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Damage spreading in small world Ising models
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We study damage spreading in the ferromagnetic Ising model on small world networks using Monte Carlo
simulation with Glauber dynamics. The damage spreading temperatuie determined as a function of
rewiring probabilityp for small world networks obtained by rewiring the two-dimensional square and three
dimensional cubic lattices. We find that the damage for different valupsoflapse onto master curves when
plotted against a rescaled temperature and that the distance befwesn the critical temperaturg, in-
creases witlp. We argue that when using the Ising model to study social systems, it is necessary to place the
spins on a small world network rather than on a regular lattice.
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INTRODUCTION used to determine whether an energy-raising flip should be
performed.

The Ising model is one of the most important models of After equilibrating both systems, the Hamming distance
statistical mechanics. It and its generalizations have beefihe number of different spindetween the spin configura-
used to model a variety of natural phenomena, ranging fronions S* ands’
biology to computer science and social sciefeg.,[1-4]). 1 s
Fo.r instance, many som.al systems. can be modeled by letting h(s®,Sf)=— 2 (1- 55.a) (1.1)
spin up/down denote different opinions or preferences. In N 5 S
such models, a ferromagnetic interaction is interpreted as _ o
two people who prefer to agree, while an antiferromagneti¢Where  is the Kronecker delta functioris measured. The
interaction means that they want to disagree. A magneti€!@mming distance can also be expressed in terms of the
field adds a bias that can be interpreted as “prejudice” ot si overlags]

“stubbornness,” while the randomness induced by a finite 1
temperature can be seen as “free will.” =y 2 S*sP=1-2h. (1.2
Damage spreading is a tool for studying the influence of !

perturbations on the equilibrium state of a system. It ha@/lost of the work on both spin models and damade spreadin
been used to determine some properties of the energy land: : : pin mode . ge sp 9
places the spins either on a finite-dimensional lattice or on a

scape for disordered spin systefB$ and also has great uses random graph. Here we instead use small world graphs

for playing “what if"-type scenariios in models of complex.%g’lo] to study the ferromagnetic Ising model on graphs in-
systems. For a voter model, for instance, damage spreadingyno|ating between two- and three-dimensional simple cubic

studies how much influence(amal) set of voters can have |5ttices and random graphs with the same connectivity. The
over the final outcome of the election. Damage spreadingyamiltonian of our model is

was first used by Kauffmaf6] as a tool for studying bio-
logically motivated dynamical systems, but has also since
found widespread use in physi@s.g.,[7]). H= _;j JiiSiS;, 13
Damage spreading works by duplicating an equilibrium
spin configuration of a system and changing a fractigrof whereJ;; is 1 if and only if there is an edge between spins
the spins. Both systems are then subjected to the same theidj and 0 otherwise.
mal noise and the distance between them is calculated. In Small world graphs are intermediate between a regular
Monte Carlo simulations, both systems are simulated simulkattice and a random graph; they have previously been used
taneously: the same spin is selected for spin flip in botho study, e.g., computation, diffusion, and spreading of dis-
systems, and the same random numWB#rermal noise” is  eases. The original motivation for studying small worlds is
that they possess both small diametgitee a random graph
[11]) and a high degree of clusteririlike a regular latticg
*Present address: Department of Data and Information Fusioror examples of real world networks with small world
Division of Command and Control Warfare Technology, Swedishcharacteristics and reviews of previous work, see, e.g.,
Defence Research Agency, SE-172 90, Stockholm, Sweden. Ele¢10,12—14.
tronic address: tfkps@fy.chalmers.se The small world is constructed by considering in turn all
"Electronic address: des@ma.hw.ac.uk the edgesi(j) of a lattice and with some probabilify re-
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placing it with a random edge k). The rewiring parameter change, using an ordered update instead of a rajhddfa

p thus determines how many of the links are removed andound that using the heat-bath algorithm caused the damage
can be used to interpolate between the regular lattice andt@ heal at temperatures close to and ab®ye while for the
random graph. Note that the small world fpe=1 differs ~ spin-exchange dynamics with the Metropolis algorithm the
slightly from a random graph, since all nodes are guaranteedamage spreads for all temperatures. Updating the spins in
to have a local connectivity of at least2, wherez is the ~ order instead of randomly gives a smaller damage for all
connectivity of the regular lattice. The distribution of con- temperatures. These results agree with the results of Vojta
nectivities is broader for the small world with=1. We  [19-21 for the standard Ising model.

chose to a the small world model where links are rewired and In most of the simulations, we used the Mitchell-Moore
not one where they are added because we wanted to keep th@ditive random number generatee, e.g.[22] for a de-
average connectivity of the graphs the same fopall scription. We also did some runs with the standard C li-

The use of small world graphs to study physical modeldrary’sdrand48()  generator and found the same behavior.
has so far been limited. Barrat and Wei6] and Gitterman  All simulations were averaged oveM, different rewiring
[16] have used them to study the crossover from oneprocedures, and for each small world graph an average over
dimensional(1D) to mean-field behavior for the ferromag- N, independent Monte Carlo runs was performed. Typical
netic Ising model, finding a disorder-order transition at avalues wereN,=N,= 10, but this was varied for some runs
finite temperaturd.(p) for anyp>0, provided that the sys- in order to check self-averaging. No significant differences in
tem size is large enough. behavior were found.

Most of the work on small world networks has started by ~Our simulation procedure was simple. After equilibrating
rewiring a 1D ring lattice, but here we instead use the 2Dthe system(using simulated annealijga copy is made and
square and 3D simple cubic lattices. One reason for doingoN spins in it are flipped. Both systems are then simulated
this is that while the 1D Ising model is trivial and disordered using the same random numbers to determine which spin to
for all finite temperatures, the 2D and 3D versions are orSelect and whether or not to flip it. After equilibrium has
dered below a critical temperatufe. The 2D model can be been reached again, we start measuring the damage as well
solved exactly, while for 4D and higher dimensions, mean-as other quantities such as the magnetization and energy and
field theory explains the phase transiti@ee, e.g.[17]). An  their standard deviations. We useg=0.01 in all of the
important concept in the study of phase transitions and critisSimulations presented here; none of the results presented are
cal phenomena is that of universality class. Models displaysensitive to the exact value af,. In order to check the
ing the same behavior close T@ are said to be in the same dependence on initial conditions, we also performed some
universality class, and it turns out that there are many fewefuns damaging a nonequilibrated system; these gave the
universality classes than models. Putting spin models ogame results.
small world graphs provides an opportunity to study the Figure 1 shows the end damage as a function of tempera-
crossover from a finite-dimensional universality class toture for p ranging from O to 1. The rewired lattice in this
mean-field behavior. Here we restrict ourselves to determinfigure is the 2D square withl=10* spins. We tested some
ing T, but it would also be interesting to see how the criti- different system sizes and found that this seems to be a large
cal exponents change ads increased. enough number of spins that finite-size effects are mini-

It should be noted that the small world networks used herénized. The data were averaged owgr=10 graphs and for
differ from those obtained by rewiring a ring lattice in one each graph the Monte Carlo simulation was restafted
respect: their clustering coefficient does not display the same 10 times in order to improve numerical accuracy. Error
threshold behavior as a function pfit starts at 0 fop=0  bars for the damage in this and the following figures were
(since the regular lattices used are bipartited then grows determined to be at most on the order of 0.01 and in almost
to the random graph value. The graphs used here are, how! cases considerably smaller. Note though that the errors
ever, still clustered in the sense thaf #éindk are neighbors increase withp, as should be expected since the averaging
of i, then there is a short path between them that does ndtecomes more important for large
pass through. Figure 2 shows the corresponding data for the 3D lattice.

While the emphasis in the present work is on the damagdhe system size here i$=8000 andN,=N,=10 as for the
spreading behavior of the model, we also determined th&D data.
critical temperaturd  for the order-disorder transition. This ~ We can define a damage spreading temperaky(e) as
was done primarily in order to compare it with the damagethe lowest temperature for which the damalge larger than
spreading temperaturBy ; the numerical accuracy df, is ~ some(smal) e,
smaller than that foil 4.

The Monte Carlo(MC) method used was the standard Ty(e)=min{T:d(T)>¢€}. (1.9
single spin-flip Metropolig18] algorithm. In each time step,

N spin flips are attempted. For each flip attempt, a spin idn the limit ase—0, our Ty4(e) converges to the standard
randomly selected and the energy chaddgt if it is flipped T4, which is defined as the lowest temperature for which the
is calculated. If the change in energy is negative, the spin isamage is nonzero. We use a nonzerim Eg. (1.4) when
always flipped, otherwise it is flipped with probability determiningTy from our data because usingsamaller than

e AT whereT is the temperature. We also did some runsthe error bar for the damage would lead to noiseTin
using different MC procedurdgéeat-bath algorithm, spin ex- Figures 1 and 2 clearly show thgj increases witlp, as is to
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FIG. 1. The damage as a function of tempera-
ture for small world graphs obtained by rewiring
a 100< 100 2D square lattice witlifrom left to
right) p=0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, and 1.
For eachp, an average over 10 graphs and 10
restarts per graph was performed. The location of
T4 shifts to higher temperatures ps$s increased,
and the slope ofl(T) decreases.
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be expected. In order to quantify this, Fig. 3 comparg$o  for T4; note that the mean-field value faregulay random
the order-disorder transition temperatdigfor the 2D data. graphs with coordination numbeiis T.= z. The value ofT
Figure 3 also show$, for e=107%, 1073, 1072, and 10%;  obtained forp=1 here is in reasonable agreement with nor-
it is clear that the definition ofry is independent ok for ~ mal random graphs.
small enoughe’s. The temperature where the damage at- Table | shows the values fary for different p for small
tained its maximum value of 0.5 seems to approdighthis  worlds obtained by rewiring the 2D square and 3D cubic
is in agreement with previous wofR3]. The critical tem- |attices. Forp=0, we get values in agreement with those
peratureT . was determined as the temperature at which theeported in the literaturf24,25,2Q.
Binder’s cumulant Scaling plots are used to combine data from runs with
different values of some parameter into one curve. In our
B (m*) case, we can make the data for differprfaill onto the same
c= (m2)2 curve by plotting the damage as a function of a rescaled
temperature
curves for large system sizes cross. For the 2D lattice, the
largest system simulated consisted of $pins, while in the

(1.5

3D case shown in Fig. 4, system sizes up 29261 were - T-Tyq (1.6
used to determind&.. The error bars foil . are larger than A(p) ’ '
i T T T T T )I( + T )I( )I(
0.5 . 0 . +4¥ * * ¥
x 01 +
0451 4 05 ) . -
* R % N
0.4 = 2 o 4
o 4 L+ *
6 x _
035 Z 1 « + ¥ 1 FIG. 2. The damage as a function of tempera-

ture for small world graphs obtained by rewiring
a 20x 20x 20 3D cubic lattice with(from left to
right) p=0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, and 1.
For eachp, an average over 10 graphs and 10
restarts per graph was performed. As in the 2D
case, the location of 4 shifts to higher tempera-
tures asp is increased, and the slope dfT)
decreases.
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Our scaling ansatz is that the damage can be written as A is an increasing function gf; physically it tells us how
much more we must increase the temperature in order to get
the same increase in damage for differpnt

T—Td(p)) @7

D(T’p):f( A(p)

AT=A(p)AD. (1.9

for somef which is independent of. In Eq. (1.7, A(p) is  The values foA (p) determined from the data in Figs. 1 and
determined by the inverse of the rate at which the damag@ are shown in Table Il. We found a reasonable scaling
develops for differenp A(p)~p* with «~0.35 for the 2D data and~0.2 for the

3D data. The functioffi turns out to be linear.

Figure 5 plots the damage as a functionTofor the 2D

d_D(T:Td):i d_j(ﬁ-:o)_ (1.8  case.Avery good collapse is obtained for@# 0. The data
dT A(p) dT for p=0 cannot be made to fall onto the same curve. Note
6 T
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PR - 0.0001
o
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FIG. 4. T, (squaresandT, as a function op
ST L= 7 for some differente for the 3D case. Here, too,
the values forTy are independent of the exact
48r ORI o T value ofe, provided that it is small enough.
a8l |
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TABLE I. T4 for the small world starting from 2D and 3D lattices.

2D 3D
p 0O 001 005 01 02 04 06 1 p 0 001005 01 02 04 06 1
Ty 224 228 2.34 240 2.49 2.60 2.70 283 T4 4.08 4.08 4.10 4.14 419 429 4.36 4.48
TABLE Il. A(p) for the 2D and 3D rewired lattices.
2D 3D
p 0 001 005 01 02 04 06 1 p 0 001 005 01 02 04 06 1
A(p) 0.07 0.1 0.18 0.25 0.3 0.38 043 0.5 A(p) 0.28 0.3 0.36 0.41 0.5 0.55 0.61 0.7
0.3 T T T T T T T T
025} g
02 o NP - i
Lo FIG. 5. The same data as in Fig. 1, plotted as
o BTN a function of a rescaled temperature. By plotting
5015_ coam i the damage as a function of a reduced tempera-
] . i;,"" ture T=(T—Tg)/A(p), it is possible to get col-
PP lapse for allp exceptp=0 (small squares which
ok Rt ® i does not follow the same functional form as the
' < vh other curves.
..:‘_.- o
pf ¢
0.05} gt ¢ .
AN
.;‘.l
G 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 ] 05 06 0.8 0.9 1
reduced temperature (T-T d)/A(p)
0.25 T T T T T T T T
02 .
015 L2 Wt 4
3 ~E._:;.*.’-"' FIG. 6. In contrast to the 2D case, by plotting
£ o ne the damage as a function of a reduced tempera-
© _’:..._I"" ture (T—Ty)/A(p), it is possible to get collapse
01 et T for all p for the 3D data.
.-Z'-'z*.'\q
e
" ‘.)"‘P‘.
0.05 S .
..:-.i-’::;.
0 1 1 ! 1 1 1 1 1
0 0.1 0.2 0.3 0.8 0.9 1

0.4 0.5 0.6 0.7
reduced temperature (T-T d)/A(p)
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FIG. 7. The time dependence of the damage
for the 2D model withp=0.4 andT=2.2, 2.4,
2.6, 2.8, and 3.0. The relaxation is exponential
,,,,,, s o P, below T4, and displays a power law for a short
interval for T>T4. The damage spreading tran-
J sition takes place af4~2.6.

damage

10 10
t (MC sweeps per spin)
that the distance between the master curve ang the data In conclusion, we found that the damage for different
is larger than the estimated error bars. small worlds falls onto a universal curve when plotted as a

Figure 6 shows that, in contrast to the 2D case, the 30unction of a rescaled temperature. The distance betwWgen
data do collapse onto one curve for gllincluding thep andT, increases as a function of rewiring probabilityi.e.,
=0 (i.e., simple cubic latticecase. the range in temperature where the model is ordered but

This shows some qualitative differences between the 2B3mall perturbations are important increases. This is important
and 3D lattices. The way that damage spreads in the modé&r models of social systems, where we can interpret the
can be seen as a form of generalized random walk; we spectemperature as a form ¢fandom “free will.”
late that the difference between the 23-0 data and the We believe that putting spin models on small world
other data might be related to the differen¢es e.g., return  graphs provides an ideal method not only for studying social
time) between random walks on 2D and 3D/random latticesmodels more realistically but also for testing hypotheses re-
[26]. garding spin models. For instance, it is an interesting open

We also studied the approach to equilibrium of the dam-question of how to accurately describe the ground state and
aged system. Figure 7 shows the relaxation of the damage &sw-lying excitations of the 3DxJ spin glass model. By
a function of the number of complete Monte Carlo sweepsutting this model on a small world graph and studying the
after the damage is introduced. The figure also shows daterossover to thgg=1 mean-field behavior, it might be pos-
for the 2D model withp=0.4; the relaxation behavior for sible to learn more about this.
other values of as well as for the 3D case is similar. It is
clearly seen that there is a power law for a short interval
aboveTy.

The data can be very approximately fitted to a form P.S. thanks the Math Department at Heriot-Watt and the
d(t)~t* with a~1.5+0.1 for T considerably larger tham Edinburgh Parallel Computer Center for hospitality and the
and for allp>0. The exponent fop=0 is significantly dif- European CommissioriGrant No. HPRI-CT-1999-00026
ferent,a~1.1. for financial support.
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