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Freezing in random graph ferromagnets
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Using T50 Monte Carlo and simulated annealing simulation, we study the energy relaxation of ferromag-
netic Ising and Potts models on random graphs. In addition to the expected exponential decay to a zero energy
ground state, a range of connectivities for which there is power law relaxation and freezing to a metastable
state is found. For some connectivities this freezing persists even using simulated annealing to find the ground
state. The freezing is caused by dynamic frustration in the graphs, and is a feature of the local search nature of
the Monte Carlo dynamics used. The implications of the freezing on agent-based complex system models are
briefly considered.
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The way a physical system approaches equilibrium i
subject of interest to both physicists and mathematicians
order to measure thermodynamical properties of systems
important to be certain that the system really is in equil
rium. To ensure this, in computer simulations using
Monte Carlo dynamics it is necessary to first run the sim
lation for a long time before measuring. The way that vario
properties~e.g., the energy! of the system change durin
equilibration is also interesting in itself, e.g., in studies
how an epidemic disease or an opinion spreads in a mod
social agents.

Here we study the relaxation of the energy of ferroma
netic Ising and Potts models on random graphs using Mo
Carlo simulations with the Metropolis dynamics. We find
interesting transition as the connectivity of the graph is v
ied. For very small connectivities, the energy relaxes ex
nentially fast, for intermediate connectivities the syste
freezes in a local minimum~with power law relaxation to it!,
and for graphs with large connectivities there is again ex
nentially fast decay.

The model under consideration is the standard Is
model with ferromagnetic interactions but with spins plac
on a random graph. In graph theory terminology@1#, the
ensemble used isG(N,M ), which consists of all graphs with
N vertices andM5 1

2 gN randomly selected edges. On ave
age, each node is connected tog others;g is the connectivity
or average degree of the graph. Each edge in the graph
ferromagnetic interaction between the two linked spins, a
the energy of the model can be taken to be

e5
1

N (
i , j

Ji j ~12dsi

sj !52
1

2N (
i , j

Ji j sisi1
1

4
g, ~1!

where exactlyM of the Ji j ’s are nonzero and equal to 1
Thus,e counts the number of edges linking spins with d
ferent values. Note that this differs from the standard fer
magnetic Hamiltonian by ag-dependent term. Similar mod
els on random graphs have been used to study many diffe
systems in biology and social science as well as in phy
~e.g., Refs.@2,3#!.
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The model can also be viewed as a constraint satisfac
problem. Each of theM edges in the graph corresponds to
constraint that the two linked spins should be equal. A na
ral interpretation of this is a model of a social system wh
there areN agents choosing from two different opinions
activities. A link between two agents would mean that t
two prefer to agree.

By relaxation of a model, we mean the behavior of t
energy after a quench from a high temperature disorde
spin configuration. The Monte Carlo method@4# tries to de-
crease the energy of the system by changing the config
tion of spins locally. In the Glauber dynamics@5# used in this
paper, the change is accomplished by attempting to fli
randomly selected spin. If the new spin configuration h
lower energy than the old, it is accepted. If the energy
raisedD units by the change, the new configuration is a
cepted with probability exp@2bD#, whereb51/T is inverse
temperature~this is the Metropolis@4# algorithm!. In tem-
peratureT50 simulation, no changes that raise the ene
are accepted. In most of the simulations reported here,
Mitchell-Moore additive generator~see, e.g., Ref.@6#! was
used to generate random numbers. Some runs were also
formed using the standardC library’s drand48~ ! generator;
these gave the same results.

For the standard two-dimensional~2D! Ising model, with
Ji j 51 if and only if spinsi andj are nearest neighbors on th
square lattice, two behaviors of the relaxation are possible
the order parameter is conserved by the dynamics, so tha
magnetization of the system does not change,e;t21/3, while
e;t21/2 if single spin flip dynamics are used. These beha
iors can be understood by considering domains of up
down spins@7#.

Since a random graph is locally treelike, it is natural
approximate the behavior of the random graph model w
that of the same model on a tree. Johnston and Plecha´c̆ @8#
have shown that the thermodynamical behavior of the fe
magnetic Ising model is independent of the presence of lo
in a graph: it is the same on a random regular graph and
a Bethe tree with the same connectivity. Da Silva and Si
@9# studied relaxation in the Ising ferromagnet on Cayl
trees, and showed that mean-field theory predicts expone
relaxation. Exponential relaxation can also be argued for e
ily by writing a mean-field equation for the time dependen
©2001 The American Physical Society22-1
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FIG. 1. The relaxation in a ferromagneti
Ising model on a random graph with 104 vertices,
averaged over 50 graphs and 10 restarts
graph. For small~not shown! and largeg, there is
a fast exponential relaxation, while the behavi
for g52 and 3 is a power lawe5e01t2n, with
n'1.3. The lower arrow indicates the curve fo
g51.5 and the upper one theg58 data. In be-
tween them are data forg52, 3, 4, 5, 6, and 7.
t

se
h
he

0

ch
un
n
n
r

z

ul
s

ng
e

s
er
de
tw
re
th
a
o
ca

D
d

ivi-
is

nd
al
d
ill
rts
et-
uld
ed

n a
nce

is
nd

b-
e
ve

es,

ing
,

of a spin in terms of its nearest neighbors. Glassiness in
Cayley tree ferromagnet has been studied by Me´lin et al.
@10#, who find a crossover temperature that scales inver
with the logarithm of the number of surface sites. For t
random graph model considered here, this is 0, since t
are no surface sites.

Figure 1 shows the relaxation behavior ofe for g51.5 to
8 and graphs of size 104. All data were averaged over 5
different graphs, and the Monte Carlo~MC! algorithm was
restarted in 10 different initial spin configurations for ea
graph. In order to check self-averaging, we also made r
with averages over 5 graphs and 100 initial configuratio
and 500 graphs and 1 initial configuration, and found
differences. Error bars were determined to be on the orde
1023 or smaller. The figure shows that largeg ’s cause very
fast relaxation to the ground state, while the system free
for intermediate values ofg. For very smallg ’s, the relax-
ation is of course still fast~not shown in the figure!. The
behavior for intermediate values ofg is thus different from
the treelike models. We have also obtained similar res
using ferromagnetick state Potts models on random graph

This behavior can be explained qualitatively by noti
that even though the ferromagnetic models always hav
ground state with zero energy, it is possible for theT50
Monte Carlo algorithm~and all other local search method!
to get stuck in a local minimum. The simplest case wh
this can happen is when there is a link between two no
that have different values and each of the nodes have
neighbors with the same value, see Fig. 2. Because the
only one path between the up and down domains in
figure, it is not possible to lower the energy by flipping
spin. Thus, even though the model itself is solvable and c
tains no frustration, the dynamics gives rise to dynami
frustration for local search methods.~Very recently, Spirin
et al. @11# have found freezing to a blinker state in the 3
Ising model. Blinkers will appear in the random graphs stu
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ied here too, but because of the relatively small connect
ties at which the freezing appears it is more likely that it
caused by subgraphs such as those shown in Fig. 2.!

If there are sufficiently many edges between the up a
down domains, the relaxation will be fast. No dynamic
frustration will occur and one dominant value will sprea
quickly through the graph. If there are few edges, this w
take longer, and different values will dominate different pa
of the graph. This makes it plausible that introducing a m
ric and adding a restriction to the range of the edges co
cause changes in the relaxation. This conjecture is confirm
by simulations of a model where the spins are arranged o
chain and edges only allowed between spins whose dista
is less thanaN, wherea is independent ofN. The largeg
behavior is now power law relaxation and freezing. This
similar to the behavior of the antiferromagnetic Ising a
Potts models on a random graph@12#. This is a model for the
graph coloring problem, a combinatorial optimization pro
lem that isNP complete@13#, meaning that its worst cas
instances in all likelihood require exponential time to sol
on a deterministic Turing machine.

Returning to the model with no restrictions on the edg
Fig. 3 shows the value ofe after 103 MC steps per spin as a
function of g and for system sizes ranging from 50 to 104,

FIG. 2. An example of a configuration that can cause freez
due to insufficient clustering.U andD denote up and down spins
respectively.
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FIG. 3. This figure showse after 103 MC
steps per spin as a function ofg for system sizes
N ranging from 50 to 104.
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determined using about 100 different graphs and abou
runs for each graph. The freezing region can be seen cle
The error bars of the results shown in this and the ot
figures were small, typically on the order of or smaller th
the symbols used to plot the data.

For largeN, it is possible to fit all the data from Fig. 3 o
a universal curve. Figure 4 shows the energy for largeN,
rescaled so that the maximum is 1, as a function of a resc
parameter

ĝ5
g2g0

D6
, ~2!

whereg0 is the location of the maximum andD6 was cal-
culated so thatĝ561 marks the points where the energ
attains half its maximum value. Note that the original da
03612
0
ly.
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are nonsymmetric around their maxima: when calculatingĝ
we divided by different factors right and left of the max
mum. To determine the locations of the maximum and ha
maximum points, a cubic spline fit of the data was used;
plot shows the original data points.

Since the energy barrier surrounding the local minimu
shown in Fig. 2 is small, it is likely that finite temperatu
MC simulations would not show the same behavior. To t
this, we have also tried simulated annealing@14# on the prob-
lem. Simulated annealing starts at a high temperature
then gradually decreases it during the simulation. We use
linear decrease in temperature,T(t)5T12kt, wherek was
chosen so that the simulation ends at zero temperature.

Figure 5 compares the values ofe after 103 MC steps per
spin for theT50 MC algorithm with those obtained usin
simulated annealing with start temperatureT150.1, 0.2, and
d
FIG. 4. Some of the data from Fig. 3, rescale
by the maximum energy for eachN and plotted as

a function of a rescaled parameterĝ described in
the text.
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FIG. 5. This figure shows the energy afte
103 MC steps per spin for system sizes from 50
to 104 usingT50 MC simulation~top left! and
simulated annealing with start temperatureT1

50.1, 0.2, and 0.4~top right, bottom left, bottom
right! and end temperature 0. Most of the free
ing effect disappears using simulated annealin
but even for theT150.4 runs the algorithm was
unable to find the ground state forg;2.
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0.4 and the same averaging as in the previous runs. Mo
the freezing disappears in these runs, but there is a regio
g ’s for which it remains. Note that the percolation thresho
for random graphs is atg51, well below the freezing.

In conclusion, we presented results from Monte Carlo a
simulated annealing studies of the ferromagnetic Ising mo
on random graphs. We find different regions of behavior
e(t)—the expected exponential relaxation but also some
gions where there is power law relaxation. More importan
freezing was found in the model. The freezing persisted e
for some simulated annealing runs, but almost disappear
large start temperatures. The freezing is a feature of the l
search and hill-climbing characteristics of the MC meth
,
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used. This has implications for the study of models
choice-making agents on random graphs: for some con
tivities it is not possible to reach a consensus or the glob
most effective solution by using only local information
There are intriguing similarities and differences between t
model and the corresponding antiferromagnetic model s
ied elsewhere; these could be studied further by examin
the model where there are mostly ferromagnetic bonds
with some probabilityp of instead having an antiferromag
netic bond.

I thank Stellan O¨ stlund for commenting on a previou
version of this manuscript.
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