Recent studies of exotic nuclei in Dubna and RIKEN

A. A. Korsheninnikov

RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan On leave from the Kurchatov Institute, Kurchatov sq. 1, 123182 Moscow, Russia.

Recently experiments were performed in Dubna (Russia) and RIKEN (Japan) to study ⁵H, ⁷H, and ⁸He. The ⁵H unstable state was searched for in two reactions, $p(^{6}He,^{2}He)^{5}H$ [1] and $t(t,p)^{5}H$, using secondary beam of ⁶He and primary beam of ³H, respectively. To search for ⁷H, the reaction $p(^{8}He,^{2}He)^{7}H$ was investigated with the ⁸He secondary beam. Also, cross sections were measured for the reaction $p(^{8}He,t)$ populating ground state and excited 2⁺-state in ⁶He. In all these experiments cryogenic targets of hydrogen and tritium were used, which were produced in GANIL (France) and Sarov (Russia), respectively.

Results of these experiments show the ⁵H state at ~ 2 MeV above the t+2n threshold, manifest for ⁷H an existence of some peculiarity near the t+4n threshold, and demonstrate that in the p(⁸He,t) reaction the excited 2⁺-state of ⁶He is populated with higher cross section than the ⁶He ground state, reflecting structure of the ⁸He projectile.

[1] A.A. Korsheninnikov et al., Phys. Rev. Lett. 87, 092501 (2001).