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Damage spreading in small world Ising models
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We study damage spreading in the ferromagnetic Ising model on small world networks using Monte Carlo
simulation with Glauber dynamics. The damage spreading temperatureTd is determined as a function of
rewiring probabilityp for small world networks obtained by rewiring the two-dimensional square and three
dimensional cubic lattices. We find that the damage for different values ofp collapse onto master curves when
plotted against a rescaled temperature and that the distance betweenTd and the critical temperatureTc in-
creases withp. We argue that when using the Ising model to study social systems, it is necessary to place the
spins on a small world network rather than on a regular lattice.
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INTRODUCTION

The Ising model is one of the most important models
statistical mechanics. It and its generalizations have b
used to model a variety of natural phenomena, ranging fr
biology to computer science and social science~e.g.,@1–4#!.
For instance, many social systems can be modeled by le
spin up/down denote different opinions or preferences.
such models, a ferromagnetic interaction is interpreted
two people who prefer to agree, while an antiferromagne
interaction means that they want to disagree. A magn
field adds a bias that can be interpreted as ‘‘prejudice’’
‘‘stubbornness,’’ while the randomness induced by a fin
temperature can be seen as ‘‘free will.’’

Damage spreading is a tool for studying the influence
perturbations on the equilibrium state of a system. It h
been used to determine some properties of the energy l
scape for disordered spin systems@5#, and also has great use
for playing ‘‘what if’’-type scenarios in models of comple
systems. For a voter model, for instance, damage sprea
studies how much influence a~small! set of voters can have
over the final outcome of the election. Damage spread
was first used by Kauffman@6# as a tool for studying bio-
logically motivated dynamical systems, but has also si
found widespread use in physics~e.g.,@7#!.

Damage spreading works by duplicating an equilibriu
spin configuration of a system and changing a fractiond0 of
the spins. Both systems are then subjected to the same
mal noise and the distance between them is calculated
Monte Carlo simulations, both systems are simulated sim
taneously: the same spin is selected for spin flip in b
systems, and the same random number~‘‘thermal noise’’! is
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used to determine whether an energy-raising flip should
performed.

After equilibrating both systems, the Hamming distan
~the number of different spins! between the spin configura
tions Sa andSb

h~Sa,Sb!5
1

N (
i

~12d
S

i
a

Si
b

! ~1.1!

~whered is the Kronecker delta function! is measured. The
Hamming distance can also be expressed in terms of
Parisi overlap@8#

q5
1

N (
i

Si
aSi

b5122h. ~1.2!

Most of the work on both spin models and damage spread
places the spins either on a finite-dimensional lattice or o
random graph. Here we instead use small world gra
@9,10# to study the ferromagnetic Ising model on graphs
terpolating between two- and three-dimensional simple cu
lattices and random graphs with the same connectivity. T
Hamiltonian of our model is

H52(
i , j

Ji j SiSj , ~1.3!

whereJi j is 1 if and only if there is an edge between spini
and j and 0 otherwise.

Small world graphs are intermediate between a regu
lattice and a random graph; they have previously been u
to study, e.g., computation, diffusion, and spreading of d
eases. The original motivation for studying small worlds
that they possess both small diameters~like a random graph
@11#! and a high degree of clustering~like a regular lattice!.
For examples of real world networks with small wor
characteristics and reviews of previous work, see, e
@10,12–14#.

The small world is constructed by considering in turn
the edges (i , j ) of a lattice and with some probabilityp re-

n,

c-
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PONTUS SVENSON AND DESMOND A. JOHNSTON PHYSICAL REVIEW E65 036105
placing it with a random edge (i ,k). The rewiring paramete
p thus determines how many of the links are removed
can be used to interpolate between the regular lattice a
random graph. Note that the small world forp51 differs
slightly from a random graph, since all nodes are guarant
to have a local connectivity of at leastz/2, wherez is the
connectivity of the regular lattice. The distribution of co
nectivities is broader for the small world withp51. We
chose to a the small world model where links are rewired
not one where they are added because we wanted to kee
average connectivity of the graphs the same for allp.

The use of small world graphs to study physical mod
has so far been limited. Barrat and Weigt@15# and Gitterman
@16# have used them to study the crossover from o
dimensional~1D! to mean-field behavior for the ferromag
netic Ising model, finding a disorder-order transition at
finite temperatureTc(p) for anyp.0, provided that the sys
tem size is large enough.

Most of the work on small world networks has started
rewiring a 1D ring lattice, but here we instead use the
square and 3D simple cubic lattices. One reason for do
this is that while the 1D Ising model is trivial and disorder
for all finite temperatures, the 2D and 3D versions are
dered below a critical temperatureTc . The 2D model can be
solved exactly, while for 4D and higher dimensions, me
field theory explains the phase transition~see, e.g.,@17#!. An
important concept in the study of phase transitions and c
cal phenomena is that of universality class. Models displ
ing the same behavior close toTc are said to be in the sam
universality class, and it turns out that there are many fe
universality classes than models. Putting spin models
small world graphs provides an opportunity to study t
crossover from a finite-dimensional universality class
mean-field behavior. Here we restrict ourselves to determ
ing Tc , but it would also be interesting to see how the cr
cal exponents change asp is increased.

It should be noted that the small world networks used h
differ from those obtained by rewiring a ring lattice in on
respect: their clustering coefficient does not display the sa
threshold behavior as a function ofp: it starts at 0 forp50
~since the regular lattices used are bipartite! and then grows
to the random graph value. The graphs used here are, h
ever, still clustered in the sense that ifj andk are neighbors
of i, then there is a short path between them that does
pass throughi.

While the emphasis in the present work is on the dam
spreading behavior of the model, we also determined
critical temperatureTc for the order-disorder transition. Thi
was done primarily in order to compare it with the dama
spreading temperatureTd ; the numerical accuracy ofTc is
smaller than that forTd .

The Monte Carlo~MC! method used was the standa
single spin-flip Metropolis@18# algorithm. In each time step
N spin flips are attempted. For each flip attempt, a spin
randomly selected and the energy changeDH if it is flipped
is calculated. If the change in energy is negative, the spi
always flipped, otherwise it is flipped with probabilit
e2DH/T, whereT is the temperature. We also did some ru
using different MC procedures~heat-bath algorithm, spin ex
03610
d
a

ed

d
the

s

-

g

r-

-

i-
-

er
n

n-

e

e

w-

ot

e
e

e

is

is

s

change, using an ordered update instead of a random!. We
found that using the heat-bath algorithm caused the dam
to heal at temperatures close to and aboveTc , while for the
spin-exchange dynamics with the Metropolis algorithm t
damage spreads for all temperatures. Updating the spin
order instead of randomly gives a smaller damage for
temperatures. These results agree with the results of V
@19–21# for the standard Ising model.

In most of the simulations, we used the Mitchell-Moo
additive random number generator~see, e.g.,@22# for a de-
scription!. We also did some runs with the standard C
brary’sdrand48() generator and found the same behavi
All simulations were averaged overNl different rewiring
procedures, and for each small world graph an average
Nr independent Monte Carlo runs was performed. Typi
values wereNl5Nr510, but this was varied for some run
in order to check self-averaging. No significant differences
behavior were found.

Our simulation procedure was simple. After equilibratin
the system~using simulated annealing!, a copy is made and
d0N spins in it are flipped. Both systems are then simula
using the same random numbers to determine which spi
select and whether or not to flip it. After equilibrium ha
been reached again, we start measuring the damage as
as other quantities such as the magnetization and energy
their standard deviations. We usedd050.01 in all of the
simulations presented here; none of the results presente
sensitive to the exact value ofd0. In order to check the
dependence on initial conditions, we also performed so
runs damaging a nonequilibrated system; these gave
same results.

Figure 1 shows the end damage as a function of temp
ture for p ranging from 0 to 1. The rewired lattice in thi
figure is the 2D square withN5104 spins. We tested som
different system sizes and found that this seems to be a l
enough number of spins that finite-size effects are m
mized. The data were averaged overNl510 graphs and for
each graph the Monte Carlo simulation was restartedNr
510 times in order to improve numerical accuracy. Err
bars for the damage in this and the following figures we
determined to be at most on the order of 0.01 and in alm
all cases considerably smaller. Note though that the er
increase withp, as should be expected since the averag
becomes more important for largep.

Figure 2 shows the corresponding data for the 3D latti
The system size here isN58000 andNl5Nr510 as for the
2D data.

We can define a damage spreading temperatureTd(e) as
the lowest temperature for which the damaged is larger than
some~small! e,

Td~e!5min$T:d~T!.e%. ~1.4!

In the limit as e→0, our Td(e) converges to the standar
Td , which is defined as the lowest temperature for which
damage is nonzero. We use a nonzeroe in Eq. ~1.4! when
determiningTd from our data because using ae smaller than
the error bar for the damage would lead to noise inTd .
Figures 1 and 2 clearly show thatTd increases withp, as is to
5-2
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DAMAGE SPREADING IN SMALL WORLD ISING MODELS PHYSICAL REVIEW E65 036105
FIG. 1. The damage as a function of temper
ture for small world graphs obtained by rewirin
a 1003100 2D square lattice with~from left to
right! p50, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, and
For eachp, an average over 10 graphs and 1
restarts per graph was performed. The location
Td shifts to higher temperatures asp is increased,
and the slope ofd(T) decreases.
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be expected. In order to quantify this, Fig. 3 comparesTd to
the order-disorder transition temperatureTc for the 2D data.
Figure 3 also showsTd for e51024, 1023, 1022, and 1021;
it is clear that the definition ofTd is independent ofe for
small enoughe ’s. The temperature where the damage
tained its maximum value of 0.5 seems to approachTc ; this
is in agreement with previous work@23#. The critical tem-
peratureTc was determined as the temperature at which
Binder’s cumulant

c5
^m4&

^m2&2
~1.5!

curves for large system sizes cross. For the 2D lattice,
largest system simulated consisted of 104 spins, while in the
3D case shown in Fig. 4, system sizes up to 21359261 were
used to determineTc . The error bars forTc are larger than
03610
-

e

e

for Td ; note that the mean-field value for~regular! random
graphs with coordination numberz is Tc5z. The value ofTd

obtained forp51 here is in reasonable agreement with n
mal random graphs.

Table I shows the values forTd for different p for small
worlds obtained by rewiring the 2D square and 3D cu
lattices. Forp50, we get values in agreement with tho
reported in the literature@24,25,20#.

Scaling plots are used to combine data from runs w
different values of some parameter into one curve. In
case, we can make the data for differentp fall onto the same
curve by plotting the damage as a function of a resca
temperature

T̃5
T2Td

D~p!
. ~1.6!
a-
g

1.
0
D

FIG. 2. The damage as a function of temper
ture for small world graphs obtained by rewirin
a 20320320 3D cubic lattice with~from left to
right! p50, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, and
For eachp, an average over 10 graphs and 1
restarts per graph was performed. As in the 2
case, the location ofTd shifts to higher tempera-
tures asp is increased, and the slope ofd(T)
decreases.
5-3
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FIG. 3. For the same data as in Fig. 1, th
figure shows thep dependence ofTc ~squares!
andTd for some differente. Note the logarithmic
scale of thep axis in this plot. It is clear thatTd is
independent ofe for small enoughe ’s.
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Our scaling ansatz is that the damage can be written as

D~T,p!5 f S T2Td~p!

D~p! D , ~1.7!

for somef which is independent ofp. In Eq. ~1.7!, D(p) is
determined by the inverse of the rate at which the dam
develops for differentp

dD

dT
~T5Td!5

1

D~p!

d f

dT̃
~ T̃50!. ~1.8!
03610
e

D is an increasing function ofp; physically it tells us how
much more we must increase the temperature in order to
the same increase in damage for differentp:

DT}D~p!DD. ~1.9!

The values forD(p) determined from the data in Figs. 1 an
2 are shown in Table II. We found a reasonable scal
D(p);pa with a'0.35 for the 2D data anda'0.2 for the
3D data. The functionf turns out to be linear.

Figure 5 plots the damage as a function ofT̃ for the 2D
case. A very good collapse is obtained for allp.0. The data
for p50 cannot be made to fall onto the same curve. N
,
t

FIG. 4. Tc ~squares! andTd as a function ofp
for some differente for the 3D case. Here, too
the values forTd are independent of the exac
value ofe, provided that it is small enough.
5-4
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DAMAGE SPREADING IN SMALL WORLD ISING MODELS PHYSICAL REVIEW E65 036105
TABLE I. Td for the small world starting from 2D and 3D lattices.

2D 3D

p 0 0.01 0.05 0.1 0.2 0.4 0.6 1 p 0 0.01 0.05 0.1 0.2 0.4 0.6 1
Td 2.24 2.28 2.34 2.40 2.49 2.60 2.70 2.83 Td 4.08 4.08 4.10 4.14 4.19 4.29 4.36 4.48

FIG. 5. The same data as in Fig. 1, plotted
a function of a rescaled temperature. By plottin
the damage as a function of a reduced tempe

ture T̃5(T2Td)/D(p), it is possible to get col-
lapse for allp exceptp50 ~small squares!, which
does not follow the same functional form as th
other curves.

TABLE II. D(p) for the 2D and 3D rewired lattices.

2D 3D

p 0 0.01 0.05 0.1 0.2 0.4 0.6 1 p 0 0.01 0.05 0.1 0.2 0.4 0.6 1
D(p) 0.07 0.1 0.18 0.25 0.3 0.38 0.43 0.5 D(p) 0.28 0.3 0.36 0.41 0.5 0.55 0.61 0.7

FIG. 6. In contrast to the 2D case, by plottin
the damage as a function of a reduced tempe
ture (T2Td)/D(p), it is possible to get collapse
for all p for the 3D data.
036105-5
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FIG. 7. The time dependence of the dama
for the 2D model withp50.4 andT52.2, 2.4,
2.6, 2.8, and 3.0. The relaxation is exponent
below Td , and displays a power law for a sho
interval for T.Td . The damage spreading tran
sition takes place atTd'2.6.
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that the distance between the master curve and thep50 data
is larger than the estimated error bars.

Figure 6 shows that, in contrast to the 2D case, the
data do collapse onto one curve for allp, including thep
50 ~i.e., simple cubic lattice! case.

This shows some qualitative differences between the
and 3D lattices. The way that damage spreads in the m
can be seen as a form of generalized random walk; we sp
late that the difference between the 2Dp50 data and the
other data might be related to the differences~in, e.g., return
time! between random walks on 2D and 3D/random lattic
@26#.

We also studied the approach to equilibrium of the da
aged system. Figure 7 shows the relaxation of the damag
a function of the number of complete Monte Carlo swee
after the damage is introduced. The figure also shows
for the 2D model withp50.4; the relaxation behavior fo
other values ofp as well as for the 3D case is similar. It
clearly seen that there is a power law for a short inter
aboveTd .

The data can be very approximately fitted to a fo
d(t);ta with a'1.560.1 for T considerably larger thanTd
and for allp.0. The exponent forp50 is significantly dif-
ferent,a'1.1.
l
n
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In conclusion, we found that the damage for differe
small worlds falls onto a universal curve when plotted a
function of a rescaled temperature. The distance betweeTd
andTc increases as a function of rewiring probabilityp, i.e.,
the range in temperature where the model is ordered
small perturbations are important increases. This is impor
for models of social systems, where we can interpret
temperature as a form of~random! ‘‘free will.’’

We believe that putting spin models on small wor
graphs provides an ideal method not only for studying so
models more realistically but also for testing hypotheses
garding spin models. For instance, it is an interesting o
question of how to accurately describe the ground state
low-lying excitations of the 3D6J spin glass model. By
putting this model on a small world graph and studying t
crossover to thep51 mean-field behavior, it might be pos
sible to learn more about this.

ACKNOWLEDGMENTS

P.S. thanks the Math Department at Heriot-Watt and
Edinburgh Parallel Computer Center for hospitality and
European Commission~Grant No. HPRI-CT-1999-00026!
for financial support.
,

-

@1# P. W. Anderson, inEmerging Syntheses in Science, edited by
D. Pines~Addison-Wesley, Reading, MA, 1984!, p. 17.

@2# W. Li, in Pattern Formation in the Physical and Biologica
Sciences, edited by H. F. Nijhout, L. Nadel, and D. L. Stei
~Addison-Wesley, Reading, MA, 1997!, pp. 189–200.

@3# R. Dickman, e-print cond-mat/0012079.
@4# S. Galam, Physica A238, 66 ~1997!.
@5# M. Heerema and F. Ritort, Phys. Rev. E60, 3646~1999!.
@6# S. A. Kauffman, J. Theor. Biol.22, 437 ~1969!.
@7# H. E. Stanley, D. Stauffer, J. Kerte´sz, and H. J. Herrmann
Phys. Rev. Lett.59, 2326~1987!.
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