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Niclas Sandström
Department of Theoretical Physics
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Abstract

In this thesis, the BRST-quantization of gauge theories is discussed. A detailed
analysis of the BRST-quantization on inner product spaces is performed for a
class of abelian models, including reparametrization invariant ones. General
rules how to obtain physical wave functions and propagators are proposed.
The gauge fixing fermion is seen to play a central role for an admissible choice
of the specific state space representation.

Canonically equivalent solutions to the quantum master equation is found
for a class of first order field theories, using a superfield formulation of the BV-
framework. The analysis performed in d = 4 and d = 6 dimensions, shows that
many master actions actually are canonically equivalent to simpler (minimal)
master actions.

The geometrical framework of almost product structures (APS) is adopted
in order to investigate the splitting of manifolds induced by for example Yang-
Mills theories and Kaluza-Klein theories. The properties of the Riemann-
tensor are analyzed via the APS ansatz. New curvature relations are found in
terms of the so called Vidal- and adapted connections.

Keywords: Gauge theory, BRST-quantization, BV-quantization, topologi-
cal field theory, superfield formulation, almost product structure (APS).
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1
INTRODUCTION

”The effort to understand the universe
is one of the very few things that lifts

human life a little above the level of farce,
and gives it some of the grace of tragedy.”

Steven Weinberg

1.1 Physical Theories

The field of physics can, more than anything else, be described as an attempt
in understanding the interactions responsible for the structures we observe in
our universe. The increase in this understanding, brought about by classical
theories such as Newton’s theory of gravity, Maxwell’s Electrodynamics and
Einstein’s General Theory of Relativity, is most adequately described by
the word enormous. However, physicists soon realized that there existed sev-
eral phenomena in Nature that these classical theories could not account for;
particularly phenomena occurring at the smallest1 distances found in Nature.
The efforts to obtain a theory describing the Nature on small length-scales, led
to the birth of the so called modern physics, some seventy years ago. Since
then it has become clear that physics at the smallest distances is described by
quantum theory. The quantum mechanical framework has today caused a
revolutionary increase in our understanding of the fundamental interactions
of Nature. There are roughly three different levels at which one can approach
the understanding of physical phewnomena, namely: (i) the macroscopic-,
(ii) the mesoscopic- and (iii) the microscopic levels.

(i) A macroscopic theory has no explicit reference to concepts that are in-
herently quantum mechanical, such as for example spin and expectation
values, and it ignores details regarding the fundamental constituents in

1With small is here meant roughly 10−9 m and below.

1



2 Chapter 1 INTRODUCTION

Nature2. Such a theory is usually called a classical theory in the liter-
ature and it is deterministic by default. Typically, macroscopic theories
are accurate on length scales very much larger than that of atoms and
molecules. Examples of macroscopic theories are Electrodynamics and
General Relativity.

(ii) A mesoscopic theory have some constituents that are inherently quan-
tum mechanical and some others which are classical. Such a theory
is sometimes referred to as a semi-classical theory3. Characteristic
length scales for mesoscopic systems are intermediate to those of macro-
scopic and microscopic length-scales. The field of mesoscopic physics
is vast and includes for example various theories concerning molecu-
lar physics, bio-physics, solid state physics, just to mention a tiny
fraction of the disciplines involved.

(iii) A microscopic theory is inherently quantum mechanical and thus re-
quired for a detailed description of physics at length-scales characteristic
for atoms, subatomic particles and below. Due to the fact that micro-
scopic theories describes physics at the smallest length scales in Nature,
they are the most fundamental ones. Well known examples of micro-
scopic theories are the so called Standard Model and String Theory
(M-theory). From a reductionist4 point of view, all mesoscopic- and
macroscopic theories must follow as certain limits of more fundamental,
underlying, microscopic theories. The number one goal of theoretical
particle physics is to find a microscopic theory that unifies all interac-
tions, a so called ”theory of everything”. There exist serious indica-
tions that Nature is indeed unified in this sense at high enough energies.
The success of the Standard Model provides strong such evidence, since
it is a microscopic theory which describes the strong-, the weak- and
the electromagnetic interactions in a unified context. However, the
Standard Model does not give a complete description of the interactions
found in Nature since it does not include gravity. Gravity persistently
resisted all attempts of a microscopic description for a long time but
since the dawn of String Theory, there is new hope in a consistent the-
ory containing quantum gravity. Today, String Theory is a serious
candidate for the unification of all interactions in a microscopic context,
i.e. a potential ”theory of everything”; it is at present stage of maturity,
however, incapable of making any experimentally verifiable predictions.

2For example in fluid dynamics, the existence of atoms is ignored and replaced with a
continuum.

3The word semi-classical is also often used in a different sense in particle physics in
theories that contain anti commuting objects after the limit ~ → 0 is taken. In that case
that limit is often called the semi-classical limit.

4To the best of our knowledge, a vast majority of the physicists adhere to the reductionist
school.
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1.2 Symmetry and Interactions

The Standard Model and General Relativity are so called gauge theories
and their indisputable success in describing the fundamental interactions of
Nature, has made it clear that gauge symmetries (local symmetries) and
interactions are intimately linked: gauge symmetries gives rise to interactions.
A gauge theory is, by definition, a theory which is invariant under some lo-
cal symmetry group G, called the gauge group. In Chapter 2, a short
review of the apparatus needed for the understanding of classical gauge theo-
ries, is given. The Standard Model for example, is invariant under the compact
semi-simple Lie-group SU(3)⊗ SU(2)⊗U(1) and this invariance gives rise to
the strong-, the weak- and the electromagnetic interaction, respectively. The
gauge group of General Relativity is not a compact Lie-group, but the group
of diffeomorphisms Diff (M ) (local reparametrizations) of a given space-time
manifold M . String Theory possesses both Lie-group- and reparametriza-
tion invariance. There, the gauge groups SO(32), E8 × E8 and Diff(M) plays
distinguished roles and gauge theories in lower dimensions are obtained by
compactifying the ”superfluous” dimensions. Theories in which interactions
are introduced by dimensional reduction of higher dimensional gravity goes
under the name Kaluza-Klein theories.

From a mathematical point of view, gauge invariance in a theory always
implies the existence of constraints in the action functional of the theory.
This means in particular that not all the degrees of freedom used in formulating
the theory are physical ones. One illustrative example of this fact is d = 4
pure Maxwell theory in which the connection 1-form A contains four degrees
of freedom, but due to the U(1)-invariance A → A + dA, there are only two
physical degrees of freedom in A, corresponding to the two polarization states
of the photon. The natural language of gauge theories is the framework of
principal fiber bundles. The idea is that we are allowed to perform a
gauge transformation at every point in the base manifold, e.g. space-time,
without affecting the physical content of our theory. This can be described
by objects constructed by attaching the gauge group, i.e. the fiber, to every
point in the base manifold. Gauge transformations correspond to motions
along the directions of the fibers which then constitute the unphysical degrees
of freedom. There are many ways one can attach these fibers on the base-
manifold and any non-trivial attachment corresponds to non-abelian gauge
theories. Geometrically, the non-abelian case corresponds to the fact that the
fiber bundle cannot globally be viewed as a direct product of the fiber and the
gauge group. This is the case for most gauge groups, for example the gauge
group of the Standard Model, given above. Pure Maxwell theory introduced
above, however, corresponds to a trivial U(1)-principal fiber bundle.

A framework in terms of which gauge theories and Kaluza-Klein theories
can be fruitfully studied is that of almost product structures (APS). The
APS ansatz constitute a more general split of a manifold than do principal
fiber bundles, which are only a special case of an almost product structure.
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APS theory gives therefore a deeper understanding of both ordinary gauge
theory and Kaluza-Klein theory. The foundation of APS is given in chapter 8,
wherein an example of the relation between gauge theory and Kaluza-Klein
theories is given. In paper II the properties of the Riemann-tensor is analyzed
and, using the APS ansatz, different new curvature relations are derived in
terms of the so called Vidal- and adapted connections.

1.3 Quantum Theory

As was said earlier, a consistent quantum theory is needed in an adequate de-
scription of physical processes in the microscopic regime. With consistent is in
particular meant that it should be unitary (have a probabilistically meaning-
ful interpretation), finite (i.e. possible to extract finite numbers for observable
quantities) and Lorentz invariant (valid in the relativistic regime), but there
are additional requirements. The Standard Model is a relativistic quantum
field theory which is finite, at least perturbatively.

One might now ask how to construct quantum theories? Ideally, one would
like to be able to just sit down and cook up a consistent quantum theory
from first principles. As of today this is unfortunately impossible because our
present understanding of quantum mechanics is not deep enough; we cannot
in simple, well understood terms express the principles by which it works.
So for now, we have to be content with less. What one can do is to start
from a classical theory which one has a (relatively) good understanding of
and somehow ”make” it into a quantum theory. This brings us to the no-
tion of quantization. With quantization is thus meant turning a classical
theory into a quantum theory. It was in this way the Standard Model was
constructed. From our previous discussion about the relation between gauge
theories and interactions we realize that the quantization of gauge theories
will be particularly interesting; in fact most of this thesis is concerned with
questions concerning quantization of gauge theories. Now, the quantization
problem can be formulated using two different formalisms: the path-integral-
and the operator formalism :

(i) Path-integral quantization: The central object in this approach is
the so called path- or functional-integral and the quantum mechani-
cal amplitude of a function X is given by its (correlation function),
〈X〉 ∼ ∫ DµX e

i
~
R

S . 〈X〉 corresponds to a weighted average of X over
all paths in the space under consideration. This is similar to how one ob-
tains expectation values of quantities in terms of the (classical) partition
function in statistical physics. In order to define a consistent quantum
theory the path integral must for example be properly gauge fixed and
the measure Dµ free of anomalies, and perhaps also regularized. Addi-
tional problems might also occur. Path-integrals are used and discussed
in various contexts in this thesis, see for example chapter 3,4,5,7 and
paper III.
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(ii) Operator quantization: In this procedure one associates to every
(classical) function, an hermitian operator in a Hilbert space, which
in the case of gauge theories, in general has indefinite metric. The
physical state space is then obtained as the subspace of the original
Hilbert space, consisting of gauge invariant states with positive definite
norms. It is in usual difficult to find the physical subspace for a given
model. In addition to problems with regularization of singular operators
and states, there usually also exist ordering problems and other difficul-
ties. The operator formalism is used extensively in chapter 3,4,5,7 and
papers I,III.

Above we noted that one inevitable implication of gauge theories is that they
contain unphysical degrees of freedom. Now, a reduction of the unphysical
degrees of freedom will in general spoil the manifest covariance of the the-
ory and this is undesirable since it in general makes many calculations much
more difficult, particularly in perturbation theory. One way to keep manifest
covariance is to keep all these extra degrees of freedom which is done at the
price of losing unitarity in the theory; this is the origin of the indefinite metric
discussed above.

There exist a powerful, general approach to quantization of gauge theories,
termed BRST quantization, which features both manifest covariance and
unitarity. In the BRST framework the gauge symmetry of the original model
is replaced with a rigid symmetry called the BRST symmetry generated by
a conserved charge Q, called the BRST charge. The problem of finding the
gauge invariant states for a theory, can then be reformulated as the problem of
solving the cohomology H(Q) of the corresponding BRST-charge. There are
two version of the BRST framework. One is Hamiltonian and called BFV-
BRST quantization and the other is Lagrangian and is called BV (field-
antifield) quantization.

In chapter 3, a short review of BFV-BRST framework is given and some
results of BRST-quantization on inner product spaces are discussed. These
results are used in the detailed investigation of BRST-quantization on in-
ner product spaces for a general class of finite dimensional abelian models,
performed in paper I. The results found in paper I are also applied to non-
abelian models. In chapter 4 the BRST-quantization of reparametrization
invariant abelian systems with finite degrees of freedom is discussed, both
from an operator and a path-integral point of view. The chapter serves as
an introduction to paper III, wherein physical wave functions and physical
propagators are derived as projections of solutions to a BFV-BRST quanti-
zation on inner product spaces. It turns out that only certain choices of the
specific state spaces used, are allowed. A specific prescription for admissible
choices of state spaces is given.

A particularly rich class of quantum theories originates from the so called
topological field theories. This class of theories is very interesting both
from a gauge- and quantum theoretic point of view. This is because they dis-
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play the rare property of being fully interacting theories whose corresponding
quantum theories are solvable. They encode valuable information about the
topological sector as well as the non-perturbative regime of ordinary quan-
tum field theories. The word topological is here to be taken literally in the
sense that the correlation functions of topological quantum field theories are
independent of any metric on the manifolds on which they are defined. In
the BRST-framework this translates to the fact that their energy-momentum
tensor is BRST exact, i.e. unobservable. At the classical level this is realized
by the observation that these theories are formulated without any reference
to any metric which implies that their energy-momentum tensors are trivially
zero and for which reason they can not contain any physical excitations. The
gauge invariance of these theories are always rich enough to enforce them to
be void of any local degrees of freedom.

In chapter 6, a superfield formulation is introduced for the BV-quan-
tization of a certain class of field theories. The framework presented in this
chapter serves as a foundation for some parts of chapter 7 and it is the
formalism used in paper IV. In chapter 7, topological field theories are
introduced and the structure of the so called quantum master equation is
studied for a number of topological gauge theories, using the superfield
formulation. In Paper IV, canonically equivalent solutions to the quantum
master equation are found for a class of first order gauge field theories.

We close the introduction by mentioning that there are several indications
of that topological field theories might be important for understanding quan-
tum gravity. There have been several attempts at constructing a quantum
gravity theory by the quantization of classical gravity; all those attempts have
failed and it is quite clear by now that much more sophisticated approaches
than just ”simple” quantization must be used in order to get hold of a consis-
tent theory of quantum gravity.



2
CLASSICAL GAUGE THEORY

In all sections in this chapter but section 2.5, we will for sakes of simplicity
consider bosonic systems with a finite number of degrees of freedom.

2.1 Symplectic Geometry

There are two different but equivalent formalisms in terms of which one can
define physical theories. A theory is said to be written in the Lagrangian or
in the Hamiltonian formulation. We will start with the latter for the following
reason: We are aiming at constructing a quantum theory from a classical gauge
theory. This implies that the structure of the quantum theory is explicitly
determined by the properties of the set of constraints. It is also the constraints
that define the geometry of the theory in question. This geometry is most
fruitfully studied in phase space in which coordinates and momenta are treated
on the same footing with respect to the equations of motion, in contrast to
their form in configuration space. As will be seen, some assumptions will be
made in the beginning of our review and later on we will go back and start
from a Lagrangian, pass on to the Hamiltonian and in that process see how all
these assumptions are justified. The concepts discussed in this section should
be seen as a framework in which we more effectively can discuss the constraint
analysis, which is the topic of the next section.

Now consider the symplectic manifold (T ∗Q, ω) where T ∗Q denotes
the cotangent bundle of the configuration manifold Q and ω ∈ Ω2(T ∗Q) the
symplectic two-form or symplectic structure defined on T ∗Q. Darboux’s
theorem states that there always exists local canonical coordinates {qα, pα} in
terms of which the symplectic two-form can be written as

ω = dqα ∧ dpα (2.1)

where α ∈ {1, ..., n} and dimQ = n. Later on we will see how the Poisson
bracket can be expressed in terms of ω. In general every function f : T ∗Q → R

7



8 Chapter 2 CLASSICAL GAUGE THEORY

defines a vector field Xf on phase space in the following way

iXf
ω = df (2.2)

where by definition, Xf : T ∗Q → T (T ∗Q). Above, iX denotes the interior
product. Given a Hamiltonian this means in particular that we can write the
Hamilton equations of motion as

iXH
ω = dH (2.3)

Now, eq. (2.3) is only valid in an unconstrained space. In this space the
symplectic two-form is obviously non-degenerate due to (2.1). In the case
of independent constraints the constraint set is said to be irreducible (a
complete theory of how to treat a reducible constraint set exists, but will not
be discussed in this thesis). Now suppose that we are given a set of first-class
constraints,

φk = 0, k ∈ {1, ..., a} (2.4)

The set {φk} defines, via (2.4), a submanifold Σ ⊂ T ∗Q called the constraint
surface. The first-class property means that all the constraints satisfy

ω(Xφk
, Xφk′ ) = 0 ∀k, k′ ∈ {1, ..., a} (2.5)

on the constraint surface Σ. Constraints for which eq. (2.5) does not hold
are defined to be second-class constraints1. The presence of constraints in
our theory implies that the symplectic two-form ω∗ = i∗ω induced on Σ is
non-degenerate. Now, in the presence of the constraint set eq. (2.4) one might
ask, how does eq.(2.3) get modified? By studying the embedding (inclusion
map) i∗ : Σ ↪→ T ∗Q it is easily shown that the Hamilton-Dirac equations can
be written

dφi(Z) = 0 (2.6)
iZω − dH = f idφi (2.7)

Above the {f i} are arbitrary functions on Σ and Z is the vector field to be
solved for. This explicitly shows in a geometrical fashion how the Lagrange
multipliers, {f i}, are naturally introduced into the theory. Eq. (2.6) simply
imposes the constraints, by requiring that the vector-fields that solve eq. (2.7)
are tangential to Σ. In fact, this reformulates the global definition of a first-
class system (the first one was given by eq. (2.5)).

2.2 Constraint Analysis

Let us assume that we are given a theory defined by the Lagrangian L : TQ →
R, where dimQ = n. The equations of motion (Euler-Lagrange equations)
follow upon variation and can be written as

LXθL = dL (2.8)
1The classification of constraints into first- and second class is due to Dirac and was

originally presented in the influential paper [1].
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where θ : TQ → T ∗(TQ) denotes the Liouville form, L the Lie-derivative
and X : TQ → T (TQ) a vector field. Locally, the Liouville form is given
by θL = ∂L

∂q̇α dqα where α ∈ {1, ..., n}. If one studies eq.(2.8) in terms of a
coordinate system, one notices that it is impossible to express uniquely the
accelerations in terms of the coordinates and velocities iff

det

(
∂2L

∂q̇αq̇α′

)
= 0 (2.9)

Condition (2.9) is always satisfied for gauge theories since only then will it be
possible to have arbitrary functions of time in the solutions to the equations
of motion. In particular this means that the Legendre transformation FL :
TQ → T ∗Q, relating the Lagrangian with the Hamiltonian formalism, will be
non-invertible. Locally this transformation is realized by defining the canonical
momenta as

pn =
∂L

∂q̇n
(2.10)

where H and L are related as

H = q̇npn − L (2.11)

i.e. we have locally
FL[L] = H = q̇npn − L (2.12)

Equation (2.11) tells us that H : T ∗Q → R. Via the inverse function theorem
we see that the non-invertibility of FL corresponds to the fact that we can-
not uniquely determine the velocities in terms of coordinates and momenta.
This implies that all of the momenta cannot possibly be independent and con-
clusively we have a number of constraints between the phase space variables.
These constraints follow directly from the definition of the momenta, without
the use of the equations of motion. Therefore they are called primary con-
straints in the literature. Constraints that follow upon use of the equations of
motion is called secondary constraints2. Now, we would would like to have
a phase space action applicable to Hamilton’s principle, i.e we would like to be
able to vary the variables in the action independently without regard to any
constraint. This is much more convenient since it is very difficult to explicitly
impose the non-independence of the variables in the variation, especially when
the constraints are complicated. From a purely technical point of view this
can be achieved by introducing Lagrange multipliers into the theory (in the
previous section it was noticed how these occurred naturally from geometrical
considerations of the constraint surface). Let us label the constraint functions
found so far by Φk, where k = 1, ..., m and Φk : T ∗Q → R. One can easily
show that the phase space action that handles this business can be written as

∫
dt

(
q̇npn −H − vkΦk

)
(2.13)

2The classification of primary- or secondary constraints is also due to Dirac [1].
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From which the equations of motion in the constrained case follows upon
variation of qα, pα and the Lagrange multipliers vk. This action is actually
defined in an extended phase space in which the multipliers {vk} themselves
and their momenta {πk} are introduced as coordinates, however as is obvious
from above, the momenta satisfies πk = ∂L

∂vk = 0, which implies that there is
no dynamics in terms of these coordinates at this level. Now we require that
the constraints Φk should be conserved in time, i.e be constants of motion. If
the theory in question is supposed to describe fundamental interactions, the
constraints should not change in time. This implies that all the constraints
must commute with the following Hamilton function

H̄ = FL[L]− ukΦk (2.14)

in the Poisson bracket sense. This commutativity can be written in various
equivalent ways,

Φ̇k = LXH̄
Φk = {Φk, H̄} = −ω(XH̄ , XΦk

) = 0 (2.15)

This requirement either produces new secondary constraints or lead to re-
strictions on the Lagrange multipliers. Preservation in time is then imposed
on all secondary constraints found and the procedure is iterated until no new
constraints appear. This leaves us with a, possibly larger, complete3 set of
constraint functions,

{Φj}, j ∈ {1...m}, where m ≥ a (2.16)

where the restrictions on the lagrange multipliers can be written as

ω(XΦj , XH̄) = 0 (2.17)

Now one can show that each Lagrange multiplier vk can be split into one part
that is fixed by eqs. (2.17) above and one part which is a totally arbitrary
function of time,

vk = uk + wk (2.18)

Above wk denotes the arbitrary part in the Lagrange multiplier. A somewhat
more detailed description of the constraint analysis is for instance given in
refs. [2,3]. In the next section we will see how the totally arbitrary part of the
Lagrange multipliers enters in the gauge transformations.

2.3 Gauge Generators

If we study the equations of motion4

Ḋ = −ω(XH̄ , XD) (2.19)
3I.e. it contains all of the constraints in the theory.
4We stress once again that this equation should be interpreted as an equality on the

constraint surface only.
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for an arbitrary dynamical variable D, they imply that the change δD under
an infinitesimal time translation will be

δD = −δwp ω(XD, XΦp) (2.20)

where the index p runs over all5 first class constraints. Since the functions
{wk} are totally arbitrary this must be a physically insignificant change, or in
other words, first-class constraints generate gauge transformations. The group
which has the first class constraints as generators in the sense of eq.(2.20) above
is nothing but the gauge group G of the theory. The second class constraints
will not be generators of some relevant transformations in the same sense as
the first-class ones, since they do not preserve the constraints. In the next
section it will be shown how one can eliminate the second-class constraints.

2.4 The Constraint Surface

Above, the constraint analysis gave us a set of constraint functions

{Φj}, j ∈ {1, ..., m} (2.21)

Let us split this set into first- and second-class constraints

{φa, χb} (2.22)

where a ∈ {1, ..., m − r} and b ∈ {m − r + 1, ...,m}. This set defines the
submanifold Σ by

φa = χb = 0 (2.23)

in which our dynamical system is forced to live, i.e. the constraint surface. Let
us now pick a solution to the equations of motion for the canonical variables.
Let us also pick some boundary conditions and a specific choice of the arbi-
trary functions of time which is included in the solution. Surely this uniquely
defines a physical state. This choice represents a point x on Σ. Now let the
G act on this point (we assume that G is non-empty), this represents another
choice of the arbitrary functions of time, i.e. corresponds to another point on
the constraint surface. In particular we can form the orbit Gx, of x under G.
Since G is a continuous group, Gx constitutes a submanifold of Σ. This man-
ifold corresponds to one physical state. So obviously in the case of first-class
constraints, we still have some arbitrariness left in our space, represented by
the absence of a one-to-one correspondence between physical states and points

5It is not at all evident that the secondary first-class constraints should be generators of
gauge transformations too. The assumption that all first class constraints generate gauge
transformations goes under the name of the Dirac conjecture, which has proven to hold in
all physical applications so far, even though one can construct systems for which it is false.
The reason for assuming all first class constraints to be gauge generators is that it will be
very hard to quantize a theory in which the gauge generators does not form a complete set,
i.e. a set in terms of which all gauge generators can be expressed.
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on Σ. We are allowed to remove this arbitrariness by imposing what is called
gauge conditions. These amount to imposing a set (equally many as there are
first-class constraints) of extra constraints

C(q, p)a = 0 (2.24)

into the theory. These amount to fixing the choice of arbitrary functions of
time. Geometrically, a good set of gauge conditions represents a surface which
intersect all the gauge orbits once and only once. This in turn implies that
the set {φa, Ca} constitutes a second class system, so there are no first class
constraints left in our theory after complete gauge fixing. This gives us an
idea of how to get rid of the second class constraints. It is possible to view
every second class constraint as resulting from a first-class constraint together
with a gauge condition. This means that we can reformulate a system in
which second-class constraints are included, in terms of an ”unfixed” first
class system. Another method for treating second-class systems is by the so
called conversion-mechanism introduced in [4]. In this thesis we deal only with
the quantization of first class systems.

2.5 Generating Sets in Field Theory

This section contains a brief discussion about the generators of gauge trans-
formations in field theories. In contrast to the other sections in this chapter,
we will here consider relations valid for Z2-graded fields in the Lagrangian
framework; this sets the stage for chapters 5, 6 and 7. We start by introduc-
ing the condensed notation of DeWitt [5]: every repeated discrete index are
to be summed and integrated over. This implies for example that δΦi = Ri

AεA

should be interpreted as δΦi(x) =
∫

dyRi
A(x, y)εA(y). Consider an action S

possessing some gauge invariance. This means that S is invariant under some
transformations δΦi = Ri

AεA, where Ri
A are the generators of the gauge algebra

and the εA are parameters of the gauge transformation. Due to self-consistency
we must then have6

δεS = S

←
∂

∂Φi
δΦi = S

←
∂

∂Φi
Ri

AεA = 0 (2.25)

which implies the so called Noether identities,

S

←
∂

∂Φi
Ri

A = 0 (2.26)

Obviously, the Noether identities states that the equations of motion are not
independent - this means that the solutions to the equations of motion will
contain arbitrary functions of time. As a consequence of the Noether identi-
ties, propagators do not exist. The surface Σ above is defined as the part of

6Since the fields are Z2-graded, we must make a distinction between left- and right deriva-
tives.
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function space in which the equations of motion holds. In order to treat the set
of gauge transformations in a systematic way, one is forced to impose certain
regularity conditions [6], the most important consequence of which is that
if a function of the fields vanish on-shell, that function must be a linear combi-
nation of the equations of motion. This property is called the completeness
of the equations of motion,

f(φ)
∣∣∣
Σ

= 0 ⇒ f(φ) =
→
∂

∂Φi
S0λ

i(φ) (2.27)

Given a complete set of invariances of a theory, the most general solution to
the Noether identities is a gauge transformation,

→
∂

∂Φi
S0λ

i = 0 ⇔ λi = Ri

AχA +
→
∂

∂Φi
S0T

ij (2.28)

where the tensor T is graded antisymmetric, T ij = −(−1)ijT ji. The T-
dependent part of (2.28) represents trivial gauge transformations that exist
for every action (they do not imply conserved quantities). If the set of gen-
erators Ri

A are independent and m in number, we have rankRi
A|Σ = m; thus

the total degrees of freedom in the system is equal to n−m. In the case when
rankRi

A|Σ < m, the generators are dependent and constitute a reducible set
of generators. This means that there exist a number of relations,

Ri

ARA

1A1
=

→
∂

∂Φi
S0V

ij

1A1
(2.29)

and so on depending on the degree of reducibility of the set of generators
{Ri

A}. It is the degree of reducibility in a theory that determines how big
the hierarchy of ghosts, ghost of ghosts etc. will be, in order to gauge fix
the theory. For a thorough treatment of the reducible case see [2, 6]. Many
important theories are reducible by default: BF-theories in higher dimensions,
Topological Yang-Mills and string field theory, the last of which, is infinitely
reducible. The Noether identities and the completeness of the generators,
implies that the commutator of two gauge transformations δ1 and δ2 is given
by

[δ1, δ2]Φi = Ri

AT A

BCεB

1 εC

2 −
→
∂

∂Φj
S0E

ji

BCεB

1 εC

2 (2.30)

The coefficients T A
BC and Eji

BC are usually called structure tensors of the
gauge algebra. The structure tensors possess definite parity- and symmetry
properties; this follows directly from the algebra (2.30) and will not be dis-
cussed here. The nature of the coefficients T and E in the commutator (2.30)
gives rise to a number of definitions which are commonly seen in the literature:

I Open algebra (1): An algebra of generators having E 6= 0 is termed an
open algebra. Otherwise the algebra is termed a closed algebra.
We can see from the commutator (2.30) that this means that the algebra only
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close on-shell.
I Soft algebra (2): When the function E = 0 and T depends on the fields,
the algebra is termed a soft algebra.
I Lie algebra (3): If the function E = 0 and T is constant, the algebra of the
generators reduces to a Lie algebra.
I Non-linear algebra (4): If E = 0 and T depends in a non-linear way on
the fields Φi, the algebra of generators is termed a non-linear algebra.

The on-shell commutator between two gauge transformations is necessarily
a new gauge transformation which in turn must obey the Noether identities;
this implies that we can use completeness again by introducing new structure
tensors. This game can be played over and over again until the process termi-
nates, i.e. when the higher order structure tensors vanishes. The set of all the
structure tensors produced in this way contain all the information about the
gauge transformations of a theory. In [6] a detailed investigation of an irre-
ducible algebra and a first stage reducible theory is given. All these relations
are, however, easier obtained via the BV-framework by considering the master
action for a given gauge theory. In chapter 7, we will see how the structure
tensors and their consistency equations show up as a consequence of solving
the master equation for a number of different models.



3
BRST QUANTIZATION

3.1 What is quantization ?

In brief, quantization of a theory means turning a classical theory into a quan-
tum theory. Observe that with a classical theory we mean a theory which is
allowed to have both Grassmann even(commuting) and odd(anticommuting)
degrees of freedom, but on which none of the postulates of quantum mechanics
have been imposed (Grassmann odd elements is necessary for the description
of objects with half integer spin after quantization). Thus, the goal of any
quantization scheme is to establish a relationship between a classical and a
quantum system, and in the latter system, identify the physical states and
operators. These observables must of course obey the postulates of quantum
mechanics. Since there exist essentially two different formulations of quantum
mechanics, the operator and the path-integral formulation, quantization meth-
ods can naturally be divided into two categories depending on which of the two
formulations they are based on. One of the postulates of (operator) quantum
mechanics says that an observable of a physical system is represented by a
self-adjoint operator in a Hilbert space. More precisely this means that every
admissible quantization method must provide a relation between functions on
a symplectic manifold (M,ω) and operators in the corresponding Hilbert space
H. The operator method was first developed by Dirac and is called canonical
quantization and it was extended to Grassmann odd objects by Berezin [7,8].
All operator quantization schemes are based on canonical quantization which
stipulates the following correspondence between the canonical coordinates in
phase space {ZA} = {XA, PA} and the corresponding operators {ẐA} in H

i~{ZA, ZB} = [ẐA, ẐB] (3.1)

In the equation above, the Poisson and commutator bracket should be read
in the graded sense, i.e. their respective generalizations, valid for both Grass-

15
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mann even and odd elements. These are defined as

{F1(ZA), F2(ZA)} := (−1)εF1
∂LF1

∂XA

∂LF2

∂PA
− (−1)εF1

εF2
∂LF2

∂PA

∂LF1

∂XA
(3.2)

[F, G] := FG− (−1)εF εGGF (3.3)

where XA denotes the coordinates and PA the conjugate momenta in phase
space and ∂L left derivative. εX denotes the Grassmann parity of the function
or operator X and it satisfies

εX =
{

0 for X Grassmann even
1 for X Grassmann odd

(3.4)

Canonical quantization tells us what algebra the operators corresponding to
the canonical coordinates in phase space must satisfy. Implicitly, the corre-
spondence above associates to every classical function, an operator on some
Hilbert space (modulo ordering problems). This is at the heart of the diffi-
culties that have to be surmounted by a quantization scheme. How should
one represent the corresponding operators on some state space, so that the
resulting quantum theory makes sense and at the same time satisfies the pos-
tulates of quantum mechanics ? With ”make sense” we mean for instance
preserving, or displaying quantum mechanical counterparts of the symmetries
of the underlying classical theory; if the classical (local) symmetries are vi-
olated at quantum level one talks about a gauge anomaly. Many of the
problems related to quantization is solved by the BRST framework in which
the gauge symmetry of the classical theory manifests itself as a rigid symmetry
in the quantized theory. It is this rigid symmetry that is called the BRST
symmetry. The quantum theory should also be unitary1 in order to have a
probabilistic interpretation. As was said earlier, most of what follows will be
discussed from the operator version point of view. Even though, as we will see
in the next section, the BRST symmetry was originally discovered within the
path integral context.

3.2 Origin of the BRST Symmetry

Consider the path-integral (functional-integral) formulation of Yang-Mills the-
ory (in which the gauge group is a Lie group) defined by the Lagrangian L
depending on some field A,

∫
DAei

R
d4xL[A] (3.5)

The measure DA is given by DA =
∏

x

∏
a,µ dAa

µ, and where a and µ represent
algebra- and space-time indices respectively. The density L defines a gauge
theory which means that there are redundant degrees of freedom. This implies

1I.e., all states different from zero have positive norm.
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that we integrate an infinite number of times over physically equivalent field
configurations in the path integral above, i.e the path integral diverges. In
order to be able to integrate over inequivalent field configurations only, L.D.
Fadeev and V.N. Popov [9] introduced a trick in which they expressed the unit
operator as

1 =
∫
Dα(x)δ(G(Aα))det

(
δG(Aα)

δα

)
(3.6)

where the non-degenerate G(Aα) is a gauge fixing function, Aα = (Aα)a
µ =

Aa
µ + 1

gDµαa the gauge transformed field and Dµ the gauge covariant deriva-
tive. Inserted in (3.5) and performing the Dα-integral we get (after dividing
out the volume of the gauge group)

∫
DA det

(
δG(Aα)

δα

)
ei
R

d4x L+Lgf (3.7)

Lgf is a modification of the original Lagrangian which arises due to the func-
tional integration over α. It is denoted with index gf , because it breaks the
gauge invariance of L by fixing the gauge. L.D. Fadeev and V.N. Popov
rewrote the determinant in (3.7) as a functional integral over anticommuting
fields C and C̄. This is possible since a ”gaussian” integral over odd Grassman
elements is proportional to the determinant of the operator squeezed between
them, in contrast to the commuting case in which the integral is proportional
to the determinant raised to the power −1/2. This implies that the original
functional integral now can be written

∫
DADCDC̄ ei

R
d4x L+Lgf+Lgh (3.8)

where Lgh denotes the ghost term. Thus the ghost fields can be interpreted
as negative degrees of freedom, since they bring in positive powers of the
functional determinant, which exactly cancel the determinants arising from
the gauge degrees of freedom and which sit in the denominator. The effective
Lagrangian above can thus be written

LBRST = L+ Lgf + Lgh (3.9)

where Lgf and Lgh denotes the gauge fixing- and the ghost part of L, respec-
tively. If written as simple as possible, the Lagrangian LBRST describing the
original Yang-Mills theory takes the form

LBRST = −1
4
(F a

µν)
2 + ψ̄(i 6D −m)ψ − 1

2ξ
(Ba)2 + Ba∂µAa

µ + C̄a(−∂µDac
µ )Cc

(3.10)
The BRST Lagrangian LBRST is not gauge invariant anymore, due to the
gauge fixing and ghost terms added to the original L. However Becchi, Rouet,
Stora and, independently, Tyutin [10, 11] discovered a new rigid symmetry
that LBRST possesses, which contains a parameter which is anticommuting.
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This symmetry is today accordingly called the BRST symmetry. In eq.(3.10)
the first two terms on the right hand side constitutes the original Lagrangian,
the following two are gauge fixing terms and the last one the ghost term. The
commuting auxilliary field B was introduced only to make the BRST sym-
metry manifest off shell (i.e. without the use of the equations of motion). B
is obviously not dynamical. LBRST is invariant under the BRST transforma-
tions,

dBRST Aa
µ = εDac

µ Cc (3.11)
dBRST ψ = igε Cataψ (3.12)

dBRST Ca = −1
2
gεfabcCaCc (3.13)

dBRST C̄ = εBa (3.14)
dBRST Ba = 0

In the equations above ε denotes the anticommuting parameter. One impor-
tant observation to be made from these equations is that the BRST trans-
formations above are nilpotent. Thus the original gauge invariance has been
traded against a global nilpotent, Grassmann odd, symmetry. The above dis-
cussion illustrates how the BRST-symmetry was originally discovered. Due to
the invariance of LBRST under the BRST transformations one can construct
the corresponding conserved quantity which will be nothing but the BRST
charge Q, the generator of the symmetry. Now, the transition amplitude for
the Yang-Mills theory is given by a BRST-invariant path integral. This trans-
lates in the operator formalism to the fact that the Hamiltonian commutes
with the BRST-charge [H,Q]. In the extended formalism, i.e with the addi-
tion of the ghosts, Q defines the physical subspace. The Fadeev-Popov method
used above essentially only works for Yang-Mills gauge theories, so one cannot
expect to find the charge Q by first constructing the effective Lagrangians
for more complicated gauge theories because that is notoriously difficult. It
is the reversed ”attitude” that led to the development of the general BRST
method; one requires that every quantum theory based on some gauge theory
should possess the BRST symmetry - and the physical states in that theory
are the ones that are annihilated by the nilpotent BRST charge. In fact, one
can construct Q solely on the knowledge of the constraints in the theory. This
construction is non-trivial and will be discussed in the next section. The intro-
duction of the BRST symmetry in order to quantize gauge theories has been
shown to be a fundamental ingredient, applicable to all gauge theories. The
BRST quantization method has been successfully applied to both supergrav-
ity and string theory, see for example [12, 13] and [14], respectively on these
matters. The rigorous mathematical construction of BRST, which came some
years after the discovery of the symmetry is the topic of the section below.
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3.3 The BRST Construction

Any reduction of degrees of freedom runs counter to the manifest realization
of symmetries. Therefore it is not desirable to gauge fix a system before
quantization is made. This is because one must then explicitly check that
no anomalies occur in the quantum theory - calculations that might be very
difficult to perform in general. On the other hand, by not gauge fixing - there
will be unphysical variables in the theory which might spoil unitarity. This
happens for example in the quantization of relativistic theories in which, due to
the negative sign in the metric, states with negative inner product is allowed.
These states must be removed from the physical spectrum and such a reduction
might be very difficult to achieve in practice. The advantage of the BRST
method is that it keeps all the variables in the original phase space, thereby
guaranteeing the manifest covariance. Moreover, it adds further degrees of
freedom; e.g. ghosts and antighosts which kills the original unphysical degrees
of freedom when we impose BRST invariance of the physical states in the
theory so the resulting theory will be unitary. Herein lies the main advantages
of the BRST quantization method, towards the construction of which we now
turn. Let us assume that we are given a gauge theory containing a set of first
class bosonic constraint functions

{φk}, k = {1, ..., n} (3.15)

This set is derived along the lines described in the first part of this thesis. The
constraint surface Σ ⊂ T ∗(Q) is defined by the relations φk = 0, where T ∗(Q)
denotes the original phase space. Provided the following two conditions are
satisfied

∃Σ ↪→ T ∗(Q) (3.16)
[Xφk

, Xφk′ ] ⊂ span{Xφk
}, (3.17)

the theory of homological resolutions of algebras [2, 15] implies the existence
of a differential dBRST in extended phase space P, to be explained later, such
that for arbitrary elements x, y ∈ P and function F on P,

d2
BRST

= 0 (3.18)
dBRST (xy) = xdBRST y + (−1)εy(dBRST )xy (3.19)

dBRST = δ + d + ”more” (3.20)
dBRST F = {F,Q} (3.21)

H0(dBRST ) = {gauge invariant functions on Σ} (3.22)

The resolution of a given algebra requires that one extends the phase space
T ∗(P) with extra degrees of freedom. One has the liberty of choosing these
to be equally many as twice the number of constraints. This is crucial, since
only then can one divide the extra variables into pairs, one of which is the
conjugate of the other. Moreover each conjugate pair must be of opposite
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Grassman parity as the constraint it corresponds to. The introduction of these
extra generators makes possible the construction of extended phase space P,
the structure of which will be more fruitfully discussed after some explaining
remarks about the assumptions made above and the properties of dBRST . First
of all, conditions (3.16) and (3.17), simply means that we should have an
embedding of the constraint surface. In our case it was noticed in chapter
2 that the inclusion map into the original phase space provided that for us.
Moreover since it also was showed that ω(Xφk

, Xφk′ ) = 0 on Σ, the fields
Xk must be integrable, which in turn is a result of the first class property of
{φk}. Equation (3.18) states the nilpotency of the BRST differential, which
was shown in the previous section to be the case for Yang-Mills theories. This
property expresses the gauge invariance of the theory and makes it possible to
form the cohomology of dBRST . This nilpotency, also implies the nilpotency
of the BRST charge, Q2 = {Q,Q} = 2Q2 = 0. Property (3.19) says that
dBRST is a graded derivation, i.e. it obeys the graded Leibniz rule. Relation
(3.20) gives an expansion of dBRST in terms of antighost number (antigh#)
(which is the grading of δ), telling that the first two terms are the Koszul-Tate
differential δ and the exterior derivative d along the gauge orbits respectively.
Since for observables f ,

LXφk
f = df(Xφk

) = 0, (3.23)

d identifies gauge invariant functions. The part ”more” in (3.20) corresponds
to higher order terms with respect to antigh#, and they are exact so they
decouple from the cohomology. Even though there is great freedom in those
terms, they must be chosen as to make the dBRST nilpotent. Equation (3.21)
says that it is possible to impose a symplectic structure on P, in terms of
which the BRST charge Q is the generator of the canonical transformations.
This is an important fact since it says that the bracket structure is preserved
under BRST transformations. Without this property one could never get in
touch with quantum mechanics since there would be no way of giving commu-
tation rules for the quantum mechanical operators. Since the BRST charge
Q generates dBRST , it contains just as much information about the system
under study. In fact, the charge Q will be the central object in BRST theory.
Equation (3.22) implies that when we form the cohomology we get the classi-
cal observables which lives in the gh# = 0 sector. This is important to note,
because it will be required of the quantum observables as well.

3.4 Extended Phase Space

In order to examine the structure of the state space, we must analyze the
expression of the BRST differential a little closer. In the expansion,

dBRST = δ + d + ”more”, (3.24)

above, d and δ imposes the necessary restrictions when passing to the cohomol-
ogy. The Koszul-Tate differential acts in the graded algebra C∞(P) ⊗ C[Pk]
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and imposes the restriction to the constraint surface via the resolution,

H0(δ) = C∞(Σ) (3.25)
Hk(δ) = 0 k 6= 0 (3.26)

Above, each generator Pk corresponds to one constraint but with opposite
Grassmann parity ε

ε(Pk) = ε(φk) + 1 (3.27)

As was stated before the set {Xφk
} is assumed to be linearly independent.

This means that we can construct a basis of 1-forms which is dual to the
vector fields,

{ϑk : ϑk(Xl) = δk
l } (3.28)

It is obvious from the way they are defined that the ϑk’s are forms along the
gauge orbits. These 1-forms will be denoted Ck hereafter and called ghosts.
Each Ck will also have the opposite Grassman parity as the corresponding
constraint

ε(Ck) = ε(φk) + 1 (3.29)

This is all consistent because if we have a Grassmann odd constraint the
corresponding form will be Grassmann even and vice versa. It is on these
forms that the exterior derivative along the gauge orbits d is defined to act.
More specifically d acts in the graded algebra C∞(T ∗(P)) ⊗ C[Pk]. Since we
have equally many generators in the two algebras, which fulfill ε(Ck) = ε(Pk),
these can be defined to be conjugate to each other

{Ck,Pl} = δk
l (3.30)

This is achieved by lifting the action of both d and δ to total phase space P

P := T ∗(P)⊗ Pk ⊗ Ck (3.31)

with (super)functions living in

C∞(T ∗(P))⊗ C[Pk]⊗ C[Ck] (3.32)

We see that the extension of the original phase space is considerable. This
is the price paid for unwinding the, in general very complex, geometry of the
constraint surface. A collective label for the original phase space variables will
be used

ΠA = {qi, pi} (3.33)

Above, the gradings in the extended phase space, are given by

gh#Ck = 1 (3.34)
gh#Pk = −1 (3.35)
gh#ΠA = 0
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The ghost number gh# grading is actually a linear combination of the gradings
that exist in the two algebras related to δ and d above. The value of the ghost
number lies in the fact that it represents a conserved quantity and it will
therefore be used to label states in the quantum theory. It also possesses a
canonical action which measures the ghost content of a function in extended
phase space

N := CkPk, {N, f} = gh#f (3.36)

With this definition N is purely imaginary

N∗ = −N (3.37)

Note that eq.(3.36) implies that

{N, Ck} = Ck (3.38)
{N,Pk} = −Pk (3.39)
{N, ΠA} = 0 (3.40)
{N, Q} = Q (3.41)

(3.42)

in agreement with the definitions above. From now on the Pk’s will be called
the ghost momenta. Moreover, all of the variables in extended phase space
will be chosen to be real, since the constraints may always be chosen to be
real. But since we consider a space with indefinite metric, this will not imply
real eigenvalues for the corresponding operators.

3.5 Construction of Q

Since dBRST F = {F, Q} one can show from the way that the Koszul-Tate
differential acts on the momenta, that Q must look like

Q = Ckφk + ”more” (3.43)

to lowest order in ghost momenta (ghost momenta have antigh# = 1 and
gh# = −1). Consider now the expansion of Q with respect to antighosts

Q =
∑

n≥0

Qn =
{

Q0 = Ckφk

Qn = Ua1...anPa1 ...Pan

(3.44)

where
antigh#Qn = n (3.45)

and the expansion coefficients may depend on the rest of the variables in the
theory. Now the nilpotency property,

{Q,Q} = 0 (3.46)
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implies that
∞∑

m,n

{Qm, Qn} = 0 (3.47)

It has been shown that the eqs.(3.18-3.22) together with (3.47) uniquely de-
termines the charge Q, modulo a canonical transformation. The last equation
can be solved iteratively for Q, using as initial value Q0 = Ckφk. In the next
section we turn to the quantum theory. This is done by canonically quantizing
the variables in extended phase space P in the graded sense2, i.e.

i{ZA, ZB} = [ẐA, ẐB] (3.48)

The left bracket is the graded Poisson bracket in P and the right bracket is the
graded commutator in state space. ZA is a collective label for all the canonical
variables in P and ẐA denotes their corresponding operators in state space.

3.6 The State Space

One important aim of every physical model is to determine all possible states
in which the system can be found. Previously it was established that the
physical states in the classical regime are given by the set of smooth functions
on the reduced phase space, C∞(Σ/G). We will now study the properties of the
”corresponding” quantum state space, seen from the BRST perspective. We
begin quite generally, by studying the BRST-algebra and its representations

[Q, Q] = 0
[N, N ] = 0
[N, Q] = Q (3.49)

where
Q = Q†, N = −N † (3.50)

Above, N denotes the conserved charge stemming from the invariance of the
action under rescaling of the ghosts. N is referred to as the ghostnumber
operator. Now, all genuine physical states3 have finite norms, which implies
that it is relevant to study the algebra (3.49) on an inner product space, or
more specifically, on a non-degenerate, inner product space V . The last
assumption makes this study much easier and is always valid since the ”fully”
degenerate states decouple from every other state (even from themselves) and
can thereby be discarded from the theory at the beginning, without harm-
ing the physical content. In order to obtain a complete description of the
physics, the irreducible representations of the algebra (3.49) on V must be ob-
tained. The nilpotency of the BRST-charge implies that we can have at most

2In this correspondence ~ = 1.
3”Genuine physical” states in the mundane sense, i.e the physics that we can measure is

always finite.
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2-dimensional representations of the algebra. In ref. [16] it was shown that
only three different types of representations exist, namely, singlets |s〉 ∈ VS ,
singlet-pairs |sp〉 ∈ VSP and doublets4 |q〉 ∈ VD. Thus the state space V
decomposes as

V = VS ⊕ VSP ⊕ VD (3.51)

Since N is a conserved charge, each of these states can be chosen to be classified
according to |k, n〉, where n denotes the ghostnumber gh# satisfying

N |k, n〉 = n|k, n〉 (3.52)

and where k is a collective label for all the other quantum numbers whose
corresponding operators commute with N . In terms of this classification we
have for all states in V

• VS = {v ∈ V |∀u ∈ V : Qv = 0 ∧ v 6= Qu ∧ gh#v = 0)}
• VSP = {v ∈ V |∀u ∈ V : Qv = 0 ∧ v 6= Qu ∧ gh#v 6= 0)}
• VD = {(u, v) ∈ V |u = Qv 6= 0}

Theories with singlet pairs are inconsistent since they lead to a physical
subspace with indefinite metric. They are not present in Yang-Mills theo-
ries [16–18]. Thus, for all consistent theories the state space is decomposed
as

V = VS ⊕ VD, (3.53)

which will be assumed in the following. At this point it is natural to ask,
what kind of space is V and what properties does it possess? Well, we observe
that the BRST-charge satisfies nilpotency, Q2 = 0 and is hermitian, Q† = Q.
Those properties are impossible to realize non-trivially on a positive-definite,
non-degenerate space. Thus we must use a pseudo-Hilbert space as our state
space, i.e a space in which we have an indefinite metric. This is achieved
automatically since the ghosts satisfy unphysical commutation relations. Of
course, we must require the true5 physical subspace to be positive definite.
From the classical analysis (3.22) we saw that all the observables had gh# = 0.
This is not at all guaranteed in the quantum theory. In fact it might happen
that none of the physical states fulfills gh# = 06. This is a property which
one would like to be fulfilled for the quantum mechanical states also. This
brings us to the concept of nonminimal sector. One can show that if one
introduces extra variables αa and βa in our theory such that

[Q, αa] = βa (3.54)
[Q, βa] = 0 (3.55)

4These are also called quartets in the literature - since they actually consists of pairs of
doublets.

5In the BRST formalism one defines every state |x〉 verifying Q|x〉 = 0 to be a physical
one. But as we shall see later on this does not imply that |x〉 is a true physical state.

6This can depend on what representation one uses for the operators. See for instance [2]
on this issue.
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it is possible to bring all cohomology to gh# = 0. Specifically, this is achieved
by introducing dynamical Lagrange multipliers va and corresponding antighosts
C̄a together with their momenta, πa and P̄a respectively, into the theory. We
introduced the Lagrange multipliers before but then they were not dynamical
since they did not have any momenta that could generate some time develop-
ment via the Hamiltonian. From now on the extended phase space P always
refer to

T ∗(P)⊗ Pk ⊗ Ck ⊗ P̄a ⊗ C̄a (3.56)

These new generators are chosen to be real and are graded as

gh#C̄a = −1 (3.57)
gh#P̄a = 1 (3.58)

From the digression above we conclude that all physical states |φ〉 verify,

Q|φ〉 = 0 , gh#|φ〉 = 0 (3.59)

This implies, due to the nilpotency of Q, that the physics always will be
contained in the zeroth cohomology group

{|φ〉} ∈ H0(Q) = kerQ/Im Q (3.60)

Above we saw that the doublet states in VD was either BRST-exact, or did
not possess gh# = 0. This implies that the physical state space is isomorphic
to VS . In other words

VS = H0(Q) = {|φ〉} (3.61)

In this section we have extracted as much information as possible about the
state space, solely from representation theory. For a given theory, however,
this is not enough to fully characterize the inner product space VS . In the
construction above, VS was defined to be a subspace of an inner product
space V . So far that definition is only a formal statement which needs to be
completed by the explicit construction of an inner product on V . Only then
will the formal developments above make sense.

3.7 The Physical Subspace

Let us sum up where we stand at this point. We have postulated the existence
of a space VS ⊆ V , where V is an inner product space. From representation
theory it was then showed that the cohomology KerQ/ImQ of the states in V
with respect to Q, is isomorphic to VS . The problem is that if we are given a
BRST-charge and solve for the states |φ〉 in P which satisfy the physical state
conditions

Q|φ〉 = 0 (3.62)
gh#|φ〉 = 0 (3.63)
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not all the states |φ〉 will be inner product states, i.e. not all the |φ〉’s belong
to VS . To see how this comes about let us assume that we expand an arbitrary
state in VS in terms of ordinary Dirac-states and the ghosts,

|φ〉 = |φ〉0 + |φ〉ab
cdCaC̄bPcP̄d + ... (3.64)

Obviously the ghost part of the state above consists of all possible combi-
nations of ghosts, verifying gh# = 0 (the coefficients contain the rest of the
variables in the theory). We see for example that states like (only one fermionic
ghost pair assumed for simplicity)

|φ〉 = |q〉|π〉0 ⊗ CC̄
|φ′〉 = |q′〉|π〉0 ⊗ CC̄ (3.65)

are physical for an abelian model in which Q = Cp + P̄π. But the usual Dirac
”inner-product” between those states is

〈φ|φ′〉 = δ(q − q′) · δ(0) · 0 = δ(q − q′) · 0 · ∞ (3.66)

The zero and the infinity come from the fermionic and bosonic delta functions
respectively. So, obviously this ”naive” inner product cannot be the physical
one since we need well defined states. Earlier we concluded that the BRST
charge Q should be hermitian, which is a property which is defined in relation
to an inner product. One important question is thus, in relation to which inner
product(s) can that property be defined - or less ambitiously, what does an
admissible inner product look like? That question will be answered in the next
section. Observe that we at this stage only talk about finding a well defined
inner product on V . Once it is found, it is possible to find out which states
have positive norms and which have not, i.e. to determine the true physical
states.

3.8 Regularized Inner Product

In [19–21] it was proven that provided one work with a non-minimal Q, and
provided one can find a decomposition of the BRST charge satisfying

Q = δ + δ†, δ2 = 0, [δ, δ†] = 0 (3.67)

then the states |ph〉 invariant under δ, δ†,

δ|ph〉 = δ†|ph〉 = 0 (3.68)

will be inner product solutions. Furthermore |ph〉 must always be possible
to express as a linear combination of states∈ Eig N, where Eig denotes the
Eigenspace. This decomposition has been proved always to exist for Lie-group
gauge theories [21,22] in which case it leads to the explicit form,

|ph〉 = e[Q,ψ]|φ〉 (3.69)
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of the inner product states. ψ denotes the gauge fixing fermion for which
gh#ψ = −1. The state |φ〉 ∈ span(Eig N) is BRST-closed and subject to
some simple conditions described in [21, 22]. It must be emphasized at this
point that in order for states of the form (3.69) to be inner product states,
the model must be supplemented with certain quantization rules, which were
derived in [21,23]. They read explicitly

N Quantization rules {1} The unphysical degrees of freedom, represented
by ghosts and antighosts as well as Lagrange multipliers and gauge degrees of
freedom are to be quantized with opposite metric signature.

How these rules work for abelian models is investigated in detail in paper
I, included in this thesis. In the same article it is also shown that the choice of
gauge fixing fermion ψ determines these quantization rules. Even though this
was only done for abelian models it is believed to be true for general models
due to the abelianization theorem7. Another approach towards the construc-
tion of inner product states was taken in [25]. In that approach one considers
the true physical states, i.e. the singlet states |s〉 ∈ H0(Q)

Q|s〉 = 0 |s〉 6= 0 (3.70)

For every charge Q that have the BFV-form8 they were shown to be given by,

|ph〉 = e[Q,ψ]|φ〉s, (3.71)

for arbitrary reducible gauge theories. Above, the gauge fixing fermion is the
same as in eq.(3.69) but in constrast to the |φ〉 states above, the |φ〉s states
are determined by conditions

Dr|φ〉s = 0 (3.72)

where

{Di} = {Bi, Ci} (3.73)
Bi := [Q,Ci] (3.74)

and {Di} constitutes a maximal set of independent hermitian BRST doublet
operators in involution such that

D′
i = e[Q,ψ]Die

−[Q,ψ] (3.75)

satisfy
det([D′

i, (D
′
j)
†]) 6= 0 (3.76)

7The abelianization theorem states that we always can find local coordinates in terms of
which the constraints are abelian [24].

8The BFV form allows for a very general class of theories, so general in fact, that one
believes that all gauge theories can be described by a BRST charge, written in that form.
See references [26–28] for more details on this matter.
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The last conditions determines a legitimate gauge fixing. With “operator
doublets in involution” is simply meant that {Di} satisfies a closed algebra

[Di, Dj ] = Cij
kDk (3.77)

An explicit example on how this construction is carried out, is given in paper
I for an abelian model. Due to the relations,

Ci|φ〉s = 0 (3.78)

the states |φ〉s are gauge fixed states with gh#|φ〉s = 0. The set {|φ〉s} is
thus a gauge fixed version of |φ〉. It is important to note that even in the last
approach we have to supplement the quantization rules in order for the singlet
states |s〉 to be inner product states. The two ways in which inner product
states were derived above, have also been shown to be related for some models,
for example in section 4 of paper I, an explicit relation between the δ-operator
and the Bi-operators is given. Whether or not it is possible to give such
a relation for all type of models is not at all clear, since the requirement
of the existence of a decomposition Q = δ + δ† verifying eq.(3.68) is very
restrictive. The conclusion of this section is, that there is strong evidence for,
that whenever inner product solutions exists they can for an arbitrary gauge
theory be written in the form [25]

|ph〉 = e[Q,ψ]|φ〉, (3.79)

where the state |φ〉 is BRST-closed and always obeys some simple conditions.
The strength of the form (3.79) lies in the fact that it is relatively easy to
determine the states |φ〉, in particular since the prescription does not restrict
them to be inner product states.



4
REPARAMETRIZATION
INVARIANT THEORIES

In a reparametrization invariant (RI) theory the dynamical variables de-
pends on parameters in such a way, that the theory is invariant under arbitrary
changes (reparametrizations) of those parameters. This means in particular
that the parameters in question do not possess any physical relevance. RI-
theories are also often called generally covariant theories in the literature.
Many important theories are formulated in a RI-form, for example: gravity,
string theory and the relativistic particle. The reparametrization invariance
can be viewed as a gauge symmetry and in this chapter we will give a brief
review of the BRST-quantization of RI-systems with finite degrees of freedom
on inner product spaces, in which case we have only one parameter. More de-
tails regarding this issue can be found in paper III. We concentrate on how
one can extract the physical states and propagators from their BRST-invariant
counterparts.

Including time and its conjugate momenta among the dynamical variables
leads to a Hamiltonian that is pure gauge (i.e. vanish on-shell) and this implies
that the time evolution can be interpreted as a gauge transformation. A lot of
the material presented in this chapter is intimately connected to the discussion
about quantization on inner product spaces in chapter 3.

4.1 Preliminaries

Given any regular1 theory, S[q(t), q̇(t)] =
∫

dtL(q(t), q̇(t)), it is always possible
to reformulate it as a reparametrization invariant theory [2, 29, 30]. This is

1A regular theory is a theory without any non-trivial gauge invariance, i.e. a theory for

which the Hessian is invertible: det ∂2L(t)

∂q̇iq̇j 6= 0.

29
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easily seen by considering the time t as a function of an arbitrary parameter τ ,
∫

dtL(t) =
∫

dτ ṫ L(t(τ)) :=
∫

dτ L′(τ) (4.1)

Obviously, the action
∫

dτ ṫ L(t(τ)) is invariant under arbitrary reparametriza-
tions τ → τ ′(τ). The theory defined by L′(τ) is singular which reflects the
fact that we deal with a constrained dynamical system. There is only one
constraint and it is given by π + H(t) = 0. Note that the degrees of freedom
in the systems defined by L and L′ are the same; for the latter theory we have
added one dynamical degree of freedom, namely t(τ). In order to be able to
discuss BRST operator quantization (BFV), we need to rewrite

∫
dτ L′ in first

order phase space form

LP (τ) = piq̇
i + πṫ− v(π + H(t)) (4.2)

The theory defined by (4.2) possesses the two constraints π + H(t) = 0 and
πv = 0. The constraints are first-class and their algebra is abelian. Note that
the Hamiltonian HP of (4.2) is pure gauge since HP = v(π + H(t)).

4.2 Formal BRST Solutions on Inner Product Spaces

Using the BFV operator version of BRST, one may derive formal solutions on
inner product spaces for the models described by (4.2). These solutions are
formal in the sense that one also need to supplement them with an explicit
representation of the extended phase space and only then will the solutions
derived in this section be true inner product states.

Consider now the phase space T ∗(Q) of the model LP with coordinates
zk = (qi, pi, t, π, v, πv) where i ∈ {1, ..., n} and k ∈ {1, ..., 2n + 4}. The quanti-
zation is performed by promoting the phase space variables to hermitian even
operators, zk → Zk, and adding a ghost C, an antighost C̄ and their conjugate
momenta, P and P̄ respectively. All the added ghost operators are odd and
hermitian. The set of all operators define the extended phase space P, dis-
cussed in chapter 3, in the sense, P = T ∗(Q)⊗C⊗P ⊗C̄ ⊗ P̄. The non-trivial
operator algebra is given by (~=1)

[Qi, Pi] = i, δi
j, [T, Π] = i [V,ΠV ] = i, [C,P] = 1, [C̄, P̄] = 1 (4.3)

In terms of the operators in extended phase space, the BRST charge for the
theory defined by LP is given by,

Q = C(Π + H(T )) + P̄ΠV (4.4)

As was explained at the end of chapter 3, consistent solutions2 on the form
|ph〉 = e[Q,ψ]|φ〉 requires us in this case to find four operators in involution3

Di = (Bi, Ci), i ∈ {1, 2} (4.5)
2See eqs. (3.73), (3.72) and (3.76) for some more details on this issue.
3With involution is meant that Bi = [Q, Ci].
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such that
Bi|φ〉 = Ci|φ〉 = 0 (4.6)

and
det([D′

i, (D
′
j)
†]) 6= 0 (4.7)

where D′
i = e[Q,ψ]Die

−[Q,ψ]. Two different allowed choices are given by,

ΠV |φ〉 = C|φ〉 = 0 (4.8)
P̄|φ〉 = (Π + H(T ))|φ〉 = 0 (4.9)

It should be mentioned that not all choices leading to Q|φ〉 = 0 are allowed;
some examples of non-allowed choices are given in paper III. An admissible
form of gauge fixing fermion ψ for the regulator e[Q,ψ], which is valid for both
(4.8) and (4.9), is given by ψ = PΛ(V ) + C̄χ(T ) [31]. The condition (3.76)
implies that the functions χ and Λ must have non-vanishing derivatives. The
states |ph〉 = e[Q,ψ]|φ〉 are only unique modulo zero norm states, and in order
to obtain the BRST singlets |s〉 we must impose extra gauge fixing conditions
on the states |φ〉 [16, 18]. In the case of (4.8) and (4.9), two allowed choices
are given by χ(T )|φ〉 = C̄|φ〉 = 0 and Λ(V )|φ〉 = P|φ〉 = 0 respectively.

4.3 Wave Function Representations

Below, we take a look at various wave function representations of the states
introduced in the previous section. The formal solutions given there must
be supplemented with an explicit choice of the state space and we will see
below that this choice corresponds to pinpointing which of the unphysical
operators that possess imaginary (complex) eigenvalues. The wave function
representation of the state |φ〉 in (4.8), with the gauge fixing fermion chosen
as ψ = PΛ(V ), is given by

〈q, t, v,P, P̄|φ〉 = δ(χ(T ))ϕ(q, t) (4.10)

where (q, t, v,P, P̄) now denote the eigenvalues of the corresponding opera-
tors. The quantization rules presented at the end of chapter 3, dictate that
half of the unphysical variables of our theory, namely {t, π, v, πv, C, C̄,P, P̄}
must span an indefinite metric state space. This means that the correspond-
ing hermitian operators have imaginary (or complex) eigenvalues. Which of
the operators that have imaginary eigenvalues is not specified a priori and the
possible choices are governed by the gauge fixing fermion ψ [32]. In (4.10) for
example, the argument of the delta function must be real in order for the solu-
tion to be consistent. The wave function representation of the corresponding
singlet state |s〉 = e[Q,ψ]|φ〉 was in paper III derived to be

Ψ(q, t, v,P, P̄) = 〈q, t, v,P, P̄|s〉
= e−iΛ′(v)P̄Pδ(χ(t− iΛ(v)))eΛ(v)(−i∂t+HS(t))ϕ(q, t) (4.11)
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Above, HS is the Schrödinger representation of the operator H(T ). The solu-
tion (4.11) admits the choices (i) t real, v imaginary and Λ(v) imaginary or (ii)
t imaginary, v real and χ(t) imaginary. For the fermions we may choose P real
and P̄ imaginary. One can show that the inner product 〈s|s〉 is only positive
definite for Λ′ < 0 which means that we must rule out positive Λ′. Obviously
these two choices are not connected by a unitary transformations since such a
transformation preserves the norm. The inner product of the singlet state |s〉
is independent of the choice of gauge parameters which makes it possible to
define the physical wave function φ by

φ(q, t0) :=
1

|χ̇(t0)|ϕ(q, t0) (4.12)

In the preceding equation t0 is the unique solution to χ(t) = 0. Different values
of t0 can be reached by unitary transformations of the form U(a) = ea[Q,P],
where a is a real constant. A general transformed state φ′(q, t) is then given
by

φ′(q, t) = e−(t−t0)(∂t+iHS(t))φ(q, t0), (4.13)

which imply that φ′(q, t) satisfies the Schrödinger equation with respect to t.
Moreover, φ′(q, t) coincides with φ(q, t0) at time t = t0 and this tells us that
φ′(q, t) is the gauge invariant extension of the wave function φ(q, t0).

4.4 Physical Projections of BRST Singlets

In paper III we proposed how one should define physical wave functions, and
this proposition was based on studying inner products of the singlet states
〈s|s〉. Here we address the question of how one can derive physical wave func-
tions and propagators by certain projections of the singlet states. Intuitively,
these projections should correspond to getting rid of the unphysical degrees
of freedom in the theory. Consider the wave function representation of the
singlet state (4.11). We observe that

φ(q, t0) =
∫

dudPdP̄ Ψ(q, t0, iu,P, iP̄), (4.14)

which suggests that we should define the projection of singlets to physical
wave functions as

φphys(q, t0) = Ψ|bi=ci=0 (4.15)

where bi and ci are the eigenvalues, or equivalently, the Weyl symbols of Bi

and Ci respectively. The projection (4.15) actually connects the conditions
imposed on |φ〉 with the boundary conditions imposed on the wave function
representation of a singlet state Ψ, because it can be restated as

N Projection {2} Impose boundary conditions determined by the conditions
on |φ〉 on the wave function representation of Ψ of the BRST singlets |s〉.
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The preceding projection does not produce gauge invariant wave functions,
but one can show in a similar way as above that if we impose all conditions
on Ψ that is imposed on |φ〉, except the gauge fixing ones, the result is the
gauge invariant extension of φphys(q, t0) above. More succintly, the projection
rule can be stated as follows:

N Projection {3} In order to obtain gauge invariant physical wave functions,
impose the conditions on |φ〉, except for the gauge fixing conditions, as boundary
conditions on the wave function representation of |s〉.

The physical wave function obtained by using the projection {2} on Ψ can
be obtained directly from the wave function representation of |φ〉, by using
the following projection rule

N Projection {4} The physical wave functions may be obtained from the wave
function of the |φ〉-state by imposing the dual conditions to the gauge fixing con-
ditions to the gauge fixing conditions on |φ〉 as boundary conditions.

By studying the norm of singlet states one can derive the projection for the
physical propagator. The norm 〈s|s〉 is given by

〈s|s〉 = 〈φ|eγ[Q,ψ]|φ′〉
=

∫
dn+4R′′ dn+4R′ 〈φ′|R′′∗〉〈R′′|eγ[Q,ψ]|R′∗〉〈R′|φ〉, (4.16)

where the collective label R = {qi, t, iu,P, iP̄} has been introduced. Above,
γ denotes a real parameter. From the expression for R it is also clear which
state space representation we are using in this case. In equation (4.16) one
can show that

∫
du′du′′dP ′′dP̄ ′′dP ′dP̄ ′〈R′′|eγ[Q,ψ]|R′∗〉, (4.17)

is the physical propagator, and by looking at the integrations we can invoke
the following projection rule for physical propagators,

N Projection {5} Impose as boundary conditions on the extended propaga-
tor 〈R′′|eγ[Q,ψ]|R′∗〉 the conditions on |φ〉 except for the gauge fixing conditions.

We will close this chapter by considering a path integral representation
of the propagator 〈R′′|eγ[Q,ψ]|R′∗〉 and apply the projection {5} to obtain the
physical propagator. The norm of the singlet state |s〉 in (4.16) is given by,

〈s|s〉 =
∫

dn+4R′′ dn+4R′ 〈φ′|R′′∗〉〈R′′|eγ[Q,ψ]|R′∗〉〈R′|φ〉 (4.18)
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By time slicing the propagator 〈R′′|eγ[Q,ψ]|R′∗〉 we obtain its corresponding
path integral representation,

〈R′′|eγ[Q,ψ]|R′∗〉 =
∫
DRDP exp

{
i

∫ τ ′′

τ ′
dτ (PṘ− i[Q, ψ]W )

}
(4.19)

This is the BFV-form of the propagator with the only difference that we have
[Q, ψ]W instead of the Poisson-bracket expression {Q,ψ}W . Above we have
defined γ = τ ′′−τ ′ and [Q,ψ]W denotes the Weyl symbol of [Q,ψ] (a definition
of the Weyl symbol can be found in paper III, but we will not consider its
explicit definition here). [Q,ψ]W might differ by ~-terms from the Poisson
bracket expression {Q,ψ}W . The measure DRDP, is given by

∏
τ

dnq dtdudC̄dCdnp dπdπudPdP̄
(2π)n+2

(4.20)

The explicit state space representation is chosen as R = {qi, t, v=iu, C,−iC̄}
and P = {pi, π, πv = −iπu,P, iP̄}. Choosing the gauge fixing fermion as
ψ = PΛ(V ) implies that the propagator can be written as

〈R′′|eγ[Q,ψ]|R′∗〉 =
∫
DRDP exp

{
i

∫ τ ′′

τ ′
dτ ÃLeff(τ)

}
(4.21)

where the effective Lagrangian Leff is given by

Leff(τ) = pq + πṫ + πuu̇ + iPĊ + iP̄ ˙̄C − λ(π + H(T )) (4.22)
+ iλ′P̄P (4.23)

With our specific choice of state space, Leff is real. Note also that λ(u) =
iΛ(iu) is real, since Λ(iu) is forced to be imaginary in order for the wave
function representation to exist. According to the projection {5}, the physical
propagator K(q′′, t′′|q′, t′) is given by

K(q′′, t′′|q′, t′) =
∫

du′du′′dP ′dP̄ ′dP ′′dP̄ ′′ 〈R′′|eγ[Q,ψ]|R′∗〉 (4.24)

The result of the integrations is

K(q′′, t′′|q′, t′) = sign((τ ′′ − τ ′)λ′) 〈q′′, t′′|q′, t′〉 (4.25)

where 〈q′′, t′′|q′, t′〉 denotes the correct physical propagator obtained from or-
dinary quantum mechanics. Note that sign((τ ′′− τ ′)λ′) determines the sign of
the norm of the singlet states [31] and this information is thus encoded in the
projected propagator.
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The historical development towards the BV-formalism, also called the field-
antifield formalism, can be understood in terms of the gradually increasing
success in gauge fixing ever more complex gauge theories. The gauge fixing is
directly connected to the (local) invariances of the theory and thus determined
by the structure of the gauge algebra. For example, in the case of Maxwell
theory with U(1)-gauge group, Faddeev and Popov [9] showed how one could
gauge fix by introducing ghost fields. When the gauge generators satisfy a
general Lie algebra, the Faddeev-Popov method is not powerful enough and
this led to the development of the BRST quantization method [10, 11]. The
investigation of various supergravity theories during the 70’s introduced new
difficulties with respect to gauge fixing because these theories displayed certain
types of open algebras. An extended version of the BRST formalism was
developed [13,33] for supergravity theories and later for general open algebras
[34]. This generalization of BRST suffered from a major drawback; the BRST-
generator Q was only nilpotent on-shell, which implies that the cohomology
only exist on-shell. Besides the complications caused by the open algebras,
there are other difficulties in gauge fixing which arise when the set of gauge
generators are reducible. Reducibility occurs in many important theories, as
for example antisymmetric tensor fields (for d ≥ 4) [35], the GS superstring
[36,37], which is infinitely reducible and open string field theory [38] which is
also infinitely reducible.

A general quantization method, capable of handling all the difficulties
above was developed by Batalin and Vilkovisky in the beginning of the 80’s.
By introducing so called antifields in addition to the (ordinary) fields, Batalin
and Vilkovisky constructed a Lagrangian generalization of the BRST method,
capable of quantizing arbitrary open algebras and which provide for an off-
shell nilpotent BRST-operator [39]. It was also clarified in [40] that the BV-
framework enables a gauge fixing of arbitrary reducible gauge theories while at
the same time maintaining manifest locality and covariance. Important refer-
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ences regarding the BV-formalism are, [34,39–45] and for some good reviews,
see [2, 6, 46,47].

5.1 The Classical Master Equation

In this section we briefly review the classical aspects of the field-antifield for-
malism. Let us start from the BRST framework and consider the gauge fixed
action,

Sq = S0[Φ] +
∫

dnx {Q, Ψ} (5.1)

Suppressing explicit reference to ghosts and multiplier fields we write the gauge
fixing fermion as Ψ = Ψ(Φ). Since the Q-variation of Ψ is given by δQΨ =

δQΦP
→
∂

∂ΦP Ψ, we can write Sq as

Sq = S0 +
∫

δQΦP

→
∂

∂ΦP
Ψ = S0 +

∫
δQΦP Φ∗P

∣∣∣
Φ∗P =

[ →
∂

∂ΦP
Ψ

] (5.2)

In the line above we have introduced the additional field Φ∗P . Sq can now be
written as the restriction of the action,

SM [Φ, Φ∗] := S0 +
∫

δQΦP Φ∗P (5.3)

to the surface ΣΨ defined by Φ∗P =
→
∂

∂ΦP Ψ in the space of fields and antifields.
This is the reason one always gauge fix in BV-theory by setting the antifields
equal to the derivative of some gauge fixing fermion. Since ε(Ψ) = 1 and
gh#(Ψ) = −1, it follows that,

ε(Φ∗P ) + ε(ΦP ) = 1 (5.4)
gh#(Φ∗P ) + gh#(ΦP ) = −1 (5.5)

From now on we will term the fields Φ∗, the antifields and the action SM

defined in (5.3), the masteraction. It follows that the Q-variation of the
fields is given by

δQΦP =
→
δ

δΦ∗P
SM (5.6)

Notice that the last equation tells us that the antifields act as sources for the
BRST transformations of the fields. The Q-variations of the antifields are
similarly defined as,

δQΦ∗P = SM

←
δ

δΦP
(−1)P+1 (5.7)

Let us now introduce a bracket structure on the space of fields and antifields.
The mapping ( , ) : z×z→ z is termed antibracket and is defined as,

(A, B) = A

←
δ

δΦP

→
δ

δΦ∗P
B − (−1)(A+1)(B+1)B

←
δ

δΦP

→
δ

δΦ∗P
A (5.8)
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Above, z denotes the space of all functionals endowed with a ghost number-
and Z2-grading and A,B ∈ z. In terms of the antibracket we get the following
symmetric form on the BRST-variations of the field and antifields,

δQΦP = (ΦP , SM) (5.9)
δQΦ∗P = (Φ∗P , SM) (5.10)

In terms of the antibracket, the BRST -invariance of the action SM can now
be expressed as,

(SM , SM) = 0 (5.11)

which is the classical master equation. Note that in contrast to the graded
version of the Poisson-bracket, the antibracket between identical (Grassmann)
even objects is nontrivial. Requiring that (5.11) is a non-trivial equation for
SM and that SM [Φ,Φ∗]|Φ∗=0 = S0[Φ] implies that we must have,

ε(SM) = 0 (5.12)
gh#(SM) = 0 (5.13)

Formally, the solution to the master equation can be written as a power series
expansion in terms of the antifields in the following way,

SM [Φ,Φ∗] = S0[Φ] +
L∑

s=0

C∗s−1,αs−1
Rαs−1

sαsCαs
s + higher order terms in C∗ (5.14)

The expansion incorporates the correct boundary condition, namely that the
master action should reduce to the classical action when the antifields are set
to zero, SM [Φ, Φ∗]|Φ∗=0 = S0[Φ]. In (5.14), C∗s−1,αs−1

denotes the antifield of
Cαs

s and C∗−1,α−1
:= Φ∗i and Cα−1

−1 := Φi. The master equation enforces the
functionals Rαs−1

sαs and their higher order analogs in (5.14) to satisfy the
gauge structure equations discussed in section (2.5). Hence, it follows that
the master action contains all the information about the gauge structure of a
theory1; the existence of a solution to the master equation guarantees that the
corresponding theory described by S0 is consistent as a classical gauge theory.

We end this section by listing some important properties of the antibracket.
Consider A,B, C ∈ z, then the ghost number- and (Z2)-gradings are given by,

ε[(A,B)] = ε(A)+ε(B)+1 (5.15)
gh#[(A,B)] = gh#A+gh#B+1 (5.16)

The antibracket possesses graded antisymmetry with respect to the parities
(A+1) and (B+1),

(A,B) = −(−1)(A+1)(B+1)(B, A), (5.17)

1That is, all the information about the Noether identities, closure of the gauge transfor-
mations and the higher order gauge identities.
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and satisfies the following graded version of the Jacobi-identity,
∑

cyclic

((A,B), C)(−1)(A+1)(C+1) = 0 (5.18)

The antibracket is also a graded derivation of the pointwise product between
functionals,

(A,BC) = (A, B)C + (−1)BC(A,C)B (5.19)
(AB,C) = A(B, C) + (−1)ABB(A,C) (5.20)

The last relation implies trivially that the BRST operator δQ is also a graded
derivation of the pointwise product,

δQ(AB) = AδQB + (−1)BδQAB (5.21)

It follows from the Jacobi-identity (5.18) that δQ is also a graded derivation
of the product defined by the antibracket,

δQ(A, B) = ((A, B), S) = (A, δQB))(−1)B+1 + (δQA,B)(−1)B+1 (5.22)

5.2 Quantum Master Equation

Below, we recapitulate how one may derive the quantum theory analog of the
classical master equation. Some possible obstacles toward constructing a well-
defined quantum theory will also be touched upon. Now, the path integral
expression of an arbitrary correlation function is

IΨ =
∫
DΦDΦ∗ δ

(
Φ∗P −

→
∂

∂ΦP
Ψ

)
exp

( i

~
W [Φ, Φ∗]

)
X[Φ, Φ∗] (5.23)

Above, X[Φ, Φ∗] denotes an arbitrary correlation function and W [Φ,Φ∗] the
quantum master action. In order for the quantum master action to be
the analog of SM , we must have lim~→0 W = SM . A power expansion of the
quantum master action W in terms of ~ can then be considered, W = SM +
~W1+~2W2+..., where the higher order terms can be viewed as modifications of
the path integral measure. Note that the δ-function above imposes the gauge
fixing condition Φ∗P = ∂Ψ

∂ΦP on the antifields. Consider now the integrand in
(5.23),

Ī[Φ, Φ∗] := exp
( i

~
W [Φ,Φ∗]

)
X[Φ, Φ∗] (5.24)

The change of the quantity IΨ under infinitesimal deformations of Ψ is easily
evaluated as,

δΨI =
∫
DK ∆Ī δΨ +O(

(δΨ)2
)
, (5.25)

where the ∆ operator is defined by [39,40],

∆ :=
←
∂

∂ΦP

←
∂

∂Φ∗P
(−1)P+1 (5.26)
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One takes the independence of infinitesimal deformations in Ψ as the definition
of a good integrand,

∆Ī = 0 (5.27)

We must require that the partition function is gauge independent; this corre-
sponds to the case X = 1 in (5.23) and it requires (to second order in ~),

∆exp
( i

~
W

)
= exp

( i

~
W

)( i

~
∆W − 1

~2
(W,W )

)
(5.28)

We have thus arrived at the quantum master equation,

1
2
(W,W ) = i~∆W (5.29)

Given a quantum master action W that satisfies (5.29), a functional X[Φ, Φ∗]
must satisfy,

(X, W ) = i~∆X, (5.30)

in order to produce gauge independent correlation functions. The BRST-
operator measures the failure of a quantity to fulfill the master equation,
and from (5.30) we see that the quantum BRST-transformation δQ̂ should be
defined as,

δQ̂ := (X, W )− i~∆X (5.31)

The quantum master equation implies the nilpotency of δQ̂ which in turn
guarantees the existence of a cohomology Hn(δQ̂) at ghost number n. The
quantum observables are defined as the elements of Hn(δQ̂). The solution to
the quantum master equation is unique modulo a canonical transformation, the
effect of which is a BRST-exact modification of the untransformed quantity.
When violation of the quantum master equation occurs, one speaks of a gauge
anomaly [48]. The existence of a gauge anomaly implies that not all of the
classical gauge symmetries survive quantization. An important observation is
that, contrary to its classical counterpart, δQ̂ is not a graded derivation. This
follows from,

δQ̂(AB) = A(δQ̂B) + (−1)BδQ̂(A)B − i~(−1)B(A, B) (5.32)

This implies that quantum observables do not constitute an algebra; given
two observables X1 and X2, there is no longer any guarantee that X1X2 is
an observable. There are however important special cases where the set of
quantum observables still defines an algebra; these cases will be discussed
later on in this section and in chapter 6.

Let us now discuss in some more detail, the properties and subtleties of
the operator ∆. The Z2- and ghost number gradings of ∆ follow directly from
the definition (5.26) and the gradings of the fields and antifields (5.4),

ε(∆) = 1 (5.33)
gh#(∆) = 1 (5.34)
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The operator ∆ is nilpotent, ∆2 = 0, and the antibracket can be written in
terms of ∆ in the following way,

(A,B) = ∆(AB)(−1)A − (∆A)B(−1)A −A(∆B) (5.35)

Note that the antibracket measures the failure of ∆ to be a derivation of the
ordinary pointwise product. ∆ is however a derivation of the product defined
by the antibracket, since

∆(A,B) = (∆A, B) + (A, ∆B)(−1)A+1 (5.36)

As is seen from (5.26), ∆ will in general be singular when acting on local func-
tionals2. This implies that one needs a suitable3 regularization scheme. Two
interesting cases of solutions to (5.29) exist when: (i) The classical action S0

does not possess any gauge symmetries. This implies that a proper solution to
the master equation is given by S0 itself and obviously we then have ∆S0 = 0.
(ii) If one can find a regularization scheme such that ∆SM = 0 and (SM , SM)=0
separately; in this case the classical master action SM is also a solution to the
quantum master equation, SM = W . Case (ii) is the situation for all of the
models formulated in the BV-framework in this thesis; the existence of a valid
regularization scheme of the bosonic part of (5.26) is assumed [49,50].

It should be pointed out that a solution to the quantum master equation is
not a sufficient condition for a sensible quantum theory; there may for exam-
ple still remain issues such as renormalization, unitarity and locality. These
problems will not be addressed in this thesis. For articles on regularization
and renormalization in the BV-framework, we refer to [51–56].

It should also be mentioned that the space of fields and antifields equipped
with the antibracket, possesses a rich geometrical structure. The investigation
of this structure was initiated by Witten in [57] and has since then been
extended to curved supermanifolds with an odd symplectic structure [58] and
the development of the theory of the so called Q-P manifolds and their
intimate relation with topological quantum field theory [59].

5.3 Consistent Interactions as Deformations

Consider the action of a given gauge theory, depending on some fields. If we
add a term depending of the same set of fields to that action, we have per-
formed a so-called deformation of the original action. Not all possible terms
that we can add are admissible, some might lead to an inconsistent gauge
theory, others are admissible but do not deform the gauge stucture; for exam-
ple adding a total derivative will not affect the gauge structure. The field of
studying how deformations affect the gauge structure of a given theory is called

2This is the case since, being a second order functional differential operator, it will produce
at least delta functions and in most cases also derivatives of delta functions.

3I.e. a regularization scheme that respects the quantum BRST symmetry.
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deformation theory. The fundamental question regarding deformations of

a theory is: Given an action
(0)

S0 [Φ] with the gauge symmetries,

δεΦA =
(0)

RA
α εα, (5.37)

in what ways can we deform
(0)

S0 [Φ],
(0)

S0→ S0 =
(0)

S0 +g
(1)

S0 +g2
(2)

S0 + . . . (5.38)

in a consistent manner? The parameter g above, is called the deformation
parameter or coupling constant. The indices above the S0’s in the expan-
sion, simply denotes the order of the deformation. In order to explain what
we mean with consistent deformations and to set up a general framework for
the discussion that follows, some definitions are needed:

I Consistent deformations (5): With a consistent deformation4 of an action
(0)

S0 [Φ] is meant a deformation of the type (5.38) such that the deformed gauge
generators,

(0)

RA
α→ RA

α =
(0)

RA
α +g

(1)

RA
α +g2

(2)

RA
α + . . . (5.39)

are the gauge symmetries of the deformed action S0,

δ(
(0)

S0 +g
(1)

S1 +g2
(2)

S2 + . . . )
δΦA

(
(0)

RA
α +g

(1)

RA
α +g2

(2)

RA
α + . . . ) = 0 (5.40)

The last equation must be satisfied order by order in g.

The preceding definition is a natural one, since it says that consistent de-
formed gauge transformations should close on-shell.

I Trivial deformations (6): A deformation that is due to a field redefini-
tion,

ΦA → ΦA + g
(1)

ΦA +g2
(2)

Φ + . . . (5.41)

is called trivial.

Above,
(k)

Φ, denotes functions of the fields Φ and the antifields Φ∗. Trivial defor-
mations correspond to (anti)canonical transformations in the BV-formatlism,
and due to

(0)

S0→ S0 =
(0)

S0 [ΦA + g
(1)

ΦA +g2
(2)

Φ + . . .] (5.42)

=
(0)

S0 +g
δ

(0)

S0

δΦA

(1)

ΦA + . . . (5.43)

4There might also be additional requirements; for example if the undeformed gauge trans-
formations are reducible one should also require the deformed set of gauge transformations
to be reducible; that case will not be considered here.
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we see that they vanish on-shell; they simply corresponds to a rescaling of the
coupling constant of the undeformed action.

(0)

S0→ S0 = (1 + k1g + k2g
2 + . . .)

(0)

S0 (5.44)

I Rigid theory (7): A theory is called rigid if the only consistent deformations

are proportional to
(0)

S0 [Φ] modulo field redefinitions (canonical transformations).

The rigidity of a theory means that one cannot change the gauge structure of
that theory by adding any further consistent interaction terms. The require-
ment of consistency in combination with locality is such a severe constraint
that a given theory can in general only be deformed in a very limited number
of ways. Finding consistent deformations of a given action by deforming both
the original gauge generators and the original action, such that (5.40) is veri-
fied, is often hard to do since the equation must hold order by order in g. An
equivalent reformulation [60, 61], which guarantees consistency is to consider

the deformation of the corresponding master action
(0)

S M instead,

(0)

SM→ SM =
(0)

S M +g
(1)

S M +g2
(2)

S M + . . . (5.45)

The master equation (SM , SM) = 0 of the deformed theory will then impose
consistency on S0 and RA

α . The antibracket ( , ) induces a map in the coho-
mology of the BRST operator Q, called the antibracket map [60]:

( . , . ) : Hp(Q)×Hq(Q) −→ Hp+q+1(Q) (5.46)

Above, p and q denote ghost numbers. We should need the following result in
what follows [60],

N Antibracket map {6} The antibracket map is trivial, i.e. the antibracket of
two BRST-closed functions is BRST-exact.

As we will see below, this result implies that there are no obstructions to
consistent deformations unless locality is imposed on the theory. Due to the
next theorem, the deformation of a theory is formulation-independent:

N Auxilliary fields {7} The BRST cohomologies H∗(Q) and H∗(Q′) asso-
ciated with two formulations of a theory differing in the auxiliary field content are
isomorphic. Furthermore the isomorphism i: H∗(Q) −→ H∗(Q′) commutes with
the antibracket map.

Proofs of the two theorems above are given in [62] and [60], respectively.
Consider now the expansion of the solution of (S, S) = 0 in terms of the de-
formation parameter g,
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(
(0)

SM ,
(0)

SM) = 0 O(g0) (5.47)

2(
(0)

SM ,
(1)

SM) = 0 O(g1) (5.48)

2(
(0)

SM ,
(2)

SM) + (
(1)

SM ,
(1)

SM) = 0 O(g2) (5.49)
...

These equations imply that there are no obstructions to construct consistent

deformations of a given action
(0)

S M , unless we impose additional restrictions on
the master action. This is realized if we study the systems of equations above
order by order in g: Equation (5.47) is valid by default since the undeformed

theory is assumed to be consistent. Equation (5.49) says that
(1)

SM∈ H0(Q0) (an

exact
(1)

SM corresponds to a trivial deformation). Equation (5.48) is also fulfilled
by default since the antibracket map is trivial and this is so for all higher
order equations. We conclude that there are no obstructions to consistent
deformations and the non-trivial deformations are classified by H0(Q0). The
cohomology group H0(Q0) is in general non-empty since it is isomorphic to
the space of observables for the free theory [2]. So far, the discussion about
deformations has been with respect to the space of arbitrary functionals; if

we require
(k)

SM to be local functionals5, the consistent deformations will be
severely restricted [60].

Let us now assume that each deformation term
(k)

SM is given by
(k)

SM=
∫ k

L,

where
k

L is a local n-form. The antibracket then induces a local antibracket
( , )l via (F1, F2) =

∫
(f1, f2)n , where Fi =

∫
fi. From the locality it follows

that equations between local functionals are only equalities modulo a total
derivative: consider F1 =

∫
f1 = 0, then f1 = dfn−1, where

∮
fn−1 = 0 (fn−1

being a local (n−1)-form). The local form of the consistency equations (5.47)-
(5.49) can now be written

Q0

(0)

L = dN0 (5.50)

2Q0

(1)

L = dN1 (5.51)

Q0

(2)

L +(
(1)

L ,
(1)

L)l = dN2 (5.52)
... (5.53)

Note that above,
(k)

L denotes the integrand of
∫ k

L and Np denotes a local n-
form. The non-trivial local deformations are now governed by the cohomology

H0(Q0|d). As we saw earlier (
(1)

SM ,
(1)

SM) is always cohomologically trivial but
5There might also be further restrictions such as manifest Lorentz covariance.
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it is not in general a BRST variation of a local functional [60]. This means

that (
(1)

L ,
(1)

L )l is not necessarily BRST-exact modulo d. The requirement of
BRST-exactness modulo d for consistent deformations will then impose con-

straints on the coefficients in
(1)

L , and these constraints are in general very
restrictive. For example, the only possible consistent non-trivial deformations
for abelian- Yang-Mills and Chern-Simons are their non-abelian counterparts
respectively [7, 60, 63, 64]. A consistent deformation can naturally be divided
into three different categories, depending on what it does to the gauge algebra
of the undeformed theory: Category (I) - the deformation amounts to adding
terms to the action which are invariant under under gauge transformations
of the undeformed action; obviously such a deformation does not deform the
gauge transformations. Examples are field strengths and covariant derivatives
thereof. Category (II) - the deformation alters the gauge transformations, but
the additional terms added to the gauge transformations are invariant under
the gauge transformations of the undeformed action. As a result the gauge
algebra is not deformed to first order in the coupling constant. This is the case
for the Freedman-Townsend model [65]. Category (III) The additional terms
in the undeformed gauge transformations are not invariant under the origi-
nal gauge transformations; this implies that the gauge algebra is deformed.
This happens for instance in the case mentioned above, namely by deforming
abelian- Chern-Simon or Yang-Mills into their non-abelian versions. For fur-
ther results on rigidity and no-go theorems regarding consistent deformations
of various models we refer to [61,66–71].



6
A SUPERFIELD

FORMULATION OF FIRST
ORDER GAUGE THEORIES

In this chapter we discuss a class first order gauge field theories in the context
of a superfield formulation [49, 50, 59, 72–80]. The material presented in this
chapter is intimately connected to paper IV and parts of chapter 7.

6.1 Superfield Action and n-Bracket

In [50, 80], Batalin an Marnelius presented the following first order superfield
action:

Σ[KP,K∗
P ] =

∫

M2n

dnudnτLn(u, τ) (6.1)

where the Lagrangian density is given by,

Ln[u, τ ] = K∗
P (u, τ)DKP (u, τ)(−1)P n − S[K∗

P (u, τ),KP (u, τ)], (6.2)

M2n denotes a (n, n)-supermanifold coordinatized by (even,odd) coordinates
(uk, τ k) and where k ∈ {1, ..., n}. D denotes the nilpotent de Rham operator
and S the local master action. The master action Σ is defined to have ghost
numbers, gh#Σ = 0 and Z2-grading, ε(Σ) = 0. It is emphasized that S only
depends on the fields and not derivatives thereof. The superfields KP and
associated1 superfields K∗

P have the following Z2-gradings,

ε(KP ) = P (6.3)
ε(K∗

P ) = P+n+1 (6.4)

1The term antisuperfields is inadequate since the component expansion of an associated
field contain both ordinary BV-fields and antifields.
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The odd coordinates carry one unit of ghost number, gh#(τ k) = 1, and for
the measure we have gh# dnτ = −n. The de Rham operator also carries one
unit of ghost numbers gh#D = 1; this is manifest in the local representation
D := τ k ∂

∂uk . From the ghost numbers grading of the master action it now
follows that,

gh#KP + gh#K∗
P = n− 1 (6.5)

In what follows, we will always choose as a convention, gh#K∗
P ≥ gh#KP . As

a consequence of the chosen ghost numbers- and Z2-gradings above, it also
follows that,

ε(S) = n (6.6)
gh#S = n (6.7)

Now that the stage is set, let us talk a little more about the master action Σ.
The antibracket,

(A,B) =
∫

A(u, τ)
←
δ

δKP
(−1)P ndnu dnτ

→
δ

δK∗
P

B(u, τ)− (A ↔ B)(−1)(A+1)(B+1) (6.8)

induces a local bracket, called the n-bracket ( , )n, between local functionals,

(F, G)n = F

←
∂

∂KP

→
∂

∂K∗
P

G− (F ↔ G)(−1)(F+n+1)(G+n+1) (6.9)

Note that the n-bracket works as an ordinary antibracket in even dimensions
and as a graded Poisson bracket in odd dimensions. It possesses a number
of properties similar to the ordinary antibracket. It is graded antisymmetric
with respect to F+n+1 and G+n+1,

(F,G)n = −(−1)(F+n+1)(G+n+1)(G,F )n, (6.10)

it satisfies a graded version of the Jacobi-identity,
∑

cyclic

((F,G)n,H)n(−1)(F+n+1)(G+n+1) = 0 (6.11)

and it obeys the Leibniz rule,

(F, GH)n = (F, G)nH + G(F,H)n(−1)G(F+n+1)

(FG, H)n = F (G,H)n + (F, H)nG(−1)G(H+n+1) (6.12)

The n-bracket also carries 1−n units of ghost numbers and 1−n units of parity,

gh#(F,G)n = gh#F + gh#G + 1− n (6.13)
ε((F,G)n) = F+G+n+1 (6.14)

The equations of motion that follow from the master action (6.1) are given by,

DKP = (S, KP )n

DK∗
P = (S, K∗

P )n (6.15)
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and they endow the de Rham operator D with a BRST-charge interpretation.
Note that this form is a little bit different than the standard BV-form in (5.9)
and the reason for this difference is how one defines the parities sitting in the
action; Σ for example, is defined with a factor (−1)np multiplying the kinetic
term and this will manifest itself in the equations of motion.

It is shown in [50] that Σ solves the quantum master equation 1
2(Σ, Σ) =

∆Σ, provided the local master action S satisfies a classical local master equa-
tion in terms of the n-bracket,

(S, S)n = 0 (6.16)

and that the boundary condition
∫

dnu dnτ DLn = 0 is fulfilled. The ”Lapla-
cian” ∆ used in our discussion of the superfield formalism is defined differently
from the one usually used in a conventional BV-treatment (section 5.2); we
refer to paper IV for the explicit expression of ∆ for superfields. A solution
for the classical master action S thus defines a consistent quantum master ac-
tion Σ. There is a big advantage in working with S, since the equation (6.16)
has a much simpler structure than the full quantum master equation. Note
that equations (6.15) are consistent with the nilpotency of D as a result of
the local master equation (6.16) for S and the Jacobi-identity (6.11). In terms
of deformation theory, the master equation Σ describes all possible deforma-
tions of abelian BF-theories [60, 64, 69, 75, 81–84]. The local master action S
determines the gauge structure of the original model to which Σ corresponds
(how one extracts the original model from a given Σ is described below). If
for example S = 0, the gauge structure of the corresponding original theory
is that of an abelian BF-theory. Recall, that the local master action S was
defined to depend on the superfields only, and not derivatives thereof2. From
a deformation theoretic perspective, this is sufficient, since terms with deriva-
tives will be proportional to the equations of motion of the undeformed theory
and therefore such terms does not modify the gauge structure of the theory.
By observing that the fields in the classical model are the ghost numbers zero
components of the superfields KP and K∗

P , one is led to the following rules for
extracting the n-dimensional classical field theory, corresponding to a given
master action Σ:

dnudnτ → 1
D → exterior derivative d

KP : gh#KP = k ≥ 0 → k-form field kP where,
ε(kP ) = εP +k

K∗
P : gh#K∗

P = (n− 1− k) ≥ 0 → (n−1−k) -form field k∗P where,
ε(k∗P ) = εP +k

all other superfields → 0
pointwise multiplication → wedge product. (6.17)

2With derivatives, we mean de Rham derivatives.
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6.2 Canonical Generators for the n-Bracket

A canonical generator for the n-bracket can be found by observing that
since ( , )n carries 1− n units of ghost numbers and n + 1 units of parity we
must have,

gh#Γ = n− 1 (6.18)
ε(Γ) = n + 1 (mod 2) (6.19)

It is easy to see that Γ preserves the n-bracket up to second order in the param-
eter γ under the transformation X → X + γ(X, Γ). That is, given fields KP

and K∗
P , the transformed fields K̃P = KP +γ(KP , Γ) and K̃∗ = K∗

P +γ(K∗
P , Γ)

satisfy, (K̃P , K̃∗
P ′) = δP

P ′ + O(γ2). Letting γ be an infinitesimal parameter
and iterating the transformation above gives us the group transformations
connected to the identity. Thus given an object F , we obtain the canonically
transformed object FΓ as,

FΓ = eadΓF (6.20)

with the adjoint action, adΓ = ( , Γ)n. In terms of chapter (5), γ is the
deformation parameter, even though canonical transformations correspond to
trivial deformations. A special class of canonical generators on the form Γ =
K∗

P1
K∗

P2
. . . K∗

Pn
ΓP1P2...Pn

P1′P2′ ...Pn′K
P1′KP2′ . . .KPn′ where ∀ Pi, Pi′ : Pi 6= Pi′

was used in paper IV. Such generators generate transformations of the fields
which are first order in the deformation parameter γ. In paper IV, it was
shown that the solution to the master equation for the model studied in [80],

S =
1
2
T ∗E1

T ∗E2
ωE1E2 +

1
2
T ∗E1

ωE1
E2E3

T E2T E3 +

+
1
24

ωE1E2E3E4
T E1T E2T E3T E4 , (6.21)

is canonically equivalent to the simpler model,

S = T ∗E1
T ∗E2

ωE1E2 . (6.22)

This means that (6.21) and (6.22) have the same gauge structure. The canon-
ical equivalence can be shown by using the canonical generator

Γ =
1
3
γ γE1E2E3

T E1T E2T E3 (6.23)

in terms of which the solution to the master equation for (6.21) can be writ-
ten: ωE1

E2E3
= −4γωE1EγEE2E3

and ωE1E2E3E4
= 24γ2γE1E2EωEE′γE′E3E4

. If
the parities of the fields are chosen so that γE1E2E3

is totally antisymmetric,
we observe that an invertible ωE1E2 implies that ωE1

E2E3
can be identified with

the structure coefficients of some semi-simple Lie algebra. Canonically equiv-
alent master actions for several other models, particularly in d = 6, were also
analyzed in paper IV.
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6.3 Gauge Transformations

A fruitful approach to study the gauge structure of certain field theories is
to start from their master action and derive the gauge transformations of
the original model3. By calculating the Σ-variations of the fields we get the
following local relations,

δΣKP = (Σ,KP ) = (−1)n(DKP − (S, KP )n),
δΣK∗

P = (Σ,K∗
P ) = (−1)n(DK∗

P − (S, K∗
P )n). (6.24)

The gauge transformations of the original model can be obtained by the fol-
lowing procedure (i) calculate the Σ-variations, (ii) use the rules (6.17), (iii)
replace each k-form field in every term of the Σ-variations by a k − 1-form
gauge parameter, one at a time; in case of scalar fields, i.e. fields having ghost
numbers zero, set the corresponding gauge parameter to zero. Several explicit
examples of this procedure are given in chapter 7..

3I.e. the model obtained by using the rules (6.17).
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7
TOPOLOGICAL GAUGE

THEORIES

The developments in theoretical physics during the last three decades, can
adequately be characterized as a strong interplay between advanced ideas in
mathematics and physics and we think it is fair to say that this is particu-
larly true for topological field theory (TFT). For example, the developments
launched by the discovery of magnetic monopoles [85, 86] in Georgi-Glashow
SU(2) gauge theory and the study of the classical Yang-Mills and instanton
equations [87], led to a tremendous increase in the understanding of the topol-
ogy and geometry of manifolds. Subsequent results that followed, established
the fact that there also exists deep relations between topology and quantum
theory. The field of study of those relations is known as topological quan-
tum field theory. The first example of a topological quantum field theory
(TQFT) was due to Schwarz, who showed that a certain topological invari-
ant, the Ray-Singer torsion, could be obtained from the partition function of
a specific TQFT [88]. A couple of years later, Witten in his study of Morse
theory in terms of supersymmetric quantum mechanics [89], constructed a dif-
ferent type of topological field theory. In the years that followed, Witten also
proved the existence of several other TQFT-representations of different topo-
logical invariants, most notably the Donaldson-invariants [90] and the Jones
Polynomials [91]. The work of Schwarz and Witten triggered an extensive
activity in the field of TQFT’s and many other important results have been
generated by a large number of people since then. At present, the two different
constructions mentioned above due to Schwarz and Witten, encompasses all
known topological field theories.

51
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7.1 The Relevance of Topological Field Theories for
Physics

Despite the fact that topological field theories do not possess any local degrees
of freedom, i.e. do not allow any propagating modes in the theory, they may
be very important for the understanding of ”real” physical theories. The lack
of local degrees of freedom in topological field theories means that every TFT
possesses a large enough set of local symmetries, enforcing the local degrees
of freedom to be zero. Thus, given an ”ordinary” non-topological field theory,
we can always consider a TFT which contains the symmetries of the non-
topological theory as a subset. In this sense it is clear that we can always
embed a TFT into a corresponding ”ordinary” theory [92]. This means for
example that if we consider a non-topological quantum field theory and the
set of its observables, some subset of these will possess all of the symmetries
of the TFT embedded into this quantum field theory. It is obvious then that a
topological version of a theory gives information about the topological sector of
the corresponding physical theory, and this sector contain information about
the non-perturbative properties of the theory into which it is embedded [92].
Furthermore, if we add terms to the action of a TFT that break the topological
invariance, we get a theory with local degrees of freedom, an observation which
leads to the possibility that TFT’s may represent unbroken phases of the
corresponding physical theories. Indeed, the origin of the notion of a measure
of distance in nature is not explained by any theory today, where one always is
forced to insert a metric in an ad-hoc fashion. There does not exist, however,
any good explanation for how the phase transition from a topological to a
non-topological phase should commence. Another thing that makes TFT’s
interesting from a physical point of view, is the fact that they constitute a
class of interacting field theories which are exactly solvable and they might
therefore give information about new approaches to quantum field theory.

7.2 Topological Field Theories

In this section we review the construction of topological field theories and we
will see that the BRST-BV framework plays a major role for this construction.
Before getting to the formal definition of a TFT, though, let us start by
considering the vacuum expectation value of a general observable O,

〈O〉 =
∫
DΦ e−Sq O(Φ) (7.1)

Above, Φ is a collective label for all the fields and Sq denotes the quantum
action,

Sq =
∫

Mn

dxnL =
∫

Mn

dxn(Lcl + Lgh + Lgf ) (7.2)

where Lcl, Lgh and Lgf denotes the classical part, the ghost part and the
gauge fixing part of Sq respectively. Mn denotes an n-dimensional Riemannian
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manifold with metric g, possibly endowed with some additional structure. The
energy-momentum tensor of the theory defined by Sq is as usual given by the
response of the action under infinitesimal deformations of the metric,

δgSq =
1
2

∫

Mn

dxn√g δgαβ Tαβ (7.3)

Now, assuming no metric anomalies in the measure of the path integral, the
g deformation of 〈O〉 is given by,

δg〈O〉 =
∫
DΦ e−Sq(δqO − δqSq O) (7.4)

Given the BRST-charge Q for the model Sq and the BRST-invariance of the
vacuum, we observe that under the assumptions (i) that the (BRST) observ-
able O has unobservable dependence of the metric, δgO = {Q,R} and (ii) the
BRST-exactness of the energy-momentum tensor T = {Q,V }, we have

δg〈O〉 = 0 (7.5)

In other words, O constitutes a topological invariant in the sense that its ex-
pectation value is independent of the metric. Note that the g-independence
of 〈O〉 is a highly non-trivial result, since a legitimate gauge fixing Lgf must
include a choice of metric on Mn. It was the observation described above that
Witten used in his monumental work considering several different TFT’s at
the end of the 80’s. His results led to the present day BRST-BV framework
for studying TFT’s and the formal definition of a topological theory frequently
found in the literature [90,93]:

I Topological field theory (8): The fundamental objects in a topological
field theory are: (I) A set of Grassmann Z2-graded fields {Φ} defined on a Rie-
mannian manifold (M, g). (II) A Grassmann-odd, metric independent, nilpotent
operator Q. (III) Physical states are defined by the Q-cohomology. (IV) The
energy momentum tensor T of the theory is Q-exact: T = {Q, f(Φ, g)}.

Now, there are some words that should be said about this definition. First of
all it is a ”rough” one in the sense that there are theories which are topological
but which violates some of the conditions in the definition. This is in general
the case for models with a more involved gauge structure, such as for example
topological sigma models [93] and d≥ 4 non-abelian BF theories [94, 95]. In
section 7.6 we will study how some of the conditions in definition(1) are vio-
lated for the higher dimensional non-abelian BF theories as a consequence of
the on-shell reducibility of the gauge symmetry of those models. Also notice
that in definition(1) there is no a priori identification of the operator Q as
the BRST-charge but at present for all known models, Q has a BRST-charge
interpretation and will be identified with such a charge in the following. Given
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a theory that verifies definition(1), we note that

〈ph|H|ph′〉 = 〈ph|
∫

T00 |ph′〉 (7.6)

= 〈ph|
∫
{Q,V00} |ph′〉 (7.7)

= 0 (7.8)

Thus, the energy of every physical state of a topological field theory is zero,
which implies that there are no physical excitations. From the classical analysis
regarding reparametrization invariant theories this is to be expected if the
action Sq is invariant under diffeomorphisms and we integrate over all metrics.
The local invariances of a TFT can be divided into two classes, depending
on their nature and to that effect one can classify the set of TFT’s into two
categories. This classification will be the topic of the next section.

7.3 Classification of Topological Field Theories

Let us start this section with the definition of a Witten type TFT:

I Witten type[Cohomological1] (9): A topological field theory is of type
Witten if the quantum action Sq is BRST-exact:

Sq[Φ, g] = {Q,V (Φ, g)} (7.9)

modulo addition of topological terms.

There are two kind of symmetries in a type Witten theory: (i) the so called
topological shift symmetry of the form δΦ = Λ for some of the fields2, and
(ii) additional local symmetries. The construction of the charge Q thus rep-
resents a combination of the two different kind of symmetries present in type
Witten theories. It is the topological shift symmetry that makes it possible
to interpret the BRST-charge also as generator of supersymmetry interpre-
tation. Due to δΦ = Λ, we see that to each such field corresponds another
field, namely Λ which has opposite Grassmann parity. Since physical states
are annihilated by Q, these corresponding fields can be interpreted as ghosts;
thus to every physical field corresponds an unphysical field, thus imposing zero
degrees of freedom in our theory (the explicit count of degrees of freedom will
be shown explicitly for topological Yang-Mills below). Given a metric inde-
pendent BRST-charge Q the BRST-exactness of the energy-momentum tensor
follows from definition(2) since Tµν = {Q, 2√

g
δV

δgµν }. Some important examples
of topological field theories of Witten type are: topological Yang-Mills [90]
and topological sigma models [93, 96–98], and super BF-theories. [94, 95, 99].

1Theories of Witten type is frequently also called, cohomological theories in the literature.
2Λ being a local parameter.
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Let us now turn to the definition of Schwarz type theories:

I Schwarz type[quantum3] (10): A topological field theory is of type Schwarz
if the quantum action Sq can be written as,

Sq[Φ, q] = Scl[Φ] + {Q,V (Φ, q)} (7.10)

where the classical action Scl is non-trivial, i.e. different from a total derivative
and metric independent.

In contrast to Witten type theories, the BRST-charge Q corresponds to ordi-
nary gauge symmetries in Schwarz type theories. Since one cannot interpret
the ghost fields as superpartners to the physical fields in this case, one cannot
establish the fact that type Schwarz theories have no local degrees of freedom
as easy as for the type Witten theories. In this case one can perform a con-
straint analysis or calculate the number of bosonic Laplacians in the partition
function, in order to obtain the number of local degrees of freedom. Thus,
for type Schwarz theories the action contains enough gauge symmetries (first
class constraints) as to gauge away all the degrees of freedom. In analogy to
the type Witten case, given the g-independence of the BRST charge, the en-
ergy momentum tensor is easily seen to be BRST-exact: Tµν = {Q, 2√

g
δV

δgµν }.
This is so because the classical part Scl of Sq[Φ, q] = Scl[Φ] + {Q,V (Φ, q)} is
independent of any metric. The most well known examples of type Schwarz
theories are given by d = 3 Chern-Simons theories [88, 91, 100] and BF theo-
ries [94,99,101–103].

7.4 Topological Gauge Theories

In the next two sections, we will take a look at an important class of TFT’s,
namely topological gauge theories. With a topological gauge theory (TGT)
is meant a topological field theory that contains a Lie algebra4 (Yang-Mills)
gauge symmetry as a subset of its (local) symmetries. This Lie-algebra will be
denoted G in the following. Many of the most well known TFT’s are topolog-
ical gauge theories; Chern-Simons, Topological Yang-Mills and BF-theories.

7.5 Topological Yang-Mills in superfield formalism

Let us, as an example, look at the most well known TFT of Witten type,
namely topological Yang-Mills (TYM) [90,104],

S[A] =
1
4

∫
d4x TrF ∧ F (7.11)

3Theories of Schwarz type is frequently also called, quantum theories in the literature.
4For most of the models discussed below, the gauge group can be written as G = G0 ×G1

where G0 is a product of U(1) factors and G1 is compact and semi-simple - this guarantees
that the standard Yang-Mills kinetic term is positive definite.
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The gauge fixed partition function generates, among other invariants, the Don-
aldsons polynomials [104]. The 2-form field strength is given by F = dA+A2,
in terms of the G-valued connection 1-form A. The action (7.11) possesses the
ordinary Yang-Mills symmetry,

δA = dAΛ (7.12)

and the topological shift symmetry,

δA = Λ′ (7.13)

The parameters Λ and Λ′ are also G-valued. The gauge transformations (7.12)
and (7.13) are off-shell dependent since we can always choose Λ′ = dAΛ′′. This
implies that the theory is reducible. Since the gauge parameter Λ′ is a 1-form
field with its own gauge invariance, we must introduce the gh#=1 1-form odd
ghost field Caµ and gh#=2 0-form even ghost-of-ghost field ηa. Due to Λ, we
introduce gh# = 1 0-form odd ghost field Ca. By counting the ghost5 degrees
of freedom, we can calculate the total degrees of freedom in TYM (algebra
indices suppressed below):

#dof [Cµ] = −4
#dof [η] = +1
#dof [C] = −1 (7.14)

which brings us to a total of −4+1−1 = −4 degrees of freedom, which exactly
cancel the 4 degrees of freedom in A. Note that the action can be written as
a total derivative,

S[A] =
1
4

∫
dnx dTr[AdA +

2
3
A3] (7.15)

since the TrA4-term in (7.11) obviously vanish. In combination with BRST-
exact ghost- and gauge fixing terms we verify that TYM is a theory of Witten
type.

Let us now analyze this theory in terms of the superfield formalism dis-
cussed in chapter 6. The discussion below is directly related to [80] and paper
IV. We start by first writing the action (7.11) in first order form by introduc-
ing the auxiliary Lie-algebra valued 2-form field V in addition to the usual
1-form gauge connection A.

S[V,A] =
∫

dnx Tr[V dA− 1
4
V 2 + V A2] (7.16)

A superfield action that has (7.16) as a ”classical” limit is given by,

Σ =
∫

d4u d4τ (T ∗EDT E(−1)E − 1
4
T ∗E1

T ∗E2
ωE1E2 + T ∗E1

ωE1
E2E3

T E2T E3) (7.17)

5Meaning the entire hierarchy of ghost fields: ghosts, ghost-of-ghosts and so on.
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provided we choose the parities and ghost numbers of the fields as,

ε(T E) = 1
gh#(T E) = 1

ε(T ∗E) = 0
gh#(T ∗E) = 2 (7.18)

The reason for these choices is that we want the field T to be an even 1-form
after the reduction (6.17). These choices are to be understood in the rest of
this section. The interaction term of (7.17) can be read off as,

S =
1
4
T ∗E1

T ∗E2
ωE1E2 − T ∗E1

ωE1
E2E3

T E2T E3 (7.19)

The master action (S, S)n = 0 gives us the following conditions on the coeffi-
cients ω,

ωE1
(E2|E3

ωE3 |E4E5)
= 0 (7.20)

ω(E1|
E2E3ω

E3|E4) = 0 (7.21)

Equation (7.20) imposes the Jacobi identity on the coefficients ωE1
E2E3

. The
Jacobi identity together with the antisymmetry of the lower indices, ωE1

E2E3
=

−ωE1
E3E2

allow us to identify ωE1
E2E3

as structure coefficients of a Lie algebra.
If we require that ωE1E2 is invertible, equation (7.21) implies a group metric
interpretation for ωE1E2 . In that case we have ωE1EωE

E2E3
= ωE1E2E3

, where
ωE1E2E3

are totally antisymmetric in all indices, which implies that we can
identify ωE1

E2E3
as the structure coefficients of a semi-simple Lie algebra. The

Σ-variations (6.24) of the fields are given by,

δΣT E = DT E + (
1
2
T ∗E1

ωEE1 − ωE
E2E3

T E2T E3) (7.22)

δΣTE = DT ∗E + 2T ∗E1
ωE1

E2ET E2 (7.23)

Using the rules (6.17) T E → tE and T ∗E → t∗E, where tE is an even 1-form field
and t∗E is an even 2-form field. tE and t∗E are the ghost number zero components
of the superfields T and T ∗ respectively. The gauge transformations thus read,

δtE = dt̃E − 2ωE
E2E3

tE2 t̃E3 +
1
2
t̃∗E1

ωEE1 (7.24)

δt∗E = dt̃∗E + 2t̃∗E1
ωE1

E2EtE2 + 2t∗E1
ωE1

E2E t̃E2 (7.25)

Above, t̃E and t̃∗E are even 0-form and 1-form gauge parameters respectively.
Looking at the right hand side of (7.24), we identity the first two terms as the
ordinary Yang-Mills gauge covariant derivative with connection t,

dt̃E − 2ωE
E2E3

tE2 t̃E3 ↔ dtt̃ (7.26)
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and the last one as the topological shift symmetry,

1
2
t̃∗E1

ωEE1 ↔ t̃∗ (7.27)

Thus, from the superfield formalism we can conclude that the gauge transfor-
mation of the connection 1-form tE is a combination of the Yang-Mills and the
topological shift symmetries. If we were to eliminate the fields t∗E by means
of their equations of motion, we would have to insert the equations of motion
into the gauge transformations (7.24) and (7.25), but that would not change
the form of the gauge transformation for tE, since t∗E is not present in (7.24).

7.6 BF-theories in Superfield Formalism

The action of abelian BF theory and non-abelian BF theory is given by,

SCl =
∫

Mn

Bp ∧ dAn−p−1 (7.28)

and
SCl =

∫

Mn

Tr Bn−2 ∧ FA (7.29)

respectively. Above, Mn denotes some closed orientable n-dimensional man-
ifold. All the fields in the actions are differential forms ∈ Ωk(M, g), and the
field strength FA is the curvature of some flat principal G-bundle over M. Let
us start by discussing abelian BF theory shortly. The action (7.28) is invariant
under the abelian symmetries,

δBp = dΛ(1)p−1 (7.30)
δAn−p−1 = dΛ(2)n−p−2 (7.31)

and the shifts,

δBp = Γ(1)p−1 (7.32)
δAn−p−1 = Γ(2)n−p−2 (7.33)

We see from (7.30) and (7.31) that the theory is reducible for n ≥ 4. The
equations of motion are,

dBp = 0 (7.34)
dAn−p−1 = 0 (7.35)

which imply that the solution space, modulo gauge transformations, is given
by the finite dimensional vector space: N = Hp

d (M)LHn−p−1
d . The action

(7.28) thus gives a field theoretic description of the de Rham complex on M.
The gauge fixing of the symmetries is described in [95] and the quantum action
takes the usual BRST form: Sq = Scl +{Q,Ψ}, where Q is metric independent
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and off-shell nilpotent. From the earlier discussion above, this establishes the
fact that abelian BF is a topological field theory. The partition function Z
was shown by Schwarz [88] to be related to the Ray-Singer torsion. From
a superfield perspective, n-dimensional abelian BF theories are described by
the kinetic terms in the masteraction: Σ =

∫
dnu dnτ K∗

P DKP (−1)P+n. This
follows from the classical limit (6.17). Abelian BF theories thus corresponds
to the case when the interaction term, S, vanishes.

Let us now discuss non-abelian BF in some greater detail and see how it
can be analyzed, using the superfield formalism. The action,

SCl =
∫

Mn

Tr Bn−2 ∧ FA (7.36)

possesses the symmetries,

δA = dAΛ0 (7.37)
δBn−2 = dAΛn−3 + [Bn−2, Λ0

] (7.38)

and can be viewed as the zero coupling limit of Yang-Mills since,

1
g2

∫
Tr[F ∧ ∗F ] =

∫
Tr[B ∧ F − 1

2
g2B ∧ ∗B] (7.39)

g→0−→
∫

Tr[B ∧ F ] (7.40)

The bracket in (7.38) is the ususal G-valued bracket for differential forms. The
equations of motion are given by,

FA = 0 (7.41)
dABn−2 = 0 (7.42)

The fact that n < 4 non-abelian BF are topological can be shown straight-
forwardly, since the BRST-charge Q is metric independent in this case and
the quantum action is a sum of the classical part and a BRST-exact part.
However, in higher dimensions (n ≥ 4), the equations of motion imply that
the theory is on-shell reducible. The on-shell reducibility leads to a number
of complications when it comes to establishing the fact, that non-abelian BF
theories are topological in nature [94,105,106]: (i) Q is only on-shell nilpotent,
(ii) Q is metric independent, (iii) the quantum action Sq 6= Scl + {Q,Ψ}, (iv)
the quantum action contains ghost interactions which are cubic and therefore
in general metric dependent. In spite of these difficulties one can nevertheless
prove the topological nature of non-abelian BF models for all dimensions [95].
Let us now go back to the action (7.36) and rewrite it in terms of the connec-
tion 1-form A,

S =
∫

TrB ∧ F =
∫

Tr B ∧ (dA + A2) =
∫

Tr [BdA + BA2] (7.43)
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A master action whose limit (6.17) is given by (7.43), is given by,

Σ =
∫

dnudnτ K∗
P dKP (−1)P+n + K∗

P1
ωP1

P2P3
KP2KP3 (7.44)

Above, gh#KP =1 and gh#K∗
P =n − 2. We also choose the Z2-grading of the

fields to be odd, ε(KP )=1. That choice guarantees that KP is Grassmann
even in the classical action obtained by reducing (7.44) according to (6.17).
The interaction term is obviously on the form S = −K∗

P1
ωP1

P2P3
KP2KP3 in

this case and the master equation (S, S)n = 0 enforces the Jacobi-identities
ωP1

(P2|P3
ωP3 |P4P5)=0 on the coefficients ωP1

P2P3
. As was said earlier, this gives

them an interpretation as the structure coefficients of a Lie-algebra. In this
case, though, the group metric is not supplied by the model itself and it is
not in general possible to add such a term other than for n = 2 or n = 4 (see
paper IV). The trace requires a metric and we have to consider the subset of
the solutions to (S, S)n=0, consisting of semi-simple Lie-algebras, if we want
the master action to describe true BF-theories. The full solution to the master
equation can thus be regarded as a generalized BF-theory. If we calculate the
Σ-variations (6.24) we get,

δΣKP = (−1)n(DKP + (−1)P ωP
P2P3

KP2KP3) (7.45)
δΣK∗

P = (−1)n(DK∗
P − 2K∗

P1
ωP1

P2P KP2) (7.46)

which gives the following gauge transformations after the limit (6.17),

(−1)nδkP = dk̃P − 2ωP
P1P2

kP1 k̃P2 (7.47)

(−1)nδk∗P = dk̃∗P − 2k̃∗P1
ωP1

P2P kP2 − 2k∗P1
ωP1

P2P k̃P2 (7.48)

The even 1-form and (n− 2)-form fields kP and k∗P are the ghost number zero
components of the superfields KP and K∗

P . k̃P and k̃∗P denote 0-form and (n-
3)-form gauge parameters respectively. Looking at equation (7.47) we see that
it can be written (−1)nδkP = dkk̃, where dk is the gauge covariant derivative
with connection k; this is exactly the equation (7.37). The second equation
(7.48) can be identified as, (−1)nδkP = dkk̃

∗+[k∗, k̃] - this agrees exactly with
the symmetry (7.38).
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STRUCTURES

8.1 Introduction

From a geometrical point of view, gauge theories are naturally described in the
context of principal fiber bundles. However there exist more general structures
in terms of which fiber bundle theory is only a special case. In this chapter we
will study such a generalization, namely almost product structures (APS).
The idea that all interactions are described by gauge theories and that a
theory unifying all forces must necessarily be higher dimensional (i.e. more
than four space-time dimensions) are paramount to present day research in
theoretical particle physics. These two properties are included in Kaluza-Klein
theories, the structure of which can be found in for example string and M-
theory. The gauge theory included in Kaluza-Klein theory arises as the result
of a compactification over some manifold. APS lets one study the geometrical
properties of these theories without having to perform the compactification.
Thus APS shed new light on both gauge- and Kaluza-Klein theories which
are just special cases of APS. In this chapter we will exclusively be interested
in APS on Riemannian manifolds, even though some of the definitions and
theorems hold regardless of the existence of any metric. Now, the aim of this
chapter is to discuss the geometry of gauge theories and Kaluza-Klein theories
seen trough APS glasses. In order to do so it will be very fruitful to have
some important concepts from principal bundles in mind. A principal fiber
bundle is defined as the quadruple (M, P,G, π). M denotes the base space
and in physics this is usually the space-time manifold. G is playing a dual
role, constituting both the structure group and the fibers on M , which means
that it relates different charts (coordinate frames) with each other. In physical
models this is the gauge group. If one attach the group manifold to each point
of the base space the result is a new manifold, which is called the total space
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P . We can project from the fibers (G) down to the base manifold (physical
space) via the projection π, which thus acts as a projector down to the physical
space. In terms of this framework a connection on P represents the gauge field
or, equivalently, the twisting of the gauge group as one moves around in M .
Non-abelian (Yang-Mills) gauge field corresponds to non-trivial twisting of G
on M . The existence of curvature in the base manifold is represented as the
non-commutativity of covariant derivatives in P . It will also be clear from
the context below, that APS provides a natural setting in which foliations
and integrability are intimately connected to the gauge field, curvature and
torsion. We will also notice how these quantities are expressed in terms of
the fundamental constituents of APS theory. The material presented below,
is a short review of the machinery used in deriving the curvature relations,
presented in paper II. Some references relevant to APS theory are given
by [107–109].

8.2 Foundation of APS

Let us start right away by looking at the definition of an almost product
manifold.
I Almost Product Manifold (11): With an almost product manifold is
understood a triple (M, I, g), where M is a manifold, I is an endomorphism on
the tangent bundle, I : TM→ TM which squares to one, I2 = 1. I is called an
almost product structure on M. The metric g is compatible with the almost
product structure in the sense g(X, Y ) = g(IX, IY ).
In terms of ”ordinary” gauge theory, the connection splits uniquely the tangent
bundle in horizontal and vertical parts respectively, TP = H ⊕ V , in which
Vx is tangent to the fiber at point x in the base manifold. The definition
above induces a similar, but more general split of the tangent bundle of some
manifold M. This can be seen by studying the following induced distributions
(a k-distribution is simply a subset of k vectors from the tangent bundle TM).
I Induced distributions (12): On M, I defines two distributions D and D′
in TM. Let,

Dx := X ∈ TxM : IX = X (8.1)
D′x := X ∈ TxM : IX = −X (8.2)

then D and D′ is defined by,

D :=
⋃

x∈M
Dx, D′ :=

⋃

x′∈M
D′x (8.3)

Obviously this implies the following split of TM

TM = D ⊕D′ (8.4)
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It is because of this split that we denoted the manifold M from the beginning;
the bar is there to emphasize that there are two natural directions in M, the
primed and unprimed ones. The split is generic for every relevant object in
the theory. In particular it implies that there is a natural split of every tensor
defined on M. Courtesy of the property I2 = 1, we can define projection
operators onto these two directions

P :=
1
2
(1 + I) (8.5)

P ′ :=
1
2
(1− I)

These projection operators implements this split in practice. Below, it is given
for the metric, but the extension to other objects is obvious

g(X,Y ) = g(X, Y ) + g′(X,Y ) (8.6)

where the induced metrics on each distribution is given by

g(X, Y ) := g(PX,PY ) (8.7)
g′(X, Y ) := g(P ′X,P ′Y )

The deformation tensor H is fundamental to APS since it measures the failure
of the split of the tangent bundle to split the entire manifold. This means in
particular that it measures the non-integrability of the respective distributions.
Below it is defined together with its irreducible parts.
I Fundamental Tensors (13): Let D be a k-distribution with projection P
on a Riemannian manifold M with non-degenerate metric g. Let ∇ be the Levi-
Civita connection with respect to g and let P ′ := 1 − P be the co-projection of
D. The following tensors can now be defined

H(X, Y ) := P ′∇PXPY (8.8)

L(X, Y ) :=
1
2
(H(X, Y )−H(Y, X)) (8.9)

K(X, Y ) :=
1
2
(H(X, Y ) + H(Y, X)) (8.10)

]κ := trH (8.11)

W (X, Y ) := K(X,Y )− 1
k

]κg(X,Y ) (8.12)

(8.13)

Above H,L, K and W denotes the deformation-, twisting-, extrinsic curvature-
and conformation tensor respectively. The ranks of which is given by the fol-
lowing characteristics,

H, L,K : Λ1
D × Λ1

D → Λ1
D′ (8.14)

]κ : Λ1
D′ → R (8.15)
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Above Λ1
D, Λ1

D′ denotes the set of vectors in D, D′ respectively.
These definitions are only made for the D distribution but the extension to
D is obvious. From the previous definition H can be decomposed into its
irreducible parts,

H(X,Y ) = L(X, Y ) + W (X,Y ) +
1
k

]κg(X, Y ) (8.16)

In terms of this decomposition all distributions can be classified and it turns
out that only eight different distributions exist, corresponding to the following
combinations of vanishing twisting-, extrinsic curvature- and conformation
tensors

Name L = 0 W = 0 κ = 0 Notation
Distribution D

Minimal Distribution x MD

Umbilic Distribution x UD

Geodesic Distribution x x GD

Foliation x F

Minimal Foliation x x MF

Umbilic Foliation x x UF

Geodesic Foliation x x x GF

(8.17)

Following this classification we see for example that ordinary gauge theory
in terms of principal bundles correspond to (GF, GD). This is because the
elements in the fibers are integrable by definition, since they form a closed
group, and thereby generate a submanifold, i.e. a foliation. The tangent bun-
dle of the base manifold on the other hand is in general not integrable, unless
the gauge group is trivially twisted over it. This non-triviality is indicated by
the non-vanishing of the twisting tensor L in the GD case. In the nice case of
both integrable distribution and co-distribution (GF, GF ), the almost product
manifold actually represents a direct product of manifolds. There are three
important connections associated with an almost product manifold, namely
the Levi-Civita, adapted and Vidal connections. The Levi-Civita connection
is defined by its action on a 1-form ϕ

∇ϕ(X, Y ) :=
1
2
(dϕ(X, Y ) + L]ϕg(X, Y ) (8.18)

The adapted connection ∇̃ and the Vidal connection ˜̃∇ are related to the
Levi-Civita connection as

∇̃XY := ∇XY + A(X, Y ), A(X, Y ) :=
1
2
I∇XI(Y ) (8.19)

˜̃∇XY := ∇̃XY + B(X, Y ), B(X, Y ) :=
1
4
(∇IY I + I∇Y I)(X) (8.20)

In the oriented basis (in which the notation should be obvious)

Eā = (Ea, Ea′) (8.21)
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satisfying
[Eā, Eb̄] = Cāb̄

c̄Ec̄ (8.22)

the connection one-forms corresponding to the three connections can be writ-
ten as

ω =
[(

ω H
−Ht Ω

)
,

(
Ω′ H ′

−H ′t ω′

)]
(8.23)

ω̃ =
[(

ω 0
0 Ω

)
,

(
Ω′ 0
0 ω′

)]
(8.24)

˜̃ω =
[(

ω 0
0 C

)
,

(
C ′ 0
0 ω′

)]
(8.25)

The curvature- and the torsion tensor for an arbitrary connection is given by

R(X, Y )Z := [∇X ,∇Y ]Z −∇[X,Y ]Z (8.26)

T (X,Y ) := ∇XY −∇Y X − [X,Y ] (8.27)

The explicit components of the Ricci tensor and the curvature scalar, ex-
pressed in the irreducible parts, are given in paper II - wherein some very
useful identities among these parts, are also derived. The nice thing about the
adapted- and Vidal connections, is that they commute with the almost prod-
uct structure I; this can be seen directly from the expressions of the connection
one-forms above

∇̃XI = ˜̃∇XI = 0 (8.28)

The price paid for this property is of course that they both contain nonzero
torsion in general. Moreover, the Vidal connection is not metric - that is the
price for having a torsion which equals the Nijenhuis tensor

1
4
NI(X, Y ) = ˜̃T (8.29)

Thus the torsion of the Vidal connection measures the non-integrability of the
distributions D,D′. In terms of any endomorphism I, not only APS, one can
define the I bracket as

[X, Y ]I := [IX, Y ] + [X, IY ]− I[X, Y ] (8.30)

In terms of this bracket the Nijenhuis tensor can be defined as

NI [X,Y ] := I([X,Y ]I)− [I(X), I(Y )] (8.31)

which means that it measures the deviation of the I-bracket from being a Lie
bracket. Let us finish this chapter with an illustrating example. Assume that
we are given a Kaluza-Klein theory [110] in the (GF,GD) case

S =
∫

dmx
√

gR =
∫

dkx dk′y
√

g
√

g′
(
˜̃R + ˜̃

R′ + L2
)

(8.32)
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The last equality follows from the fact that the mean curvature- and the con-
formation tensor vanish in the GD-case (the primed distribution is considered
to be integrable). One can now show that the gauge field strength F is given
by the twisting tensor

F (X, Y ) = P ′[X, Y ] = 2L(X,Y ) (8.33)

which obviously imply that the L2 term in the action above is nothing but a
Yang-Mills term. Note that the field strength F above equals the Nijenhuis-
tensor. Not surprisingly one identity for L, derived in paper II, gives now
the Bianchi identity for the gauge field

( ˜̃∇[aF )i
bc] = 0 (8.34)

Moreover the Einsteins equations

Rab′ = 0 (8.35)

imply the equations of motion for the gauge field

( ˜̃∇cF )ic
a = 0 (8.36)

This example indicates that both gauge theory and Kaluza-Klein theory is con-
tained within APS. With the APS framework one can even treat generalized
Kaluza-Klein theories in which no restrictions on the fibers are made.
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Notation

TM = Tangent bundle of M

T ∗M = Co-tangent bundle of M

L = Lie-derivative
{ = Complement
ω = Symplectic two-form
Q = BRST charge

Eig = Eigenspace
Ker = Kernel
gh# = Ghost number

↪→ = Inclusion map
Ωk(M) = Space of all k-forms on M

i = Interior product
C = Ghost
P = Ghost momenta
C̄ = Antighost
P̄ = Antighost momenta

Xf = Vector field induced by function f

FL = Legendre transformation
Σ = Constraint surface, Masteraction
G = Group
Gx = Orbit of x under group G

ε(X) = Grassman parity of object X
∗ = Complex conjugate
† = Hermitian conjugate

span = The span of objects
antigh# = Antighost number

P = Extended phase space
Πa = {qk, pk}
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ψ = Gauge fixing fermion
∇ = Levi-Civita connection
∇̃ = adapted connection
˜̃∇ = Vidal connection

NI = Nijenhuis tensor
I = Almost product structure
I = Definition
N = Theorem, Proposal
→
∂

∂
= Left derivative

←
∂

∂
= Right derivative
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antibracket map, 42
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antighost number, 20

base manifold, 3
bio-physics, 2
BRST charge, 5
brst quantization, 5
BRST symmetry, 5, 16
BV formalism , 35

canonical generator, 48
classical master equation, 37
classical theory, 2
cohomological TFT, 54
cohomological theories, 54
completeness, 13

de Rham operator, 45
deformation theory, 41

electrodynamics, 2

field-antifield, 35
first-class constraints, 8
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gauge invariant extension, 32
general relativity, 2
generally covariant theories, 29

Hilbert space, 5

indefinite metric, 5
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local master action, 45

M-theory, 2
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masteraction, 36
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on-shell reducible, 59
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path integral formalism, 4
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Q-P manifolds, 40
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String Theory, 2
structure tensors, 13
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topological field theories, 5
topological gauge theories, 6, 55
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