there is a simpler version of Eq. (2.6),
valid for a set of non-interacting fermions (Ecoul = 0). It can be written explicitly
in terms of orthogonal one-particle functions ψk(r), as

γs(r, r
′) =

N∑
k=1

ψk(r)ψ∗k(r
′). (2.7)

The equivalent of Eq. (2.3), Ts, should, they argued, be close to T . In the same
manner, Ecoul should be close to yet another quantity, the Hartree energy,

EH[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′| , (2.8)

which only involves the electron density n(r). Scrapping up whatever is left into
the exchange-correlation (XC) energy Exc, they proposed the decomposition

F [n] = Ts[n] + EH [n] + Exc[n], (2.9)

which has the virtue that both Ts[n] and EH [n] are practically simple to calculate,
and that Exc[n] should be a small number compared to the first two energies. They
proposed a simple approximation of Exc[n], based on the energy of the uniform
electron gas, the LDA, which has proven very useful in practical calculations [7, 8].

2.2 ADIABATIC CONNECTION FORMULA (ACF)

Although practical and well-defined in the limit of almost uniform density, the
theory of Hohenberg, Kohn and Sham was further boosted by the emergence of
an explicit formula for Exc[n], the adiabatic connection formula (ACF), which
was derived independently by Langreth and Perdew [41], and by Gunnarsson
and Lundqvist [6]. They noted that although the full problem Eq. (2.9) may
be difficult, there is a related problem which is exactly solvable, the one where
EH = Exc = 0, and that both these terms are due to the Coulomb interaction
Eq. (2.2). In order to keep the density fixed, the non-interacting system must be
due to a different external potential v0(r). Starting from there, one could then
imagine slowly turning on the Coulomb interaction, at the same time adjusting
the external potential and keeping track of how the energy changes, until the
fully interacting state is reached.

The derivation makes use of the Pauli-Hellmann-Feynman theorem, stating
the simple but profound fact that for any Hamiltonian system on the form E(λ) =
x†λH(λ)xλ, with xλ normalized (x†λxλ = 1) and sitting in its ground state, the first-
order change with respect to λ becomes δE/δλ = x†λ(δH(λ)/δλ)xλ. In this case,
H(λ) = vλ + λV , yielding

δE(λ)

δλ
= Eλ

coul +
∫
d3r

δvλ(r)

δλ
n(r), (2.10)

7



8 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

where Eλ
coul should be evaluated at coupling strength λ. Now integrating up to

full coupling strength gives

E = E(0) +
∫ 1

0
dλ

δE(λ)

δλ
= E(0) +

∫ 1

0
dλEλ

coul +
∫
d3r (v1(r)− v0(r))n(r). (2.11)

But E(0) = Ts + Eλ=0
ext , so after insertion into Eq. (2.11) one obtains

E = Ts + Eext +
∫ 1

0
dλEλ

coul. (2.12)

Comparing to Eq. (2.5), all the terms are the same except Exc =
∫ 1

0 dλ (Eλ
coul −

EH), which is customarily written as [6]

Exc =
1

2

∫
d3r

n(r)nxc(r, r
′)

|r− r′| , (2.13)

where

nxc(r, r
′) =

∫ 1

0
dλ (g(λ, r, r′)− 1)n(r′) (2.14)

is known as the exchange-correlation hole, and g(λ; r, r′) is the pair-distribution
function of density n(r), taken at coupling strength λ.

Equation (2.13) constitutes a real simplification of the many-fermion problem.
Although finding the pair-distribution function g(λ, r, r′) is equivalent to finding
the pair-density n2(r, r′), the reference to γ(r, r′) has dropped out of the equa-
tions. Moreover, Eq. (2.13) has a physical appeal to it, since it can be viewed
as the interaction of the electron with its XC hole, which is a depletion in the
density due to its own presence. For this hole, it has been shown that∫

d3r′ nxc(r, r
′) = −1. (2.15)

In other words, the XC hole has precisely the size of the absence of the elec-
tron [41].

8



CHAPTER 3

NONLOCAL CORRELATIONS

The concept of correlation is a very subtle part of quantum mechanics, and in
fact often misunderstood. To begin with, a correlation force, like the van der
Waals [42] interaction, is not the result of any explicit fundamental force, but
is the effect of the Coulomb interaction in a purely dynamical system, in which
only the detailed behavior has quantum nature. Although an electron behaves
quite differently from a classical particle, many of the correlation effects arising
in a many-particle system do have a classical counterpart, and so the quantum
nature of the effects in a material should not be overrated.

The van der Waals interaction is a striking example. It is a long-ranged
interaction, due to interaction between instantaneous dipoles.∗ But a similar kind
of interaction also occurs for classical systems, like the one between molecules with
a permanent dipole moment at high temperature. The thing that matters is how
the material polarizes; applying a time-dependent electric field, the charges of the
material moves in response to the field, and the material becomes polarized. If
this effect is large enough or happens quickly enough, spontaneous fluctuations
in two separated objects begin to align themselves under the influence of the
Coulomb interaction, giving rise to a net attraction between them.

To predict the van der Waals attraction requires a quantum-mechanical treat-
ment, simply because the details of how the electrons polarize are subject to real
quantum effects.

Historically, the treatment of van der Waals forces has been carried by chemists [43,
44, 45], because of its fundamental impact on weakly bonded atomic and mole-
cular species. In recent years, weak nonlocal correlations have attracted the
attention also of physicists, in particular with the aim to incorporate such effects
into DFT [27, 28, 29, 31, 36, 38, 37], and the prediction of the asymptotic van
der Waals attraction has been quite successful [33, 34, 36, 35].

∗The valence electrons surrounding the cores in a material are very polarizable, and under
the influence of an time-dependent external field, they easily align themselves in a concerted
motion, known as plasma oscillations.

9



10 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

3.1 FLUCTUATION AND DISSIPATION

The nonlocal correlation effects are all present in the adiabatic connection for-
mula, Eq. (2.13). To be useful, a more detailed description of the XC hole nxc(r, r

′)
or the pair-density function n2(r, r′) is needed. This is provided in terms of the
many-body response function.

The time-dependent density response δn(r, t) to an applied potential δv(r, t)
is formally given by the first-order Taylor expansion†

δn(r, t) =
∫
d3r′ χ(r, r′; t− t′)δv(r′, t′), (3.1)

where χ(r, r′, t− t′) = δn(r, t)/δv(r′, t′) is the many-body linear response kernel
of the system. In terms of its Fourier components,

χ(r, r′; t− t′) =
∫ ∞
−∞

dω

2π
χ(r, r′;ω)eiω(t−t′). (3.2)

As the system adjusts itself to the presence of the external field, it reveals infor-
mation about the correlations present in the system. A very powerful relation,
that relates χ(r, r′;ω) to the pair-density n2(r, r′), is the fluctuation-dissipation
theorem, ∮

C

dω

2πi
χ(r, r′;ω) = n2(r, r′)− n(r)n(r′) + δ3(r− r′)n(r), (3.3)

first derived in Ref. [48], and here restated in terms of response and pair-density [6,
41]. The virtue of Eq. (3.3) is that conceptually the response function χ is easy
to understand and allows a direct comparison to experiments, since the response
δn(r, t) is a measurable quantity.

As a technical comment, the contour integration picks up the poles along the
positive real axis, and can equivalently be viewed as the integral from i∞ to −i∞
along the imaginary axis,

−
∫ ∞
−∞

du

2π
χ(r, r′; iu) = n2(r, r′)− n(r)n(r′) + δ3(r− r′)n(r). (3.4)

This formulation has the benefit of a more direct coupling to dissipation; after
infinitely long time, the system has adjusted itself to the new ground state with
the external potential present, via an infinitesimal dissipation of energy to the
environment. From the Schrödinger equation, this is equivalent to an infinitesimal
step down-hill in imaginary time, which can be expressed as an integral over all
imaginary frequencies, yielding Eq. (3.4). The imaginary-time formulation also
has the advantage of being easier to implement numerically, χ(r, r′, iu) being a
smooth, real function.

†The translational invariance in time, t− t′, only holds for time-independent hamiltonians.
In time-dependent DFT [46, 47], that restriction is relaxed.

10



Chap. 3: Nonlocal Correlations 11

An important property of χ(r, r′; iu) is that it must be charge-conserving; one
thing an applied electric field cannot do is change the number of electrons, so the
total density change at each moment in time must integrate to zero,∫

d3r δn(r, t) = 0. (3.5)

Consequently, this must apply also to χ(r, r, iu), and with the additional knowl-
edge that χ is hermitean [31], one obtains∫

d3r χ(r, r′; iu) =
∫
d3r′ χ(r, r′; iu) = 0. (3.6)

3.2 CRASH-COURSE IN OPERATOR ALGEBRA

There is a beautiful formalism that really simplifies the mathematical treatment
of many problems in physics, and in particular the treatment of the exchange-
correlation energy. Operators have been used in quantum field theories since
the beginning of Quantum Mechanics, and present precisely that sharpness and
simplicity needed to avoid errors, and enables an easy-minded approach to cal-
culations. In a simple language, one treats functions as vectors and operators as
matrices, and applies all the advances of linear algebra, which most physicists
learned already in high-school.‡

The operator unity is denoted by 1 and defined as a delta-function in the
appropriate number of dimensions. It is thus infinite along the diagonal. By the
the trace of an operator A is meant the integral

Tr [A] =
∫
d3r A(r, r), (3.7)

and a product C = AB means an integral

C(r, r′) =
∫
d3r′′A(r, r′′)B(r′′, r′), (3.8)

which works just like an ordinary matrix product. By the conjugate-transposed
operator A† is meant

A†(r, r′) = A∗(r′, r), (3.9)

just as for matrices. An hermitean operator has A† = A. By the inverse φ = A−1

is meant the solution φ to the equation Aφ = φA = 1. As an example, the
Coulomb Green’s function G(r, r′) = −1/4π |r− r′| is the solution to ∇2G = 1
that vanishes at infinity, explicitly

∇2G(r, r′) = δ3(r− r′), (3.10)

‡A more stringent approach is based on functional analysis, and the analysis of functional
spaces like the Hilbert spaces, projected onto finite basis sets, resulting in matrix representa-
tions.

11



12 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

and to G∇2 = 1, so G−1 = ∇2, the inverse of the laplacian. Note that the
boundary conditions are built into the Greens function, and can thus not be
specified explicitly.

A diagonal representation of an operator A is its decomposition into ortho-
normal eigenfunctions,

A(r, r′) =
∑
i

λiψi(r)φ†i(r
′). (3.11)

For hermitean matrices, φi = ψi, and λi are all real. An operator function is a
mapping B = f(A) from one operator A to another operator B. It is defined in
terms of the eigenvalues,

B(r, r′) = f [A](r, r′) =
∑
i

f(λi)ψi(r)φ†i(r
′). (3.12)

Operators may also be expanded just like Taylor series. For example, the operator
B = (1−A)−1 has the familiar expansion

B = (1− A)−1 =
∞∑
n=0

An. (3.13)

Normally, the ordering of operators is crucial, since it is the only property that
differs from ordinary numbers. By the commutator [A,B] is meant the operation

[A,B] = AB −BA. (3.14)

Operators which commute, [A,B] = 0, can be treated together just as if they
were numbers. Specifically, [A,A] = 0, so one can always write for instance

(1− A)−1 =
1

1− A. (3.15)

This crash-course ends with a warning: in general,

eA+B 6= eAeB, (3.16)

which will become apparent in the application in the next section.

3.3 RANDOM PHASE APPROXIMATION (RPA)

With the aid of the fluctuation-dissipation theorem, Eq. (3.3), the ACF, Eq. (2.13),
may be reformulated as [29, 37]

Exc = −
∫ 1

0
dλ

∫ ∞
0

du

2π
Tr [χλ(iu)V ]−Eself , (3.17)

where V (r, r′) = 1/ |r− r′| and where χλ(r, r; iu) is the many-body response
function at coupling strength λ. Eself is an infinite Coulomb self-energy of all

12



Chap. 3: Nonlocal Correlations 13

electrons, emerging from the term δ3(r−r′)n(r) in Eq. (3.4). It is exactly cancelled
by a corresponding term in χλ(iu)V . The trace is defined in Eq. (3.7).

The response function χλ gives the first-order density change δn = χλΦext of
the system at coupling strength λ, in response to an external potential Φext. It
satisfies the Dyson equation

χλ(iu) = χ̃λ(iu) + λχ̃λ(iu)V χλ(iu), (3.18)

where χ̃λ is the density response to the screened potential Φλ,

δn = χ̃λΦλ, (3.19)

for a system at coupling strength λ. Using Eq. (3.18), χλV may be expressed in
terms of χ̃λ as

χλ(iu)V =
χ̃λ(iu)V

1− λχ̃λ(iu)V
. (3.20)

The random-phase approximation (RPA) assumes that the λ-dependence of χ̃
and Φ can be neglected. Physically, it corresponds to the assumption that the
polarization properties of the material changes negligibly due to the polarization
itself. With no λ-dependence in χ̃, the λ-integral of Eq. (3.17) can be performed
to yield§

Exc =
∫ ∞

0

du

2π
Tr [ln(1− χ̃(iu)V )]− Eself . (3.21)

The RPA is exact in the high-density limit, and its application to the uniform
electron gas is wellknown [49]. Approximate expressions exist [50, 51, 52]. It has
also been used to calculate the nonlocal contribution to the surface energy [41,
53, 54], and the correlation interaction between two parallel slab surfaces [38],
and an application to small diatomic molecules is under development [55].

3.4 COMPUTATIONAL COMPLEXITY OF THE RPA

Although manageable in some special cases, the RPA is still computationally
too demanding to be worthwhile, considering that it still is an approximative
treatment of the many-body problem. If one wants to go about and calculate it
anyways, to the author’s knowledge, the best way would be to make use of the
fact that Tr [ln(A)] = ln(det(A)), and write

Exc =
∫ ∞

0

du

2π
ln(det(1− χ̃(iu)V ))− Eself , (3.22)

where det() means the functional determinant [37]. The determinant of an N×N
discrete matrix can be solved using standard LU-factorization, for which efficient

§In Paper IV, there is a misprint showing log10 instead of ln. Moreover, the argument of the
logarithm is positive, so Re [] may be omitted.

13



14 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

O(N3) algorithms exist [56], whereas the logarithm requires a complete solution
of the eigenvalue problem, which also scales like O(N3) but is more complex and
time-consuming [56]. In both Eq. (3.21) and Eq. (3.22), an additional benefit is
not having to calculate the intermediate χλ’s, needed if the λ integration is done
explicitly.

A complexity-reducing approximation to the RPA, which in the three-dimensional
case reduces the operation count to O(N2) (Appendix A), and for the one-
dimensional case to O(N) (Paper IV), can be made if χ̃(iu) is known in its
diagonal form,

χ̃(r, r′; iu) =
∑
i

λi(iu)ψi(r, iu)ψ∗i (r
′, iu), (3.23)

with the additional assumption that the topology of a special overlap matrix S,

Si,j =
∫
d3r ψ∗i (r, iu)(−∇2)ψj(r, iu), (3.24)

is such that |Si,j| is appreciable on a nearest-neighbor lattice only. S is then a
block-tridiagonal matrix, for which efficient computational algorithms exist [57],
and Eq. (3.22) may be evaluated as

Exc =
∫ ∞

0

du

2π
ln

(
det(S(iu)− Λ(iu))

det(S(iu))

)
− Eself , (3.25)

with Λi,j = 4πλiδi,j. In one dimension, Eq. (3.25) coincides with the method
described in Paper IV. In higher dimensions, it has not been applied yet; it
is given here for future reference. Details of a possible algorithm are found in
Appendix A.

Although the general approach is reminiscent of the tight-binding method [58],
Eq. (3.25) is quite different in that Eq. (3.23) describes the electrons only, and
for the purpose of calculating the full RPA. Besides, the φi’s do not necessarily
need to be localized in order for the overlaps Si,j to vanish.

The ultra-fast method of Paper IV is based on the observation that the de-
terminant, as a function of system size, can be made to satisfy the homogeneous
differential equation of which operator it is the determinant, subject to particular
boundary conditions. In higher dimensions, the single homogeneous differential
equation is replaced by a manifold, satisfying a complete set of boundary con-
ditions. However, since the boundary is of lower dimension than the enclosed
space, the complexity is reduced.

In summary, Paper IV contains an explicit form for the vdW functional that
applies to flat surfaces. Compared to the DW98 functional [38], the virtues are
the computational simplifications gained from choosing a particular sub-class of
response functions and utilizing a differential formulation and sparse matrices.
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3.5 POLARIZATION OPERATOR

The polarization operator αµ,ν is defined as the polarization along direction r̂µ
due to the total field Eν along direction r̂ν . In matrix notation, P = α · E. The
polarization is related to the induced charge, δn = −∇ ·P, and the total field to
the screened potential, E = −∇Φ, so

δn(r) =∇ ·α ·∇Φ. (3.26)

But the response δn to the screened potential Φ is just χ̃, so

χ̃ =∇ ·α ·∇. (3.27)

The dielectric operator εµ,ν is defined in terms of αµ,ν as

ε = 1 + 4πα. (3.28)

In terms of ε, Eq. (3.21) takes the form [37]

Exc =
∫ ∞

0

du

2π
Tr [ln(∇ · ε ·∇G)]− Eself , (3.29)

where G = −V/4π is the Coulomb Green’s function, which was mentioned in
Sec. 3.2. What makes Eq. (3.29) interesting is that for a uniform translationally
invariant system, εµ,ν = δµ,νε, and [∇, ε] = 0, so

∇ · ε ·∇G = ε∇ ·∇G = ε. (uniform) (3.30)

As noted in Paper IV, a large portion of Exc should therefore be given by

E0
xc =

∫ ∞
0

du

2π
Tr [ln(ε)]− Eself , (3.31)

where ε is the isotropic scalar operator ε = 1
3

∑
µ εµ,µ, which becomes exact in

the uniform limit, due to Eq. (3.30). With the additional assumption that ε in
Eq. (3.29) is also isotropic, the remaining XC energy is a pure correlation energy,
Enl
c = Exc − E0

xc, and is in Paper IV found to be

Enl
c =

∫ ∞
0

du

2π
Tr
[
ln(1 + ε−1 [∇, ε] ·∇G)

]
. (3.32)

In Paper VI, Eq. (3.32) is shown not to depend on the isotropic assumption, nor
on RPA, but is an exact formulation of the deviation from Eq. (3.31).
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16 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

3.6 ASYMPTOTIC VAN DER WAALS ENERGY

The asymptotic van der Waals energy between two bounded species, separated
by a distance R, is given by

EvdW = −C6

R6
, (3.33)

where the strength of the interaction is determined by the coefficient C6. In
second-order perturbation theory, it can be expressed in terms of the total polar-
ization properties, or the polarizabilities, α(iu), of the two species as [43]

C6 =
3

π

∫ ∞
0
duαA(iu)αB(iu). (3.34)

The polarizability is obtained from the isotropic polarization operator to the
external field,

α(iu) =
∫
d3rd3r′αext(r, r

′). (3.35)

In analogy with Eq. (3.20), the polarization operator αext to the external field is¶

αext = (1−α ·∇V∇)−1 ·α, (3.36)

so that ∇ ·αext ·∇ = χ, in conjunction with Eq. (3.27).
Estimates of the asymptotic form Eq. (3.34) may be obtained in a number

of ways. By expanding Eq. (3.21) to second order in χ̃, or by expanding the
same equation to second order in the interaction V between separated objects,
one obtains formulas precisely on the form Eqs. (3.33), (3.34) and (3.35). The
expansions result in different estimates of Eq. (3.36), in terms of the simpler α,
which may be physically approximated. The first alternative is considered too
crude. The second alternative is evaluated approximately in Paper II, and fully
in Paper III. In Paper IV, the whole RPA expansion Eq. (3.21) is performed.

A third alternative is to expand Eq. (3.32) to second order in the argument
ε−1 [∇, ε]·∇G, leading to a third estimate of Eq. (3.36), in terms of a related, gen-
eralized polarization operator. The benefit is that the expansion is more robust,
and may be applied not only in the asymptotic limit, but also at intermediate
range, as worked out and performed in Paper VI.

¶The field E that satisfies ∇ · ε ·E =∇ ·Eext, and tends to Eext at infinity may be written
E = (1 −∇V∇ · α)−1 · Eext. Expanding the inverse, it is readily seen that ∇ × E = 0, so
E = −∇Φ. Multiplying by∇ ·(1−∇V∇·α) from the right yields∇·E+4π∇ ·α·E =∇·Eext,
which becomes ∇ · ε · E =∇ · Eext. Finally evaluating P = α · E one obtains Eq. (3.36).
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CHAPTER 4

SOFT MATTER

Soft matter is a collective name for a broad class of systems, including both
soft materials like polymers, liquid crystals, biosurfaces and membranes and soft
molecules such as biomacromolecules and van der Waals complexes [59]. These
systems play an important role in such phenomena as lubrication, physisorption
and adhesion, and the interactions are to a large extent characterized by the weak
ubiquitous van der Waals interaction.

To describe soft matter, a DFT approach that also accounts for those im-
portant nonlocal correlations is essential. At the same time as being generally
applicable, the method should be efficient and accurate. A development of suc-
cessively more versatile such functionals is reflected in Papers I-VI, and the major
results presented here.

4.1 VAN DER WAALS COMPLEXES

A van der Waals complex consists of two or more stable molecules held together
by van der Waals forces [59]. The bond energies are typically in the meV range.
This is extremely small compared to covalently bonded molecules, with bond
energies in the eV range.

In Paper II, a previously proposed [30, 33] van der Waals density functional
is applied to van der Waals complexes. Dynamic polarizabilities and dispersion
coefficients, C6, are obtained with a useful accuracy and at a low computational
cost, using ground-state electron densities as input.

As the basic approximation, a very simple model of the polarization response
is used,

α(r, r′; iu) =
κ(r)n(r)

u2
δ3(r− r′), (4.1)

where n(r) is the electron density. With κ = 1, Eq. (4.1) was essentially proposed
already by Drude in the end of the nineteenth century. The addition, κ(r), is an
essential cutoff, which from the gradients of the density locally detects when the
polarization properties cannot be approximated as simply as in Eq. (4.1).

17
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Figure 4.1: Paper II: Values for C6 of the about 100 van der Waals complexes studied,
compared with other results.

In the outer regions of a molecule, the length scale ld for density variations is
shorter than the screening length ls of the electron gas, which renders Eq. (4.1)
to overestimate the response. This essentially only happens at the boundaries
of a body, however, where the density is rapidly decaying. The true response in
those regions is small, and so better approximated with zero than anything else.

Expressing ld and ls in terms of the density and its gradients, the cutoff takes
the form

κ(r) = θ(n(r)− C |∇ ln(n(r))|6), (4.2)

where C is a semi-empirical constant, estimated from an analysis of the homoge-
neous electron gas [60, 28, 12, 20].

As a complexity-reducing step, the electrodynamics is approximated by the
solution in the uniform limit, which leads to

αext(r, r
′) =

κ(r)n(r)

u2 + 4πn(r)
δ3(r− r′), (4.3)

where the κ in the denominator may and has been omitted.
Using Eq. (4.3), the results for C6 for small and medium-sized molecules

are compared with existing results obtained using more cumbersome methods
(Fig. 4.1). The simplicity of the functional is such that although the deviations
at some points are quite large, the overall statistical agreement is overwhelming.

4.2 FULL-FIELD CALCULATIONS

One of the two major approximations in Paper II is to omit the dependence of
the electrodynamics on the density variations (Eq. (4.3)). This omission also
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Figure 4.2: Paper III: Values for C6, for atoms and molecules, obtained by the mod-
ified cutoff scheme and the full electrodynamics, compared with other results.

leads to a fully isotropic response to an external field, which is not the case for
asymmetric systems, like the interaction between diatomic molecules. In Paper
III, the full electrodynamics is performed.

When doing the full electrodynamics a technical complication is that for gen-
eral geometries, the Poisson equation in a nonuniform dielectric needs to be done.
Moreover, due to the cutoff function κ(r), this nonuniformity is stiff, leading to
quite tough calculations. Those are done using a finite element method with an
adaptive net-mesher [61].

For atoms and molecules, the major effect of κ is to reduce the response from
the outer tails of the species. However, Eq. (4.2) also introduces spurious regions
within the species, the intra-shell region, leading to severe problems with the
numerical solutions. To overcome this problem, and also to unify the treatment
of atoms and molecules with the treatment at surfaces [62, 34], the function κ
is slightly modified. In the outer tails of a molecule, the density is decaying
exponentially, so that |∇ ln(n)| is almost constant. Henceforth, an equivalent
description, avoiding the intra-shell cutoffs, is to take

κ(r) = θ(n(r)− c[n]), (4.4)

where c is a constant, but dependent on the particular system under study.
This system-dependence reflects a physical property that could not be appro-

priately assessed in Paper II; the static polarizability, α0, which can be obtained
quite accurately from standard DFT calculations. Fixing the constant c[n] so
as to reproduce α0 has several benefits: (i) The polarizability α(iu) becomes
comparable to values from more advanced calculations; (ii) The computational
issues becomes manageable; (iii) The statistical error in the calculations of C6

coefficients goes down; (iv) The procedure is equivalent to the one previously
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Figure 4.3: Anisotropic polarizability of H2, as calculated in Paper III, compared to
a more accurate calculation [64]. Hartree atomic units. Left: αxx(iu). Right: αzz(iu).

introduced for surfaces [33]. Equation (4.4) thus gives a consistent treatment of
all systems [30, 32, 33, 63, 34] studied.

In Paper III, the full electrodynamics is performed to obtain αext, using the
simple model Eqs. (4.1) and (4.4). Figure 4.2 shows the results obtained by
applying the method to atoms and small molecules. The close agreement with
more elaborate calculations is reassuring as well as intriguing.

A virtue of doing the full dynamics is that the anisotropic effects can be
calculated. Those effects depend on the model for κ. In Fig. 4.3 the results
obtained for the hydrogen molecule are shown, compared to a more accurate
calculation.

In summary, the prediction of van der Waals coefficients from a knowledge
of the density only has been achieved with a reasonable accuracy, and to a low
computational cost.

4.3 JELLIUM SURFACES

As exemplified in Papers II and III, the asymptotic properties of the exchange-
correlation energy, Exc, are quite successfully described, and the next step is to
investigate how a simple model like Eq. (4.1) performs for intermediate-range
interactions. In Paper IV this is done within the full RPA. Due to the increased
computational complexity, a suitable starting point is the case of two parallel
surfaces or slabs, where the equations simplify due to symmetry.

Equation (4.1) gives the correct behavior of the polarizability for slowly vary-
ing fields (small wave-vectors q), as in the asymptotic interaction between two
pieces of matter. For more rapidly varying fields (larger wave-vectors q), it is
not appropriate to consider the polarizability at a certain point to depend on the
field in that point only, so the basic polarization model needs to be generalized
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Figure 4.4: Left: The D-function D(iu) for a jellium profile of rs = 2, compared to a
more accurate calculation [65]. Right: Small-separation (d) variation of the non-local
correlation energy (ergs/cm2) between two parallel aluminium jellium slabs, compared
to benchmark data [38].

to arbitrary fields. The sharp cutoff function κ is also inappropriate for large
wave-vectors q, and it would be desirable to incorporate the effect of κ directly
into the model of the polarization operator.

A suitable generalization of Eq. (4.1) is to decompose it into Fourier compo-
nents,

α(r, r′; iu) =
∫

d3q

(2π)3
α(r,q; iu)eiq·(r−r′), (4.5)

and introduce a model for α(r,q; iu). In the small-wavevector (q → 0) limit,
it should reduce to Eq. (4.1). A simple model obeying this constraint is the
plasmon-pole approximation [66],

α(r,q; iu) =
n(r)

u2 + ω2
q (r)

, (4.6)

where ωq is a dispersion relation introduced in Paper IV, obtained from experi-
mental experience and studies of the uniform electron gas.

There are several benefits of Eq. (4.6). One is to remedy a deficiency of
Eq. (4.1), known as the F-sum rule: α→ n/u2 should hold for large u, and should
not be cutoff by κ. Another benefit is that Eq. (4.6) implements the cutoff in a
smooth fashion: For example, consider αext in the uniform limit, the analog of
Eq. (4.3). As q → 0 and u → 0, the polarization due to the external field tends
to αext → n/(ω2

0 + 4πn), using Eq. (4.6), as opposed to αext → κn/4πn = κ/4π,
obtained from Eq. (4.1). Provided ω2

0 varies slowly with the density and tends to
zero slower than n, Eq. (4.6) cuts off in the same manner as Eq. (4.4).

A deficiency of Eq. (4.6) is that it is not necessarily symmetric (hermitean)
for a particular dispersion model ωq. This is remedied in Paper VI.

21



22 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Distance [A]

B
in

di
ng

 e
ne

rg
y 

[m
eV

/A
2 ]

Standard DFT 

Nonlocal Correction

New 

Figure 4.5: Left: The hexagonal graphite structure. Right: The graphene-graphene
binding-energy curve of Paper V, calculated with the method of Paper IV, and com-
pared with a standard DFT calculation.

In Paper IV, the full RPA is performed on the case of two parallel jellium slabs,
a distance d apart. Due to the translational symmetry, a reasonable polarization
operator can be introduced, which retains the property of being symmetric, read-
ily invertible and yet sufficiently similar to the uniform gas to be useful.

Just as in Paper III, the smoothed cutoff of Paper IV is adjusted so as to re-
produce the static polarization properties of the jellium surface. The appropriate
quantity here is the induced surface charge and a related function D(iu), which is
fixed to results of accurate calculations of D(0). The dynamic behavior of D(iu)
is then well reproduced, as shown in Fig. 4.4.

A benchmark test is made, comparing the results for the nonlocal correla-
tion at intermediate range to a complete RPA calculation (DW98), without the
simplifying polarization model. The agreement with DW98 reflects the inherent
similarities.

The computational speedup enabled by the simple polarization model and the
method derived in Paper IV is about a thousand times compared to DW98, due
to the overall lower complexity.

4.4 GRAPHITE

As a full-fledged application of the functional developed in Paper IV, the func-
tional is in Paper V applied to the familiar material graphite, and the interaction
of graphene layers. Graphite has a layered structure, consisting of planes of tightly
bound carbon atoms, arranged in a hexagonal honeycomb lattice (Fig. 4.5). The
bond between the planes is very weak, with a tiny electronic overlap. Standard
DFT estimates the exchange-correlation effects from this small overlap only, but
the physical interaction is between the layers, which explains the inability of the
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Figure 4.6: Paper V: Total-energy contour plot, in the V/V0 – c/a plane calculated
with standard DFT. The direction of the trough corresponds to a changing distance
between the planes. Left: LDA, which exhibits a coincidal minimum. Right: GGA,
which is a refined functional, shows no minimum.

standard DFT to account for the van der Waals interactions.
The result of the application to two graphene layers (Paper V) is shown in

Fig. 4.5 (right). The results for graphite are almost indistinguishable from this
simpler system, as shown in Paper V. The bond length, binding energy and bulk
modulus obtained for graphite are all in good agreement with experiment [67,
68, 69], whereas the standard DFT clearly does not apply in this extreme case
(Fig. 4.6).

During the last two decades, ample results for Graphite have been calculated,
using LDA [70, 71, 72, 73, 74, 75, 76], and reporting results in reasonable agree-
ment with experiment. This can be nothing but a coincidence, since the LDA
cannot, by construction, account for van der Waals bonds.

An interesting fact, which should add significant research-sociological ques-
tions, is that no-one so far has reported that standard DFT gives results for
graphite in strong disagreement with experiment (Fig. 4.6). The use of the meth-
ods derived in Papers IV and VI seems to be one way to remedy this restriction
in applicability of the standard DFT, and extend it to also include soft matter.
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CHAPTER 5

TOWARDS A UNIVERSAL FUNCTIONAL

A general XC functional should be robust; it should work for all systems, in par-
ticular yielding physical behavior for all inhomogeneous systems. As shown in
Papers II and III, the asymptotic form of the XC functional is well accounted
for [30, 32, 35], and a first step towards more medium-ranged interactions is
given in Papers IV and V. To date, these long- and medium-range investiga-
tions have been completely separated from close-ranged studies of the exchange-
correlation [52, 22] and kinetic [77, 78, 79] energies. This reflects the fact that
close-range energetics and asymptotic forms are quite unrelated properties of the
XC functional, but in the intermediate-range regime that is no longer the case.
As the regimes are merged, the information from both ends becomes equally
important.

In Paper VI, the method developed in Paper IV and explored in Paper V
is generalized to arbitrary geometries. One way to do this, in general, is to
calculate the full RPA on an approximate dielectric function, as described in
Chap. 3. Another way is to do an approximate evaluation of the RPA, with a
different approximation as input, as is explored and pursued in Paper VI.

5.1 AN EXPANSION THAT WORKS

In order to find a suitable approximate evaluation of the RPA, the problem needs
to be reformulated. It turns out that in doing so, it becomes possible, in principle,
to push the approximation beyond RPA, in a systematic way.

In Paper IV, the exchange-correlation energy was decomposed into two parts;
one regular part representing the present knowledge of the functional, and one
containing the nonlocal properties. The word ”regular” is here used in the sense
”major”, and emphasizes that the regular portion of the XC energy is large and
well known within the framework of the LDA and GGA [2, 6, 18, 15, 16].

The present approach to Enl
c has the following guiding principles: (i) Express

E0
xc and Enl

c in the same quantity, the generalized polarization operator sxc; (ii)
Make a simple parameterization of sxc, based on previous studies of nonlocal
functionals [30, 32, 35, 37]; (iii) Adjust the parameterization to both regular and
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nonlocal key properties, utilizing previous studies of the XC hole [6, 18, 51, 52, 22].
The generalized polarization operator, sxc, is in Paper VI defined as the log-

arithmic expression

sxc[n] = ln(ε[n]). (5.1)

It has a number of useful properties: (i) In the uniform limit, it is exactly related
to the exact coupling-constant averaged many-body response function; (ii) Its
frequency integral is exactly related to the exchange-correlation hole [6, 18]; (iii)
The regular (major) part of the XC energy hole is a linear functional of sxc; (iv)
The nonlocal part of the XC energy hole is to a good approximation a quadratic
functional of sxc.

The key point behind the last statement is the observation that the nonlocal
energy Eq. (3.32) is expressed quite conveniently in terms of sxc, via the series

ε−1 [∇, ε] ·∇G =
∞∑
n=1

1

n!
dn · d0G, (5.2)

where

dn+1 = [sxc,dn] , (5.3)

together with the starting criterion d0 =∇. As shown in Paper VI, the conver-
gence of the series Eq. (5.2) is extremely rapid in the limit of small variations,
and also for slightly more general conditions.

5.2 EVALUATION OF ENL
C

In terms of the generalized polarization operator sxc, the regular XC energy is
expressed as

E0
xc =

∫ ∞
0

du

2π
Tr [sxc]− Eself, (5.4)

and the nonlocal correlation energy as

Enl
c =

∫ ∞
0

du

4π
Tr
[
s2

xc − (sxcT)2
]

+O(δ3), (5.5)

where δ is a small measure discussed in Paper VI, and T ≡ ∇G∇ is the 3 × 3
dyadic operator, such that T2 = T, and the trace over the 3x3 matrix yields 1.

Several points can be made about Eq. (5.5). (i) It is positive for all sxc, and
hence the nonlocal contributions (to second order) are always positive. (ii) For
a uniform system, it vanishes identically, since sxc then commutes with T. (iii)
It is equivalent to the second-order expansion of the expression used in Paper
IV, for which δ = 0 holds rigorously. Hence, Eq. (5.5) is a three-dimensional
generalization of that functional, with the addition of allowing more realistic
polarizability models.
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Figure 5.1: The universal nonlocal correlation-interaction εnl(γ, x) of Paper VI. The
figure shows the interaction as a function of scaled distance x = qeff |r− r′|, for varying
differences between the end points r and r′, expressed in the parameter γ ∈ [0, 1[. The
density-dependent parameters qeff and γ are defined in the text.

5.3 EXPLICIT NONLOCAL CORRELATION DENSITY FUNCTIONAL

The major part of Paper VI is devoted to an investigation of a particular parame-
terization of sxc, based on the simple polarization operator Eq. (4.5). With this
particular parameterization, Enl

c becomes a two-point integral over a correlation-
interaction εnl(γ, x), explicitly expressed as

Enl
c =

1

2

∫
d3rd3r′ n(r)n(r′)εnl

q2
0(r)− q2

0(r′)

q2
0(r) + q2

0(r′)
,

√
q2

0(r) + q2
0(r′)

2
|r− r′|

 . (5.6)

Here, εnl(γ, x) is a (within the model) universal interaction function, shown in
Fig. 5.1. The interaction is governed by two properties: (i) the effective scale, qeff,
on which the interaction occurs; and (ii) a measure of the difference in electronic
density at the interacting points, γ. Notably, εnl(γ, x) is almost independent of γ
at short range, whereas the effect becomes large at intermediate and long range.
This explains why long-ranged interactions are so much harder to predict than
short- and intermediate-ranged interactions.

The effective scale of the interaction, qeff, is a function of the local scale
function, q0, at the interacting points. It is defined as

q0(r) = kF (r)f(n(r), s(r)), (5.7)

where f(n, s) is a function of the density n and the reduced density gradient
s [15, 16], and behaves very similarly to the enhancement factor, Fxc [22]. In
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Paper VI, it is given by

f(n, s) = FRPA
xc (n) + µs2, (5.8)

where FRPA
xc is the enhancement factor obtained by doing the local density ap-

proximation in the RPA, and µ is the effective gradient coefficient of GGA [16].
For low densities, Eq. (5.6) is precisely the deviation from the LDA. For higher

densities, a semilocal correction, Esl
c , needs to be added, as discussed in Paper

VI. Explicitly, the total correlation energy is given by

Ec = ELDA
c + Enl

c + Esl
c . (5.9)

Eq. (5.9) is the first correlation functional that explicitly contains the van der
Waals interaction.

The parameterization of sxc performed in Paper VI is the first of a manifold
of possible parameterizations, of which a large class eventually would lead to a
function of the kind shown in Fig. 5.1. One should expect that the details of
εnl(γ, x) are subject to minor changes, as more refined analyses are performed.

At this point there might be objections referring to computational tractability.
Undoubtly, a two-point integral, like Eq. (5.6), might seem computationally more
demanding than a simple local functional, like the LDA. However, that is not
necessarily so, mainly for two reasons: (i) In the general context of diagonalizing
a set of N electrons, an O(N3) process, the O(N2) work needed to evaluate a
two-point integral over the basis functions is not a hindrance, and (ii) in the
unlikely event of being the bottleneck, a nonlocal functional may, rigorously and
unambiguously, be approximated by a power series in gradients, which might be
used in future XC functionals that would set their foot on much the same path,
where already the GGA has walked.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

In this thesis, the many-faceted nature of nonlocal correlations has been explored.
The examples presented illuminate the importance of physical models for the in-
teractions, all in order to gain stability, robustness, and transferability between
systems. A scheme has been outlined, with which a systematic improvement
beyond LDA and GGA, including long- and medium-ranged correlations, may
be achieved. Studies of van der Waals interactions in molecules, and of nonlo-
cal correlations between surfaces illustrate the physical effects of such a scheme.
Finally an explicit formula for a general nonlocal correlation density functional
has been given. In conclusion, it has been clearly shown that a future general
functional for practical work with DFT should include the nonlocal correlations,
and the methods developed in Papers IV and VI are candidates for such a general
functional.

6.1 REASONS FOR A NONLOCAL PERSPECTIVE

An important reason for using nonlocal functionals is the physical insights that
can be gained from doing so. For instance, consider the attractive tail of the
universal function εnl(γ, x) in Fig. 5.1: it is not hard to imagine that once applied,
it will make well-separated species approach each other. That is not so easily seen
from a local function.

Another desirable property of a nonlocal functional is the robustness gained,
and the potential unnecessity to take the self-consistency scheme into extremes;
it is my belief that the local character of the existing functionals is responsible for
the requirement of such detailed self-consistency, simply because the sensitivity
to the density is so much higher when all dependency is concentrated to a single
point.

As an example of the benefits of a nonlocal picture, I would like to briefly
discuss a current topic, concerning the applicability of GGA to van der Waals
complexes. In a recent study [80], the authors conclude:

Despite its occasional difficulties with dispersion the PW91 functional
may be a viable alternative to the ab initio methods, certainly in
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situations where large complexes are being studied.

The study concerns, among other species, the molecules Ne2 and Ar2. I think
the above quote can only be true to the extent that the species are not van der
Waals or correlation bonded, and can thus not be considered a viable alternative.
First, another study [81] shows that the major binding in these systems is due to
an overlap of atomic densities, which in my opinion explains why the GGA gives
a binding at all. Secondly, there is a natural reason for this restriction.

In GGA, the exchange is a function of the reduced density gradient s. The
exchange energy shows a simple trend in the interaction between two separate
species, whether it be atoms or surfaces. It increases with distance, up to some
critical point, where it starts to decrease. At large separations, it continues to
decrease. Generally, there is a (chemical) binding at short separations, whereas
at large separations, there is only repulsion. For a correlation bonded species,
this repulsion must be balanced by an attractive correlation. But the correlation
is based on the same measure, s, as the exchange, so effectively there is only one
energy, the exchange-correlation energy, which by necessity should show the same
trend, although possibly more intricately. Trying to grasp additional features
only obscures the physics by more complex behavior, and is likely to destroy
transferability.

Given this simple argument, a GGA cannot in principle, and should not in
practice, distinguish between a chemical bond and a correlation bond. The solu-
tion is of course to add on a truly nonlocal correlation energy.

6.2 ACTIVE AREA OF RESEARCH

The theory of nonlocal density functionals is only in its cradle. As the desire to
treat more of soft matter increases, the desire to investigate those functionals will
also increase. However, beginning to investigate nonlocal functionals immediately
opens up a new can of worms, with consequences that can only be imagined. In
departing from the LDA, and attacking systems outside the limit of applicability
of gradient expansions, a whole new set of questions arise. One or two of those
questions might have been answered in this thesis, but the overwhelming majority
still remains.
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J. Thiem, and F. Vögle (Springer, Berlin, 1996).

[47] K. Burke and E. K. U. Gross, in Density Functionals: Theory and Applications, edited by
D. Joubert (Springer, Berlin and Heidelberg and New York, 1997).

[48] H. B. Callen and T. A. Welton, Irreversibility of Generalized Noise, Phys. Rev. 83, 34
(1951).

[49] M. Gell-Mann and K. A. Brueckner, Correlation Energy of an Electron Gas at High Den-
sity, Phys. Rev. 106, 364 (1957).

[50] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approxima-
tions for many-electron systems, Phys. Rev. B 23, 5048 (1981).

[51] Y. Wang and J. P. Perdew, Correlation hole of the spin-polarized electron gas, with exact
small-wave-vector and high-density scaling, Phys. Rev. B 44, 13298 (1991).

[52] J. P. Perdew and Y. Wang, Pair-distribution function and its coupling-constant average
for the spin-polarized electron gas, Phys. Rev. B 46, 12947 (1992).

[53] J. M. Pitarke and A. G. Eguiluz, Surface energy of a bounded electron gas: Analysis of the
accuracy of the local-density approximation via ab initio self-consistent-field calculations,
Phys. Rev. B 57, 6329 (1998).

[54] J. M. Pitarke and A. G. Eguiluz, Jellium surface energy beyond the local-density approxi-
mation: Self-consistent-field calculations, Phys. Rev. B 63, 045116 (2001).

[55] X. Gonze, and the ABINIT program, private communicaton (2001).

[56] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies
in C (Cambridge University Press, New York Melbourne, 1992).

[57] See, e.g., www.netlib.org, or the SIAM journals.

34



Bibliography 35

[58] N. W. Ashcroft and N. D. Mermin, Solid state physics (Saunders College Publishing, New
York, 1976), international edition.

[59] A. Buckingham, P. Fowler, and J. Hutson, Theoretical-Studies of Van der Waals Molecules
and Intermolecular Forces, Chem. Rev. 88, 963 (1988).

[60] D. C. Langreth and S. H. Vosko, Exact Electron-Gas Response Functions at High Density,
Phys. Rev. Lett. 59, 497 (1987).

[61] H. Rydberg, Licenciate Thesis (1998).

[62] Y. Andersson, E. Hult, D. C. Langreth, and B. I. Lundqvist, in Proceedings of the 18th
Taniguchi Symposium Elementary processes in excitations and reactions on solid surfaces,
edited by A. Okiji, H. Kasai, and K. Makoshi (Springer, Berlin, 1996), in press.

[63] E. Hult and A. Kiejna, Trends in atom/molecule-surface van der Waals interactions, Surf.
Sci. 383, 88 (1997).

[64] D. M. Bishop and J. Pipin, Calculation of the polarizability and hyperpolarizability tensors,
imaginary frequency, for H, He, and H2 and the dispersion polarizability coefficients for
the interactions between them, J. Chem. Phys. 97, 3375 (1992).

[65] A. Liebsch, Density-functional calculation of the dynamic image plane at a metal surface:
Reference-plane position of He- and H2-metal van der Waals interaction, Phys. Rev. B
33, 7249 (1986).

[66] B. I. Lundqvist, Characteristic Structure in Core Electron Spectra of Metals Due to the
Electron-Plasmon Coupling, Phys. Kondens. Materie 9, 236 (1969).

[67] Y. Baskin and L. Mayer, Lattice Constants of Graphite at Low Temperatures, Phys. Rev.
100, 544 (1955).

[68] L. X. Benedict, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, and V. H. Crespi,
Microscopic determination of the interlayer binding energy in graphite, Chem. Phys. Lett.
286, 490 (1998).

[69] B. T. Kelly, Physics of Graphite (Applied Science Publ., London, 1981).

[70] D. P. DiVincenco, E. J. Mele, and N. A. W. Holzwarth, Density-functional study of inter-
planar binding in graphite, Phys. Rev. B 27, 2458 (1983).

[71] M. T. Yin and M. L. Cohen, Structural theory of graphite and graphitic silicon, Phys. Rev.
B 29, 6996 (1984).

[72] H. J. F. Jansen and A. J. Freeman, Structural and electronic properties of graphite via an
all-electron total-energy local-density approach, Phys. Rev. B 35, 8207 (1987).

[73] M. C. Schabel and J. L. Martins, Energetics of interplanar binding in graphite, Phys. Rev.
B 46, 7185 (1992).

[74] J. Furthmüller, J. Hafner, and G. Kresse, Ab initio calculation of structural and electronic
properties of carbon and boron nitride using ultrasoft pseudopotentials, Phys. Rev. B 50,
15606 (1994).

[75] J. C. Charlier, X. Gonze, and J. P. Michenaud, Graphite Interplanar Bonding: Electronic
Delocalization and van der Waals Interaction, Europhys. Lett. 28, 403 (1994).

[76] J. C. Charlier, X. Gonze, and J. P. Michenaud, First-Principles Study of Carbon Nanotube
Solid-State Packings, Europhys. Lett. 29, 43 (1995).

[77] E. Chacón, J. E. Alvarellos, and P. Tarazona, Nonlocal kinetic energy functional for non-
homogenous electron systems, Phys. Rev. B 32, 7868 (1985).

35



36 Henrik Rydberg, Nonlocal Correlations in Density Functional Theory

[78] P. Tarazona and E. Chacón, Exact solutions of approximate density functionals for the
kinetic energy of the electron gas, Phys. Rev. B 39, 10366 (1989).
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APPENDIX A

DETERMINANTS

The block determinants that emerge from differential equations in any dimension may be sim-
plified. Here we start out by finding the appropriate recursion formula, which is similar in
structure to the simple tridiagonal formula.

Definition 1 Let Ak,Bk,Ck denote a set of quadratic matrices of rank m. Let the assembly
of a larger, tridiagonal block matrix M, consisting of those matrices, be called a tridiagonal
m-block matrix of order n,

M =



A1 B1 0 . . . . . . 0

C1 A2 B2
. . . . . .

...

0 C2 A3 B3
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . Cn−2 An−1 Bn−1

0 . . . . . . 0 Cn−1 An


. (A.1)

Let N = mn denote the rank of M.

Theorem 1 Let |M| be the determinant of the m-block matrix M of order n. Then,

|M| = |Ãn|, (A.2)
Ãk = Ck−1Ãk−1C

−1
k−1Ak −Ck−1Ck−2Ãk−2C

−1
k−2Bk−1,

With the initial conditions Ã−1 = 0 and Ã0 = 1. Any undefined Ak, Bk or Ck may be chosen
arbitrarily.

Proof of Theorem 1 Extract the lower diagonal of M of Eq. (A.1), yielding

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 C1 0
. .

.
. .

.
.
.
.

0 0 C2

. .
.

. .
.

.

.

.

.

.

.
.
. .

.
. .

.
. .

.
. . 0

.

.

.
.
. .

.
. . 0 Cn−2 0

0 . . . . . . 0 0 Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 B1 0 . . . . . . 0

1 C−1
1 A2 C−1

1 B2

. .
.

. .
.

.

.

.

0 1 C−1
2 A3 C−1

2 B3

.
. .

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
.
.
.

.
.
. 1 C

−1
n−2An−1 C

−1
n−2Bn−1

0 . . . . . . 0 1 C−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.3)
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Divide the left and multiply the right part of the second row by A1,

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 C1A
−1
1 0

.
. .

.
. .

.

.

.

0 0 C2

. .
.

. .
.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.
.
. 0

.

.

.
.
. .

.
. . 0 Cn−2 0

0 . . . . . . 0 0 Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 B1 0 . . . . . . 0

A1 A1C
−1
1 A2 A1C

−1
1 B2

.
. .

.
. .

.

.

.

0 1 C−1
2 A3 C−1

2 B3

. .
.

.

.

.

.

.

.
.
. .

.
. .

.
. .

.
. . 0

.

.

.
.
. .

.
. . 1 C−1

n−2An−1 C−1
n−2Bn−1

0 . . . . . . 0 1 C
−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.4)

Subtract the right part of the first block from the second,

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 C1A
−1
1 0

.
. .

.
. .

.

.

.

0 0 C2

. .
.

. .
.

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
. .

.
. .

. 0 Cn−2 0
0 . . . . . . 0 0 Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 B1 0 . . . . . . 0

0 A1C
−1
1 A2 − B1 A1C

−1
1 B2

. .
.

. .
.

.

.

.

0 1 C−1
2 A3 C−1

2 B3

.
. .

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
. .

.
. .

. 1 C−1
n−2An−1 C−1

n−2Bn−1

0 . . . . . . 0 1 C−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.5)

Put back another factor of C1 on the second row,

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 C1A
−1
1 C−1

1 0
. .

.
. .

.
.
.
.

0 0 C2

.
. .

.
. .

.

.

.

.

.

.
.
. .

.
. .

.
. .

.
. . 0

.

.

.
. .

.
. .

. 0 Cn−2 0
0 . . . . . . 0 0 Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 B1 0 . . . . . . 0

0 C1A1C
−1
1 A2 − C1B1 C1A1C

−1
1 B2

. .
.

. .
.

.

.

.

0 1 C
−1
2 A3 C

−1
2 B3

.
.
.

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
. .

.
. .

. 1 C−1
n−2An−1 C−1

n−2Bn−1

0 . . . . . . 0 1 C−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.6)

The left part of the second row simplifies to A−1
1 .

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 A−1
1 0

. .
.

. .
.

.

.

.

0 0 C2

.
. .

.
. .

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
. .

.
. .

. 0 Cn−2 0
0 . . . . . . 0 0 Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 B1 0 . . . . . . 0

0 C1A1C
−1
1 A2 − C1B1 C1A1C

−1
1 B2

. .
.

. .
.

.

.

.

0 1 C−1
2 A3 C−1

2 B3

.
. .

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
. .

.
. .

. 1 C−1
n−2An−1 C−1

n−2Bn−1

0 . . . . . . 0 1 C−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.7)

Define

Ãk+1 = CkÃkC
−1
k Ak+1 − CkB̃k, (A.8)

B̃k+1 = CkÃkC
−1
k Bk+1,

Ã0 = 1,
Ã−1 = 0.
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Applying Eq. (A.8) to Eq. (A.7) we get

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 Ã−1
1 0

.
. .

.
. .

.

.

.

0 0 C2

. .
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. .
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.
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.
.
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.
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. .

.
. . 0 Cn−2 0

0 . . . . . . 0 0 Cn−1
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0 Ã2 B̃2
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.

0 1 C−1
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.
.

.
.
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.
.
.

.
.
. 0

.

.

.
.
. .

.
. . 1 C−1

n−2An−1 C−1
n−2Bn−1

0 . . . . . . 0 1 C−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.9)

Now, multiply the third row by the approriate factor,

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 Ã−1
1 0

. .
.

. .
.

.

.

.

0 0 C2Ã
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2
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n−2Bn−1
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n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.10)

Subtract the second row,

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 Ã−1
1 0

. .
.

. .
.

.

.

.

0 0 C2Ã
−1
2

.
.
.

.
.
.

.

.

.

.

.

.
. .
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. .
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. .
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. 0

.

.

.
. .
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. .

. 0 Cn−2 0
0 . . . . . . 0 0 Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã1 B̃1 0 . . . . . . 0

0 Ã2 B̃2
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. .
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. .

.

.

.

0 0 Ã2C
−1
2 A3 − B̃2 Ã2C

−1
2 B3

.
. .

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
.
.
.

.
.
. 1 C

−1
n−2An−1 C

−1
n−2Bn−1

0 . . . . . . 0 1 C−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.11)

Put back the extra factor of C,

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 Ã−1
1 0

. .
.

. .
.

.

.

.

0 0 C2Ã
−1
2 C−1

2

. .
.

. .
.

.

.

.

.

.

.
.
. .

.
. .

.
. .

.
. . 0

.

.

.
. .

.
. .

. 0 Cn−2 0
0 . . . . . . 0 0 Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã1 B̃1 0 . . . . . . 0

0 Ã2 B̃2

.
. .

.
. .

.

.

.

0 0 C2Ã2C
−1
2 A3 − C2B̃2 C2Ã2C

−1
2 B3

.
. .

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
. .

.
. .

. 1 C−1
n−2An−1 C−1

n−2Bn−1

0 . . . . . . 0 1 C−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.12)

Again, the left part simplifies, and putting in the definitions (A.8) yields

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 Ã−1
1 0

.
. .

.
. .

.

.

.

0 0 Ã−1
2

. .
.

. .
.

.

.

.

.

.

.
.
. .

.
. .

.
. .

.
. . 0

.

.

.
.
. .

.
. . 0 Cn−2 0

0 . . . . . . 0 0 Cn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
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Ã1 B̃1 0 . . . . . . 0

0 Ã2 B̃2
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.

. .
.

.

.

.

0 0 Ã3 B̃3

. .
.

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
.
.
.

.
.
. 1 C
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n−2An−1 C

−1
n−2Bn−1

0 . . . . . . 0 1 C−1
n−1An

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.13)
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Repeating the steps above, we end up with the matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . . . . 0

0 Ã−1
1 0

. .
.

. .
.

.

.

.

0 0 Ã−1
2

.
. .

.
. .

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
.
.
.

.
.
. 0 Ã

−1
n−2 0

0 . . . . . . 0 0 Ã−1
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã1 B̃1 0 . . . . . . 0

0 Ã2 B̃2

. .
.

. .
.

.

.

.

0 0 Ã3 B̃3

.
.
.

.

.

.

.

.

.
.
. .

.
. .

.
. .

.
. . 0

.

.

.
.
. .

.
. . 0 Ãn−1 B̃n−1

0 . . . . . . 0 0 Ãn

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.14)

The left determinant if just the product of the determinants of the diagonal blocks. The right
determinant is upper triangular, which again means the product of diagonal blocks. The terms
Ã1 to Ãn−1 hence cancel, yielding

|M | = |Ãn|, (A.15)

which completes the proof.

Discussion 1.1 Clearly, if the blocks are of rank m and Ak is d-sparse, i.e., have at most d
off-diagonal elements, and Bk and Ck are diagonal, which is the common case for differential
operators, then the work to complete the determinant is O(dnm2 +m3). With N denoting the
rank of the total matrix, and assuming that N is equally distributed in all dimensions, N = nd,
m = nd−1, the total work scales as O(dN2−1/d + N3(1−1/d)). Note that this is considerably
better the general case, O(N3), when d is small. In three dimensions for instance, it is O(N2).

Definition 2 Let S be the symmetric tridiagonal m-block matrix of order n,

S =



P1 Q†1 0 . . . . . . 0

Q1 P2 Q†2
. . . . . .

...

0 Q2 P3 Q†3
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . Qn−2 Pn−1 Q†n−1

0 . . . . . . 0 Qn−1 Pn


, (A.16)

constructed from the symmetric blocks Pk and Qk. Let Q denote the matrix constructed from
the blocks Qk,

Q =



Q1 0 0 . . . . . . 0

0 Q2 0
. . . . . .

...

0 0 Q3
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . 0 Qn−1 0
0 . . . . . . 0 0 Qn


, (A.17)

where Qn is arbitrary. Let x be a m-block vector of order n,

x =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1

x2

x3

...
xn−1

xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.18)
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Theorem 2 Let S be a symmetric tridiagonal m-block matrix of order n. Then

|S| = (−1)mn |Q||xn+1|, (A.19)

with x satisfying the homogeneous equation Sx = 0,

Qk−1xk−1 + Pkxk +Q†kxk+1 = 0, (A.20)
x1 = 1,
x0 = 0.

Proof of Theorem 2 Extract −Q from Eq. (A.16),∣∣∣∣∣∣∣∣∣∣∣∣∣
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0 −Q2 0
.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Q−1
1 P1 −Q−1
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2 Q

†
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.

0 −Q−1
3 Q2 −Q−1
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3 Q

†
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. .

.
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.
. . 0
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.

.
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.
. .

. −Q−1
n−1Qn−2 −Q−1

n−1Pn−1 −Q−1
n−1Q

†
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0 . . . . . . 0 −Q−1
n Qn−1 −Q−1

n Pn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.21)

Note that Qn is arbitrary. The left determinant may be written as (−1)mn|Q|,

(−1)
mn|Q|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Q−1
1 P1 −Q−1

1 Q†1 0 . . . . . . 0
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2 P2 −Q−1
2 Q

†
2

. .
.

. .
.

.

.

.

0 −Q−1
3 Q2 −Q−1
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3 Q

†
3
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.

.

.

.

.

.

.
. .

.
. .

.
. .

.
. .

. 0

.

.

.
. .

.
. .

. −Q−1
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. (A.22)

Let

Ak = −Q−1
k Pk, (A.23)

Bk = −Q−1
k Q†k,

Ck = −Q−1
k+1Qk.

Inserting into the recursion formula derived in Theorem1 yields

Ãk = Ck−1Ãk−1C
−1
k−1Ak − Ck−1Ck−2Ãk−2C

−1
k−2Bk−1 = (A.24)

(−Q−1
k
Qk−1)Ãk−1(−Q−1

k
Qk−1)

−1
(−Q−1

k
Pk)− (−Q−1

k
Qk−1)(−Q−1

k−1Qk−2)Ãk−2(−Q−1
k−1Qk−2)

−1
(−Q−1

k−1Q
†
k−1) =

(−Q−1
k
Qk−1)Ãk−1(−Q−1

k−1Qk)(−Q−1
k
Pk)− (−Q−1

k
Qk−1)(−Q−1

k−1Qk−2)Ãk−2(−Q−1
k−2Qk−1)(−Q−1

k−1Q
†
k−1

) =

(−Q−1
k
Qk−1)Ãk−1(−Q−1

k−1)(−Pk)− (−Q−1
k

)(−Qk−2)Ãk−2(−Q−1
k−2)(−Q†

k−1) =

−Q−1
k
Qk−1Ãk−1Q

−1
k−1Pk −Q

−1
k
Qk−2Ãk−2Q

−1
k−2Q

†
k−1 .

After rearranging and insertion of the unity Q−1
k Qk,

QkÃkQ
−1
k Qk +Qk−1Ãk−1Q

−1
k−1Pk + Qk−2Ãk−2Q

−1
k−2Q

†
k−1 = 0. (A.25)

Let xk+1 = Q−1
k ÃTkQk. Note that |xk+1| = |Ãk|. Also note that the matrix Pk is symmetric by

construction. Transposing Eq. (A.25) and inserting the definition of xk yields

Qk−1xk−1 + Pkxk +Q†kxk+1 = 0, (A.26)
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which may also be written Sx = 0. By virtue of Theorem1, the determinant |S| of Eq. (A.16)
is now given by

|S| = (−1)mn |Q||xn+1|, (A.27)

with the initial conditions,

x1 = Q−1
0 ÃT0 Q0 = Q−1

1 (1)Q1 = 1, (A.28)
x0 = Q−1

1 ÃT−1Q1 = Q−1
1 (0)Q1 = 0.

This completes the proof.

Theorem 3 The determinant of the symmetric tridiagonal m-block matrix S of order n is given
by

|S| = (−1)mn|Q| |yn+1|
|y1|

, (A.29)

with y being the m-block vector satisfying Sy = 0, and y0 = 0. Qn and yn+1 are arbitrary.

Proof of Theorem 3 Let x = yy−1
1 . Then x0 = 0, x1 = 1. Since Sx = Syy−1

1 = 0, the proof
is complete once we note that xn+1 = yn+1y

−1
1 .

Discussion 3.1 Theorem3 states that it is possible to evaluate the determinant by solving a set
of homogeneous equations with different boundaries, and then combine them into a determinant
the size of the boundary.

Theorem 4 Let S and S(0) be two symmetric tridiagonal m-block matrices of order n. Then

|S|
|S(0)| =

|Q|
|Q(0)|

1
|1 + u−1

1 x1|
, (A.30)

where x is the m-block vector that satisfies

S(x + u) = 0 (A.31)

with boundary conditions x0 = xn+1 = 0, Qn is arbitrary, and u is any m-block that satifies
S(0)u = 0, u0 = 0.

Proof of Theorem 4 Let y of Theorem3 satisfy Sy = 0, y0 = 0, yn+1 = un+1. Require that
S(0)u = 0, u0 = 0. Then, by virtue of Theorem3 we have

|S|
|S(0)| =

|Gn+1|
|y1|

|u1|
|un+1|

|Q|
|Q(0)| =

|Q|
|Q(0)|

|u1|
|y1|

. (A.32)

Let y be y = x + u, S(x + u) = 0, x0 = xn+1 = 0. Then

|u1|
|y1|

=
|u1|

|u1 + x1|
=

1
|1 + u−1

1 x1|
, (A.33)

which completes the proof.

Discussion 4.1 We may always choose u1 to be unitary, u−1
1 = u†1. This seems innocent,

but actually further reduces the computational complexity. We can assume that u†1x1, which
is the linear response of the system, is sparse; it is really unnatural that when applying a
dipole field, the system responds with a large quadropole field, etc. Hence, the computationl
complexity of Eq. (A.30) may be approximated with O(m2), rather than O(m3). The analysis
of Theorem1 may be simplified. Assume u†1x1 is p-sparse. Then the total complexity of |S| is
O(dN2−1/d + pN2(1−1/d)), which in three dimensions becomes O(N5/3).
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Definition 3 Let a symmetric, isotropic, second-order differential operator Ŝ in d dimensions
be given by

Ŝ =
d∑
i=1

∂iε̂∂i, (A.34)

where ε̂ is any operator. If along any axis, ε̂ is diagonal, we shall call Ŝ axi-local, and denote
that direction the local axis.

Theorem 5 Let Ŝ be a symmetric, isotropic, axi-local second-order differential operator in a
d-dimensional space. Let S be the discretisized form of Ŝ, with n points along the local axis.
Then S is a symmetric tridiagonal (N/n)-block matrix of order n.

Proof of Theorem 5 Along the local axis, the operator takes the form of a one-dimensional
second-order differential operator, which only couples to nearest neighbors. Let the number of
points along this local axis be n. Now enumerate the N discrete points of S in blocks xk, so
that all points in one block only couples to two other blocks, xk−1 and xk+1. Those blocks are
then of size (N/n), which completes the proof.

Discussion 5.1 The application of the ideas presented here should be realizable for two-
dimensional systems. It is probably best to use brute force on Theorem2, rather than trying
to sophisticate the algorithms too much. Especially since the integral over k is replaced by a
slightly large operation count – O(N3/2) for the whole thing, compared to N times the number
of k-points.

In summary, this approach should be very useful for atom-atom interactions as well as
atom-jellium interactions, or any two-dimensional system.
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