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Abstract

This thesis deals with some aspects of the physics of disordered sys-
tems. It consists of four papers and an introductory part.

An introduction, suitable for physicists, to theoretical computer science
and computational complexity is contained in chapter 2. The definition of
the Turing model of computation and of some important complexity classes
are given, the Church-Turing hypothesis described, and the proofs of some
important theorems reviewed.

Additional work by physicists on optimisation problems is described in
chapter 3, while chapter 4 is an introduction to computer simulation of
physical models. This chapter also contains some results for the distribu-
tion of sub-structures of lattice polymers.

Chapter 5 introduces the concept of small world graphs and reviews
previous work on physical models placed on such graphs.

Paper I studies the relaxation of some optimisation problems that, un-
less a very plausible conjecture in computer science is false, have worst
case instances that require exponential time to solve. These problems can
also be interpreted as spin glass models, and have previously been found to
exhibit threshold phenomena akin to those of physical models undergoing
phase transitions. The graph colouring problem is revisited in paper IV,
wherein the phase transition is studied using small world graphs.

In paper II the ferromagnetic Ising model on random graphs is found to
display a freezing phenomenon for a range of connectivities.

Damage spreading is an important tool for studying the stability of mod-
els. Paper III finds a very good data collapse for the damage plotted as
a function of temperature for small world graphs with different rewiring
probabilities. Small worlds have so far almost only been studied using a
1D chain as starting lattice. The work presented in this thesis contains the
first application of 2D and 3D small worlds to physical systems.

Keywords: Spin glasses, relaxation, computational complexity, NP-completeness,
boolean satisfiability, graph colouring, disordered energy landscapes, dam-
age spreading, Ising model, small world graphs, phase transitions, poly-
mers.
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1
Introduction

“And so it begins.”
— Kosh, Babylon 5

1.1 On the physics of this thesis

This thesis deals with several seemingly disparate subjects. My first years
as a graduate student were spent studying optimisation problems and com-
putational complexity. Some of the computer science background needed
to understand paper I is given in chapter 2, while chapter 3 is an admittedly
incomplete and subjective view of work on constraint satisfaction problems
by other physicists. All of the work presented in this thesis is numeri-
cal. Computer simulation is a vital and important part of modern physics,
equal in importance but different from both theoretical and experimental
physics. Chapter 4 contains an introduction to computer simulation of
physical models and also explains some of the numerical techniques used
in the papers.

My next big interest was polymers. Unfortunately, this thesis does not
contain an explanation of protein designability [1], but an amusing power-
law for the number of times that small patterns occur in polymer simula-
tions is described in section 4.5.

Frustration is an important concept for both optimisation problems and
polymers. Paper II shows that it is possible to get a kind of dynamic frus-
tration even in a simple ferromagnetic spin model. Chapter 5 introduces
random and small world graphs. The latter were used in paper III, the first
paper that studies spin models on small world networks based on two and
three-dimensional lattices. Finally, in paper IV we return to the beginning
by putting one of the optimisation problems studied in paper I on small
world graphs.

1



2 Chapter 1 Introduction

The work presented in the papers is mostly self-contained. The aim of
this introduction is to give a readable account of some of the background
necessary to understand the papers. The list of references is not com-
plete (this is particularly true for the chapter on small worlds), but should
instead be taken as a starting point for further study.

Most of the contents of this thesis is in the borderline of what is tradi-
tionally considered physics. Lately, physicists have more and more started
to study so called complex systems, such as the interaction between species
in an ecology or between agents in financial markets. There are several pos-
sible definitions of the term “complex system”. One viewpoint is to consider
a system complex if it is difficult to solve. The 1D Ising model is unarguably
less complex than the 2D, which is in turn less complex than the (unsolved)
3D version. A more quantitative definition is to determine the complexity
of the patterns that the model generates and let this be the complexity of
the model. For example, the Ising model below the ordering temperature
Tc is spatially homogeneous, without any complex patterns. Well above Tc
there is no order and the system is completely random. But close to or
at Tc, something different happens. There is no ordering, yet the patterns
are not random. Coarse-graining (magnifying) the system results in a new
system that has the same appearance as the old — the system possesses
self-similarity. Patterns showing self-similarity are more complex than the
others, and it takes longer time to simulate them on a computer.

It is important not to confuse complexity with randomness. Both com-
pletely ordered and completely random systems should have low complex-
ities. Crutchfield and Feldman[2] have analysed the complexity of one di-
mensional spin systems using a complexity measure related to the amount
of memory needed to predict the state of the system given knowledge of part
of it; in [3] they review several different ways of measuring the complexity
of patterns appearing in physical systems.

The computer science view of complexity is that a model is complex if it
is difficult to simulate it on a computer or other machine. It is this aspect
of complexity that motivates the emphasis on computational complexity in
this thesis, but it is important to bear in mind that this is not the complete
definition of complexity or of complex systems. More discussion of these
definitions can be found in [4, 5, 6]. In particular, the contribution by An-
derson in [4] presents some arguments for why it is wrong to rely too much
on the computer science definition of complexity in studying real world
complex systems, and instead advocates for spin glasses as the proper
paradigm for complex systems science. Spin glass models and concepts
have been used to study many different models in economics, biology, and
social science. Their ubiquity stems from the belief that they capture many
universal features of realistic models in most areas of complex systems, yet
still are simple enough to study successfully (see e.g., [6, 7, 8]).

A vital part of complex systems is the modelling of various kinds of
agents on social networks. These models often have very little resemblance
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to traditional physics, but are nevertheless a legitimate part of physics, just
as the study of electrons and quarks is.

In my opinion physics is more about the methods used to study a prob-
lem and the attitude (i.e., the scepticism and honesty) towards it than
about the particular problem that is studied. The best definition of physics
is either that physics is what physicist do or, paraphrasing Judge Stewart,
“I don’t know what physics is, but I recognise it when I see it”.

Physics is also about having fun. The discovery of metastable states in
ferromagnetic Ising models on random graphs using local dynamics might
some day be useful for something, but I don’t really care about that. Think-
ing about those poor spins, forced to live on strange lattices where they are
deeply frustrated, has given me a considerable amount of pleasure over the
years, and that’s the true reason for doing it.

The rest of this chapter gives an introduction, suitable for non-physicists,
to spin models and some associated concepts such as phase transitions
and energy landscapes.

1.2 Spin models for dummies

Most of the work in this thesis deals with spin models of various kinds.
The physical reason for calling the entities that make up the models spin
is that they can be viewed as small magnets. Microscopically, magnetism
is caused by the spin of atoms. A fridge-magnet, for instance, is really
nothing but a large number of spins that interact ferromagnetically. The
word ferromagnetically means that the spins all want to have their mag-
netic north pole in the same direction, thus causing a net magnetisation of
the sample. If we somehow destroy the ferromagnetic ordering, the small
spins will have their north poles in different random directions, destroying
the net magnetisation. One way of doing this is by heating the sample.

The primary motivation for studying the models used in this thesis does,
however, not come from a need to understand magnetism better. The word
spin should instead be interpreted as meaning just an entity that can be
in a certain number of different states.

We will denote a spin in the system we wish to study by Si. Here i is
an index that runs from 1 to N where N is the total number of entities in
the system. The values that the spins take can be of different kinds. The
simplest are so called Ising spins (named after the physicist who first used
them to study magnetism, see [9, 10, 11, 12] and also the web site
http://www.bradley.edu/las/phy/ising.html ).

Ising spins are similar to binary variables in that they can take only two
values. We call these “up” and “down” and denote them by either �1 or 0
and 1. Graphically, Ising spins are often represented by arrows that point
up or down. The next simplest kind of spins are called Potts spins and
were introduced independently by Potts [13] and Kihiara [14]. They can
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have q different values 0, 1, : : : , q � 1 (i.e., Si 2 Zq). (Ising spins are thus a
special case of Potts spins with q = 2.) We can also talk about spins that
are vectors (i.e., arrows); these are called Heisenberg spins. If the vectors
are constrained to lie in a plane, we get XY -spins. XY and Heisenberg
spins have many interesting properties but will not be used in this thesis.

In addition to specifying what kind of spins a model uses, we must also
specify how the spins interact with each other. For Ising spins, interac-
tions can be of two kinds. A ferromagnetic interaction means that the two
spins would like to have the same value; if in contrast the spins prefer to
have different values, the interaction is called antiferromagnetic. One way
of thinking about this is to see the spins as people choosing between two
activities that take place at the same time. If two persons are friends, they
would prefer to go to the same activity, i.e., the interaction between them
is ferromagnetic. Enemies, on the other hand, prefer to go to different ac-
tivities, thus having an antiferromagnetic interaction. Two friends that are
not at the same activity reduce the happiness of the system, and the same
happens if two enemies are at the same activity. Physicists don’t like to
talk about happiness, though, so we call it energy instead. Another word
for the same thing is cost-function; in biology the word used is instead fit-
ness and counts the number of satisfied interactions instead of the number
of unsatisfied.

Mathematically, the cost-function for this model can be written as

H = �
X
i;j

JijSiSj : (1.1)

Physicists often refer to the H in equation 1.1 as the hamiltonian of the
system. The symbols

P
ij means that we sum over all pairs of i and j. The

product SiSj is 1 if the two spins have the same value (which reduces the
energy or unhappiness of the system) and �1 if they are different. Jij are
constants that give information on whether i and j are friends or enemies.
The simplest case is when there are no enemies in the system, Jij = 1.

We can also add a term
X
i

hiSi (1.2)

to the hamiltonian. This represents a magnetic field that could vary in
strength from site to site.

The Ising model is one of the most important models of statistical me-
chanics. It and its generalisations have been used to model a variety of
natural phenomena, ranging from biology to computer science and social
science (e.g., [6, 15, 16, 17, 18]). For instance, many social systems can
be modelled by letting spin up/down denote different opinions or prefer-
ences. In such models, a ferromagnetic interaction is interpreted as two
people who prefer to agree, while an antiferromagnetic interactions means
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that they want to disagree. A magnetic field adds a bias that can be inter-
preted as “prejudices” or “stubbornness”, while the randomness induced
by a finite temperature can be seen as a “free will”.

The activity analogy also allows us to introduce the important concept of
symmetry. Assuming that both activities are equally interesting, it doesn’t
matter which activity a particular person chooses. The only thing that
matters is that their friends choose the same and enemies the opposite.
This introduces a symmetry in the system — if we flip all spins, the energy
stays the same. Note that the symmetries of a system depend on both the
type of spins and also the interaction that is used. The symmetry can be
broken by applying a “magnetic field” — one example of this could be if one
of the activities is more interesting than the other.

There can also be interactions involving three or more spins. If we have
three Ising spins, there are eight different possible combinations of up and
down. We could assign different energies or happinesses to each of these
eight possibilities. Mathematically, this can always be written as

JijkSiSjSk + JijSiSj + JikSiSk + JjkSjSk + JiSi + JjSj + JkSk + C (1.3)

where the magnetic field C and the coupling constants J ’s are suitably
chosen. There could also be interactions involving even more spins. The
most general hamiltonian for an Ising spin system can be written as

H = �
X
�

X
i1;::: ;i�

Ji1:::i�Si1 : : : Si� ; (1.4)

where we first sum over the number of spins � involved in the interaction,
and then over all �-tuples of spins in the system.

Depending on how one chooses the Jij in equation 1.4, it is possible
to get models of varying complexity. In order for the energy to be well-
defined, the matrix Jij must be symmetric, i.e., Jij = Jji for all i; j. There
are two sources of complexity in the definition of Jij, one geometrical (i.e.,
which spins i and j are interacting) and one arising from the values of the
interactions.

Note that even if all Jij � 0, the model can still be disordered. For
instance, paper II studies a ferromagnetic model on a random graph. Here
the structural/geometrical randomness gives rise to a dynamic frustration
that causes the system to become stuck in local minima of the energy
landscape.

Things get more interesting if we allow negative Jij ’s — it is now possible
to get frustration in the model. The simplest case where this happens is
illustrated in figure 1.1 where there are three spins antiferromagnetically
linked to each other.

Perhaps the simplest way to understand this frustration is to look at
it as a spin having an effective antiferromagnetic interaction with itself: a
spin model will be frustrated if there is a loop where the product of the
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?
?

?

Figure 1.1: The simplest kind of frustration arises if all interactions in a
triangle are antiferromagnetic. Regardless of the orientation of the lower
spin, one of its interactions will be unsatisfied.

interactions along it is negative. One consequence of this is that even if all
Jij = �1, the model can be unfrustrated if the geometry of the interactions
is such that the lattice has no odd loops. Such a lattice is called bipar-
tite. Perhaps the most common graph to put spins on is the d-dimensional
simple cubic lattice, consisting of all points in Zd. Of course, in numerical
simulations it is impossible to have an infinite number of lattice points, so
instead Zd

L is used and one looks at how various quantities scale with the
linear size L of the system, hoping to be able extract info on the L ! 1
limit.

A model which has both frustration and disorder is called a spin glass
(e.g., [6, 7, 8, 19, 20, 21, 22, 23, 24]; see also the web-site
http://online.itp.ucsb.edu/online/lnotes/balents/bignotes.html ). Sev-
eral of the systems considered in this thesis are spin glasses, and concepts
related to it provide the underlying motivation for much of the work that
does not refer to it. There are different kinds of spin glasses and the ques-
tions on the importance of various kinds of frustrated energy landscapes
are not limited to spin glasses; indeed as is shown in paper II, it is possible
to get a kind of dynamic frustration even in ferromagnetic models which
should be easily solvable.

A simple example of a spin glass is the Edwards-Anderson model, which
consists of spins in a d-dimensional lattice with hamiltonian

H =
X
ij

Jijsisj; (1.5)

where the Jij are random variables. The Sherrington-Kirkpatrick model is
the case where the Jij are gaußian distributed (and has a second moment
that scales inversely with system size), while the �J model is the case
where Jij is �J with equal probability if i and j are nearest neighbours and
0 otherwise. Experimentally realisable spin glasses include Cd0:5Mn0:5Te
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and Fe0:5Mn0:5TiO3; spin glasses are also relevant in the study of the nor-
mal phases of high-Tc superconductors.

Physically, spin glass ordering can be caused by the so called Ruderman-
Kittel-Kasuya-Yosida interaction

H =
X
ij

1

R3
ij

cos (2kFRij)SiSj; (1.6)

where Rij is the distance between spins i and j and kF is the Fermi wave-
vector. For more information, see [25] and [26].

Spin models can also be used without an implied hamiltonian. An ex-
ample of such models are cellular automata; these have been extensively
studied by Wolfram [27] and others and are also useful in computing sci-
ence. These models have explicit dynamical rules that determine how the
spins should change in time. In a cellular automaton, the value of a spin
Si in the next time-step is determined by some function (generally deter-
ministic and the same for all spins) of the spins in the neighbourhood of
i. Neighbourhoods can here have different meanings — in simple cellular
automata the spins are generally placed on a line and the neighbourhood
means r spins to the right and to the left of Si. Another example are the so
called voter models. In these, spins are updated by aligning them with a
randomly selected neighbour in each time-step.

1.3 Energy landscapes

A spin configuration can be seen as a point in an N-dimensional space:
the value of Si gives coordinate i. Since we can associate an energy to each
spin configuration, this gives rise to an abstract energy landscape which
we can move in by changing the values of the spins.

The space of these spin configurations is called a hypercube. For small
N , it is possible to visualise the corresponding hypercube, see figures 1.2
and 1.3. The energy can be seen as giving the height of each site in fig-
ure 1.2; this forms the energy landscape.

For larger N , the visualisation gets more difficult, but it is neverthe-
less useful to think of the spins as living in a landscape where the height
represents the energy.

A schematic illustration of a simple energy landscape is shown in fig-
ure 1.4. Here it is trivial to find the point with lowest energy, but for the
funnel-like landscape in figure 1.5, it is slightly more complicated — the
bumps of the funnel could cause us to mistake a local minimum for a
global.

Figure 1.6 shows a 2D representation of a much more complicated en-
ergy landscape. This is an example of a spin glass, while the landscape
shown in figure 1.4 can be taken to represent a ferromagnetic Ising model.
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Figure 1.2: Representation of the 1,2,3, and 4-dimensional hypercubes.
For the 4-dimensional case, periodic boundary conditions are indicated by
dotted lines.

Figure 1.3: 5-dimensional hypercube. Dashed lines denote periodic bound-
ary conditions. The 6-dimensional hypercube can also be visualised in 3D
— it consists of two 5-cubes glued together and with periodic boundary
conditions in all direction.
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Figure 1.4: A trivial energy landscape. It is very easy to find the (unique)
global minimum of this system.

Figure 1.5: A slightly more complicated energy landscape. It is still possible
to find the global minimum, but it will sometimes be necessary to climb
over energy-barriers on the way to it.
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Figure 1.6: A more complex energy landscape. Finding a global minimum
of this system is very difficult.

1.4 Phase transitions

One of the most interesting problems in physics is that of phase transitions.
Consider a glass of water. If we heat it, it will boil and we get steam.
If we instead cool it, it will freeze and turn into ice. These transitions
from one state of matter into another are called phase transitions. There
are also many other such transitions in physics, for instance a magnet
will become nonmagnetic and a superconductor will become an ordinary
conductor when the temperature is raised.

In order to describe the physics at the phase transitions, so called criti-
cal exponents have been introduced. These are numbers that relate phys-
ical quantities to the distance in temperature from the transition. For ex-
ample, the critical exponent � relates the order parameter m, a description
of “how much” the system is in a specific ordered phase, to the temperature
as m � jT�TcTc

j�, where Tc is the transition temperature.
Universality is one of the perhaps most surprising results in physics. It

means that the critical exponents are independent of most of the details of
the system under study. Often only the dimensionality and the symmetries
of the system are important. For much more details on phase transitions
and universality, see, e.g., [25, 28].



2
What every physicist should

know about computer science

2.1 Introduction — not everything can be computed

“Not knowing everything is all that makes it okay, sometimes.”
— Delirium, in Brief Lives

Contrary to popular belief, computer science is not about programming
computers. It is about solving problems, and determining which problems
are possible to solve. The machine that is used for this or the language in
which the method is described is irrelevant and of no interest for computer
scientists.

For each problem there are several different algorithms than can be
used to solve it. Which one of these algorithms is the “best” one to use?
One way of determining this could be to use the one that is most beautiful
in the mathematical sense, but for practical purposes it is more interesting
to look at the amount of resources the algorithm needs to solve the prob-
lem. The most interesting resources are time and space. If we can only
solve a problem by using 1023 bytes and 102 years, the problem is for all
practical purposes unsolvable. Since all small problems are easy to solve,
computer scientists are interested in how the amount of resources needed
to solve a problem scales with its size, N . The size of a problem is a some-
what ambiguous quantity; it is defined as the amount of memory needed to
represent an instance of it. For matrix multiplication, N could be either the
total number of elements in the matrix or the number of rows or columns
(whichever is largest). If we want to factorise a number x, N is the number
of digits or bits needed to represent it, i.e, N = log x.

In addition to helping physicists simulate more and more complex sys-
tems, computers have also helped mathematicians in providing proofs for

11
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some problems that have so far eluded the search for simple proofs. The
most famous example of a theorem that can (so far) only be proven with
the help of a computer is the Four Colour Theorem, which states that
four colours suffice to colour a two dimensional map of countries [29, 30].
Another example is the proof of the Robbins conjecture by an automated
theorem prover in 1996 [31]. A boolean algebra is a set with an unary
negation operator : and and a binary operator _ fulfilling associativity and
commutativity as well as :(:x _ y) _ :(:x _ :y) = x. The Robbins conjec-
ture states that this third axiom can be derived from the Robbins equation
:(:(x_ y)_:(x_:y)) = x. In contrast to the proof of the Four Colour Theo-
rem, the proof of the Robbins conjecture is short enough that it is possible
to check it by hand.

Computers can also be used to discover new knowledge. Perhaps the
best example of this is the “Assistant Mathematician” program written by
Lenat (e.g., [32]) in the 70’s. This program, which started with the notion
of sets and some simple rules to determine what is “interesting”, managed
to discover not only integers, addition, and multiplication, but also prime
numbers and several elementary results from number theory, such as the
Goldbach conjecture. Even more surprising is that it also discovered the
concept of maximally divisible number (a number that has more divisors
than any number smaller than it, e.g., 12) which, although studied by Ra-
manujan, is a concept still unknown to many mathematicians. (Note that
the program did not prove anything, it only made conjectures regarding
what appeared interesting to it.)

Despite these successes there are still many thing that computers are
unable to do. One of the problems in modern artificial intelligence (e.g., [33,
34]) is that even though it is possible to make systems that show a certain
amount of intelligence in restricted domains it is not yet possible to make a
program that has the same general level of intelligence and common sense
as a human.

For these reasons it is important to know what limits there are on the
power of computers. We can distinguish two different types of questions.
The first regards what can be done at all, the second what can be done with
limited resources.

It is quite easy to demonstrate that there must exist functions that are
uncomputable by computers: the number of programs that can be run on
a specific computer is countably infinite, while the number of functions,
taking a number as input and giving a number as output, is uncountably
infinite.

One of the simplest physical problem that is unsolvable is the tiling
problem. Here we are given a set of shapes and the goal is to tile the plane
with them. This is of course a very simple problem if the number of distinct
shapes in the set is restricted (e.g., if the set consists of just one polygon,
we know what shapes it may be in order to be able to tile the plane). But
the general problem of determining if an arbitrary set of shapes can tile the
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plane is uncomputable; a very readable proof of this for a simple variation
of the tiling problem can be found in [35].

Another example of an unsolvable problem is the halting problem. Here
the objective is to determine if a computer program will halt or if it loops
forever. Assume that there is a program H(x; y) that determines if the pro-
gram represented by x will halt on input y. Consider the following program
M, assumed to take x as input:

if(H(x,x)) then
loop forever;

else
return 1;

It simply determines whether or not the program input to it will halt given
itself as input. Now consider computing M(M). If this computation halts,
the conditional in M will ensure that it loops forever. But if it does not
halt, H(x; x) will return false, which means that the else branch will be
taken, so that M halts. The only way to resolve the contradictions is to
reject the existence of the machine that computes H, which proves the
uncomputability of the halting problem.

The books by Feynman [36] and Dewdney [37] give good elementary
introductions to the theory of computation. The rest of this chapter deals
with more quantitative differences in the amount of time needed to solve
problems.

2.2 Some problems are harder than others

Computer scientist distinguish between problems that are tractable and
those that are intractable. Intractable problems are those for which it is
known that the fastest way to solve them requires exponential time, while
a problem is tractable (or feasible) if there is a polynomial time algorithm
to solve it. The border line between these two types of problems is of course
fuzzy, since there are a lot of problems for which it is unknown whether
they can be solved in polynomial time or not.

Perhaps the simplest example of an intractable problem is the Towers
of Hanoi problem. In this puzzle, we are given three bins. One of the bins
has N plates on it, sorted in decreasing size from bottom and up. The goal
is to move all the plates to another bin. The rules are that we are only
allowed to move one plate at a time and that all configurations where a
larger plate resides on top of a smaller are forbidden. Figure 2.1 shows an
instance with N = 5. This problem has beautiful recursive and iterative
solutions, but it is easy to show that there is no way to solve it using less
than exponential time. Hence, it is an intractable problem.

Some problems abruptly change character when changed just slightly.
Consider the problem of dividing a set of numbers into two subsets of sizes
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Figure 2.1: The Towers of Hanoi puzzle involves moving the plates one at a
time from the leftmost to the rightmost bin in such a way that there never
is a plate with a larger plate above it.

n1 and n2 so that the difference between the sums of the numbers in set
one and those in set two is maximised. This is a trivial problem — just
place the largest numbers in one set and the smallest in the other. This
can certainly be done in polynomial time. If, on the other hand, the goal
instead is to minimise the difference, the problem gets much tougher —
the only currently known solution is to try all possible partitions of the set,
which takes exponential time.

Another example comes from graph theory. Consider the Euler problem
— is there a path through the graph that starts and ends on the same node
and visits each edge exactly once? A related problem is the Hamiltonian
circuit problem (or travelling salesperson (TSP) problem): is there a path
of length less than l such that each node is visited exactly once? The
former problem is trivial to solve in polynomial time, while the latter is NP-
complete (see below) and thus almost certainly has no algorithm that runs
in polynomial time for all inputs.

Computer scientist have most often only bothered with worst-case anal-
ysis of algorithms, but the phase transition found in some constraint satis-
faction problems further stresses the importance of obtaining more refined
tools to analyse a problem instance’s difficulty. It is similar to the situation
with sorting lists — here the fastest known [38] algorithm has a worst-
case complexity of N logN . But the algorithm that is most widely used has
a worst-case complexity of N2, but an average-case complexity of N logN
and with a smaller constant, and is hence the one that is used most often.

2.3 The Turing machine

Whether we are based on carbon or silicon makes no fundamental dif-
ference. We should each be treated with appropriate respect.
— Chandra, 2010

In order to compare the complexities of algorithms with each other, it
is important to use the same tools to analyse them. For this a universal
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Figure 2.2: Schematic diagram of a Turing machine. It consists of a tape
(“memory”) and a tape control head (“CPU”). Each cell of the tape con-
tains either a symbol from the alphabet of the machine (here 0 or 1) or is
blank (denoted B here). In each time step, the head scans the current cell,
changes its internal state and moves one step to the left or right, possibly
changing the contents of the cell.

model of computation is needed. One of the simplest such models is the
Turing Machine.

A Turing machine consists of a tape and a control mechanism that can
read from, write to, and move the tape. We must also specify an alphabet
of symbols that may be written on the tape and a set of internal states that
the Turing machine may be in. In each time step the control mechanism
determines the next state by looking at the tape and its current state and
then consulting a transition table that tells it what it should do for all
possible combinations of current state and read symbol. The transition
table tells the control mechanism what state the machine should enter
next, which way it should move the tape, and what symbol it should write
in the current cell of the tape (either overwriting the old symbol or just
copying it).

The definition of the Turing machine is roughly based on the way a
human being computes things. If a person is given a complicated problem
to solve, they will solve it step by step. Each step consists of some simple
computation that can be done in the head, followed by writing down the
result of this computation on paper. The state of the person’s brain also
changes in each step, to reflect the work that has been done and that which
is left to do. For some steps, the person might need to make reference to
previous results on the paper. This is completely analogous to a Turing
machine — the paper is the tape, the human brain is the tape control unit.
We do not yet know the full transition table of the human computer, but
the subset used for some simple problems can be determined.

It is easy to see how to construct Turing machines that solve simple
problems. But a modern computer can be programmed so that it can be
used to solve not just one problem but any (computable) problem. In the
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same way it is possible to construct Turing machines that are universal
in the sense that they can simulate other Turing machines, designed for
solving specific problems. The way to do this is to allow the machine to
have two inputs — in addition to the data on which it is to work, it is also
provided with a program that contains a complete description of the Turing
machine that it should simulate.

Universal Turing machines can be constructed that are very small: Ro-
gozhin [39] has made one version with 4 states and 6 symbols and one with
only 2 states and 18 symbols, while Minsky [40] has one with 7 states and
4 symbols. Since the universal Turing machine must simulate the dedi-
cated Turing machine it is often much slower than the Turing machine it
simulates. But if the problem takes time t to solve using a dedicated Turing
machine, the time needed for a universal Turing machine to solve it is at
most a polynomial of t — thus it is possible to simulate other machines
efficiently.

There are various modifications that can be made to the Turing machine
that do not change its computing capabilities. The tape can be either infi-
nite or semi-infinite (i.e., it has a start but no end), or the machine could
even have access to several tapes. None of these additions change anything
substantial about the machine, and the more advanced versions can all be
simulated (with a polynomial slowdown) by a single tape Turing machine.
To simulate a machine with k tapes, the universal Turing machine simply
divides its tape into k different parts, adding special markers to its alpha-
bet to see where the tapes start and end. Special care must be taken when
the tapes grow, but the details are trivial. The machines used in analysing
algorithms often have separate tapes for input and output, and universal
Turing machines also often have a separate tape for the program they are
running.

There are some examples of where Turing machines have been used in
“proper” mathematics. Matiyasevich has used Turing machines to show
that Hilbert’s 10th Problem (to give an algorithm that solves a Diophan-
tine equation) is unsolvable (e.g., [41]), and to produce a polynomial in 10
variables whose non-negative values give exactly the set of all prime num-
bers [42]. These results are not important from a practical point of view,
since there are far better methods to test for primality, but they are impor-
tant from a conceptual point of view of mathematics.

2.4 Complexity classes and problems

We will often talk about the time complexity (or just complexity) of a prob-
lem. It is understood that this actually means the time complexity of the
best known algorithm that solves that problem.

It is convenient to group together all those problems that can be solved
by a universal Turing machine with time complexity that is any polynomial
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in the problem size N . This class is called P. Sometimes it is enough to
know with some probability that a problem has a solution. The class of
problems for which it is possible to find a solution with probability 2=3 in
polynomial time is called BPP (for bounded error probability polynomial).
The choice of 2=3 is of course arbitrary, any probability larger than 1=2
would do just as well. The class BPP can be called the class of problems
that can be solved efficiently. (The quantum analogue of this class is im-
portant for quantum computers. Some evidence that it is more powerful
than its classical counterpart has been obtained in [43].)

Why are there no separate classes for problems that require time pro-
portional to N , N2, N3, and so on? The reason is that this difference can
be removed by considering more advanced version of the Turing machine.
If the computer has superinstructions that are the equivalent of several
smaller instructions, it is possible to show that the coefficient of all but
the linear part of the polynomial can be made arbitrary small. This means
that there is no point, from a theoretical computer scientist point of view,
to argue about whether a problem can be solved in N or N30 time. (It is
also a fact that most problems than can be solved in polynomial time have
solutions that are linear, quadratic or at most cubic (matrix multiplication)
in problem size.)

There are many important problems for which it is not known if a poly-
nomial time algorithm exists. For some of these problems it is however
possible to verify that a proposed solution actually is a solution in polyno-
mial time. So if we guess a candidate solution, or if a friendly genie gives
us a candidate, we can see in polynomial time if the guess was correct.

The class of all problems for which this it true is called NP (for non-
deterministic polynomial). The name comes from the fact that a Turing
machine that is allowed to make non-deterministic choices in its computa-
tion would be able to solve it in polynomial time.

The archetypical NP problem is boolean satisfiability. This is the prob-
lem of determining whether or not the variables in a given boolean formula
can be assigned so that the formula evaluates to true. For example, x ^ y
can be satisfied by setting both x and y to true, while x ^ :x obviously can
not be satisfied. A special form of satisfiability is k-SAT, where the formula
is written in conjunctive normal form, that is, it consists of the logical and
of M clauses, each clause being the logical or of k possibly negated vari-
ables. For instance, (x_y)^(:x_z) is an instance of 2-SAT with two clauses
and three variables. It is easy to see that a general boolean formula can
always be written in conjunctive normal form.

It is interesting to note that Horn-SAT, a special instance of 3-SAT
where each clause contains at most one unnegated variable, is in P. It
can be solved in polynomial time using resolution (e.g., [33]). This method
takes advantage of the fact that all Horn-clauses can be written as an im-
plication, e.g., :x _ :y _ z is equivalent to x ^ y ! z. Also 2-SAT can be
solved in polynomial time. This algorithm is based on the fact that a clause
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c1_c2 (where ci can be either a variable or the negation of a variable) means
that if :c1 is true, then c2 must also be true. We introduce a directed graph
whose nodes are the literals x and :x, where x is a variable in the formula,
and interpret each clause as two edges in this graph, one between :c1 and
c2 and the other between :c2 and c1. Satisfiability of the 2-SAT formula
can be checked simply by seeing if there is a loop from x to :x and back
to x for some variable x. If there is such a loop, the formula is clearly not
satisfiable.

All problems that are in P are of course also in NP, but it is currently
an open question whether or not there are problems in NP that are not in
P. The problems in NP most likely not to be solvable in polynomial time
are the so called NP-complete problems. This class is related to relative
difficulties of problems. If a problem � is such that an effective way to
solve it would mean that all problems in some class A could also be solved
efficiently, � is said to be A-complete.

The type of problems that are most often used in complexity theory are
the decision problems. Here we are not given a function to minimise or
maximise (as in physics or economy). Instead, the task is to determine if
some specific input belongs to a given set, such as the set of all graphs that
are colourable using at most three different colours. If is easy to see that
an optimisation problem can always be converted into a decision problem.
Instead of asking for the best solution we simply ask whether there is a
solution whose fitness (defined in some way) is better than a bound x. An
efficient algorithm for the optimisation version of the problem can thus be
used to solve the decision problem efficiently.

It is perhaps less obvious that the converse is also true. But given an ef-
ficient method to determine if a solution that is better than x exists, better
and better approximations to the best value can be obtained using binary
search, i.e., by determining which interval the best solution lies in and then
halving this repeatedly until the desired accuracy is attained. After the
best value has been determined, the problem can be manipulated (by e.g.,
restricting the domains of some variables or changing their interactions)
to determine the variable assignments in a solution. In the satisfiability
problem, for example, the value of a variable xl can be determined by con-
sidering a new formula where xl is set to true. If this formula is satisfiable
there is a solution with xl true, otherwise there must be a solution with xl
false. In either case we can continue with the next variable and determine
its value. Note that this procedure does not make it possible to determine
all solutions to the problem, it only provides one of them. Enumerating all
the solutions requires exponential time.

Another important concept is that of the complement of a problem. The
complement of a decision problem � is simply the same problem but with
opposite answers, i.e., if �0 is the complement of �, then x 2 �0 if and only if
x =2 �. The complement of satisfiability is the problem of determining that
there are no assignments that satisfy a given formula. The complement of
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a problem that is in P is also in P, i.e., P = co-P. This fails however for NP,
since an evidence for a yes instance can not be converted to saying any-
thing about whether or not the complemented problem has a solution. This
is an important distinction between deterministic and non-deterministic
computation.

To define completeness, we need to formalise the way a problem can
be used to solve other problems. If a solution to � can be converted into
a solution of �0, we say that �0 reduces to �. There is some ambiguity in
the definitions of a reduction in the literature. In most textbooks, the ex-
act definition is glossed over and it is simply said that a reduction should
require at most polynomial time. A more general definition is that a reduc-
tion is a conversion between two problems that requires space that is at
most logarithmic in problem size. (It can be shown that this implies that
it can not use more than polynomial time). Completeness can now be de-
fined formally. A problem � is complete for a class A if � is in A and all
other problems in A can be reduced to �. The class A-complete thus con-
sists of the most important, most difficult problems in A. If we can solve a
NP-complete problem efficiently, we have shown that P =NP since all other
problems in NP can be reduced to � and hence solved in polynomial time.
A problem is said to be NP-hard if all NP problems can be reduced to it but
it is not necessarily in NP.

In addition to the time complexity classes introduced here, it is also
possible to use space as a resource. For example, PSPACE is the class of
all problems that can be solved by a universal Turing machine with no time
limits but using at most a polynomial amount of memory. There are very
interesting asymmetries between time and space. For instance, while it is
open whether or not P = NP, it is known that PSPACE is the same as the
class of all problems solvable in polynomial space by a non-determinstic
Turing machine, so that the addition of non-determinacy does not have
any influence on the memory requirements of computations.

NPC is the class of all problems that are in NP and are at least as
hard as all other NP problems, in the worst-case sense. There has also
been some work on the concept of average case complexity, leading to the
introduction of the class AvP. AvP is the class of all problems such that
the average time needed to solve them is bounded by a polynomial. The
average is here taken with respect to some probability distribution of the
inputs to the problem. See [44] and references therein for a more complete
discussion of various forms of average complexity classes.

2.5 More definitions of NP

The ide of “non-deterministic polynomial” computation is one of the most
difficult to understand concepts of computer science. It helps to think
of it in several different ways — it is the class of problems that can be
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verified in polynomial time and the class of problems that have a search-
tree with a polynomial depth. In order to give the reader more viewpoints on
non-deterministic Turing machines, the following list gives several different
definitions of NP.

� NP is the class of problems you can solve in polynomial time if you have an
infinite supply of processors (and finding the solution on one processor is
solving the problem)

� NP is the class of problems you can solve if you can always make a binary
decision about which computation path to follow — and always be right

� NP is the class of problems for which you can verify that a solution to a given
instance is correct in polynomial time

� NP is the class of problems for which each instance has a ”small” witness
(polynomial in the size of the instance) for that it is a ”yes” instance

� NP is the class of of problems you could solve in polynomial time, if only you
could recognize quickly whether or not an arbitrary boolean formula were
satisfiable

� NP is the class of problems for which there is a short certificate (poly in size of
the instance) which can be verified with high confidence by a polynomial time
verifier which uses a logarithmic (in the instance size) number of random bits
and checks a constant number of bits

� NP is the class of problems which can be verified in an interactive game
where one player is polynomial time and the other is computationally unre-
stricted

� NP is the class of problems recognizable in polynomial time on a nondeter-
ministic polynomial time machine

� NP is the class of problems expressible with a single second order existential
quantifier over unquantified second order predicates

� NP is the class of problems expressible with a single existential variable with
a polynomial (in the length of the free variable) bound on the quantified
variable and a polynomial-time computable predicate

2.6 Algorithms for solving constraint satisfaction problems

The obvious method to solve an NPC problem is to search through all pos-
sible variable assignments until one is found that solves the problem. In
some cases, such as Horn-SAT or 2-SAT, the problem structure is such
that there are more efficient methods to construct a solution, but these are
exceptions.

The most general techniques for solving constraint satisfaction problem
are so called branch-and-bound methods. These work by considering all the
variables in the problem one after another and simplifying the problem. For
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Figure 2.3: The search tree for a problem with four variables, x1 to x4 that
can each take the value 0 or 1. The leafs at the bottom represent complete
solutions, while the internal nodes represent partial solutions where some
variables are unassigned. For a problem with N variables, the search tree
has N levels and 2N leafs. A branch and bound algorithm starts at the top
and works its way down towards the leafs. If the heuristic used is good,
the algorithm will not visit most of the leafs, instead discovering dead ends
early and backtracking at internal nodes with low depth. A good heuristic
would prune the search tree early by not exploring subtrees of nodes that
contain a contradiction or of subtrees of nodes that can be shown to be
non-optimal.

each variable that we consider look at the smaller problem that results if
the variable is set to one of its possible values and eliminated from the
problem. If this value causes a constraint to become unsatisfied (or if we
by some other means can know that the variable doesn’t have that value
in the optimal solution of the problem), unset the variable and try another
of its possible values. The algorithm then calls itself recursively on this
smaller problem. If all values have been tried, one of the previous variables
must be changed. The algorithm does this by backtracking until it finds a
variable for which all values have not yet been tried. The way that these
methods explore the space of possible solution can be very well represented
in a search-tree such as that shown for a problem with four variables in
figure 2.3.
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Figure 2.4: This figure shows a slightly larger search-tree. The leaf that
corresponds to the solution to the problem is marked by a circle and the
path to it is marked by a fat line. The search-tree represents an NP problem
if the length of this path is a polynomial in the problem size N .
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Figure 2.4 shows a larger search-tree with the path to the solution of
the problem marked.

In order to construct an efficient search method, it is important to prune
the search tree, i.e., discover quickly if a subtree does not possess any leafs
that are solutions to the problem. It is therefore important to be able to
analyse partial solutions and see if they contain contradictions or are such
that the optimal value in the sub-tree below it is worse than the best found
so far. In the worst case, the solution is in the last leaf that is examined;
this is the reason why the worst-case complexity is exponential.

There are some variants of the general branch-and-bound algorithm
that can be used for specific problems; see the literature [45, 46, 47] (and
below where short descriptions of the Brelaz and Davis-Putnam heuristics
are given).

The Monte Carlo method is one example of a local search algorithm,
another important class of solution methods. In contrast to branch-and-
bound, these methods always work on complete solutions, i.e., they do a
walk on the leafs of the complete search-tree. The most straighforward way
of ordering the states here are on the N-dimensional hypercube, but other
organisations are possible too — we could for instance put the states on a
line as drawn in figure 2.3.

Before applying one of these methods to a problem instance, it is often
useful to do some preprocessing on it. For k-COL, for instance, all nodes
with degree less than k can be removed from the problem; these nodes
can always be coloured later. The best heuristic for graph colouring is the
one introduced by Brelaz [48], which is quite easy to describe. As always,
the important part of it is how to decide which variable to branch on first.
Brelaz idea for this was to select the node that is the most constrained
first, i.e., the one that has the largest number of colours among its already-
coloured neighbours.

For satisfiability problems, the method of choice was designed by Davis
and Putnam [49] and is called the DP algorithm. It branches first on the
variable that occurs in the largest number of clauses. (Note that both
these algorithms are more sophisticated than they appear to be in this
description. The interested reader is referred to the literature for a more
detailed description of them�.)

Physics has inspired several methods for solving optimisation problems.
The oldest example is simulated annealing [50], but physics ideas are also
useful in for example neural nets (e.g., [51]). Very recently, there have
also been attempts to base search algorithms on more modern ideas from
physics, such as renormalisation [52] and self-organised criticality [53].

The latter algorithm is called extremal optimisation and can be used
for any optimisation problem where it is possible to define a fitness for

�A nice illustration of the DP procedure can be found at
http://www.thoralf.uwaterloo.ca/htdocs/ST ALGORS/st dp.html
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each variable. For a spin model, this fitness is simply the contribution of
this spin to the energy of the system, or the amount by which the energy
changes if the spin is flipped. In each time-step, the variables are ranked
according to their local fitness. So far this is similar to greedy search
algorithms, which would choose to flip the spin that would decrease the
energy the most. Extremal optimisation, however, chooses to flip the spin
with rank k with a probability that is proportional to k�� . The use of this
probability function is inspired by self-organized criticality [54, 55, 56]. The
value of � that is best to use depends on the problem at hand, see [53, 57].

2.7 9 NPC

The first problem shown to be in NPC was the satisfiability problem [58].
This was the first paper that asked questions about what problems were
and were not solvable efficiently and also provided answers; it launched an
entire new field of computer science. It is interesting to note that Gödel, in
a letter to von Neumann, had previously speculated that the SAT problem
might be solvable in linear or square time; see the column by Hartmanis
for details [59].

The proof can be found in detail in [47] and [60], here the main ideas
will be sketched. SAT is in NP since it is trivial to check in polynomial
time whether or not a given assignment of the variables in a formula really
satisfies the formula.

Since we do not even know all problems that are in NP, it seems a
formidable task to be able to show that all problems in NP reduce to SAT.
The proof relies on the insight that if a problem � is in NP then there is
a non-deterministic Turing machine that will solve it. We will introduce a
way of describing the computation that this non-deterministic Turing ma-
chine must do, and then show that this description is in fact a boolean
formula, where there are variables representing the complete configuration
of the Turing machine at each time step, including the non-deterministic
choices that the machine can make. Solving this boolean formula (i.e., the
satisifiability problem) in polynomial time would then enable us to con-
struct explicitly a Turing machine that will solve � in polynomial time. But
this is the definition of completeness, and hence boolean satisfiability is
NP-complete.

As argued for above, it is no restriction to assume that � is a decision
problem, i.e., given some input the problem is to answer yes or no. We will
also assume that there is some specific location on the tape that serves as
the output of the program; the contents of this cell will then be taken to
give the value of the formula. How can the operation of a non-deterministic
Turing machine be described? In each time step, we have to keep track of
which state the control mechanism is in and the contents of the tape. If
the size of the input data is n, we know that the machine will terminate
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after at most nk steps, for some k. The configuration of the Turing machine
at time t will corespond to the t’th row in a table with nk rows.

How many columns are needed in the table? The tape is infinite, so
it would seem that an infinite number of columns would be needed, but
this is not the case. Since the tape head can move only one step at each
time step it is enough to have nk cells of tape. (This is a general feature
of models of sequential computation: they can not consume more space
resources than time.)

In order to describe also the current state of the machine, the alpha-
bet of the machine will be modified subtly. The cell where the tape head
is currently positioned will be marked with a symbol that encodes both
the contents of the tape at that cell and the current state of the control
mechanism.

We also need to capture the non-determinacy of the machine in some
way. This is done by introducing choices ci for each time step i. These
choices can represent for instance coin-tosses in a randomised algorithm or
the kind of oracle-queries allowed for a non-deterministic Turing machine.
It is no restriction to assume that at each step there are two choices, so
that ci = 0 or 1.

Now it is easy to see how to convert the description of the machine into
a boolean formula. First note that the top row of the table will be fixed by
the input data (for technical reasons, it is also necessary to assume that
the extreme right and left columns are fixed to be the blank symbol, see
[47] or [60] for details). Given a row, we now need to determine how the
row beneath it will look like. The only cells that may change are the one
at which the tape head is currently positioned and its nearest neighbours
(if the head moves to them). The new states of these cells are uniquely
determined by the states of the cells above them and the cell determin-
ing the non-deterministic choice, and they can in fact be determined by a
boolean circuit with those cells as input (we ignore trivial and uninterest-
ing details such as encoding the alphabet using only 0’s and 1’s, and refer
the interested reader to the references). This construction can be contin-
ued for all the rows of the table, and it is clear that the boolean formula
that determines the state of the designated output cell after nk steps can
be constructed in polynomial time.

By solving this boolean formula, the operation of the Turing machine
solving � can be determined, including the correct values of the non-
deterministic guesses ci. (Since � was assumed to be in NP, the formula is
guaranteed to have at least one solution.)

There are today many more problems that have been shown to be NP-
complete. To do this for a given problem � it suffices to show that SAT
can be reduced to � — since all problems in NP can be reduced to SAT, it
follows that any problem in NP can be reduced to � by composing the two
reductions. The book by Garey and Johnson [61] has an extensive list of
NP-complete problems; more can be found online at
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http://www.nada.kth.se/ �viggo/problemlist/compendium.html .
The big open question in computer science it whether P = NP or not.

This question is so important that it is one of the 7 “Millennium Prize Prob-
lems” suggested by the Clay Mathematics Institutey. Even though it is not
known whether there exists a polynomial time algorithm to solve SAT, some
lower bounds on the time needed to solve it are known for machines that
also have a restricion on the amount of space that they can use; see [62]
for a review.

Another important NP-complete problem is graph colouring. This is
the problem of colouring all the nodes in a graph so that no node is con-
nected to another with the same colour. It is related to the Four Colouring
Theorem, and has a very simple physical interpretation: it is the prob-
lem of determining a ground state with zero energy of an antiferromagnetic
Potts model. The number of states q in the Potts model corresponds to
the number of allowed colours in graph colouring. Graph colouring is also
intimately related to all sorts of scheduling problems. Here each event is
a node in a graph, and two nodes are linked if and only if the events they
represent must not take place at the same time. The number of timeslots
that are available corresponds to the number of colours allowed to colour
the graph.

Many interesting results can be shown concerning graph colouring. For
instance, it is known that there exists graphs which are not colourable with
three colours yet contain no triangles [63].

These graphs are actually quite simply constructed using induction.
The first example is a graph with one node and zero edges. This graph
is not colourable using 0 colours and contains no triangles. Now assume
that there exists graphs not colourable using 0, 1, : : : k colours; we want
to construct one that is not colourable using k + 1 colours. To do this,
make copies of the previous graphs 0 to k. Then consider all the ways of
selecting one node from each of the previous graphs. For each such way,
add a new node that has edges to the the selected nodes in the previous
graphs. This graph is not colourable using k + 1 colours and does not
contain any triangles, which proves the theorem.

Another NP-complete graph problem is graph partitioning. Here the
nodes of a graph are to be divided into k subsets so that no edges join
two nodes from different subsets. Physically, this corresponds to a model
with ferromagnetic interactions and where there is also some condition on
the magnetisation. Many spin glasses have also been shown to be NP-
complete, including the Sherrington-Kirkpatrick and 3D �J models.

In general, we can define a constraint satisfaction problem (or CSP) as
a problem with N variables xi and M constraints ci. In general the variable
xi could take on the values 0; : : : ; di� 1, but often the simplification that all
di = d is made. Each of the constraints consists of a list of variables and

yhttp://www.claymath.org/prizeproblems/
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the combinations of these variables that are not allowed. A constraint in-
volving two variables can be seen as a matrix where the rows and columns
correspond to the first and second variable, respectively. For graph colour-
ing the constraints are diagonal matrices for each of the edges in the graph.
The ratio between the number of constraints and the number of variables
turns out to be an important parameter. In graph colouring, the connec-
tivity or average degree of the graph,  = 1

2
M
N is used, while for k-SAT it is

the ratio of the number of clauses and the number of variables � = M
N that

is the relevant parameter.

2.8 The structure of NP

There are many interesting questions about NP. As stated above, the P =
NP question is perhaps the major open question in theoretical computer
science. One of the most beautiful results is that if NP 6= P then there
must be problems in NP that are in neither P nor NPC; the class of all such
problems is called NPI (for “NP intermediate”).

The proof of this result consists of an explicit constructions of a problem
� in NPI. The same method can then be used to construct a problem that
is more difficult than all P problems but not as difficult as �. This process
can be continued indefinitely, so that if P 6= NP(which is almost certainly
the case), there is actually an infinite hierarchy of problems between the
“easy” ones in P and the “difficult” ones in NPC.

� will be constructed in such a way that if it can be decided in polyno-
mial time, then it will be the same as satisfiability, which by assumption is
not in P. Similarly, if � were in NPC, the construction of it will ensure that
it is in fact a trivial problem, hence solvable in polynomial time, resulting
in the same contraditcion. The only way to resolve these contradictions is
if � is in NPI.

� will be very simple: given a string x that represents a boolean formula
as input, x will solve � if and only if x is a valid and satisfiable formula,
and a certain function f(n) where n is the length of x is even. If we can
construct f(n) so that it is even if � is in P and odd if � is in NPC, � will
have the required properties and the proof that NPI exists will be complete.

The construction of f will ensure that these conditions are met for all
inputs of size larger than N0, where N0 is some constant. This is enough
for the proof, since it is the time complexity as input size goes to infinity
that determines the complexity class of �. A finite number of exceptions
can always be handled by special cases.

The Turing machine that computes f will work by examining in turn all
polynomial time Turing machines and all reductions, giving them all strings
as input. We therefore need to assume that there is an enumeration of all
polynomial time Turing machines Mi and of all reductions Ri (i.e., Ri is
the Turing machine that performs reduction i). We also need to equip the
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machines with a stop-watch, so that we can halt them after t time steps.
Both of these assumptions are trivial; they are necessary because we need
to try the Mi and Ri on progressively longer strings. If a Mi is found that
seems to determine �, the output of f will be even. If, on the other hand,
a reduction is found that seems to reduce SAT to �, f will be odd. This
ensures that the promised contradictions arise. f will change parity (and
hence move on to trying the next machine or reduction) as soon as it has
determined that the Turing machine or reduction currently under test does
not correspond to a machine that computes � or reduces SAT to it.

The computation of f(n) will consist of 2 steps. Each step lasting for
exactly n time steps. During the first step, the tape-head of the Turing
machine will advance to the right on the tape, and it will also calculate f(j)
for as many j = 1; 2; : : : as it has time. Let the last such value calculated by
f(jmax) = k. If k is even, let i = k

2 , otherwise i = k�1
2 .

The next step of the calculation will now determine the value of f(n) —
it will be either k or k+1. If k is even, we will try to use the Turing machine
Mi, patiently run through all possible strings of length up to n as input
data, and try to find some string for which this machine does not give the
same result as the machine determining �. If such a string is found, then
the computation terminates and f(n) = k + 1, if such a string is not found
before time has run out, we let f(n) = k.

One of the contradictions can now be seen easily. For if � is indeed
in P, then there is some machine Ml that determines it. For all strings
that are sufficiently long, f will thus be a constant function, since we can
never find a string for which Ml and the machine computing � do not agree.
Furthermore, the output of f will be an even number. But this means that
for all sufficiently long strings, � is the same as SAT, which by assumption
did not have a polynomial time solution. So something must be wrong, and
we conclude that � can not lie in P.

It is now simple to see what must happen if f(n) is odd. In an exactly
analogous way, we now test all possible reductions on all possible strings,
until we either find one string that can not be reduced to � by the currently
tested reduction or time runs out. By similar reasoning as above, if there is
a reduction of SAT to � (which there must be if � is to be NP-complete), then
the function f will be constant and odd for all sufficiently long strings. But
this means that � is, apart from a finite number of strings, a trivial problem
and hence certainly in P. Again we have reached a contradiction, and we
can conclude that if P 6= NP then there are indeed problems that are harder
than any P problem yet easier than any NPC problem. One problem that
has been conjectured to belong to NPI is the graph isomorphism problem,
where the task if to determine if two graphs are isomorphic.
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NP

NPI

P
NPC

Figure 2.5: The map of NP, assuming that NP 6= P. NPI can be further
subdivided into an infinite hierarchy of problem classes by the technique
used in showing that NPI exists.

2.9 Even harder problems

There are several other complexity classes that can be defined in similar
way as NP. For instance, the subset of NP-problems whose optimisation
versions do not ask for a bound for the fitness but ask if the fitness is
exactly x is called DP. Formally, this is the class of decision problems l
than can be written as the intersection l1 \ l2 where l1 2 NP and l2 2 co-NP.
The problems l1 and l2 are the ones that ask if there is any solution to the
problem with better or worse fitness than x, respectively. For more details
on DP, see [47]. These problems are much harder than those in NP, since
they require the ability to check both if a problem has a solution and also
if another one does not have a solution. Note that DP is not the same as
the intersection of NP and co-NP.

Another extension of NP is the possibility of adding an oracle to the
Turing machine. Here the Turing machine is equipped with a black box
that can instantly solve some problem �. We call the set of problems that
this extended Turing machine can solve in polynomial time P�, while NP�

is the class of all problem that can be solved in polynomial time by a non-
deterministic Turing machine with access to an oracle deciding �. This
notation is unfortunately somewhat misleading. It is possible to prove that
there exists an oracle �1 such that NP�1 =P�1, but there is also an oracle �2
such that NP�2 6=P�2 If � is satisfiability or another NP-complete problem,
we arrive at the class PNP or �2P. This is the first class in the polynomial
hierarchy of classes that are harder than NPC. Spin game models that are
in various classes of the polynomial hierarchy have been studied in [64].

A very nice survey of important computational complexity results from
the last decade can be found in Fortnow’s amusing paper [65].
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2.10 Other models of computation — universality

”A Fractran program is defined by a list of positive rational numbers
q1; : : : ; qn. It acts on a positive integer m by replacing it by (qim), where
i is the least number such that (qim) is an integer. If there is ever a
time when there is no i such that (qim) is an integer, then execution
stops. For any computable function f(:) there is a Fractran program
which when started with 2n reaches 2f(n) without going through any
intermediate powers of 2.”

In addition to the Turing machine, several other models of computation
have been proposed. The Church-Turing hypothesis states that it does not
matter which of these we use — they are all equivalent. If a function can be
computed with one of them, it can also be computed with the others. Fur-
thermore, the thesis also claims that all reasonable models of computation
give rise to the same set of computable functions. The Church-Turing hy-
pothesis can not be proven, but there is compelling evidence for its validity
in the fact that all reasonable models of computation can in fact simulate
each other, albeit with large slowdowns. Some other models of computa-
tion are the recursive functions, Post’s string rewriting systems, and the
�-calculus. In the Post system [66], rules are given for rewriting strings
based only on their first symbol — it is quite amazing that this simple sys-
tem is capable of universal computation. The �-calculus [67] is the basis
for modern functional programming languages — it consists of function
definitions and applications.

There has recently been much interest in so called quantum computers.
For some problems [68], it has been shown that a quantum computer is
more powerful than a classical, but none of these problems are known to be
NP-complete. It is amusing to note that non-physical quantum computers
(that utilise e.g., non-linear quantum mechanics) can solve NPC problems
in polynomial time (e.g., [69, 70]).

An interesting extension of the idea of the Turing machines has been
taken by Pudlák [71], who considers populations of Turing machines that
undergo genetic evolution. This is a model of parallel computation, and
is more powerful than a single normal Turing machine. The set of all
problems computable in polynomial time on such machines is equal to the
set of all problems computable in polynomial space on a classical Turing
machine, PSPACE. This class is strongly believed to be stricly larger than
P for classical Turing machines, although this has not yet been proven.

DNA computers have also been used to solve some NP problems in what
seems to be polynomial time [72]. Here the trick to solving seemingly ex-
ponential problems is massive parallelism. We fill a container with DNA
strings representing all possible solutions to some problem. Using chem-
istry the DNA strings representing correct solutions are then separated
from the others. A problem here is the difficulty of retrieving the correct
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solution if there are not many of them. This is exactly the same difficulty
that prevents the implementation of a quantum �-calculus [73].
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3
The physics of constraint

satisfaction problems

3.1 A phase transition

A constraint satisfaction problem is also a spin glass, which makes them
potentially interesting for physicists. In addition to the help that computer
science can get from this, it is also possible that the artificial disordered
systems studied here can provide new insights into the study of physical
disordered systems. Fu and Anderson [74] where among the first to see
this connection.

The most interesting feature of these search problems for physicists is
that they have been shown to give rise to threshold phenomena very similar
to those occurring at physical phase transitions [75, 76, 77]. Another early
study of the phase transition is [78], which studies the effects of paralleliz-
ing search methods.

For some optimisation problem, it is possible to define a constrained-
ness parameter so that a randomly chosen problem instance that has a low
degree of constrainedness is always solvable, while one that is highly con-
strained never has a solution. This is of course in a sense trivial, but it is
surprising that the boundary between the two cases is sharp. Kirkpatrick
and Selman [75] have shown that this transition sharpens as problem size
is increased and that finite size scaling can be used to describe it. Friedgut
and Achlioptas [79, 80] have shown rigorously that there is a sharp transi-
tion for all problem sizes, but there is not yet any proof that the transition
happens for the same parameter value for different sizes. Note that some
of the methods commonly used to generate more complicated random con-
straint satisfaction problems have been shown not to have a transition in
the thermodynamic limit [81]. The transition can be seen in figure 3.1,

33
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Figure 3.1: This figure illustrates the phase transition in solvability that
occurs at � � 4:3 for the 3-COL problem. The plot shows the fraction
of colourable graphs for system sizes ranging from 10 (leftmost curve) to
100. The Brelaz algorithm was run on up to 50000 different graphs for
each value of . The gradual sharpening of the transition as system size
increases is indicative of finite-size scaling. Note the restricted range on
the x-axis.

which shows how the fraction of solvable problems changes from 1 to 0 for
several different problem sizes.

In addition, there is also an “easy-hard-easy” transition in the difficulty
of finding a solution or showing that none exist. Is it very easy to find a so-
lution for underconstrained problems — since most variable assignments
do not lead to conflicts with others, not much backtracking will be needed.
For overconstrained problems, on the other hand, the increased number
of constraints makes the search methods quickly run into inconsistencies
and not many nodes of the search tree will have to be examined. For prob-
lems in the region between over and underconstrained (termed critically
constrained), the search method will have to spend a long time searching
through dead ends that it can avoid in the other phases.

By treating all the constraints in the problem as independent, it is possi-
ble to make an approximation for the number of solutions of a problem with
M = �N constraints and N variables (see, e.g., [82, 83, 84]). For simplic-
ity, consider k-SAT. Each constraint here involves k variables and forbids
one of the 2k possible combinations of assignments to these variables. Ap-
proximate the probability that a constraint is violated in an assignment by
pv =

1
2k

. Assuming that the constraints are independent then gives (1�pv)
M
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as the probability of a formula with M clauses having no clause that is vio-
lated. Multiplying with the number of possible assignments, 2N , then gives
an approximation to the number of solutions for k-SAT

Nsol = 2N (1�
1

2k
)�N : (3.1)

To approximately determine the location of the phase transition, solve
for � in Nsol = 1, giving

�c = �
ln 2

ln (1� 1
2k
)
: (3.2)

For k = 3, this gives �c = 5:17, which is above the true value of �c � 4:3.
The annealed approximation described above gives qualitative explana-

tions for both the solvable-unsolvable transition and the easy-hard-easy
pattern of the amount of resources necessary to solve the problem. Mam-
men and Hogg [85] have found that the size of the smallest minimal un-
solvable subproblems shows a behaviour that coincides roughly with that
of the search cost, and also that search cost appears to be a strictly increas-
ing function of this size. A minimum unsolvable subproblem is a subset of
the problem that is unsolvable but becomes solvable if any variable and the
constraints in which it appears are deleted from the problem. Obtaining
the minimal unsolvable subproblem would thus be a very good heuristic
for search algorithm. However, this problem is in general as difficult as
finding the optimum solution itself. In recent years, there has been quite a
lot work on determining better exact bounds for the phase-transition, see,
e.g., [86, 87, 88, 89, 90]. The best bound for 3-COL is 4:03 < c < 5:05, while
for 3-SAT it is known that 3:003 < �c < 4:64.

3.2 Nature of the phase transition

The k-SAT problem has been studied in detail by Monasson and Zecchina [91,
92, 93, 94, 95] and others [96, 97, 98] who have found interesting analo-
gies between it and random field models. Among other things, they have
found that the entropy stays finite at the transition.

It has been established that the occurrence of the sat-unsat-phase tran-
sition is due to a finite fraction of the variables in the problem becoming
over-constrained, that is they must have the same value in all solutions
of the problem [99]. The set of all fully constrained variables is called the
backbone and has been compared to percolation. The backbone vanishes
in the sat-phase — the presence of any finite number of fully constrained
variables could otherwise be used to add an infinitesimal number of clauses
that would cause the problem to become unsat. The fraction of sites in
the backbone is the proper order parameter for SAT and has been shown
to have different behaviour for 2-SAT and 3-SAT. For 2-SAT, the fraction
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smoothly increase above the threshold �c = 1, while for 3-SAT there is a
discontinuous or first-order transition. The 2 + p-SAT problem (in which
a fraction p of the clauses have three literals while the rest have two) has
a continuous transition for p � 0:4. It has been shown that even though
this problem is in NPC for all p > 0, problem instances do not become ex-
ponentially hard until p > 0:4 [99, 100]. This led to some early speculation
that there could be a relation between the order of the phase transition in
a problem and its worst-case computation properties. Recent results how-
ever indicate that this is not the case. Achlioptas et al [101] are the first
to calculate the exact position of the threshold for an NPC problem. The
problem they analyse is the 1-in-k-SAT problem, which is normal satisfia-
bility but with the added constraint that each clause should have exactly
one true literal. They also show that the transition here is second order,
thus showing that the order of the transition is in general not related to the
problem complexity. This is a very important result, since it means that
the hopes of physicist to connect the P = NP question with the order of the
transition have been shown to be futile.

3.3 Analysis of dynamics

Walsh [102] has made an interesting comparison between search meth-
ods for constraint satisfaction problems and renormalisation group flows
from the theory of critical phenomena. Walsh has studied how the con-
strainedness changes during search using a variant of the Davis-Putnam
algorithm. As described in chapter 2, this algorithm changes the clauses
as it traverses the search tree. This means in particular that the ratio �
between clauses and variables will change as the solution is approached.

By plotting the constrainedness as a function of search depth and for
different initial values of �, an interesting picture is found. For problems
that are critically constrained, the constrainedness does not vary much as
search progresses. For overconstrained problems, the constrainedness in-
creases rapidly, while for underconstrained problems it decreases just as
rapidly. That is, the constrainedness parameter � shows much the same
behaviour as the coupling constant of a critical system. Here, starting at
the critical coupling temperature means that the coupling constant is con-
stant, while starting above or below the critical temperature will cause the
coupling constant to be drawn towards either the high or low temperature
fixed point representing the disordered and ordered phase, respectively.
The comparison is of course to be expected, but is nonetheless interesting,
since it provides a qualitative comparison between search procedures and
renormalisation group flows.

A similar — but much more complete — analysis of the phase space of a
search method has been performed in recent papers by Cocco and Monas-
son [103, 104]. In these papers, the authors study the phase diagram
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Figure 3.2: This figure, taken from [104], shows the phase diagram of
the 2 + p-SAT model. The full line is �c(p); the lines with arrows indicate
the trajectories of the DP procedure. For small �, the DP method quickly
finds a satisfying assignment of variables, while large � cause the program
to backtrack early in the search-tree. For � around the transition, the
trajectories are more complicated. For a full explanation of the plot, please
consult [104].

of 3-SAT, also using the Davis-Putnam algorithm. Since some variables
are also removed from the problem, some clauses might change charac-
ter from involving three variables to just containing 2. This, too, can be
captured using the terminology of the 2 + p-SAT problem — instead of de-
scribing a problem instance using just �, we add p and hence get a two-
dimensional phase-diagram. The evolution of � and p can now be tracked
as the search-algorithm progresses and we thus get a dynamical trajectory
in (�; p)-space. Cocco and Monasson find that the DP-algorithm finds a so-
lution very quickly for all � < 3:03, which is far below the transition in the
energy landscape that was found in paper I and verified by Biroli et al [105].

In figure 3.2 (figure 4 from [104]), this phase diagram is shown. Several
trajectories are shown. Those that start at large � quickly find their path to
the unsat fix-point, while those that start at small � find the sat fix-point.
For intermediate �, the DP-algorithm need to spend time backtracking be-
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fore it can decide whether a problem instance is satisfiable or not; thus the
trajectories for � > 3 go back-and-forth a lot before finally reaching either
a solution or exhausting the search-tree. The hardness of the problem in-
stance is in part determined by the number of times that the DP method
must cross the sat-unsat-phase border. Cocco and Monasson also manage
to get quantitative results for the time needed to solve the problem based
on where the trajectory first crosses the border.

In [106] a similar analysis is made for analog computation for a lin-
ear programming problem. Their model of analog computation in this
case consists of the solution of a differential equation. Majumdar and
Krapivsky [107] have performed an extensive analysis of the binary search
problem. While this problem is not NP-hard, the analysis is nevertheless
interesting since it allows calculation of the height of the tree for an arbi-
trary distribution of elements to sort.

3.4 Other work

The ground-state energy of some spin glass and optimisation models on
random regular hypergraphs have recently been calculated exactly using a
replica symmetry breaking ansatz [108]. The same techniques also allows
one to get approximate solutions for quantities such as the entropy and
ground state energy for problems on hypergraphs with fluctuating connec-
tivities.

Good introductions to the satisfiability problem, some algorithms used
to solve it, and the phase transition phenomenon found in it can be found
in the introductory article by Hayes [109] and the lecture notes by Pitassi [110].
The survey paper by Cook and Mitchell [44] contains a nice overview of the
satisfiability problem, the algorithms used to solve it, and the threshold
phenomena found for k-SAT from the point of view of a computer scientist.
Martin et al [111] is very good and recent overview of what physicists have
done in this field.

One of the optimisation problems that has been studied most by physi-
cists is the travelling salesperson problem. It too has been shown to exhibit
a transition in solvability [112]. For a nice introduction to a physicist’s view
of this problem as well as a list of references, see [113].
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Computer simulation

4.1 Monte Carlo simulation

Statistical physics relies on the computation of measurable quantities with
help of the partition function

Z =
X

Si=�1

exp (��H(fSig)); (4.1)

where � = 1
kBT

is the inverse temperature, kB the Boltzmann constant,
and H the hamiltonian of the system. The notation

P
Si=�1

means that
we should sum over all possible spin configurations; if the system has
N Ising spins, there are 2N terms in the sum. The Boltzmann weight
exp (��H(fSig)) is interpreted as the probability that the system is in that
particular spin configuration; Z can also be seen as the generating function
of this probability distribution. (Note that the Boltzmann weights can be
derived from information theory using a maximum entropy argument (see,
e.g., [25]).)

All measurable quantities can be expressed as an expectation value us-
ing this probability distribution. The average energy, for instance, is

h�i =
1

Z

X
Si=�1

H(fSig) exp (��H(fSig)) = �
@ logZ

@�
: (4.2)

How can we use computers to calculate this? In principle, this is trivial.
Just calculate the energy by explicitly summing over all configurations in
equation 4.2. The problem with this is that since there are 2N different
configurations, only small systems can be studied.

There is a much simpler method: Monte Carlo simulation [114]. This
method determines the energy by a simple average over just a few of the
possible configurations, without taking the Boltzmann factors into account.

39
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Monte Carlo (MC) simulation works by starting in a random spin con-
figuration S (i.e., one that is disordered, representative of the high temper-
ature phase). The spin configuration is then changed into a new config-
uration S 0, most often by flipping a single spin (Glauber dynamics [115])
or exchanging two spins (Kawasaki dynamics [116, 117]). The difference
in energy �E of these two configurations is then calculated, and the new
configuration accepted with probability f(�E), else rejected. There are var-
ious possibilities for f . In the work reported in this thesis we have used
f(�E) = 1 for �E � 0, and f(�E) = e���E for �E > 0. The Boltzmann fac-
tors are thus considered implicitly in the algorithm. Instead of multiplying
the measurements with them and summing over all configurations, they
determine which configurations the sum runs over. Normally, time is not
increased until N new configurations have been tried; this is called one MC
step per spin, or MC sweep, or epoch.

There are several other possible choices for f . The main limitation is
that detailed balance must hold, i.e., the ratio between the probability to
make a transition from configuration S to configuration S0 and the probabil-
ity of the inverse transition must be equal to the ratio of the configurations’
Boltzmann factors (this is the reason for the choice of f above).

For T = 0, the Monte Carlo method reduces to a hill-climbing search
procedure. It starts with a random configuration and tries to change this
locally into a configuration with lower energy. This means that the MC
method can get stuck in local minima. Finite temperature simulations also
allow transitions that increase the energy, but with exponentially decreas-
ing probabilities.

A variant of the MC method is the simulated annealing method [118].
Here the temperature is initially high but is reduced during the simula-
tion. This minimises the risk of getting stuck in a local minima early on
and improves the chance of reaching the global minimum searched for.
Simulated annealing has been used to solve several optimisation problems
with good results [50].

A general problem with the MC method is that care must be taken to
ensure that the generated configurations are independent of each other.
Data is not collected at each time step but instead with some granularity
tg. Normally, tg is determined by requiring that some correlation function
of the spin configurations is small. Another problem is that the initial ran-
dom configuration is often not characteristic of the temperature at which
the simulation runs. The system must be equilibrated for a long time before
measurements can start. The time needed for this equilibration diverges
as T approaches the critical temperature as � � �z � jT � Tcj

��z, where � is
the correlation length, � the standard critical exponent relating the correla-
tion length to the temperature, and z the dynamical critical exponent (see,
e.g., [28]). This confirms that patterns get more complex (since it takes
longer for simulations to determine them) as the temperature approaches
Tc.



4.2 Relaxation 41

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

t (MC steps per spin)

ε(t)

Figure 4.1: Energy relaxation from T = 0 Monte Carlo simulations of a
square lattice Ising model with N = 104 spins averaged over 1000 different
runs. Results are shown for both spin exchange dynamics, that conserve
the order parameter, (upper curve) and single spin flip dynamics, which
allow the magnetisation to change (lower curve). There is a clear power law
relaxation � � t�r with r = 1=3 and 1=2 for the different dynamics.

4.2 Relaxation

— Um. What’s the name of the word for things not being the same
always. You know. I’m sure there is one. Isn’t there? There must be a
word for it ... the thing that lets you know time is happening. Is there
a word?
— Change.
Delirium and Dream, in Brief Lives

Figure 4.1 shows how the energy

� = �
1

N

X
<i;j>

sisj (4.3)

changes with time for the standard Ising model with N spins si = �1 placed
on a 2D square lattice using both Glauber and Kawasaki dynamics. The
sum runs over nearest neighbours < i; j > only. A power law relaxation is
clearly seen. Note the anomalous behaviour for early times — this is an
example of a cross-over behaviour, where there is one exponent for very
early times and another for later times.

In addition to being interesting in itself to study, this relaxation (or
coarsening) behaviour also has applications in social science, were the goal
is to study how an opinion or a rumour spreads through a population, and
epidemiology, where it is important to know how a disease will spread.

Experimentally, it is found that all models with scalar order parame-
ter and discrete up down symmetry have the same behaviour (i.e, are in
the same universality class) as the Ising model. In Halperin and Hohen-
berg’s [119] classification, this is model A, while the universality class of
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the model with conserved order parameter is model B. Extensive simula-
tion results for some models in these classes can be found in [120]. Note
that there is also a hidden assumption that the interactions are local —
random graph or small world models do show different behaviour.

In order to explain the relaxation, we first need a continuum description
of model A. The appropriate continuum description is the Ginzburg-Landau
model, consisting of a order parameter field m(~r) and with free energy

F =

Z
d~r

1

2
(rm)2 +

�

2
m2 +

�

4
m4 � hm (4.4)

where h is the magnetic field. Arguments for the validity of this expression
as the proper continuum version of the Ising model can be found in [28].

We are interested in how the energy behaves after a quench from a
high temperature, disordered state into a temperature below the ordering
temperature Tc. The system can not at once go into the composition that is
favoured at this temperature. Instead small domains (droplets) that have
the same value of the order parameter will form. If these droplets are
sufficiently large, they will grow, otherwise shrink. When all droplets have
disappeared and the system is homogeneous, the coarsening has stopped.
Figure 4.2 shows these droplets in the 2D Ising model at T = 0 following a
quench from a disordered state (see also
http://fy.chalmers.se/˜tfkps/java/ising.html ).

How can this growth of the droplets be described quantitatively? Recall
equation 4.4; it gives rise to the following equation of motion for the order
parameter

dm

dt
= ��

ÆF

Æm(~r)
= ��[�r2m+ �m+ �m3 � h] (4.5)

where � defines the time scale of the system.
Assuming spherical symmetry and making an ansatz m = m(r � R(t)),

this is rewritten as

�
1

�

dm

dr

dR

dt
=

d2m

dr2
+

(d� 1)

r

dm

dr
� �m� �m3 + h: (4.6)

We want to describe the domain wall, which is in the region r � R and
has a small width. It is thus possible to replace r by R in the equation.
Introducing v = dR

dt gives

d2m

dr2
+ [

(d� 1)

R
+

v

�
]
dm

dr
� �m� �m3 + h = 0: (4.7)

Equation (4.7) contains a dissipative term [(d�1)R + v
� ]

dm
dr . In the absence of a

magnetic field h, it can be argued [121] that this term must vanish, giving
the velocity v of the interface as

v =
dR

dt
= �

�(d� 1)

R(t)
(4.8)
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Figure 4.2: This figure shows the time evolution of the 2D square lattice
Ising model at T = 0. Starting from a highly disordered state (top left), the
system coarsens and droplets are formed.
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with solution

R(t) =
q
R2
0 � 2�(d� 1)t: (4.9)

The interpretation of this result is that after a time t, only those domains
whose length scale is larger than R(t) will remain — the system will be
ordered on all smaller length scales.

The length scale at which the system has ordered grows as a power
law of time. What does this imply for the energy? A domain of radius
R will have a surface energy contribution proportional to �d = Rd�1 in d
dimensions. If the total volume of the system is N , there will be on average
nd = N=Rd such domains, leading to the total energy of the system being
� � 1

N �dnd = R�1. From the result (4.9) for the growth of the length scale, we
then get that the energy of the regular Ising model should grow as � � t�1=2,
which is consistent with the results from simulations shown in figure 4.1.

For the model with conserved order parameter things get more com-
plicated, but it is possible to argue for the � � t�1=3 law that is realised
experimentally [121, 122]. This is a model where the ground state is not
trivial to find. It can serve as a model for e.g., a system of two types of
atoms that can diffuse but can not be converted into each other.

Other universality classes for coarsening phenomena have been identi-
fied by Lai, Mazenko and Valls [123]. In addition to model A and B, they
introduce two types of system that have logarithmic coarsening, R(t) �
R0 + (AT ln t

� )
m. Such logarithmic coarsening has been found in a simple

tiling model by Shore et al [124].
For strongly disordered systems, additional complications arise, since

there is currently no consensus on how the energy of an excitation relates
to any length scale in the system, or even if there are length scales at all in
the systems. For instance, figure 20 in paper I seems to indicate that for
the graph colouring problem there are no domain structures in the normal
sense.

Experimentally, coarsening can be measured using the equal-time struc-
ture factor

S(~r � ~r0; t) = hm(~r; t)m(~r0; t)i (4.10)

which is independent of time in equilibrium, but shows a scaling behaviour
S(~d; t) = f(j~dj=R(t)) during equilibration.

For a list of experimental systems that obey the scaling relation R(t) �
t�1=2, see the paper by Brown and Rikvold [125] which also contains an
extensive numerical study of a 3D system obeying equation 4.4 of Model
A. Note that for large-dimensional systems, it is necessary to have a large
linear size and run the simulation for a very long time in order to see the
scaling; this is the reason why it was necessary to use extremely large
system sizes in paper I.
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4.3 Persistence and damage spreading

Recently, a new measure has been introduced in the context of coarsening
phenomena. Instead of just measuring the energy or the magnetisation of
the spins in the model, it might also be interesting to look at how often
a certain spin changes from up to down or vice versa. The fraction of
spins that have not yet changed values is referred to as the fraction of
persistent spins. This has direct applications in e.g., voter models, where
it measures how often a given voter changes their opinion. A voter model
is similar to a kinetic Ising model but has no Hamiltonian. Instead, each
time a spin is considered a random neighbour is selected and the two spins
are aligned with each other. This can be seen as a toy model for how
opinions and rumours spread through a population. The most interesting
property of voter models is that in dimensions 1 and 2 all the “voters” will
eventually reach the same opinion, while in higher dimensions it is possible
for minority opinions to survive.

Another interesting quantity to study is damage spreading [126, 127].
Here two or more system are simulated at the same time, using the same
random numbers to determine configuration changes and whether or not
they are accepted. The question asked is whether or not a small differ-
ence in the initial spin configurations spreads throughout the system or
if it heals. Interestingly, the qualitative behaviour in damage spreading
has been shown to depend on the updating order as well as the choice of
algorithm [128, 129, 130].

A natural use of damage spreading is for playing “what if”-type scenarios
in models of complex systems. For a voter model, for instance, damage
spreading studies how much influence a (small) set of voters can have over
the final outcome of the election.

Damage spreading works by duplicating an equilibrium spin configura-
tion of a system and changing a fraction d0 of the spins. Both systems are
then subjected to the same thermal noise and the distance between them
is calculated. In Monte Carlo simulations, both systems are simulated si-
multaneously: the same spin is selected for spin-flip in both systems, and
the same random number (“thermal noise”) is used to determine whether
an energy-raising flip should be performed.

After equilibrating both systems, the Hamming distance (the number of
different spins) between the spin configurations S� and S�

h(S�; S�) =
1

N

X
i

(1� Æ
S�i
S�i

) (4.11)

(where Æ is the Kronecker delta function) is measured. The Hamming dis-
tance can also be expressed in terms of the Parisi overlap [20]

q =
1

N

X
i

S�i S
�
i = 1� 2h: (4.12)
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In analogy with the ordering temperature Tc, the spreading temperature
Td is defined as the temperature below which the difference between the
systems disappears after again equilibrating the systems [131, 132].

Coarsening as well as persistence and damage spreading are examples
of things that are dependent also on the update procedure. This is an
important feature of complex systems that is often not emphasised — the
dynamics can be part of the definition of the model, not, as in Monte Carlo
simulations of traditional physical systems, just a tool to study it.

4.4 Difficulties in numerical simulations

It is very important to be careful when drawing conclusions based on nu-
merical simulations.

The first problem with computer simulations is of course to make sure
that there are no bugs in the computer code. In addition to thoroughly
checking the source code and testing it on systems where the results are
known, all algorithms used should be implemented at least two times and
the programs run against each other to make sure that they give the same
results�.

It is also important to check several different system sizes and make
sure that production runs use a large enough system so that finite size ef-
fects are minimised. If the results do not converge, it is sometimes possible
to make an ansatz for how the results scale with the size and extrapolate
to infinity.

If there are several different parameters in the model, their full ranges
must be explored. If the definition of the model relies on random numbers,
it is vitally important to make an average over several different runs. If the
Monte Carlo method is used, there should also be an average over several
restarts of the algorithm using different initial conditions. It might also be
necessary to use several different kinds of initial conditions (e.g., in damage
spreading simulations both equilibrated and random configurations should
be damaged).

It is important to estimate error-margins for all measured quantities.
Second moments should be computed for everything that is measured, and
the results from different runs should be compared against each other. It
is far better to store too much information from each run than too little.
Measure and store everything. For spin models, the fraction of persistent
spins as well as the number of times that individual spins have been up-
dated are example of quantities that are helpful to store when debugging
code. If the Monte Carlo algorithm allows several kinds of moves (such as
in the polymer simulations described below), the acceptance rate for each
move should be stored.

�It goes without saying that the programs should be written at different times so that
they are independent. This should be as natural as running the programs through gprof .
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All random number generators use a seed to generate a sequence of
pseudo-random numbers. This seed, along with all parameters describing
the system, should be saved in the output of each run, in order to be able
to reproduce exactly the same results. It is also nice to store the time
used in each data run in the output file — this allows for the collection of
interesting statistics from old data files when one should be writing one’s
thesis.

It is also important to make sure that the random number generator
used is random enough. Different generators are good for different things,
and one should never just use the system default generator without mak-
ing sure that it is good enough. Results should always be verified using
several different random number generators. A generator that is adequate
for all the simulations reported in this thesis is the Mitchell-Moore gener-
ator described in [133]. This simple generator has the added advantage of
being very fast. For verifying the results, I have used some different linear
congruential generators, most often the standard C library’s drand48() .

There are several important papers on random number generators that
should be read by everyone who does numerical simulations [133, 134,
135, 136]. Other important papers to read for anyone considering doing
numerical simulations are [137, 138, 139]
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4.5 Monte Carlo simulation of polymers

As an example of computer simulations of a system that is not a spin
model, this section will present a study of the number of occurrences of
small sub-structures in polymers.

Lattice models of polymers have attracted much attention from physi-
cists. Part of the reason for this is the similarities between these models
and other interesting physical problems, such as spin glasses [140]. The
advance of high-speed computers has also contributed to this trend, since
they make it possible to simulate larger and larger systems, and in some
cases even to make exact enumerational studies. The problem of protein
folding, how a protein attains its complete 3D structure is one example
where both these factors contribute. Folding generally takes place in a
frustrated energy landscape and has been shown to be equivalent to a spin
glass (see, e.g., [141]) and to be an NP-complete optimisation problem [142].
This problem is also very important from a practical point of view. Experi-
mentally, it is found that many proteins share the same 3D structure [143]
and that the structures seem to be built out of a small set of recurring mo-
tifs. Much work has been devoted to the concept of designability, the fact
that many different protein sequences fold into the same three-dimensional
structure. Using exact enumeration of all sequences and folds on small lat-
tices, Wingreen and co-workers (e.g., [1, 144, 145]) have shown that some
structures are native states of many more sequences than others and that
these folds share some of the qualitative features of real protein structures.

Here we look at a simple lattice model for polymers and determine the
distribution of small substructures appearing in the collapsed state. The
motivation for this is that if there are a few patterns that are repeated often
in the ground state, it would be worthwhile to try to build a collapsed state
by concatenating these in some sort of Monte Carlo procedure.

The model we use is very simple. We place n = 50 beads on a 3D lattice of
linear size L = 100. The system is then equilibrated and we start measuring
the distribution of substructures. This process is repeated for nr restarts.

Chain-crossings are not allowed and the number of beads on each site
is restricted to be at most 1. The energy is simply the number of bead-bead
contacts,

H = �

NX
i=1

NX
j=i+2

�(ri; rj) (4.13)

where ri denotes the position of the i’th bead and �(a;b) is one if a and
b are nearest neighbour sites. The second sum starts at i + 2 because we
choose not to include the N � 1 contacts along the backbone of the chain
in the energy.

At each Monte Carlo step in our simulations we try to move each of the
N beads in the chain. For the head and tail beads, we only consider a ro-
tation around its nearest neighbour (we could possibly also allow rotations
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Figure 4.3: The two local configurations that are exchanged in the three
beads move.

Figure 4.4: The two local configurations that are exchanged in the
crankshaft move.

around more distant neighbours). For the beads in the bulk of the chain,
three different moves are considered. The simplest is the so called “3 bead
flip” move, which is illustrated in figure 4.3 and can be described as mov-
ing a kink in the chain. A more complicated move is the crankshaft move
(figure 4.4), which flips a “pocket” of the chain inside out. The final move
was included in order to make it possible to untie knots of the chain — as
shown in figure 4.5 it is similar to the crankshaft move but involves moving
3 beads instead of 2. The crankshaft move is attempted with a probability
p1, while the “3 bead crankshaft” move is attempted with probability p2. For
a more detailed description of and motivation for using these moves, see
the reviews by Sokal [146, 147].

In the simulations, we look at the number of times that specific sub-
configurations of l + 1 beads occur. The substrings are represented as
strings of length l where each letter in the strings denotes a direction:
forward, right, left, up or down. We choose arbitrarily to look for a specific
start sub-configuration and then storing the sub-configuration of the next
l+1 beads. In the results presented here we chose to look for appearances of
the pattern “two steps in the same direction, but not three”. The motivation
for this is that it is a simple pattern that should appear many, but not
too many, times for each run. We also need a pattern that specifies local
coordinate axes, so that we can compare appearances of the same pattern
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Figure 4.5: The two local configurations that are exchanged in the knot
move.

but rotated 90 degrees around one of the axes.
For the results presented here we looked for substrings of length l = 9;

we also did runs with smaller l’s. In order to check the results, we calcu-
lated the entropy of the distribution of strings in the different runs. This
was stable against both different runs and different sizes of the substrings.

Not very surprisingly, the results turn out to be a power-law. All plots
show n on the x-axis and the number of strings that occur n times on the
y-axis. A power-law thus means that there is no characteristic number of
occurrences. If instead the plots were entered around some value it would
mean that most strings occur that many times (this would happen if strings
were selected randomly).

We used simulated annealing to equilibrate the systems, running each
system for on the order of 104 moves before measuring. For each temper-
ature, an average over at least 15000 different runs was performed; each
run lasted for at least 20000 time steps.

As can be seen in figure 4.6, there is a power-law for small tempera-
tures. As temperature is increased, this power-law is destroyed and the
curves become almost exponential, eventually approaching a gaußian dis-
tribution. This can be seen in figure 4.7.

The conclusion to make from figure 4.6 is that it is not possible to build
up polymer configurations from a small number of small substrings. There
are as many substrings that occur from 1 to 10 times as there are that
occurs from 1000 to 10000 times, so the former cannot be ignored.

This section has presented an amusing result from simulations of lattice
polymers. It would be interesting to check other models where strings
occur naturally (e.g., as interfaces between domains in spin models) and
see if they display similar power-laws.
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Figure 4.6: This figure shows the number of sub-strings that occur n times
for a run with temperature T = 0:4. Here we get a reasonable power-law
with exponent close to �1.
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Figure 4.7: This figure shows a distribution centered around a mean value;
i.e., random selection of strings. The data shown here was collected at
temperature T = 1:6.
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5
Regular, random and small world

graphs

5.1 Regular lattices

In order to properly describe a general network or graph, two things are
needed. First, we need a list of the nodes of the graph. The nodes can
be named and have various properties associated to them, but for describ-
ing the graph it is enough that they can be enumerated from 0 to N � 1.
Second, we must know which nodes are connected to which. This is most
easily thought of as a list of edges (i; j) that are connected. Each edge can
have various properties associated to it (e.g., a bond-strength Jij). Mathe-
matically it is sometimes convenient to implement the graph as a function
�(i) that gives a list of the neighbours of node i. In physics, on the other
hand, it is most useful to think of a symmetric matrix Jij where Jij is non-
zero if and only if node i interacts with node j. The value of Jij then gives
the strength of the interaction (and a negative Jij means an antiferromag-
netic interaction, potentially causing frustration in the model).

Many of the graphs used in physics are considerably simpler. Some sys-
tem are translationally symmetric, meaning that they look the same when
moved. This means that it is enough to specify completely the edges among
a small subset of the nodes. The rest of the graph can be constructed by
placing several such cells next to each other. Some examples of this kind
of regular lattices are shown in figures 5.1 and 5.2.

Regular lattices have proven very useful in traditional condensed matter
physics. It is of course an oversimplification to assume that only atoms that
are close to each other interact. However, since most physical interactions
decrease rapidly with distance, it is an approximation that works surpris-
ingly well. All regular lattices have some features in common. By looking

53
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Figure 5.1: A square lattice.

Figure 5.2: A triangular lattice

at the graphs in figure 5.1 it is for instance apparent that these graphs
are clustered, in the sense that if we remove one node, its neighbours will
still have a short path between them. Another interesting characteristic of
regular lattices is that the average distance between nodes is quite large.
For a lattice with N sites in D dimensions, it grows as N1=D.

A natural extension of the regular lattice is to consider other graphs
where all nodes are equivalent (i.e., have the same neighbourhood). The
simplest example of such a graph is the complete graph with N nodes, KN .
This consists of N nodes where each node is connected to each of the other
(so the graph has

�
N
2

�

edges). This graph is particularly useful when one wants to use approx-
imate methods to study a physics problem. In what is called mean field
theory, one makes the approximation that all neighbourhoods are equiva-
lent. This obviously ignores all fine-structure of the problem and it is not
a priori clear that it gives correct results. It turns out, however, that if the
fluctuations in the system are small enough, mean field theory is exact. In
particular, for phase transitions there is an upper critical dimension above
which mean field theory is exact.
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5.2 Random graphs

Traditionally, two different models of random graph processes have been
used [148]. In the first model, G(N; p), each possible edge (i; j) is considered
and included in the graph with a probability p. The other model, G(N;M)
instead selects without replacement M of the�

N
2

�

possible edges. Note that these models are not completely equivalent. For
the latter model, the graph is guaranteed to have exactly M edges, while
the number of edges is a stochastic variable for the former. In the thermo-
dynamic limit, choosing

M = p

�
N
2

�

gives graphs that should share all physical properties. An important quan-
tity characterising different random graphs is their connectivity or average
degree. This is given by  = 2MN = p(N � 1) for the two ensembles.

Graph theory is a fascinating mathematical subject with many deep
results; see for instance [148, 149]. One of the most interesting results
(which will also be useful in understanding some of the results presented
in this thesis) is that there is a phase transition as the connectivity of the
graph grows. For small connectivities, the graph consists of many isolated
trees� of nodes. At  = 1 this suddenly changes and a giant component
emerges, containing on the order or N nodes. This percolating transition is
somewhat surprising — note that the graph can not be connected until it
has a connectivity of at least 2(N � 1)=N . Another important result is that
the average path-length between two nodes scales as logN for large N .

Another example of a random graph that is useful in physics is the
� Feynman diagram or regular random graph with connectivity . This
consists of all the graphs where each node is connected to exactly  other
nodes. Notice the difference between this and G(N;M ) — in this ensem-
ble, the average connectivity is fixed, but it can fluctuate between dif-
ferent nodes. The Feynman graphs are particularly useful for theoreti-
cal studies since they can be generated by the appropriate action (see,
e.g., [150, 151, 152, 153, 154, 155]). A very interesting result for this kind
of graphs is that for ferromagnetic models, the loops in them don’t matter
— the same results are obtained for random regular graphs as for Bethe
lattices [156]

A natural generalisation of graphs is to replace the edges by triples i; j; k
or even n-tuples. Such structures are called hypergraphs and have natural
applications in for instance the k-SAT problem. The physical properties of
spin models on 3-graphs have been studied by Barrat and Zecchina [157].

�A tree is a connected graph without loops.
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5.3 Small world graphs

There are many different kinds of networks in Nature. Perhaps the first
that comes to mind is the social network of a society. Here each node
represents a person, while there is an edge between two persons if they
know each other. What does this graph look like? It is very unlikely that it
would be a regular lattice — our acquaintances are not ordered in such a
simple way. The social network however shares an important feature with
regular lattices: they are clustered. Clustered means that there is a high
probability that two neighbours of a given node also are direct neighbours
themselves. An alternative way to think about it is to consider the average
path length between two neighbours of a node i. Since both nodes are
neighbours of i, this is obviously smaller than 2. If node i is now removed
from the graph, we have to find a new shortest path between the nodes.
If this new path length is still small, the graph is clustered. All regular
lattices are obviously clustered, and social networks are clustered too: if
person A knows persons B and C, there is a high probability that B and C
will also know each other.

Another important feature of social networks is the so called small world
effect: When two strangers meet, it sometimes happens that the two people
turn out to have mutual acquaintances.

The idea behind small world networks was first introduced by Mil-
gram [158] in 1967. Milgram’s experiment consisted of studying the path of
letters addressed to a stockbroker in Pittsburgh. The letters were given to
people in rural Nebraska with the rule that the current holder of the letter
must hand it over to somebody with whom they were on a first-name basis.
The average number of links in the chain of people between Nebraska and
Pittsburgh was six, hence the term “Six degrees of separation”. The num-
ber is of course not exact (a severe shortcoming of the experiment was that
only one third of the letters were actually delivered!), but the phenomenon
that people are linked via a small number of nodes has been verified by
later, more careful experiments (e.g, [159]).

The small world effect has later been popularised by occurring in me-
dia, such as the movie “Six Degrees of Separation”. There are also various
amusing games using the same concept, such as the web site
http://www.cs.virginia.edu/oracle/ where a user can find the distance
between an arbitrary actor and Kevin Bacon. Actors here represent the
nodes of the graph, and two actors are linked if they have participated
in the same movie. It should be noted that the actors represented in the
database are American and European ones. The network of actors in In-
dian movies, for instance, probably has few connections to this.

Another example are the Erdös numbers. Named after the famous
mathematician Paul Erdös [160], these are defined recursively: Erdös has
Erdös number 0; a person has Erdös number n+1 if they have co-authored
a paper with somebody who has Erdös number n (there are at least 507
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Figure 5.3: This figure shows the construction of a small world starting
from a 2D square lattice (left). In the right figure, two edges have been
rewired and are shown as dashed lines.

persons with Erdös number 1; see the web site
http://www.oakland.edu/˜grossman/erdoshp.html ).

Regular lattices do get shorter and shorter distances between nodes as
the dimensionality increase (the diameter scales as N1=d for a d-dimensional
lattice with N nodes), but this is still to large. Instead, new graph models
are needed.

A small world graph is intermediate between a regular lattice and a
random graph — it has both clustering (like a regular lattice) and short
maximum distances (like the random graph). It is constructed by consid-
ering in turn all the bonds of a lattice and with some probability p replacing
them with a random bond. So by changing the rewiring probability p we
can interpolate between the regular lattice and a random graph. An exam-
ple of a small world obtained by rewiring the 2D square lattice is shown in
figure 5.3.

Note that the small world for p = 1 differs slightly from a random graph,
since all nodes are guaranteed to have a local connectivity of at least =2
where  is the connectivity of the regular lattice. The distribution of con-
nectivities is more broad for the small world with p = 1 than for the corre-
sponding random graph.

The advance of the Internet and other communications networks has
highlighted the need to be able to not only describe but also design net-
works that communicate efficiently. Efficiently here has two distinct mean-
ing — the obvious one that a message from A to B should be transmitted
along the shortest possible path, and also an equally important one that
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the network should be fail-safe. If a node suddenly disappears, it should
be possible to quickly find alternate paths between the rest of the nodes
that don’t involve the dead node. A very clear definition of small world be-
haviour in terms of efficiency has been given by Latora and Marchiori [161].
Clustering is here a local efficiency, measured as the time needed to com-
municate in the network, assuming unit velocity of signal propagation. The
efficiency between two nodes is thus

�ij =
1

dij
(5.1)

where dij is the shortest distance between nodes i and j and dij =1 if there
is no path between the nodes. The global efficiency is the average of this
over all pairs of nodes in the graph. A high global efficiency corresponds to
a small diameter of the graph. The local efficiency for a node i is calculated
as an average of �ik over all neighbours k of i, and the total local efficiency
of the graph is then the average of this over all nodes. The local efficiency
is a measure of the fault tolerance of the network, or of the clustering.

A small world graph still has the same poissonian distribution of node-
connectivities as a random graphs, but many graphs in Nature instead
have a power-law distribution. Such graphs are called scale free and have
recently attracted a lot of interest, see, e.g., [162, 163, 164, 165].

A surprising connection between scale-free networks and traditional
physics has been found by Bianconi and Barabás [166], who map a growing
network model to a Bose gas and find that there is a possibility of Bose-
Einstein condensation occurring for the system — in this phase all nodes
are connected to one central node.

Examples of naturally occurring graphs that can not be modeled by ran-
dom graphs include the Internet, telephone networks, airline timetables,
electric power grids, neural networks, interactions between monomers in a
folded protein, metabolic pathways of biological organisms, electrical cir-
cuits, networks of sexual contacts and collaboration graphs of film actors,
business people, and scientists (see [167, 163, 168, 169, 170, 171, 172,
173, 174, 175, 176] and references therein).

Much of the analytical work on small world networks has used a vari-
ation of the standard rewiring model [177]. In this model edges are never
deleted from the graph, only added. This means that the mean connectivity
of the graph will not be preserved (this is the reason why this model was
not used for the work presented in papers III and IV.

The average distance between two nodes has been proved [178, 179] to
have a scaling form

l =
L

2d
F (pLd) (5.2)

where F is an universal scaling function. x = pLd is two times the average
number of shortcuts of the network. F is the fraction by which the average
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distance between nodes is reduced by the introduction of shortcuts. F
approaches 1 for small values of its argument, while it grows as log x

x for
large values; this agrees with our intuitive notion that l should be L for
small p and logL for p! 1. Additional properties of this small world model
have been calculated by Almaas et al [180].

The eigenvalues of the adjacency matrix Jij of both scale-free and small
world graphs have been calculated by Farkas et al [181]. For random ma-
trices, the spectral density of eigenvalues is known to converge to a semi-
circle function, but they find completely different behaviour for realistic
graphs. In particular, small-world networks turn out to have spectra that
can not easily be described by any function. This is yet another indication
that it is not enough to put models of interacting agents on random graphs.
A similar study has been made by Monasson [182]. It would be interesting
future work to do the same for small worlds starting from d-dimensional
regular lattices.

Exact calculations of many properties of these models are still missing;
the analogue between the occurrence of the small world phenomenon at
p = 0 and a first order phase transition [183, 177] can perhaps lead to
better result in the future.

Another alternative model has recently been introduced by Holme and
Kim [184]. Here instead of adding single nodes triangles are added. This
leads to a model that is both scale-free (i.e., has power-law distribution of
connectivities) and shows clustering. The most important advantage of this
model is that it provides for an easy way to control the amount of clustering
in the graph.

Dynamical properties are often more difficult to analyse than static.
One of the first dynamical models that was studied for small world graphs
is the density classification problem. Here a cellular automaton is given the
problem of determining whether the majority of its inputs is 1 or 0. This
problem was shown to be easier for CA placed on small worlds than on
regular lattices [168, 185]. The same authors also found that for the game
“Prisoner’s Dilemma”, cooperation arose less frequently on a small world
than on a lattice. Neural networks [186] have been found to both have
fast responses and possess coherent oscillation on small world graphs. No
other network structure has been found that combines these two proper-
ties.

Rumour propagation is another example where the network plays a vi-
tal role, as is voter models of various kinds. It can be argued that the
results in paper III imply that such models placed on square lattices are
inaccurate and that they instead need to be put on small world or ran-
dom graph networks. Disease spreading has been investigated in among
others [179] and the position of the percolation point has been found ana-
lytically for 1D small wold networks by Moore and Newman [187, 188]. It
has been shown [189] that for a scale-free graph an epidemic will spread for
an arbitrary small transmission probability. Dezsö and Albert have how-
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ever shown that immunising a sufficiently large number of nodes with high
connectivities can lead to a finite effective epidemiological threshold [190].

Some work has been done on evolutionary models on small world graphs.
Kulkarni and co-workers [191] have found that the nodes with the high-
est connectivities have the most evolutionary activity in the Bak-Sneppen
model. In most models of evolution, only point-mutations that change one
gene are allowed (this corresponds to flipping one spin in a Monte Carlo
simulation). Bagnoli and Bezzi [192] have studied the effect of allowing
a small fraction of larger mutations, which has the effect of turning the
hypercube of genotypes into a small world network. They find that by al-
lowing a small number of such short-cuts the same results are obtained as
when arbitrary mutations are allowed. This is of course good news for the
speed of exploration of the landscape, but it is bad news for the stability!

Most of the work on small world networks has started by rewiring a
one-dimensional ring lattice, but in papers III and IV we instead use the
2D square and 3D simple cubic lattices. It should be noted that these small
world networks differ from those obtained by rewiring a ring lattice in one
respect: their clustering coefficient does not display the same threshold
behaviour as a function of p: it starts at 0 for p = 0 (since the regular
lattices used are bipartite) and then grows to the random graph value. The
graphs used here are however still clustered in the sense that if j and k
are neighbours of i, then there is a short path between them that does not
pass through i (i.e., they are locally efficient).

The use of small world graphs to study physical models has so far been
limited. Barrat and Weigt [193] and Gitterman [194] have used them to
study the crossover from 1D to mean field behaviour for the ferromagnetic
Ising model, finding a disorder-order transition at a finite temperature Tc(p)
for any p > 0, provided that the system size is large enough. A very recent
Monte Carlo study [195] of this model was unable to determine whether
the transition happened only for finite p larger than some critical pc. This
is probably due to finite-size effects.

The phase transition in the XY model on a 1D small world lattice has
been investigated by Kim et al [196]. The find the expected appearance
of an order-disorder phase transition and calculate the critical exponents
which are found to take mean field values. It would be useful to study the
crossover from 2D to mean field behaviour for the XY model by putting it
on the small world lattices used in paper III.



6
The papers

In paper I we study the relaxation of the energy, defined as the number
of unsatisfied constraints, of k-COL and k-SAT. We find that there is a
change from fast, exponential decay to power law relaxation as the con-
strainedness (measured by the connectivity  in k-COL and by the ratio of
the number of clauses to the number of variables � in k-SAT) is increased.
We also find evidence for a freezing transition: above a certain c the T = 0
Monte Carlo method can no longer find a state with vanishing energy. Ev-
idence is presented that the former transition exhibits finite-size scaling
behaviour. Both the changes occur for smaller values of  and � than the
solvability transition. The change in the energy landscape can be seen
as the landscape transforming from a funnel-like (like that shown in fig-
ure 1.5) landscape into a more rugged one. This change in the appearance
of the energy landscape for k-COL and k-SAT has been studied further by
Biroli et al [105] who by using a variational approach find that for � > 3:96
the ground-states (as well as the low-lying excitations) of 3-SAT organise
themselves into many clusters, separated from each other and unrelated
by symmetry. Paper I also presents some data for the fraction of persistent
spins r(t) in k-SAT. These data seem to indicate that there is a transition
also in the behavior of r(t).

Paper II puts ferromagnetic Ising models on random graphs with con-
nectivity . For this model the T = 0 ground state is trivial for all , but a
dynamical freezing transition for the Monte Carlo algorithm is nevertheless
found: The model freezes for a range of , while there is exponentially fast
decay for very small and large connectivities. There is a smaller range of
connectivities for which the freezing persists even using simulated anneal-
ing. The related model with conserved magnetism (which is a model for
graph partitioning, another NPC-problem) displays exponential relaxation
and freezing, and here there is no improvement using simulated anneal-
ing [197]. Similar results have been found by Spirin et al [198] for the fer-
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romagnetic Ising model on regular lattices. The freezing could turn out to
be important for models of choice-making agents, such as the voter model.
Note that Berg and Sellitto [199] have recently studied the same problem
using a replica symmetric ansatz; their figure 4 supports the freezing re-
sults from paper II.

Papers III and IV deal with spin models on small world graphs. Paper III
is about the ferromagnetic Ising model on small world graphs. By damaging
an equilibrium spin state and determining the temperature Td below which
this damage heals, we find that there is a qualitative difference between
the possible behaviours. For the 2D model with p > 0 and the 3D with
p � 0, very good data collapse can be obtained, while the 2D p = 0 instance
stands out with its own behaviour. This difference might be related to the
differences between random walks on the corresponding lattices.

Paper IV continues the study of constraint satisfaction problems by
looking at graph colouring on small worlds. The use of this kind of graphs
provides a novel way of looking at the phase transition since the average
connectivity (and hence the properties of the problem) depends on what
starting lattice is used. The paper also reports on a new ensemble of graphs
that are hard to colour using the Brelaz heuristic.



7
Suggestions for future work

The common theme of this thesis is complex energy landscapes, and in
particular the influence of the interaction graphs on local search in them.
There are still many interesting unanswered questions in this area.

The increasing speed of computers make it possible to do exact studies
on larger and larger systems. This opens the door for more thorough inves-
tigations of the statistical properties of disordered energy landscapes than
have previously been done [200]. In particular, looking at the geometries
induced on the energy landscape by different dynamics could perhaps lead
to interesting results for the constraint satisfaction problems studied here.

Another interesting issue worth addressing is the relationship between
the backbone of over-constrained variables and the fraction of unflipped
spins shown in figure 21 of paper I.

A possible combination of the work in papers I and II is to look at a
model containing both ferromagnetic and antiferromagnetic bonds.

The most important future work that should be done on these systems
is however to put them on small world and scale-free graphs. Any attempt
to study models of social agents must use an interaction graph that is
similar to those occurring in Nature. For some models, it might of course
turn out that the choice of graph does not influence the results, but this
must be checked numerically or argued for analytically.

It is surprising that so much work has been done using the original
1D version of the small world, considering that using a higher-dimensional
lattice as starting point could lead to different behaviour (as indeed it does
for the models studied in papers III and IV).

The crossover from a finite-dimensional universality class to mean field
behaviour should also be investigated by placing Ising models on larger-
dimensional small world graphs. Paper IV studies antiferromagnetic mod-
els, it would also be useful to look at how other geometrically frustrated
models (see, e.g., [201]) change as the rewiring probability is increased.
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Small worlds can also be used to study the behaviour of spin glasses
in different dimensions. One reason why it is particularly interesting to
look at spin glass models on small world graphs is the difference between
2D and 3D spin glass models. For short-range models on a 2D lattice,
the so called droplet model is applicable, whereas current evidence [202,
203, 204, 205] seems to indicate that the situation is more complicated
in 3D, where a mix of both droplet and Parisi’s replica symmetry breaking
model (see, e.g., [20, 24, 21]) seems to be valid. An additional interesting
difference is that the ground state of a 2D spin glass model can be found
in polynomial time (e.g., [206]), while it is an NP-complete problem to do
this for the 3D version. Very preliminary results on the stability of ground
states of the 3D �J model seem to indicate that there is no qualitative
change between p = 0 and p > 0 [197], but this needs to be studied much
further.

“There are worlds out there where the sky is burning, the seas
sleep, and the rivers dream; people made of smoke, and cities
made of song. Somewhere there’s danger, somewhere there’s in-
justice, and somewhere else the tea is getting cold. Come on Ace,
we’ve got work to do.”
— Doctor Who, the last episode
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“October knew, of course, that the action of turning a page, of
ending a chapter or of shutting a book, did not end a tale.

Having admitted that, he would also avow that happy endings
were never difficult to find: ”It is simply a matter,” he explained
to April, ”of finding a sunny place in a garden, where the light is
golden and the grass is soft, somewhere to rest, to stop reading,

and to be content.”
— G.K.Chesterton, “The Man Who Was October” (Library of

Dream edition)




