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Abstract

This thesis deals with the general properties of numerical Real-Space Renormalization Group
methods (RSRG) and, in particular, the Density-Matrix Renormalization Group (DMRG). We
provide an introduction to these methods and discuss the properties of the approximate states
obtained from them. We only consider the so called infinite lattice algorithms.

In the paper we deal with the question of how the DMRG describes gapless systems, i.e.
systems with quasi long-ranged correlations. To do this, we focus on a system consisting of free
fermions on a lattice, with a staggered on-site potential. We study the convergence properties
of the DMRG and find that the method converges to a fixed point, thus producing finitely
correlated states. Furthermore, we investigate the DMRG correlation functions as the number
of kept states, m, is changed. We find that the particle-hole correlation length scales as ξ ∝ m1.3.
Moreover, we discuss how symmetries restrict the possibility of long range order in the system.
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1 Introduction

When the first theories of condensed matter systems were put forward in the beginning of this
century by Drude and Sommerfeld [1], the theories were mathematically tractable. The electrons
were assumed to move independently of each other and the only effect of the ionic lattice was
that sometimes electrons scattered against the fixed ions, this being the origin of the electrical
resistivity. However, these simple models were not able to answer some of the fundamental
questions one had about the solid state. For example, what distinguishes a metal from an
insulator? This question could not be answered until Felix Bloch proved his theorem concerning
electrons moving in a perfect periodic potential, due to the ionic lattice. Bloch’s theory made
it possible to understand most of the basic properties of solids, even though the electrons were
still being regarded as independent. In the 50’s, Landau [2] was able to give a phenomenological
explanation of why the independent electron approximation works so well.

A rigorous treatment of electrons moving in a periodic potential, taking into account electron-
electron interactions means solving a huge many-body problem, that is a non-linear partial
differential equation with 6N variables, where N is the number of electrons in a system. One
way to take the interactions into account is to start from non-interacting system and assume the
interactions to weak, allowing for approximations of a pertubative nature. From the resulting
equations, it is then possible to calculate corrections to the independent electron model. Using
such a pertubative expansion one could (in principle) systematically compute corrections up to
any order.

During the 50’s, the main problem in the solid state community was to understand super-
conductivity. Many ingenious minds worked on this problem and one lesson that was learned on
the path to the BCS-theory [3] was that the transition to a superconducting state could not be
described within the usual pertubative approach starting from the free electron gas. The reason
is that the superconducting state is so strongly correlated that a pertubative expansion is not
valid, one can not obtain the superconducting ground state by changing the state continuously.
Since then, a lot of work in condensed matter physics has been related to such strongly correlated
systems and hence also methods that are of a non-pertubative nature. Numerical methods are
often useful in these cases and the methods that this thesis is concerned with belong to the class
of non-pertubative methods. The research on strongly correlated systems is perhaps more active
today than ever and solid state theorists every day talks about Hubbard models, Heisenberg
models, Kondo systems etc, all being examples of strongly correlated quantum systems. Other
examples of strongly interacting electron systems are the fractional quantum Hall effect, the
subject of this years Nobel prize, and also high-temperature superconductivity.

The problem with interacting quantum systems is that the complexity of such a system in-
creases exponentially with the size of the system (or the number of particles). Since our ambition
is to describe a real system, often consisting of a macroscopic number of particles, it is evident
that the complexity is enormous. Even though there exist some analytical results for many sys-
tems, in general, analytical calculations often leave many questions open and one has to adopt
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2 Chapter 1 Introduction

numerical methods to complement the analytical results. Furthermore, numerical calculations
have been used to check predictions of analytical methods, like different field theories, one of the
most famous examples being Haldanes conjecture of a the gap in the spin-1 antiferromagnetic
Heisenberg model [4].

Numerical methods in condensed matter physics have become more and more important as
both the complexity of the problems being studied and the computational power of the computers
have increased rapidly. In this thesis we will focus on one particular type of numerical methods,
the Real Space Renormalization Group methods (RSRG). These methods have their origin back
in the 70’s when Kenneth Wilson invented them to study the effects of electrons in a metal
scattering against magnetic impurities, known as the Kondo problem [5]. Using RSRG, together
with a large amount of tricks and genius, he was able to deduce unprecedented information
about the behavior of this system. That some of these results could be exactly calculated a few
years later does not diminish his accomplishment.

After Wilsons successful application of his numerical renormalization group scheme to the
Kondo problem, a lot of attempts were made to apply his ideas to other systems as well [6].
However, the outcome was not as good as one could hope for, and it took another fifteen years
before the reason for this was understood. In 1992, Steven White and Reinhardt Noack [7]
investigated an RSRG approach to a simple system, consisting of a single massive particle
moving freely in a lattice (a strategy proposed by Wilson). Using this simple model, they were
able to figure out the problems with the RSRG and when this was done, they could also come
up with more efficient algorithms. One of these algorithms lead White to the invention of the
Density-Matrix Renormalization Group (DMRG) method later on in 1992 [8]. This method
turned out to give astonishing results and in the years to follow people applied and extended
the method to a wide range of problems. Originally, the method was designed to deal with
one-dimensional quantum systems [9, 10], but today it is used to compute properties of two
dimensional classical statistical mechanics systems [11], one dimensional quantum systems at
finite temperature [12], finite two dimensional quantum systems [13] and the list can be made
longer, with these being perhaps the most important areas of application so far.

The aim of this thesis is to introduce the RSRG and DMRG methods, describe their struc-
tures, similarities, and differences. Focusing on the theory underlying the methods, and not so
much on how to make the algorithms computationally efficient exploiting different tricks, the
hope is that the thesis will give an understanding of how the methods work and why they work
as well as they do. The text will also serve as an introduction to the paper, which discusses the
application of the DMRG to a gapless system. Since one of the ambitions has been to try to
complement the existing texts on these topics, the discussion is quite detailed at some points,
while at other points the discussion is more “handwaving” and we refer to the references for
more complete treatments.

In Chapter 2, we introduce the ideas and basic concepts needed in a numerical RSRG method.
We describe and discuss both the RSRG and DMRG algorithms. Furthermore we investigate the
properties of the projection operator, the fundamental object in the numerical renormalization
group methods. Next, in Chapter 3, we proceed with the discussions on the projection operator,
now focusing on the convergence properties and the fixed point structure of the method in terms
of so called matrix product states. The last chapter serves as an introduction to the paper. We
describe the model we have used, how the matrix product formalism has been adapted to this
problem, and finally there is a brief discussion of our results.



2 Numerical renormalization group methods

2.1 General ideas

The general idea behind renormalization group methods [6,7,14] is that in a large system, states
that locally correspond to a high energies are not important in describing the low-energy physics
of the system. This means that we can build a large system from smaller sub-systems where only
the low-energy degrees of freedom are kept. An RSRG algorithm consists of two parts: a method
to glue small systems together to form larger ones, and a method to throw away unimportant
information from the description of the systems. Let us start with the second part.

Suppose that at some stage, say iteration n, in a renormalization group scheme, the system
is described by the states {|i′〉}m′

i′=1, spanning the Hilbert space H′
n. Now we want to throw away

states that we regard as, in some sense, “unimportant” in describing the low-energy physics of
the system. Let us denote the effective Hilbert space, consisting of the m most important states
in H′

n, by Hn. Let An : H′
n 7−→ Hn denote the operator that performs the truncation, the

operator A†n : Hn 7−→ H′
n can then be interpreted as an embedding operator of Hn into H′

n. To
simplify our notation, we will from now on drop the index n, refering to the number of iterations
that have been performed. When needed, we will put this index back into the expressions. If we
demand A to preserve orthonormal basis states we have the restriction, AA† = 11H. Of course,
in general A†A 6= 11H′ since kerA 6= 0.

Let us assume that the importance of a state |i′〉 can be measured by some operator ρ′, and
that the |i′〉’s are eigenstates of ρ′. A reasonable operator could be the Hamiltonian, and in that
case we would keep the m energetically lowest states in H′. In the renormalization group to be
discussed later, the operator that will actually be used is a density operator, which explains the
notation ρ′. At the moment it is however not important to understand what the operator ρ′

really is, we simply assume that it is a good choice and that the importance of a state is larger
the larger the corresponding ρ′-eigenvalue is. Our A matrix will be determined by the fact that
H′ and H should have the upper part of the spectrum of the corresponding operators ρ′ and ρ

in common, where ρ is the operator acting on H. This fact is expressed by

ρA = Aρ′. (2.1)

To check this, assume |i′〉 6∈ kerA. Then we have

ρ|i〉 = ρA|i′〉 = Aρ′|i′〉 = ρ′iA|i′〉 = ρ′i|i〉.

The defining relation, Eq. (2.1), can also be expressed through the commutative diagram

H′ A−→ H
ρ′ ↓ ↓ ρ

H′ A−→ H
.
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4 Chapter 2 Numerical renormalization group methods

A solution to the equation for the projection operator, Eq. (2.1), together with the condition
AA† = 11H is provided by

A =
m∑

i=1

|i〉〈i′|, (2.2)

where we assumed that the states |i〉 (|i′〉) are enumerated in decreasing order of their ρ (ρ′)
eigenvalues.

The effective operator ρ can be obtained by operating with A† from the right on Eq. (2.1)
which results in

ρ = Aρ′A†. (2.3)

Similarly, any operator O′ acting on H′ induces an effective operator O acting on H via

O = AO′A†. (2.4)

Note that this does not imply that OA = AO′ and hence the spectrum of O is not identical to
part of the spectrum of O′.

2.2 Mathematics of the projection operator

If we did not know how to create the projection operator A using the operator ρ′ which tells
us which states we should keep, we could still implement a numerical renormalization group
scheme. In principle the method works with any A that preservers orthonormal basis states
and we could think of using some variational method where we find the “most suitable” matrix
elements of A under the constraint AA† = 11. By “most suitable” we mean that an energy
or some other quantity should be optimized. A reasonable question to ask is, how many free
parameters are there in the projection operator A? Naively, this is the number of parameters
needed to parametrise an arbitrary embedding of the set of m-dimensional planes in IRm′

, which
is nothing but the Grassmannian manifold, Gm,m′(IR). Thus, the number of free parameters
is dim Gm,m′(IR) = m(m′ −m). In many cases it is possible to further reduce the number of
degrees of freedom in the projection operator. This is when the Hamiltonian possesses some
symmetries.

Suppose that the Hamiltonian is invariant under some group of transformations G. For
example G could be the SU(2) symmetry of an isotropic spin chain, or, as in the model we used
in the paper, U(1) (particle number conservation) together with ZZ2 particle-hole symmetry.
The Hilbert space H′ is formed out of irreducible representations of the symmetry group G.
Normally, when working with renormalization group methods, one demands the transformation
to preserve the symmetries of the system [15]. The reason for this is that which universality
class a system belongs to depends on the symmetries of the system, which means that we must
preserve the symmetries to make sure that the critical behavior of the system is not changed
by the transformations [15]. Such a restriction will also be put on the projection operator of
our RSRG method. This restriction implies that we must choose an operator ρ that is invariant
under the same set of symmetry transformations as the Hamiltonian H , otherwise we cannot
use good quantum numbers to label the states and it will be difficult to make sure that the
symmetries of the system are preserved.

To state the above ideas more formally, decompose the Hilbert space H′ into a direct sum
of r′ irreducible representations π′i of G, i.e. H′ =

⊕r′
i=1 π

′
i. If we want our new effective Hilbert

space to preserve the symmetries of the original one, we must make sure that we only project



2.3 Enlarging the lattice, different algorithms 5

out complete irreducible representations of G. Thus, we may decompose H as H =
⊕r

i=1 πi,
where r ≤ r′ and A : π′i 7−→ πi, the projection operator maps irreducible representations in H′

to irreducible representations in H.

2.3 Enlarging the lattice, different algorithms

As mentioned in the beginning of this chapter, an RSRG algorithm consists of two parts, the
enlarging of the lattice and the truncation process. The previous sections have solely dealt with
the second question and we will now turn our attention to the first one.

The renormalization group methods used in classical statistical mechanics [15,16] are mainly
block-methods. In these methods a cluster of lattice sites containing a certain number of degrees
of freedom is replaced by a new renormalized site carrying a few effective degrees of freedom,
approximately describing the properties of the cluster. A couple of these renormalized clusters
are then grouped together to form a new cluster which is renormalized and so on. In this way, the
lattice is enlarged by grouping together small blocks are effective descriptions of larger blocks.
Wilson used another method in his pioneering work on the Kondo problem [5], instead of joining
clusters of sites he added a single site to a cluster, thus letting the lattice grow linearly (instead
of exponentially) with the number of iterations. Many RSRG algorithms use Wilson’s method
to increase the lattice. Eq. (2.5) below illustrates how these RSRG algorithms are constructed,

Hn−1
add7−→ Hn−1 ⊗H0 = H′

n
A7−→ Hn . (2.5)

H0 denotes the Hilbert space of the single site being added to the lattice. Furthermore, we have
used boxes to denote when Hilbert spaces describe clusters of sites. This can be compared to
the block-methods, having the structure

Hn
add7−→ Hn ⊗ Hn = H′

2n
A7−→ H2n . (2.6)

In a practical calculation, the blocks are represented by the matrix elements of the relevant
operators. Such operators are the Hamiltonian, and also operators that are needed in the
increment of the lattice, that is operators in the block that are part of the interactions between
the block and the piece of the system to be added. In a computer, the operators are represented
as sparse matrices in a block-form, where good quantum numbers are used to label the different
blocks. Enlarging the system then means constructing new operators describing the old block
together with the new part of the system. This is done using tensor products. For example, the
new Hamiltonian for an isotropic spin-s chain with nearest neighbor interactions is constructed
as follows

H ′
n+1 = Hn ⊗ 11s×s + Se

n ⊗ S, (2.7)

where Se
n represents the spin operators on the edge of the block, which hence must be part of

the description of the block, and S is the spin-operator of the site being added to the block.
The next step is to form the projection operator An using some prescription and then to form
effective operators acting in the truncated Hilbert space through the construction given in Eq.
(2.4). More details on the implementation of RSRG methods can be found in the excellent
introductions by White [8, 17] and we will not discuss the subject in more details.

Let us end this section with some comments on the relationship between the above described
numerical renormalization and the “ordinary” renormalization used in the area of critical phe-
nomena. The underlying ideas are similiar, we get rid of high-energy degrees of freedom since



6 Chapter 2 Numerical renormalization group methods

we consider them to be unimportant for the description of low-energy physics. However, there is
a main difference in the way we remove the high-energy states. In the ordinary renormalization
group approach, the high-energy degrees of freedom are summed over in the partition function,
leaving a smaller set of states coupled via renormalized interactions. The renormalization group
transformation is defined in such a way that the partition function is invariant under the trans-
formation. However, in our RSRG algorithms, we simply truncate the Hilbert space and hence
the partition function is not invariant since

Z = tre−βH ≥ tr[Ae−βHA†]. (2.8)

To get the inequality we used that e−βH is a positive definite operator and hence its diagonal
elements are always positive.

Thus there is an important difference between the RSRG algorithms and the ordinary renor-
malization group methods. A more appropriate name for the RSRG algorithms would perhaps
be “iterative truncated basis algorithms”.

2.4 The density-matrix renormalization group

In 1992 Steven White developed the density-matrix renormalization group (DMRG), which is
basically an RSRG method, but with some very important differences. First of all, since the
boundaries of the system are important [7], the method is constructed to deal with these in a
simple but efficient way. The way DMRG does this, is by letting the system interact with an
environment, which provides natural boundary conditions on the system and hence avoids the
problem of having states in the system that are strongly depending on the boundary conditions
and for this reason not appropriate for describing bulk properties of a large system. At each
iteration the size of the system is increased by a single lattice site, meaning that the standard
DMRG implementation is not a block-method. In the end of this section we mention another
algorithm, the four-block method due to Bursill, which is a block-method. Figure 2.1 shows the
DMRG block-configuration, the superblock. The upper part of the figure, consisting of an old
system block, B, together with a single site • which are joined to form a new system block to the
next iteration. The lower part of the figure is a copy of the upper part and it is the environment
that provides the boundary conditions to the system block. As the figure shows, usually the
system block and environment blocks are only connected in one end, and the combined system,
the superblock, has open boundary conditions.

B

B

Figure 2.1: The superblock configuration used in the DMRG. The upper part corresponds
to the system, while the lower part constitutes the environment. Note that the system- and
environment-blocks are only connected in one end. Furthermore we note that the parity operator
is simply a reflection through the line between the blocks, and hence parity is easy to use as a
good quantum number in the calculations.

We have not yet said anything about how the optimal states of the new system block are
chosen, i.e. how we perform the truncation of the Hilbert space. To begin with, we compute
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the target state which, if we are interested in ground state properties, simply is the ground
state of the superblock. We denote the target state by |Ψ′〉. This state can be decomposed
as |Ψ′〉 =

∑
i′,j′ ψ′i′,j′ |i′〉 ⊗ |j ′〉, where {|i′〉} and {|j ′〉} form complete bases of the system and

the environment respectively. A density operator ρ′tot is formed by ρ′tot = |Ψ′〉〈Ψ′|. Taking
a trace over the environment degrees of freedom of ρ′tot we obtain a reduced density-matrix,
ρ′ = trenv |Ψ′〉〈Ψ′|, or explicitly using the i′-j ′-representation above, ρ′ = ψ′∗ψ′t. Feynman has
written a nice introduction to density operators [18] and we refer to his book for the properties of
these objects. The key point is that the eigenvalues of the reduced density-matrix for the system
block are the probabilities of finding the system block in the corresponding eigenstates given
that the superblock system is in the target state, |Ψ′〉. This means that the density operator
provides us with a measure of the importance of the states in the system block and furthermore
it has the same symmetries as the Hamiltonian. Note however that [ρ′, H ′] 6= 0, and hence the
kept states will, in general, not be energy eigenstates. When we know which states to keep, we
proceed as in the RSRG methods by constructing the projection operator A and truncating all
the operators describing the system. In this way we achieve an iterative algorithm.

As argued by White [8], a simple error measure is the truncated weight of the density-
matrix, 1−

∑m
i=1 ρ

′
i (we know trρ′ = 1), where ρ′i is the i’th largest eigenvalue of ρ′. The DMRG

is constructed to maximize the overlap between the exact target state |Ψ′〉 and the optimal
description of the target state, using the truncated basis.

The procedure described above is called the infinite system method since the idea is to run
the algorithm until the size of the system is so large that it effectively describes an infinite
system, i.e. the thermodynamic limit. White also suggested another algorithm, the finite size
method [8], which is constructed to give an optimal description of a system of a certain, finite,
length. This method is more accurate than the infinite system method and it is often better
to use the finite size method to compute, say the gap, for a certain number of fixed lengths of
the system and then extrapolate the result to the thermodynamic limit, rather than using the
infinite system method to compute the gap in the thermodynamic limit directly.

A drawback with this type of iterative enlarging of the lattice is that a possible translational
invariance of the system cannot be used explicitly, i.e. we cannot use momentum as a good
quantum number in our algorithms. Attempts have been made [19] to implement DMRG in
momentum space contrary to real space, but these ideas have not received much attention.
Parity, on the other hand, is easy to use as a good quantum number in the algorithms and can
be used to reduce the needed computational effort.

Recently, Bursill [20] modified the prescription for enlarging the lattice, having a superblock
containing four copies of the system block with periodic boundary conditions. A new system
block is then formed by joining two system blocks, so this is really a block method because the
size of the lattice increases exponentially. Using this blocking-procedure it is possible to partly
preserve the translational invariance since it is now possible to target states with momentum
k = 2π/N directly, where N is the size of the superblock. Thus we see that as we iterate the
procedure we can target excitations with small momentum, which often are the most interesting
ones.

2.5 Why does the DMRG work so well?

After its appearance, the DMRG has produced a large amount of extremely accurate results [8,9].
Why is the DMRG so accurate? First of all, as White and Noack argued [7], the boundary
conditions on the systems are crucial in the renormalization group methods, and the idea of a
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superblock is a simple and effective way to take these into account. Moreover, White [8] proved
that DMRG maximizes the overlap between the exact target state and the one obtained after
truncation of the Hilbert space. Another approach is to consider DMRG as a variational method
optimizing the ground state energy of the system [21]. Even though all of these arguments
indicate that DMRG is a good way to implement a numerical renormalization group scheme,
they do not answer the question of why the method is so accurate.

0 16 32 48 64 80 96
k

−12

−8

−4

0
lo

g 
  kρ

Figure 2.2: Upper part of the density-matrix spectrum of a spin-1/2 antiferromagnetic Heisen-
berg model with next nearest neighbor interaction J2 = 0.75 (J1 = 1.0) consisting of 64 sites.
The figure shows how the spectrum is split up into multiplets corresponding to irreducible rep-
resentations of the total spin. In the calculation we have kept 400 states in the basis.

The key to the success of DMRG, lies in the decay rate of the eigenvalues of the density-
matrix. In Figure 2.2, part of the spectrum of the density-matrix for a gapped spin-1/2 antifer-
romagnetic Heisenberg model with next nearest neighbor interactions is shown. It is clear from
the figure that the eigenvalues of the density-matrix decrease rather rapidly, showing that the
truncation error decreases rapidly with the number of kept states. Recently Peschel et. al. [22]
and Okunishi et. al. [23] studied the decay rate of the density-matrix using analytical methods.
Their approach is based on the fact that a one-dimensional quantum system is related to a
two-dimensional classical statistical mechanics system in such a way that the Hamiltonian of
the quantum system can be related to the transfer matrix of the classical system and, further-
more, the ground state of the Hamiltonian is also the eigenvector corresponding to the maximum
eigenvalue of the transfer matrix [24].

It can then be argued that the density-matrix is related to a so called corner transfer matrix,
a construction due to Baxter, at least for non-critical systems where boundary effects can be
neglected. For integrable systems the spectrum of the corner transfer matrix is known and
hence also the spectrum of the corresponding density-matrix is known. Using this as a starting
point, Okunishi et. al. [23] conjecture an asymptotic form of the density-matrix spectrum for a
non-integrable system. The conjecture is that the k’th eigenvalue, ρk, of the density-matrix is
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given by the universal form

ln
[
k

(
ln ρk

ln z

)1/4]
= B

√
lnρk

ln z
, (2.9)

where z and B are two parameters that are known only for integrable models so they must be
numerically determined for the non-integrable cases. The form Eq. (2.9) leads to the following
asymptotic form of the spectrum

ρk ∝ exp[−A(ln k)2], (2.10)

where the constant A = | ln z|/B2. In Figure 2.3 we have used the numerical data presented in
Figure 2.2 and plotted ln[k| lnρk|1/4] versus | lnρk|1/2. As can be seen, the numerical spectrum
fits the form given by Eq. (2.9) well, thus supporting the conjecture in this specific case. From
the fitted line we can read off the model specific parameters B ≈ 0.0625 and z ≈ 0.998, which
in turn implies that A ≈ 0.51 for this model.

0.0 2.0 4.0 6.0 8.0
(|ln   |)

−2.0

0.0

2.0

4.0

6.0

8.0

ln
[|k

 ln
   

  |
   

]

1/2

1/
4

ρ

ρ
k

k

Figure 2.3: The spectrum of the density-matrix for the 64-site spin-1/2 Heisenberg model with
next nearest neighbor interaction J2 = 0.75 (J1 = 1.0). The data are plotted in a form such
that the asymptotic behavior of the spectrum is clear. In the calculation 400 states have been
kept and the figure also contains 400 eigenvalues.

This work by Okunishi et. al. has useful consequences. If the asymptotic form, Eq. (2.10),
is correct, we can use it to determine the truncation error of the density-matrix as a function
of the number of kept states and the model specific parameters B and z. As mentioned above,
these have to be determined from some DMRG calculation. The truncation error is then given
by

ε =
∞∑

k=m+1

ρk ≈
∫∞
m exp[−A(lnk)2]dk∫∞
1 exp[−A(lnk)2]dk

where we have replaced the sum by an integral and normalized the eigenvalues so that they sum
up to 1. The integrals in the above equation may be evaluated in terms of the error-function
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erf(x), which results in

ε ≈ 1− erf(
√
A lnm − 1/2

√
A)

1 + erf(1/2
√
A)

, (2.11)

where we have assumed lnm ≥ 1/2A which should be true if the system is not very close to a
critical point (i.e. z ≈ 1) in which case the conjecture Eq. (2.9) is not expected to hold anyway.
Note that the inequality is satisfied when m > 3 in our numerical example.

We may also invert Eq. (2.11) to express the number of states we need to keep given a
certain truncation error ε. The result is

m ≈ exp[1/2A] exp
[
erf−1

(
1− ε(1 + erf(1/2

√
A))

)
/
√
A

]
≈ exp[1/2A] exp

[√
−A−1 ln[ε

√
π(1 + erf(1/2

√
A))]

]
≈ exp

[ 1
2A

+

√
− ln ε
A

]
(2.12)

where we in the second line used the asymptotic form of the error-function [25]. In the last
line have used that

√
π(1 + erf(1/2

√
A)) = O(1) which means that we may neglect this term

compared to ε. Eq. (2.12) could be quite useful since it relates the accuracy of a calculation to
the needed computational effort. Thus, if the conjecture is true, we have a nice picture of how
DMRG performs for non-critical systems. How it behaves for critical systems is still not known.
The intention with our paper was to improve the understanding of DMRG for gapless, critical
systems.



3 More on numerical renormalization group methods

3.1 Reaching a fixed point

In the previous chapter, we have discussed RSRG algorithms and in particular the DMRG
algorithm. An interesting question one can ask is what kind of approximate states do the
methods produce, and what are the properties of these? The way to deal with these questions is
to consider the structure of the states in the thermodynamic limit. This analysis was performed
by Östlund and Rommer [21] and we will refer to the literature for a detailed discussion.

Suppose that at iteration n the projection operator is given by An, i.e. An : Hn−1 ⊗H0 7−→
Hn. If the matrix An converges in the thermodynamic limit n→∞,

lim
n→∞An = A, (3.1)

important conclusions can be drawn. More generally, we can allow the projection operator to be
cyclic, in the sense that we have a finite number, p, of projection operators repeating themselves
with periodicity p. This is the case in for example a translationally invariant spin-1/2 system
where the period is p = 2 (more details on this can be found in the paper). The following
discussion assumes p = 1, but this is mainly a question of notation. Thus we have reduced all
degrees of freedom of the approximate states to those of the projection operator. Since these,
as was shown in the previous chapter, can be reduced further by exploiting the symmetries of
the system, it is practically possible to treat the problem of finding A as a variational problem,
at least for relatively small numbers of kept states.

As we discussed in the previous chapter, to make optimal use of the symmetries of the
system we decompose the Hilbert space into a direct sum of irreducible representations of the
symmetry group. If the Hilbert space Hn−1 is decomposed as Hn−1 =

⊕r
i=1 si, the domain of

An is Hn−1 ⊗ H0 =
⊕r

i=1 si ⊗ s =
⊕r′

i=1 s′i. Thus the operator An must perform this tensor
product decomposition and it must also select the appropriate subspace to keep as a description
of the system.

3.2 Matrix product states

As was shown in reference [21], if the projection operator converges to a fixed point, the states
generated by iterating the renormalization group procedure has the matrix product form

|β〉n =
∑
{si}

(A[s1] · · ·A[sn])βn,β0|s1 · · ·sn〉 ⊗ |β0〉. (3.2)

A state in the bulk can be described as

|Q〉n =
∑
{si}

tr[QA[s1] · · ·A[sn]]|s1 · · ·sn〉, (3.3)

11
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where Q is an m×m matrix specifying βn and β0 which can be viewed as boundary conditions
on the system. If we want our state to have momentum k we must look for a matrix Q such
that QA[s] = eikA[s]Q for all s.

Defining the ̂-mapping from a local s× s matrix M to an m2 ×m2 matrix M̂ via

M̂ =
∑
s,s′

Ms,s′A∗[s′]⊗A[s], (3.4)

it becomes a trivial task to compute expectation values in the Q-states. With Q̂ = Q∗ ⊗Q we
have

〈Q|M1
i1 · · ·M

k
ik
|Q〉 =

tr[Q̂1̂i1−1M̂11̂i2−i1−1M̂2 · · ·M̂k1̂n−ik ]

tr[Q̂1̂n]
, (3.5)

where 1̂ is the ̂-mapping of the identity matrix. Actually, the form of this expression depends
on the statistics (commutation relations) of the operators in the expectation value. This topic
is discussed in chapter 4 and as well as in the paper. We solve the problem by introducing
the matrix F̂ which is the ̂-mapping of the matrix F = diag(−1, 1) and which takes care of
the fermionic operators in a system of spinless fermions. This operator has its origin in the
string-operator of the Jordan-Wigner transformation.

In particular, Eq. (3.5) allows us to compute the energy of the Q-states. Making use of
symmetries of the model to reduce the number of free parameters, we can use the above equation
to perform a variational calculation to find the optimal (the one that minimizes the ground state
energy) projection operator A. In Figure 3.1, we show the energy-landscape obtained for an
isotropic spin-1 Heisenberg antiferromagnet keeping two total spin representations. The matrix
Q is chosen as the m ×m identity matrix in order to get a translationally invariant state (it
trivially satisfies QA[s] = A[s]Q for all s).

-2
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x1

-2

0

2

x2

-1

-0.5

0

E0
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2
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Figure 3.1: A typical energy landscape E0({x}) for the spin-1 antiferromagnetic Heisenberg
model. This figure corresponds to a variational calculation using two free parameters corre-
sponding to two total-spin representations, (1

2 ⊕
3
2).
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Another method to obtain the A-matrices is of course to make a DMRG calculation where
the iterations proceed until the projection operator has converged to some accuracy. Performing
calculations within the matrix product basis is, in a sense, much more convenient than calculating
expectation values within the DMRG method, since all the input we need is the projection
operator and once we have found and stored it, we can always go back and compute additional
quantities. If we computed the quantities within the DMRG we would have to restart the
calculation and run through the whole procedure again, which takes a lot of time.

As it will turn out when we continue the investigation of the matrix product states, the
properties of the matrix 1̂ are very important. The spectrum of this matrix turns out to contain
all possible correlation lengths in the system. Therefore, we will now discuss some important
properties of this matrix.

First of all it is non-symmetric, which means that we must distinguish between left and right
eigenvectors. When thinking about this matrix it is often useful to recall that the indices of
A are states and hence also the indices of the ̂-operators correspond to states (or rather pairs
of states). This implies that we can think of the indices as carrying quantum numbers. In the
paper we use symmetry arguments to make conclusions about the properties of the eigenstates
of 1̂. We also show that the matrix F̂ is closely related to 1̂, actually they are equal up to a
phase-factor and a unitary transformation.

We will now discuss some intrinsic properties of the spectrum of 1̂. First of all, all eigenvalues
λ of 1̂ satisfy |λ| ≤ 1. To show this we use the matrix norm || · ||2 which has the property [26]

||M ||2 = σmax(M) =
√

maxeval(M tM), (3.6)

where σmax(M) is the maximum singular value of M and eval(M) denotes eigenvalues of M .
We may rewrite the equation 1̂v = λv as

A(v ⊗ 11s×s)At = λv (3.7)

where we interpret v as an m×m matrix. Taking the norm of both sides we have

|λ|||v||2 = ||A(v ⊗ 11s×s)At||2 ≤ ||A||2||v ⊗ 11s×s||2||At||2.

Recalling that AAt = 11 has the maximum eigenvalue 1 (all the eigenvalues are 1) we have
||At||2 = 1. Thus we also have σmax(At) = 1 which, since σmax(A) = σmax(At), yields ||A||2 = 1.
Finally, noting that ||v ⊗ 11||2 = ||v||2 we are left with the result |λ| ≤ 1. Moreover, choosing
v = 11 in Eq. (3.7) and making use of AAt = 11, we find that 1̂ always has an eigenvalue equal
to 1.

The matrix product formalism allows us to draw qualitative conclusions concerning the
properties of the states produced by the DMRG. If we, for example, consider the spin-spin
correlation function in a spin-chain, it has the structure

〈Sz
i S

z
i+l〉Q ∝ tr[Q̂1̂i−1Ŝz 1̂l−1Ŝz1̂n−i−l] = tr[Ô1̂l−1].

In the last step we introduced the shorthand notation Ô = Ŝz 1̂n−i−lQ̂1̂i−1Ŝz which is valid
under the assumption that n � i+ l so that we can replace 1̂n−i−l by 1̂∞, independent of l. If
we now diagonalize the matrix 1̂ = U 1̂DU

−1 and introduce ÔD = U−1ÔU we find

〈Sz
i S

z
i+l〉Q ∝ tr[ÔD1̂l−1

D ] =
m2∑
i=1

(ÔD)i,iλ
l−1
i . (3.8)
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From Eq. (3.8) it follows that the correlation functions obtained from the matrix product states
are sums of exponentially decaying functions. The correlation length is given by the dominant
eigenvalue λ of 1̂ which corresponds to a non-zero amplitude ai = (ÔD)i,iλ

−1
i . Explicitly, we have

ξ = −1/ ln |λ|, i.e. as long as |λ| < 1 the correlation length is finite and the correlation function
decays exponentially. This means that the matrix product states cannot asymptotically describe
quasi long range correlations correctly. Either the correlation functions decay exponentially
λ < 1 or they show true long range order λ = 1. Algebraic correlations can only be obtained
asymptotically as the number of kept states is increased to infinity.

Let us, for the sake of curiosity, think about what the spectrum of 1̂ must look like in order
to get correlation functions that decay algebraically. Suppose that the set of (real) eigenvalues
of 1̂ is {λi}, and that the amplitudes of the respective eigenvalues are ai, i.e. we can write the
correlation function as

C(l) =
∑

i

aiλ
l
i =

∫ 1

−1

dλρ(λ)a(λ)λl, (3.9)

where we have defined a “density of eigenvalues” ρ(λ). Let us introduce the weight function
f(λ) = ρ(λ)a(λ). What functional form must the weight function f(λ) take to create a cor-
relation function that decays algebraically? Does such a form exist? Suppose we know that
C(l) = l−q where q is some positive number. We will put an index q on the functions f in order
to stress their dependence on q.

Taking a derivative of Eq. (3.9) with respect to l, one finds the recursion relation

fq+1(λ) = − ln |λ|
q

fq(λ),

which, together with the trivial solution f1(λ) = λ−1, provides us with the solution

fq+1(λ) =
(−1)q

q!
lnq |λ|
λ

. (3.10)

In this way we have obtained solutions for all positive integers q and this shows that the matrix
product states consistently can describe algebraically decaying correlation functions in the limit
where we keep an infinite number of states. The above solutions fq(λ) also give the correct
asymptotic behavior for any real number q > 0. What really determines the asymptotic behavior
of C(l) as l→∞ is the analytic structure of the function f(λ) in the limit |λ| → 1. The interior
of the disk |λ| ≤ 1 only contributes to the behavior of short-range correlations. To be more
precise; a sufficient condition on the function fq(λ) is that its asymptotic behavior as |λ| → 1−

is given by
fq(λ) ∝ (1− |λ|)q−1. (3.11)

This statement is true even if the eigenvalues are not distributed along the real axis, they may
be distributed along rays through the origin, giving rise to a periodicity in the phase of the
correlation function.

Now, when the basic properties of the matrix product states are understood, it is possible to
extend the formalism to generate excited states. Assuming periodic boundary conditions on the
system we can form states with a definite momentum k by constructing a linear combination of
Q-states. These Bloch-states have the form

|Q, k〉n =
n∑

j=1

∑
{si}

eijktr[A[s1] · · ·A[sj−1]QA[sj] · · ·A[sn]]|s1 · · ·sn〉. (3.12)
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The ansatz seems to describe excitations accurately and has the great advantage over the exci-
tations found from DMRG that we can specify the momentum k. A drawback with this ansatz
is that the calculations become very cumbersome as the number of kept states in A is increased.
Furthermore it is difficult to know how accurate these excitations are, even though all cases we
have studied has shown good agreement with the best available results. In the paper we use
an ansatz of the above form to look at the excitation spectrum of a system of free fermions.
We prove that the spectrum obtained this way has a certain symmetry that also exist in the
exact solution, namely E(k) = E(π − k). The crucial point for the existance of this symmetry
is the spin of the model, (the free fermions are mapped onto spin-1/2 objects) and we believe
this symmetry to be a rather general feature of half-integer spin systems.



4 DMRG for gapless systems

4.1 A model problem

With the aim of investigating the behavior of DMRG for a gapless system, we had to choose an
appropriate model to work with. We wanted the model to be simple and exactly solvable and
furthermore we wanted a simple parameter that we could use to tune the size of the gap.

The simplest gapless model one can think of is a model of free spinless fermions on a lattice.
In this section we will assume that the lattice has periodic boundary conditions and lattice
spacing a = 1. Note that the DMRG calculations discussed in the next chapter are performed
assuming open boundary conditions, since open boundary conditions are more easy to treat
numerically and the choice of boundary conditions is not crucial to the physics of the model.
It is possible to introduce a gap in this model, without destroying the existence of an exact
solution, by introducing a staggered on-site potential on the lattice. Let N be the size of the
lattice, ε the strength of the on-site potential, and t the hopping amplitude. The Hamiltonian
then takes the form

H = − t
2

N∑
j=1

[c†jcj+1 + h.c.] + ε

N∑
j=1

(−1)jc†jcj, (4.1)

with the c’s being fermionic annihilation operators. Before we go on and diagonalize the Hamil-
tonian, let us take a more careful look at the model. If ε = 0, we are simply left with a system
of free fermions, having a finite size gap that scales as N−1, leading to a gapless system in the
thermodynamic limit. When the on-site interaction is strong, |ε/t| � 1, the system will try to
pile up electrons on odd or even sites, depending on the sign of ε, creating a charge density wave
(CDW). This charge density wave will have gapfull excitations with a gap scaling linearly with
|ε|.

Other important properties are the symmetries of the model, as we have discussed in previous
chapters, these can be exploited in the numerical renormalization group approach to reduce the
amount of computational effort. The Hamiltonian, Eq. (4.1), has different symmetries depending
on the parameters t and ε.

1. H is invariant under the global U(1) transformation cj → eiθcj. This simply means that
the total number of particles in the system is conserved.

2. Translational symmetry. When ε = 0, the system is invariant under any lattice translation,
i.e. [T , H ] = 0, and hence the momentum is a good quantum number. When ε 6= 0, the
translational symmetry is reduced to [T 2, H ] = 0, the system is only invariant under a
translation of an even number of lattice sites, hence the size of the first Brillouin zone is
halfed, and we will have two energy bands, since there are two sites per primitive cell.

3. For any ε, the system is invariant under the “shifted” particle-hole transformation, cj →
(−1)jc†j+1.

16
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4. When ε = 0 the system is invariant under the particle-hole transformation cj → (−1)jc†j.

In the paper we only exploit the symmetries 1 and 4.
Solving this model exactly is easy, but we will nevertheless sketch the solution. Since the

Hamiltonian is invariant under translations by two lattice sites, we introduce the two-component
vector Φj = (c2j−1, c2j), with j = 1, . . . , N/2. Next, we introduce collective coordinates

Φj =

√
2
N

∑
k

Φke
2ijk,

with k ∈ {2π
N n}

N
2
−1

n=0 . Rewriting the Hamiltonian in terms of the Φk-operators we find

H =
∑

k

Φ†kH(k)Φk, where H(k) =
(

−ε − t
2 [1 + e−2ik]

− t
2 [1 + e2ik] ε

)
. (4.2)

To compute the dispersion relation, all we have to do is to diagonalize the 2 × 2 matrix H(k).
We find

E±(k) = ±
√
ε2 + t2 cos2 k. (4.3)

The corresponding eigenstates are f±†k |0〉k, with |0〉k denoting the vacuum in the k-sector of the
full Hilbert space, and

f−k = a−k φ
1
k + b−k φ

2
k

f+
k = a+

k φ
1
k + b+k φ

2
k,

where a±k and b±k are coefficients depending on k, ε, and t.
We obtain the groundstate by filling up all negative energy states, i.e. all states in the (−)

band,
|gnd〉 =

∏
k

f
−†
k |0〉. (4.4)

Going to the thermodynamic limit, N →∞, the energy per site of the ground state is

lim
N→∞

E0

N
= lim

N→∞
1
2π

∑
k

E−(k)∆k = −1
π

∫ π
2

0

√
ε2 + t2 cos2 kdk = −

√
ε2 + t2

π
E

[ t√
ε2 + t2

]
,

(4.5)
where E is the complete elliptic integral of the second kind. From the dispersion relation, Eq.
(4.3), we can read off the gap to the first excited state. This gap is simply the gap between the
(−) and the (+) band at the Fermi-points kF = ±π

2 , this is ∆ = 2|ε|. The size of the gap is
related to the range of the correlation functions, which is the next topic we will consider.

The structure of the correlation functions played an important role in the discussion in
the preceding chapters and to really test our renormalization group methods it is important
to check the structure of the numerical correlation functions versus exact results. We will
mainly focus on the correlation length of the correlation functions. There are in principle
two interesting correlation functions in our model system, the particle-hole and density-density
correlation functions. These are defined via

Cph(l) = 〈c†jcj+l〉0
Cdd(l) = 〈njnj+l〉0 − 〈nj〉0〈nj+l〉0, (4.6)
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where nj = c†jcj is the particle-number operator and 〈 · 〉0 denotes ground state expectation
value. To extract the correlation length we will take the asymptotic limit l →∞ and consider
only the leading term in the expressions we obtain. Assuming l to be odd (the even l’s give zero
correlations) we find

Cph(l) = −
∫ π

2

−π
2

dk

π
eikl a+

k (b+k )∗

|a−k b
+
k − a+

k b
−
k |2

.

Investigating the pole-structure of the denominator, one finds that it has poles at the points
k = ±π

2 + ik0, where k0 = ln[ε/t+
√

1 + (ε/t)2]. The leading behavior is picked up at the poles
and will therefore be governed by the exponential factor containing l with the k-value given by
the poles. This implies that

Cph(l) ∝ e−k0l = e−l/ξph

which allows us to read off ξph = k−1
0 , or

ξph =
1

ln
[
ε/t+

√
1 + (ε/t)2

]
ξdd = ξph/2. (4.7)

where ξdd can be computed similarly.
From Eq. (4.7), it is clear that the correlation lengths are finite everywhere except at the

point ε = 0, where they diverge. This is perfectly consistent with the previously obtained result
that the gap of the system goes to zero as ε → 0. At the point ε = 0, the system will show
algebraically decaying correlation functions and the exact form can be calculated to be

Cph(l) =
1
πl

sinπl/2

Cdd(l) = −Cph(l)2. (4.8)

This will conclude our discussion of the exact properties of the model.

4.2 Adjusting the formalism

With the purpose of investigating the DMRG behavior for the model just described, using the
matrix product formalism, the first thing that must be done is to verify that the projection
operator reaches a fixed point in the thermodynamic limit. This turns out to be the case and
the projection operator has periodicity p = 2 due to odd-even effects of the lattice size.

In the matrix product formalism we use the Jordan-Wigner transformation to write our
fermionic operators as hard-core boson-operators connected to a string counting the number of
particles left to the site. More explicitly the connection is

cj = exp
[
iπ

j−1∑
k=1

S+
k S

−
k

]
S−j =

[j−1⊗
k=1

F
]
⊗ S−j , (4.9)

where we have introduced the operator F = −2Sz = diag(−1, 1). Thus the local fermionic
operators are represented as non-local bosonic operators. Working with these bosonic operators,
a typical correlation function takes the form

Cph(l) = 〈c†jcj+l〉f = 〈S+
j Fj+1 · · ·Fj+l−1S

−
j+l〉b
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with f and b denoting expectation values with respect to the fermionic- and bosonic ground
states respectively. Using the matrix product formalism this expectation value is

Cph(l) =
tr[1̂j−1Ŝ+F̂ l−1Ŝ−1̂n−l−j ]

tr1̂n

where we have chosen the ground state Q = 11. This motivates the introduction of the operator
F̂ which is used throughout the paper. It governs correlation functions between fermionic
operators, just as 1̂ governs the correlation functions between bosonic operators. In the paper
we show that the spectrum of these two operators are equal up to a factor i, which means that
they yield the same set of possible correlation lengths.

Working in spin-language, the 2-periodic projection operator has the block-structure

A[s] =
(

0 Ahi→i[s]
Ai→hi[s] 0

)
,

with i and hi denoting integer- and half-integer total Sz representations respectively. From the
construction of the ̂-mapping, it is clear that this block-structure gives rise to a block-structure
in the ̂-operators as well. In particular it implies that the eigenvalues of 1̂ (and hence also F̂ )
appear in pairs ±λ. The paper provides a proof of this result.

As was argued in Chapter 3, the existence of a fixed point of the DMRG projection operator
implies that the states produced by DMRG will have exponentially decaying correlation func-
tions, even though the system is at criticality. An interesting issue to study is therefore how
the correlation length obtained from DMRG for the gapless system of free fermions, depends
on the number of kept states in Hilbert space. One would expect that as the number of kept
states is increased, the description of the ground state becomes better and better and hence the
correlation length should increase. In the paper we justify this behavior and we also make a
quantitative statement of how the correlation length depends on the number of kept states.

A nice way to compute the correlation length from a DMRG calculation is to use the matrix
product formalism. Suppose we want to compute the particle-hole correlation length. The set
of possible correlation lengths are then given by the spectrum of the matrix F̂ , but we could
equally well use 1̂ since we know that the spectra of these matrices only differ by a factor i. The
spectrum of 1̂ is found by solving the eigenvalue problem 1̂v = λv which can be recast into the
form ∑

s

A[s]vAt[s] = λv,

with v interpreted as an m×m matrix instead of an m2 vector. In this way we do not need to
store the huge matrix 1̂ but it is sufficient to store the much smaller matrices A[s]. To solve this
generalized eigenvalue problem, we use an iterative method that can handle the non-symmetric
property of 1̂. Our choice of eigenvalue routine was the Arnoldi algorithm [27].

Normally, using only the DMRG, it is in principle impossible to compute the overlap be-
tween two states obtained from two different DMRG calculations. This is because the basis
states are renormalized differently and to be able to compare them we need to keep track of
all the renormalization group transformations that have been performed. However, using the
matrix product method this becomes an almost trivial task. Suppose we have two states |11, m〉
and |11, m′〉 where we consider the translationally invariant states Q = 11 and where m and m′ are
the number of states that have been kept in the respective Hilbert spaces. We denote the corre-
sponding projection operators by Am[s] and Am′ [s]. The overlap between these (unnormalized)



20 Chapter 4 DMRG for gapless systems

states is given by

〈11, m|11, m′〉 =
∑

{si},{s′
i}

tr[A∗m[s1] · · ·A∗m[sn]]tr[Am′ [s′1] · · ·Am′ [s′n]]〈s1 · · ·sn|s′1 · · ·s′n〉

=
∑
{si}

tr[(A∗m[s1]⊗Am′ [s1]) · · · (A∗m[sn]⊗Am′ [sn])]

= tr1̂n
m,m′ ,

where we have defined the generalized 1̂-matrix 1̂m,m′ via

1̂m,m′ =
∑

s

A∗m[s]⊗Am′ [s]. (4.10)

Thus, the matrix product formalism provides a simple way to compute overlap between different
DMRG states. In the paper we briefly discuss the possibility of using these overlaps as an error
measure, to be compared with the usual measure, i.e. the truncation error of the density-
matrix. Note that the method devised to compute the eigenvalues of the 1̂ matrix can be used
to compute the eigenvalues of the generalized matrix 1̂m,m′ as well. We note from Eq. (4.10)
that the overlap decreases exponentially as 〈11, m|11, m′〉 ∝ λn

m,m′ , with λm,m′ being the leading
eigenvalue of 1̂m,m′ .

The DMRG code we have used throughout the paper is mainly written in Mathematica, but
to improve the performance, we have written a C-program that finds the target state of the
superblock Hamiltonian, this being the computationally most demanding part of the algorithm.
We have however not used parity as a good quantum number and neither have we used particle-
number conservation to store the operators in a sparse form (as block-matrices labeled by the
particle number). Using this very “primitive” code we have kept at most m = 76 states in the
Hilbert space basis.

4.3 The results

As mentioned above, first of all we have checked that the DMRG projection operator converges
to a fixed point, justifying the use of the matrix product formalism. The rate of convergence
of the A-matrix depends strongly on the gap of the system, the larger the gap the faster the
convergence. The ground state energy density of the system converges much faster than the
projection operator so this is not a useful measure of whether the projection operator has
converged or not. A more relevant measure is the spectrum of the density-matrix.

In order to find out how DMRG accounts for infinite correlation lengths we have computed
the particle-hole correlation length using the matrix product formalism for different number of
kept states. We find that as the number of kept states, m, increases, the correlation length also
increases. More precisely, we find that the correlation length scales as

ξph ∝ m1.3, (4.11)

with a coefficient being O(1). Thus, even though the DMRG manifestly produces a correlation
function that is qualitatively wrong (exponential instead of algebraic decay), we can find out
whether the system is critical or not by considering how the correlation length depends on the
number of kept states. Furthermore, one finds that the DMRG correlation functions approximate
the exact ones well for short distances and increasing the number of kept states make the
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approximate correlation function look like a power-law for larger l, but in the end as l →∞ it
will always decay exponentially no matter how large we make the number of kept states as long
as it is finite.

Closely related to the correlation length is the gap of the system, and to investigate this we
have used the Bloch-wave form Eq. (3.12) as an ansatz for the excitations. Using this ansatz,
keeping only 8 states, we have computed the one-particle excitation spectrum. The reason that
we only keep 8 states is that the calculations using the ansatz become very cumbersome as we
increase the number of kept states. The size of the matrices involved is m2 ×m2. We find that
the excitations close to the Fermi points have a negative energy, which signals that something
is wrong with our ground state. The size of this negative energy gap seems to decrease as
the number of kept states is increased, even though our data are not conclusive. We do not
understand why these negative energy states occur, or in which way they are energetically more
favorable than the ground state. Hopefully this will be understood some day, and probably one
would gain important information about the DMRG ground states by solving this problem.
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