
Feasibility of FPGA-based Computations of Transition
Densities in Quantum Many-Body Systems
Bachelor’s thesis in Subatomic Physics

ROBERT ANDERZÉN, MAGNUS RAHM, OLOF SALBERGER
JOAKIM STRANDBERG, BENJAMIN SVEDUNG, JONATAN WÅRDH

Department of Fundamental Physics
Division of Nuclear Theory
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2013
Bachelor’s thesis FUFX02-13-02

BACHELOR’S THESIS IN SUBATOMIC PHYSICS

Feasibility of FPGA-based Computations of Transition
Densities in Quantum Many-Body Systems

ROBERT ANDERZÉN, MAGNUS RAHM, OLOF SALBERGER
JOAKIM STRANDBERG, BENJAMIN SVEDUNG, JONATAN WÅRDH

Department of Fundamental Physics
Division of Nuclear Theory

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2013

Feasibility of FPGA-based Computations of Transition
Densities in Quantum Many-Body Systems
ROBERT ANDERZÉN, MAGNUS RAHM, OLOF SALBERGER
JOAKIM STRANDBERG, BENJAMIN SVEDUNG, JONATAN WÅRDH

c© ROBERT ANDERZÉN, MAGNUS RAHM, OLOF SALBERGER , JOAKIM STRANDBERG, BENJAMIN
SVEDUNG, JONATAN WÅRDH, 2013

Bachelor’s thesis FUFX02-13-02
ISSN 1654-4676
Department of Fundamental Physics
Division of Nuclear Theory
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Six matrices showing the distribution of connections between many-body states, for systems of different particle
numbers and cutoff energies, overlaid on a graph of the kernel-design for generating the connections for a system
of four particles.

Chalmers Reproservice
Göteborg, Sweden 2013

Abstract

This thesis presents the results from a feasibility study of implementing calculations of
transition densities for quantum many-body systems on FPGA hardware. Transition
densities are of interest in the field of nuclear physics as a tool when calculating expecta-
tion values for different operators. Specifically, this report focuses on transition densities
for bound states of neutrons. A computational approach is studied, in which FPGAs are
used to identify valid connections for one-body operators. Other computational steps
are performed on a CPU. Three different algorithms that find connections are presented.
These are implemented on an FPGA and evaluated with respect to hardware cost and
performance. The performance is also compared to that of an existing CPU-based code,
Trdens.

The FPGA used to implement the proposed designs was a Xilinx Virtex 6, built into
Maxeler’s MAX3 card. It was concluded that the FPGA was able to find the connections
of a one-body operator in a fraction of the time used by Trdens, ran on a single CPU-
core. However, the CPU-based conversion of the connections to the form in which
Trdens presents them, was much more time-consuming. For FPGAs to be feasible,
it is hence necessary to accelerate the CPU-based computations or include them into
the FPGA-implementations. Therefore, we recommend further investigations regarding
calculations of the final representation of transition densities on FPGAs, without the
use of an off-FPGA computation.

Acknowledgements
We would like to express our very great appreciation to our physics supervisors Christian
Forssén and Håkan Johansson for their continuous assistance and support throughout
the project. For their time and knowledge invested in this project, and for ongoing
advice and encouragement we are deeply grateful.

We would also like to offer our special thanks to our data supervisors Georgi Gay-
dadjiev and Ioannis Sourdis who helped us in understanding and using the FPGA and
to Catalin Ciobanu who guided us in our struggles with the Maxeler machine.

Contents

1 Introduction 1
1.1 Specific aims . 2
1.2 Method . 2
1.3 Structure of the thesis . 2

2 Quantum many-body theory 4
2.1 Symmetric and anti-symmetric bases . 4

2.1.1 Identical particles . 5
2.1.2 Bosonic and fermionic eigenstates 6

2.2 Second quantization . 7
2.2.1 Fermion operators . 8
2.2.2 Boson operators . 9
2.2.3 The number operator . 10
2.2.4 One-body operators in Fock space 10
2.2.5 Two- and three-body operators in Fock space 12

2.3 Matrix representations for commuting operators 12

3 Problem description 14
3.1 The nuclear Hamiltonian . 14
3.2 Ab initio no-core shell model computations 15

3.2.1 Choice of single-particle basis – the harmonic oscillator 16
3.2.2 Construction of a many-body basis 17
3.2.3 Identifying connections using a one-body operator 20
3.2.4 Calculate transition densities for a one-body operator 23

4 Reduction of matrix elements and transition densities 25
4.1 Clebsch-Gordan coefficients . 25
4.2 Spherical tensors . 26
4.3 The Wigner-Eckart theorem . 28
4.4 Reduced one-body transition densities 29
4.5 Structure of presentation of reduced transition densities 32

5 Properties of FPGAs 36
5.1 Technical limitations and possibilities of an FPGA 36

5.1.1 Dataflow programming . 38
5.1.2 Architecture of the MAX3 card 38

i

5.2 Maxeler programming interface . 40
5.2.1 Kernels . 40
5.2.2 Manager . 43

6 Algorithm design for one-body operators 45
6.0.1 Computational complexity of the calculation of transition densities 45
6.0.2 FPGA- and CPU-based parts of the calculation 46
6.0.3 Specific parts of the calculation of transition densities 46

6.1 Data representation and FPGA-related I/O-design 47
6.1.1 Representation of many-body states 47
6.1.2 Implementation of minimal data types 49
6.1.3 Input-source for many-body states and bandwidth aspects 49
6.1.4 Storage of probability amplitudes 49
6.1.5 Output from FPGA to CPU . 50
6.1.6 Conclusion regarding FPGA-related I/O 51

6.2 Design of the computational kernel . 51
6.2.1 Sorting of many-body states . 53
6.2.2 Insertion of new single-particle states 54
6.2.3 Calculating the sign of a connection 54
6.2.4 Algorithm 1: Algorithm only using many-body basis as input

(non-dynamic energy-bound strategy) 55
6.2.5 Algorithm 2: Algorithm with dynamically set upper energy-bound 59
6.2.6 Algorithm 3: Algorithm using mj-parity groups 64
6.2.7 Implementation of hash map . 70

6.3 CPU-based computations . 73
6.3.1 Pre-calculation costs . 73
6.3.2 Calculation of reduced matrix representation 73

7 Results 76
7.1 Implemented algorithms . 76
7.2 Verification of correctness . 77
7.3 Calculated one-body matrices and kernel load 77
7.4 Hardware costs . 79
7.5 Performance of FPGA-implementations 82
7.6 Performance of reduced matrix calculation 82
7.7 Performance compared to Trdens . 86

8 Discussion 88
8.1 Feasibility of using FPGAs for the calculation of transition densities . . 88

8.1.1 Conclusion regarding the feasibility 88
8.1.2 Optimal choice of algorithm . 89
8.1.3 Improvements of the implemented algorithms and kernels 90

8.2 Algorithm generalizations . 92
8.2.1 Nuclei incorporating both protons and neutrons 92
8.2.2 Generalization of algorithms 1 and 2 to two- and three-body op-

erators . 92

ii

8.2.3 Generalizing the mj-parity group strategy 94

9 Conclusions and recommendations 96

References 98

A M-scheme and J-scheme 100
A.1 Angular momentum operators . 100
A.2 Projection operator . 101
A.3 M-scheme . 102
A.4 J-scheme . 105

B Hash tables 107
B.1 Main features of hash tables . 107
B.2 Collisions . 107

C Link to source-code 109

iii

Chapter 1

Introduction

Ever since the first steps of quantum mechanics were taken in the beginning of the
20th century, our understanding of physics on a microscopical scale has grown rapidly.
Although the theory seems to reproduce experimental results, most systems are way
too complicated to be solved analytically. One such example is many-body systems,
e.g. atomic nuclei. In the last decades, as powerful computers have been developed,
numerical computations have become an increasingly important tool to understand the
physics. However, for ab initio many-body problems, not even the most powerful com-
puters are efficient enough to perform the calculations in a reasonable amount of time.
The desire to further push the boundaries of what can be calculated, calls for more
efficient algorithms and hardware customized for the purpose.

The final goal in ab initio many-body computations is usually to calculate an expec-
tation value for a given observable. The process involves several steps, one of which is
to create matrix representations of either the Hamiltonian or another observable, with
respect to a many-body basis. The accuracy of the results is highly dependent on the
dimension of this basis. Already for quite small systems, such as the 10B-core, a basis
size of some billion elements is desirable, leading to a matrix representation with 1018

elements.
A useful representation of the problem is given by using the second quantization

formalism. With the aid of this formalism, the construction of the matrix becomes a
highly regular procedure of determining whether elements of the type

〈νj |a†αaβ|νk〉 (1.1)

are 0, 1 or −1, i.e. if |νj〉 and |νk〉 connect. After doing so, non-zero elements are
summed up using eigenstates of the Hamiltonian, forming transition density matrix
elements which contain the major part of the computational effort needed to calculate
expectations. Based on the transition densities, we could also calculate expectations
corresponding to a multitude of different operators, with few additional computations.

This thesis investigates the feasibility of using FPGAs for the computation of tran-
sition densities. An FPGA is a type of hardware built out of many small logic blocks
with programmable interconnections, allowing pipelining and massive parallelism. Such
features are highly desirable when attempting to accelerate a computation in which a
lot of data is subject to the same operations. Currently, the calculation of transition

1

densities is mainly performed in parallel on CPU-based clusters. However, the regularity
of the computation indicates that it might be suitable for implementation on an FPGA.
Therefore, the main objective of the current thesis is to investigate if the calculation
of transition densities can be adapted to FPGA-implementation, and whether such an
implementation could be more efficient than CPU-based computations.

1.1 Specific aims
As stated above, the goal of this project has been to investigate the feasibility of FPGA-
implementation of the calculation of transition densities. To do this, we have aimed
at developing a number of algorithms to calculate transition densities for one-body
operators, corresponding to fermionic systems with a single kind of particle. The per-
formance of these have then been studied and compared to a CPU-based computational
approach. The conclusions are summarized in a recommendation, suggesting whether
FPGA-implementation is feasible for calculation of transition densities and how the
developed algorithms can be generalized to wider classes of operators and systems.

1.2 Method
Initially, literature studies were conducted in order to find how transition densities are
expressed in terms of second quantization. Also, properties and programming of FPGAs
were investigated, specifically a programming interface by Maxeler, for their MAX3
FPGA. Following this, we developed various algorithms for how the FPGA could be used
to calculate transition densities. Finally, these were implemented and benchmarked with
regards to their performances, and then compared quantitatively to the performance of
an existing CPU-based code.

1.3 Structure of the thesis
In chapter 2, we explain the quantum mechanical formalism, specifically the theory
of second quantization, which constitutes a cornerstone of many-body theory. This is
followed by chapter 3, where we give a more precise formulation of what is meant by
calculating a transition density, providing a numerical example to clarify the concepts.
The transition density matrix elements described in this chapter are of a non-reduced
form. However, we are ultimately interested in a slightly different, reduced, representa-
tion, which in a final step needs to be calculated. The description of the theory for this
belongs to chapter 4.

Chapter 5 serves as an introduction to the properties and computational possibilities
of FPGAs. We describe how this leads to specific considerations in algorithm designs and
give an overview of the Maxeler programming interface. Thereafter, chapter 6 describes
and evaluates a number of different strategies using FPGAs to calculate transition den-
sities. We also describe the methodology of how the reduced matrix representation can
be calculated, from FPGA-generated output.

In chapter 7 we evaluate the performance of the algorithms described in chapter
6. We verify the correctness of the computation and determine which algorithm is

2

the most efficient. Also, we analyze performance bounding factors and compare to the
performance of an available CPU-based code. Finally, in chapter 8 we discuss the results,
and outline possible generalizations of the implementations, leading up to chapter 9 in
which we give recommendations and conclusions of whether FPGAs are suitable for the
calculation of transition densities.

3

Chapter 2

Quantum many-body theory

This chapter serves to describe the quantum mechanics needed to accurately formu-
late the concepts and calculation of transition densities, i.e. the model problem in this
project. Specifically, we will describe many-body theory and the second quantization
formalism. The starting point will be to introduce the many-body basis for a system of
k particles, giving a brief description of the consequences of the fact that the particles
are indistinguishable. Thereafter, we use this basis to introduce the second quantization
formalism, involving concepts such as the Fock space and creation/annihilation opera-
tors. For completeness, we will treat both bosons and fermions, but the latter will be
the main topic of this study.

2.1 Symmetric and anti-symmetric bases
To describe the Hilbert space for a system of interacting particles, we need a basis for
the state space of these particles. Such a basis can be constructed using a single-particle
basis, i.e. a basis for the state space of a single particle. The single-particle basis is
chosen as the energy eigenstates of some appropriately chosen single-particle potential.

To introduce some formalism, we will denote the Hilbert space for a single particle
by H and the single-particle basis by {|α〉}. We assume that |α〉 are chosen to be
orthonormal as this always can be done for eigenstates of a Hermitian operator.

The Hilbert space for the system of k particles, H⊗k, is formed as the k-fold tensor
product of single-particle Hilbert spaces, Hi:

H⊗k = H1 ⊗H2 ⊗ ...⊗Hk. (2.1)

This construction is adjoined with a natural basis containing product states:

|α1α2...αk) := |α1〉 ⊗ |α2〉 ⊗ ...⊗ |αk〉. (2.2)

Note that the characteristic soft parenthesis |...) is used when denoting product states.
These states are orthonormal which could be written as1

(α1α2...αk|α′1α′2...α′k) = δα1,α′1
δα2,α′2

...δαk,α′k . (2.3)
1δi,j denotes Kronecker’s delta.

4

As we will see, these product states are not appropriate to describe physical states.
However, we will use them to construct basis states that indeed are physically valid and
will constitute our many-body basis.

2.1.1 Identical particles

In quantum mechanics, particles of the same type are indistinguishable entities. Suppose
we have two states |α1〉 and |α2〉 describing two different particles of the same type. If
|α1α2) would be a physically valid state for the combined system of both particles, it
would necessarily be the same as |α2α1), due to that they are indistinguishable. However,
we can only regard many-body states that make no difference between particles as
physically valid. We conclude that neither |α1α2) nor |α2α1) can represent a physically
valid state.

In order to extract physically valid states, we introduce the permutation operator
P12 whose action upon a state |α1α2) is to interchange the quantum numbers of particle
1 and 2, i.e.

P12|α1α2) = |α2α1). (2.4)

From the fact that all |αiαj) are orthonormal we conclude that the matrix elements of
P12 will be real. Hence P12 is Hermitian. Furthermore, when acting with P12 twice we
get the same state back. This implies that

P 2
12 = P †12P12 = P−1

12 P12 = 1, (2.5)

and hence that P12 is unitary with eigenvalues p = ±1.
Now, consider two operators A(1) and A(2) being the same operator but acting on

different single-particle Hilbert spaces. Let |αi〉 be an eigenstate of the operator A,
having the eigenvalue ai. This means that

A(1)|α1α2) = a1|α1α2),
A(2)|α1α2) = a2|α1α2).

(2.6)

Now, we let P12 act on A(1)|α1α2),

P12A(1)|α1α2) = P12a1|α1α2) = a1|α2α1) = A(2)|α2α1). (2.7)

Recalling that P−1
12 P12 = 1, (2.7) can further be written as

P12A(1)|α1α2) = P12A(1)P−1
12 P12|α1α2) = P12A(1)P−1

12 |α2α1). (2.8)

Since |α1α2) is arbitrary, we deduce that P12A(1)P−1
12 = A(2). This can be interpreted

as a change of labelling of the particles, making the operators act on the other par-
ticle. However, knowing that particles are indistinguishable we should only construct
Hamiltonians and other operators where the indices of the particles appear symmetri-
cally. Otherwise we would have given certain particles a certain meaning. Expressed
more formally, we demand that P12HP

−1
12 = H since the left-hand side only switches

the Hilbert spaces of the particles on which the Hamiltonian acts.
The properties of P12 extend to permutation operators Pij acting on arbitrary indices

i and j in Hilbert spaces with k particles. We can define a general permutation operator

5

P as a product of Pijs. Then P performs an arbitrary permutation of the single-particle
states when acting on a product state (2.2). This operator is also Hermitian and unitary.
By repeatedly invoking [H,Pij] we see that the Hamiltonian commutes with the general
permutation operator, that is

[H,P] = 0. (2.9)
In Section 2.3, we will motivate that this implies that we are confined to either the
symmetric p = +1, or the anti-symmetric p = −1 eigenspace of P . Particles belonging
to the respective eigenspaces are referred to as bosons and fermions. When dealing with
a specific kind of particle, one only needs to consider states in one of the eigenspaces of
P . This will be a cornerstone when developing the many-body basis, which then can be
specified for bosons and fermions separately.

2.1.2 Bosonic and fermionic eigenstates

In order to find many-body bases for bosons and fermions, we should search for eigen-
states to P having the eigenvalues 1 and −1, respectively. In the case of two particles,
the construction is quite simple.

Example. The state
|α1α2〉 = 1√

2
[|α1α2)− |α2α1)] (2.10)

will be a fermionic eigenstate, because when acting with the permutation operator, we
get

P12|α1α2〉 = 1√
2

[P12|α1α2)− P12|α2α1)] = 1√
2

[|α2α1)− |α1α2)] = −|α1α2〉. (2.11)

A bosonic eigenstate is constructed similarly, but with a plus, i.e.

|α1α2〉 = 1√
2

[|α1α2) + |α2α1)] . (2.12)

Notice that we denote the bosonic and fermionic eigenstates with a ket, as opposed to
the soft paranthesis that was used for product states. Note also that we use a factor
2−1/2 to normalize the states. �

In order to construct a symmetric or an anti-symmetric many-body basis for arbitrary
k, we use the permutation operator to define symmetrizing and anti-symmetrizing op-
erators,

S = 1
k!
∑
p

P, A = 1
k!
∑
p

(−1)pP. (2.13)

The sums run over all permutations p, even or odd. When acting with S or A on a prod-
uct state of type (2.2), we construct a physically valid symmetrical or anti-symmetrical
basis state for a bosonic or fermionic system, respectively. Thus, for bosons we have

|α1α2...αk〉 =
√

k!
nα′ !nα′′ !...

S|α1α2...αk) (2.14)

6

where nα′ is the number of particles in the states α′, serving to normalize the state2.
From (2.14) it is easily seen that interchanging two particles leaves the state unchanged,
i.e.

|α1α2...αk〉 = |α2α1...αk〉. (2.15)
In the case of fermions, we have

|α1α2...αk〉 =
√
k!A|α1α2...αk). (2.16)

For fermions, the Pauli exclusion principle is incorporated thanks to the sign in the
anti-symmetrizing operator, i.e. it induces a negative sign so that

|α1α2...αk〉 = −|α2α1...αk〉. (2.17)

When assigning the same quantum numbers to two particles, the state will therefore
vanish.

A final point concerning the notation for indistinguishable particles, either bosons
and fermions, is that states referred to by different ordering of the single-particle states
exhibit no significant physical difference. It is therefore common practice to impose a
specific ordering. In this thesis, we will choose the single-particle states to be ordered
increasingly, with respect to some enumeration of the single-particle basis. For example,
the state |α2α1...αk〉 will always be sorted to |α1α2...αk〉, possibly introducing a negative
sign in the fermionic case.

2.2 Second quantization
In the second quantization formalism, we describe states by introducing creation and
annihilation operators, which may be used to construct any physical state by acting on
the vacuum state denoted by |0〉.

As a starting point, we can have closer look at how many-body states were con-
structed in the previous section. For k particles, we described the state space as the
direct product of individual state spaces, as seen in (2.1). However, at this point the
number of particles was fixed. Contrary to this, we now want to introduce a state space
which deals with any number of particles, i.e. a state space that can handle the creation
and annihilation of particles. One way to construct such a space is to form the direct
sum of spaces of the form (2.1), for all k ≥ 0. This yields

F =
∞⊕
k=0
H⊗k, (2.18)

which is known as the Fock space. When dealing with fermions and bosons this space
is however too large and we can restrict ourselves to symmetrical and anti-symmetrical
Fock space, obtained by

S(F) =
∞⊕
k=0
S(H⊗k) and A(F) =

∞⊕
k=0
A(H⊗k), (2.19)

2Here, we need to distinguish α′, α′′ etc. from α1,2,... because for bosons, several αi could refer to
the same single-particle state. The notation will be used for fermions as well.

7

respectively.
Any state may be written as |α〉 = a†α|0〉 where a†α is a creation operator. Going into

bra form, we are led to expressions of the form 〈α| = 〈0|aα. Therefore, whenever we
take scalar products and expectation values, the Hermitian conjugates of the creation
operators are relevant. We call these the annihilation operators.

A different way to introduce the second quantization formalism is by first consid-
ering the occupation number representation, which is made possible by the particles
being indistinguishable. Suppose that we have a complete basis of single-particle states
{|α〉} that spans the entire single-particle state space. We may identify the many-body
state representation used in the previous section by its equivalent occupation number
representation,

|α1α2α3...〉 = |nα′ ,nα′′ , nα′′′ ,...〉, (2.20)
where nα′ denotes the number of particles in the state α′. For bosons each nα′ may
be any non-negative integer, while for fermions it is restricted to 0 or 1 because of the
Pauli exclusion principle. The occupation number representation is particularly useful
in the case of bosons, though one needs to proceed with care in the fermionic case as
one needs to keep track of signs. In the following sections, we will describe the specifics
of fermions and bosons.

2.2.1 Fermion operators

For fermionic systems we seek for operators that embodies the anti-symmetry of fermion
states. The fermion creation operator can be written as

a†α|α1α2...αk〉 = |αα1α2...αk〉. (2.21)

We can write the states in terms of creation operators operating on the vacuum,

|α1α2...αk〉 = a†α1a
†
α2 ...a

†
αk
|0〉. (2.22)

In the same way as in (2.21) the annihilation operator can be written as

aα|αα1α2...αk〉 = |α1α2...αk〉. (2.23)

As stated in Section 2.1.2, we want to have the many-body states ordered in a specific
way. When sorting the state, a negative sign may appear, according to (2.17). Thus,
(2.22) and (2.23) are written, in a more useful way, as

a†αi |α1...αi−1αi+1...αk〉 = (−1)i−1|α1...αi−1αiαi+1...αk〉, (2.24a)
aαi |α1...αi−1αiαi+1...αk〉 = (−1)i−1|α1...αi−1αi+1...αk〉. (2.24b)

As can be seen from (2.22), the creation operators must all anti-commute, to ensure
the change of sign. To be able to go back and forth between bras and kets we need
the annihilation operators to anti-commute too. To meet the properties of fermions we
state the complete set of canonical anti-commutation relations3

{aαi ,a†αj} = δαiαj (2.25a)
{aαi ,aαj} = {a†αi ,a

†
αj} = 0. (2.25b)

3{a,b} = ab+ ba denotes the anti-commutator.

8

Combined with the relation aαi |0〉 = 0, it could be taken as the definition of the creation
and annihilitation operator for fermions. The relations (2.25) ensures us not to violate
any of the anti-symmetric properties.

Example. We can justify (2.25) by noting that it implies aα2 |α1α2α3〉 = −|α1α3〉, i.e.
aα2 does indeed annihilate α2, and the change of sign is accounted for. We have

aα2a
†
α1a
†
α2a
†
α3 |0〉 = −a†α1aα2a

†
α2a
†
α3 |0〉 = −a†α1(1− a†α2aα2)a†α3 |0〉 =

− a†α1a
†
α3 |0〉+ a†α1a

†
α2aα2a

†
α3 |0〉 = −a†α1a

†
α3 |0〉 − a

†
α1a
†
α2a
†
α3aα2 |0〉 =

− a†α1a
†
α3 |0〉.

(2.26)

In step three we have used (2.25a) which makes the creation operators of states 1 and
3 remain. In the last step, we also used aαi |0〉 = 0. �

We note that if we try to annihilate a single-particle state that does not exist, the
result will be zero. This can be seen from (2.25a) which implies that the annihilation
operator will walk right through all creation operators (leaving only a difference in sign)
and finally operate on the vacuum, where we use aαi |0〉 = 0. Further, since we are
dealing with fermions, we can only have one particle in each state. This is ensured by
(2.25b). If we try to create a state that already exists, the result will be zero. This is
derived from

a†α1a
†
α1a
†
α2 |0〉 = −a†α1a

†
α1a
†
α2 |0〉 (2.27)

which can be true only if a†α1a
†
α1a
†
α2 |0〉 = 0.

2.2.2 Boson operators

When dealing with bosons it is useful to adopt the occupation number formalism. In the
bosonic case, we will not have any change of sign when interchanging particles, but we
will need normalization factors. In the occupation number representation, the bosonic
creation and annihilation operators may be defined as

a†α|nα, nα′ ,nα′′ ...〉 =
√
nα + 1|nα + 1, nα′ ,nα′′ ...〉, (2.28a)

aα|nα, nα′ ,nα′′ ...〉 = √nα|nα − 1, nα′ ,nα′′ ...〉. (2.28b)

They satisfy the canonical commutation relations4,

[aαj ,a†αk] = δαjαk (2.29a)
[aαj ,aαk] = [a†αj ,a

†
αk

] = 0 (2.29b)

with the addition of aαj |0〉 = 0, just as in the fermionic case.
We now observe that we can rewrite any state with occupation numbers as

|nα′ ,nα′′ , nα′′′ ,...〉 = 1√
nα′ !nα′′ !nα′′′ !...

a†α1a
†
α2 ...a

†
αk
|0〉. (2.30)

4Here δαjαk = 1 if αj and αk refer to the same state.

9

When dealing with fermions or bosons we can use the operator form (2.22) and (2.30)
respectively. We are then ensured by the commuting relations that the appropriate
properties for each particle will hold when operating on these states.

2.2.3 The number operator

As the perhaps simplest example of an operator, we have the number operator:

Nα = a†αaα. (2.31)

It is easily shown using (2.28) for the bosonic case and (2.24) for the fermionic case that
it satisfies

Nα|nαnα′nα′′ ...〉 = nα|nαnα′nα′′ ...〉. (2.32)
Thus, the number operator Nα counts how many particles are occupying the state α.

2.2.4 One-body operators in Fock space

We will now describe how operators can be expressed in the second quantization for-
malism. Let O be an Hermitian operator that acts on a particular Hilbert space of one
particle, i.e. a one-body operator. In order to keep track of what Hilbert space it refers
to, we could label it as O(i), meaning that it operates on the i-th particle. If we let O(i)
operate on a product state we can write it as

O(i)|α1α2...αk) = |α1〉 ⊗ ...⊗O|αi〉 ⊗ ...⊗ |αk〉. (2.33)

On the right side we omitted the index, because it loses its meaning when we put it in
front of a single-particle state of the Hilbert space i to which it refers. This captivates
the fact that the action imposed by O(i), is O on the i-th particle, and is the same for
all different is.

We are not in general interested in O(i) but rather the sum of O over all particles,
which we denote by Ok,

Ok =
k∑
i=1

O(i). (2.34)

The action of Ok on a product state can then be written as

Ok|α1α2...αk) =
k∑
i=1
|α1〉 ⊗ ...⊗O|αi〉 ⊗ ...⊗ |αk〉. (2.35)

To continue, we expand O in its complete eigenspace spanned by {|λ〉} with eigenvalues
λ, i.e.5

O =
∑
λλ′

|λ〉〈λ|O|λ′〉〈λ′| =
∑
λ

λ|λ〉〈λ|. (2.36)

where we used the resolution of identity6. If we let Ok act on a product state of its own
eigenstates, we yield

Ok|λ1λ2...λk) =
k∑
i=1
|λ1〉 ⊗ ...⊗O|λi〉 ⊗ ...⊗ |λk〉 =

(
k∑
i=1

λi

)
|λ1λ2...λk). (2.37)

5Here we use “′” as in λ′ to denote different indexing from the same set {|λ〉}.
6For a complete set {|α〉} it holds that

∑
α
|α〉〈α|=1.

10

So far we have dealt with product states. In order to expand the concept to sym-
metric and anti-symmetric states, we see that [Ok,A] = [Ok,S] = 0 since Ok must
be symmetric and A, S are linear combinations of P . For A, remembering that
|λ1λ2...λk〉 =

√
k!A|λ1λ2...λk), we have

Ok|λ1λ2...λN 〉 =
√
k!AOk|λ1λ2...λk) =

(
k∑
i=1

λi

)
|λ1λ2...λk〉. (2.38)

Thus, |λ1λ2...λk〉 is an eigenstate of Ok with eigenvalue ∑k
i=1 λi. Since λi could refer

to the same single-particle state, it is instructive to embrace the number representation
formalism, that is |λ1λ2...λk〉 = |nλ, nλ′ , nλ′′,...〉 where λ, λ′... range over all possible
unique λ, and nλ is the occupation number of this state. Since nλ = 0 for a state not
present, we can write

k∑
i=1

λi =
∑
λ

λnλ (2.39)

where the last sum runs over all eigenvalues λ. Inserted into (2.38), we get

Ok|λ1λ2...λk〉 =
(∑

λ

λnλ

)
|λ1λ2...λk〉. (2.40)

We recall from Section 2.2.3 that nλ|λ1λ2...λk〉 = Nλ|λ1λ2...λk〉 where Nλ = a†λaλ. Thus,
we can express Ok as

Ok =
∑
λ

λa†λaλ. (2.41)

In general we are not interested in the action of Ok on the eigenspace of itself, but rather
in another complete space spanned by {|α〉}. By the use of the resolution of identity we
have

|λ〉 =
∑
α

|α〉〈α|λ〉. (2.42)

The fact that |λ〉 = a†λ|0〉, makes it reasonable to write [1]

a†λ =
∑
α

a†α〈α|λ〉 and aλ =
∑
α

aα〈λ|α〉. (2.43)

Inserted into (2.41), we get

Ok =
∑
λ

λa†λaλ =
∑
λ

λ
∑
αβ

a†α〈α|λ〉〈λ|β〉aβ

=
∑
αβ

〈α|
(∑

λ

λ|λ〉〈λ|
)
|β〉a†αaβ

=
∑
αβ

〈α|O|β〉a†αaβ.

(2.44)

Here we have also used β to denote states in the set {|α〉}.
Note that the right side of (2.44) makes no reference to the number of particles. This

makes it plausible that operators expressed in this form could operate on any number of

11

particles. It can be shown that this is true [2] and we call it a Fock space operator. We
will distinguish Fock space operators from other operators using a “hat”. To conclude,
a one-body Fock space operator is expressed as

Ô =
∑
αβ

〈α|O|β〉a†αaβ. (2.45)

A matrix element for the operator (2.45) is written as

〈ψf |Ô|ψi〉 =
∑
αβ

〈α|O|β〉〈ψf |a†αaβ|ψi〉. (2.46)

We observe that for a given pair of states ψi and ψf , the factor 〈ψf |a†αaβ|ψi〉 is inde-
pendent of the specific action of Ô on the states; i.e. it is the same for all one-body
operators. Thus, if we calculate it, the job is done for all one-body operators. We call

〈ψf |a†αaβ|ψi〉 (2.47)

a transition density matrix element, and those elements are the specific aim of the
computations in this thesis.

2.2.5 Two- and three-body operators in Fock space

One-body operators relate to properties of non-interacting particles, e.g. momentum,
kinetic energy or potential energy. To describe interaction between two particles, we
have to turn to two-body operators. A generalization of the procedure in the previous
section, yields the following expression for a two-body operator [2]:

V̂ = 1
2
∑

αβα′β′

(αβ|V |α′β′)a†αa
†
βaα′aβ′ . (2.48)

The factor 1/2 derives from the fact that we only want to count each interaction once.
Furthermore, in some cases we need to account for interactions involving three par-

ticles. A three-body operator is written as [2]

Ŵ = 1
6

∑
αβγα′β′γ′

(αβγ|W |α′β′γ′)a†αa
†
βa
†
γaα′aβ′aγ′ . (2.49)

2.3 Matrix representations for commuting operators
The quantum mechanical problem of finding the eigenspace of an operator could be
stated as a matrix eigenvalue problem. This is done by expanding the operator in a
complete basis. The computational difficulties of a matrix eigenvalue problem is highly
dependent of the dimension of the basis. This section motivates how the dimension can
be reduced when commutation relations between the operators at interest are known
beforehand.

Consider two Hermitian operators A and B, and a complete basis |a(i)〉, being a
degenerate set of eigenstates for A, with na-fold degeneracy for each eigenvalue a, that
is

A|a(i)〉 = a|a(i)〉 for i = 1,2,...,na. (2.50)

12

Let us say we want to the find the eigenstates for B, as a linear combination the states
|a(i)〉. In order to do so, we form the matrix elements 〈a′(i)|B|a′′(j)〉. If A and B
commute, [A,B] = 0, we only need to consider the subsets |a(i)〉 for different a one at a
time. This is ensured by the following theorem:

Theorem 2.3.1. Let A and B be Hermitian, commuting operators, and let |a(i)〉 be a
complete basis of degenerate eigenstates of A, A|a(i)〉 = a|a(i)〉 for i = 1,2,...,na. Then
B will not couple states with different a, that is 〈a′(i)|B|a′′(j)〉 = 0 if a′ 6= a′′.

Proof. We use the fact that A and B commute and are Hermitian,

0 = 〈a′(i)|[A,B]|a′′(j)〉 = 〈a′(i)|AB −BA|a′′(j)〉 = 〈a′(i)|AB|a′′(j)〉 − 〈a′(i)|BA|a′′(j)〉 =
= a′〈a′(i)|B|a′′(j)〉 − a′′〈a′(i)|B|a′′(j)〉 = (a′ − a′′)〈a′(i)|B|a′′(j)〉.

Thus we see that 〈a′(i)|B|a′′(j)〉 6= 0 only if a′ = a′′.

We still need to consider all a to find all eigenstates of B but these sets do not couple
to each other. In terms of linear algebra we say that 〈a′(i)|B|a′′(j)〉 is a block diagonal
matrix and we could write it as a direct sum of the independent matrices where the
set of eigenvalues and eigenstates is the sum of eigenvalues and eigenstates of every
constituent matrix. In this way, we will end up with a set of smaller matrices instead of
one block diagonal, the former being computationally preferable. The principle can be
generalized to a set of mutually commuting operators.

Usually, the eigenstates of interest are those of a Hamiltonian, which plays the role
of B. If we construct many-body states being eigenstates to another operator, playing
the role of A, we may treat eigenstates for different eigenvalues one at a time, provided
that the operator commutes with the Hamiltonian. In Section 2.1.1, we saw one such
operator, the permutation operator, implying that we can treat symmetric and anti-
symmetric states one at a time.

In the following chapter, we will have a closer look at the specific problem and define
a Hamiltonian commuting with several other operators, making further use of Theorem
2.3.1.

13

Chapter 3

Problem description

In this chapter we will describe the model problem, a quantum mechanical many-body
problem, with the primary example being an atomic nucleus. In nuclear systems, many
complex interactions are involved, some of which are not yet fully understood, and a
number of Hamiltonian structures have been proposed. The models have been able to
explain some experimental results, but not all.

However, in our study we will deal with so-called ab initio computations, employing
the no-core shell model, NCSM. In such computations, we know what specific approxi-
mations we have done since calculated eigenstates are those of a specific chosen nuclear
Hamiltonian. In principle, ab initio computations should be able to reproduce all experi-
mental results, provided that the appropriate physics is incorporated in the Hamiltonian.
In this way, we can evaluate the choice of Hamiltonian since we can compare it to ex-
perimental results. However, a drawback of the method is the monstrous dimensions
arising, calling for heavy computational power.

Although the entire ab initio process involves several computationally intense steps,
the focus in this project will be the calculation of transition density matrix elements for
one-body operators,

〈ψf |a†αaβ|ψi〉. (3.1)

We have further made the restriction to only consider systems with one kind of particle,
e.g. neutrons. The generalization to systems with both protons and neutrons is fairly
straight-forward, and essentially involves the addition of an extra quantum number,
isospin. The generalization is further described in Chapter 8.

In this chapter, we will outline a NCSM-computation step by step, and give a simple
example for clarity. We will explain most of the important steps in the full computation,
but focus on the parts that are of interest in the calculation of transition densities. But
to begin with, we give a brief explanation of the nuclear Hamiltonian, whose properties
are important for the behaviour of the studied system, and thus for the computations
as well.

3.1 The nuclear Hamiltonian
To describe a nuclear system of interacting protons and neutrons in ab initio NCSM
computations, the starting point is a Hamiltonian that is chosen to be translationally

14

invariant and have the general structure [3]

Ĥ = 1
A

A∑
i<j

(~pi − ~pj)2

2m +
A∑
i<j

VNN(i,j) +
A∑

i<j<k

VNNN(i,j,k). (3.2)

Here m is the average mass of the neutron and proton. In this Hamiltonian, there
are one-, two- and even three-body operators. VNN is the nucleon-nucleon interaction
and contains a part that is approximately isospin invariant, i.e. it is the same between
proton-neutron, proton-proton and neutron-neutron. The three-body interaction terms
are described by VNNN(i,j,k).

The Hamiltonian (3.2) commutes with the total angular momentum, parity and
isospin. Hence, in accordance with Theorem 2.3.1, this Hamiltonian will only couple
states with the same parity Π, total angular momentum J , angular momentum pro-
jection M and isospin. Since we will only deal with neutrons, we will not consider the
isospin quantum number. It will then be sufficient to choose a basis with good quantum
numbers J,M,Π to express the eigenstates of the Hamiltonian.

Here, we will construct a many-body basis with good M and Π but not necessarily
good J . This is called the M-scheme. The angular momentum coupled J-scheme, which
uses states with both good J andM , turns out to be computationally difficult to set up.
M- and J-schemes are further discussed in Appendix A. When using this basis, we will
consider one-body operators Ô, which also commute with the total angular momentum
and parity.

3.2 Ab initio no-core shell model computations
The final goal of ab initio many-body computations is often to compute expectation
values of Fock-space operators for energy eigenstates, or transitions matrix elements
between such eigenstates. Expressing the eigenstates as linear combinations of many-
body basis states |ν〉, i.e. |ψi〉 = ∑

ν c
i
ν |ν〉 and |ψf 〉 = ∑

ν c
f
ν |ν〉, and restricting ourselves

to one-body operators, we can write the target of the calculations as1

〈ψf |Ô|ψi〉 =
∑
αβ

〈α|O|β〉〈ψf |a†αaβ|ψi〉 =
∑
αβ

∑
νjνk

〈α|O|β〉cfνjc
i
νk
〈νj |a†αaβ|νk〉. (3.3)

The computation of this expression using NCSM essentially involves 6 steps:

1. Choose a single-particle basis, i.e. the set of states α, β in (3.3).

2. Construct a truncated many-body basis, i.e. the states ν, from the single-particle
states, as described in Chapter 2.

3. Construct the matrix representation of the Hamiltonian, with respect to the trun-
cation of the many-body basis.

4. Diagonalize the Hamiltonian to find the energy-eigenstates of the system, i.e. the
amplitudes cν for all many-body states in the basis.

1Since the Hamiltonian is real and symmetric, we can choose the eigenvectors to be real, and we need
not bother with complex conjugates.

15

5. Compute the transition density matrix elements 〈ψf |a†αjaαk |ψi〉.

6. Compute matrix elements for Ô using the transition densities.

In what follows, we will describe the process step by step. Our study mainly investigates
the feasibility of using FPGA hardware for step 5, given that the results of the previous
steps are at hand, but the algorithms could be generalized to also include step 3, which
follows the same basic principles. We will also make a thorough discussion of step 1-
2, whilst step 4 and 6 are not covered here. We will use a small example of a nucleus
consisting of three neutrons to explain and expose the detailed calculations of the various
steps.

3.2.1 Choice of single-particle basis – the harmonic oscillator

To begin with, we need a single-particle basis. We use the three-dimensional harmonic
oscillator whose Hamiltonian is written as

ĤHO = p̂2

2m + mΩ2r̂2

2 (3.4)

with eigenstates |nlml〉. We extend the Hilbert space to include spin, HHO ⊗Hspin. As
a basis for this space we choose the coupled states

|nljmj〉 =
∑
mlms

(lmlsms|jmj) |nlml〉 ⊗ |sms〉, (3.5)

where (lmlsms|jmj) are Clebsch-Gordan coefficients. The single-particle representation
|α〉 in Chapter 2 should be identified with the quantum numbers discussed here, i.e.
|α〉 = |nljmj〉. For nucleons s = 1/2, and we will get j = |l ± 1/2|. The eigenenergies
are given by [1]

Enl = ~Ω
(
N + 3

2

)
where N = 2n+ l, (3.6)

and the parity is given by

πl = (−1)l = (−1)N−2n = (−1)N . (3.7)

The harmonic oscillator basis has an infinite dimension. When performing calcula-
tions, it must be truncated. This is done by defining a maximum number Nsingle,max of
energy quanta. For all energies from 0 to Nsingle,max we then form all possible combina-
tions of n, l, j and mj .

Example. For N = 0 we must have n = 0 and l = 0 since N = 2n + l and both are
non-negative. Furthermore, we have j = |l ± 1/2|. Hence, for l = 0 the only possibility
is j = 1/2. Finally, we have mj = −j,−j + 1,...,j − 1,j. For N = 0 we end up with two
possibilities, |nljmj〉 = |001

2 ,±
1
2〉. In Table 3.1 we show all single-particle states with

N ≤ 2, i.e. we have chosen Nsingle,max = 2. �

Finally, in a real computation, we would have to choose a harmonic oscillator energy,
~Ω, for the basis. It is true that this is an arbitrary choice and that in the limit of an

16

Table 3.1: Single-particle basis for Nsingle,max = 2. The first column defines indices used to
identify the states, but the ordering is arbitrary.

Index N n l j mj Index N n l j mj

1 0 0 0 1/2 -1/2 11 2 0 2 5/2 -5/2
2 0 0 0 1/2 1/2 12 2 0 2 5/2 -3/2
3 1 0 1 3/2 -3/2 13 2 0 2 5/2 -1/2
4 1 0 1 3/2 -1/2 14 2 0 2 5/2 1/2
5 1 0 1 3/2 1/2 15 2 0 2 5/2 3/2
6 1 0 1 3/2 3/2 16 2 0 2 5/2 5/2
7 1 0 1 1/2 -1/2 17 2 0 2 3/2 -3/2
8 1 0 1 1/2 1/2 18 2 0 2 3/2 -1/2
9 2 1 0 1/2 -1/2 19 2 0 2 3/2 1/2
10 2 1 0 1/2 1/2 20 2 0 2 3/2 3/2

infinite many-body basis, all ~Ω should produce the same results. But by optimizing
~Ω, the number of needed many-body states may be reduced, simplifying the compu-
tations. In actual computations, however, one usually does several calculations using
different ~Ω to verify independence [4]. Henceforth, we will forget about the choice of
~Ω, and care about the quantum number representation |nljmj〉 alone.

3.2.2 Construction of a many-body basis

Given the single-particle basis, we will construct a many-body basis out of the single-
particle states, as described in Chapter 2. Thanks to the Pauli exclusion principle,
a single-particle state may occur only once in each many-body state, and many-body
states ordered in different ways represent the same physical state.

Since a complete many-body basis would have infinite dimension, this basis will be
truncated. Here we choose to define a maximum energy constraint to our many-body
states, i.e. the sum of the energies of the constituent single-particle states must not
exceed a certain limit,

A∑
i=1

Ni ≤ Ntot ≡ N0 +Nmax, (3.8)

where A is the number neutrons. Here Ni = 2ni + li are the energies of the constituent
single-particle states and N0 is the lowest possible energy allowed by the Pauli exclusion
principle. In general, N0 depends on the number of protons and neutrons. The trun-
cation (3.8) has been proven to induce fast convergence rates of expectation values [5].
Given the number of neutrons and Nmax we could construct a single-particle basis with a
generous energy bound of Nsingle,max = Ntot, so that the truncation of the single-particle
basis will be no constraining factor when constructing the many-body basis. However,
that would generally make the single-particle basis unnecessarily large. In the following
example we describe a somewhat better approach.

17

2

1

0

N

Figure 3.1: The potential well of an harmonic oscillator. To minimize the energy for three
neutrons, two particles can have N = 0, but one must have N = 1, making N0 = 1. For N = 2
there are 12 states, and for N = 3 there are 20.

Example. To calculate N0, we simply sum up the energies of the A most low-energetic
single-particle states. For A = 3 (neutrons only) the lowest possible energy will be
N0 = 0 + 0 + 1 = 1, using the energies of the first three states in Table 3.1, illustrated
by the harmonic oscillator potential well in Figure 3.1. Thus, by choosing Nmax = 1
we will have Ntot = N0 + Nmax = 1 + 1 = 2. To choose Nsingle,max, we assign the most
low-energetic single-particle states to the A− 1 first particles, and then investigate how
much energy that might be assigned to the last particle while still fulfilling the energy
constraint (3.8). In this case, since the first two single-particle states have energy 0, we
will have Nsingle, max = Ntot − 0 − 0 = 2, but with A > 3 (neutrons only) there will be
at least one energy quantum in the first A− 1 states, and thus Nsingle,max < Ntot. �

Given the single-particle basis, we construct the many-body basis as all possible combi-
nations of A single-particle states, obeying the Pauli exclusion principle and the energy
constraint (3.8). However, still not all of these combinations are of interest. Since we
are working within the M-scheme, with parity commuting operators, we will construct
basis states:

• with the same parity

Π =
A∏
i=1

πi = (−1)
∑A

i=1 li = (−1)
∑A

i=1 Ni , (3.9)

positive or negative; and

• with the same sum of individualmjs, i.e. having the same total angular momentum
projection,

M =
A∑
i=1

mji. (3.10)

In Appendix A we show that the many-body basis constructed in Chapter 2 by single-
particles states with good jmj actually has good M . For even A, we will usually choose
M = 0, and for odd A usually M = ±1/2.

18

0 2 4 6 8 10 12 14 16 18
100

101

102

103

104

105

106

107

108

Nmax

D
im

en
si

on
 o

f b
as

is

A=2
A=3
A=4
A=5
A=6

A=7
A=8
A=9
A=10
A=11

Figure 3.2: Growth of the size of the many-body basis for different numbers of neutrons and
positive parity, as a function of Nmax. The sum of mjs was set to M = 0 and 1/2 for even and
odd numbers of neutrons, respectively. Due to the positive parity, an odd Ntot will result in the
same basis as for an Ntot with one energy quantum less. Hence, the bases were constructed for
even Ntot only. Note that the x-axis is for Nmax = Ntot −N0. The plots for 3,5 and 7 neutrons
all have odd Nmax, because they correspond to odd N0.

The dimensions of the many-body bases are shown in Figure 3.2 for positive parity
andM = 0 or 1/2, depending on whether the number of neutrons is even or odd. In order
to reach convergence for expectation values, an Nmax of at least 8 is usually required,
but sometimes possibly 10 or even more [5]. Apparently, the dimensions explode already
for fairly small nuclei. One should recall that these bases take account of only one kind
of particle. When handling both protons and neutrons, the dimensions are even higher
for fixed Nmax and A, and the dimensions may exceed the dimensions of our bases by
several orders of magnitude [6].

Example. To create the many-body basis out of the single-particle basis in Table
3.1, for A = 3 (neutrons only) and Nmax = 1, we could start by forming all possible
combinations satisfying (3.8) and the Pauli exclusion principle,

[1,2,3], [1,2,4], [1,2,5], ... [2,7,8] (3.11)

19

It turns out that there are 48 such states. However most of those do not satisfy either the
parity or theM constraint. For example, if we choose the parity to be positive, the state
[1,2,3] is invalid since (−1)0+0+1 = −1. In this case, the parity disqualifies six states.
Further, if we choose M = 1/2, the state [1,2,4] is invalid (−1/2 + 1/2 − 1/2 = −1/2)
but [1,2,5] passes the test (−1/2+1/2+1/2 = 1/2). TheM constraint alone disqualifies
all but 13 states for M = 1/2. We end up with 11 valid states fulfilling all conditions;

[2,4,5], [2,3,6], [1,4,6], [2,5,7], [1,6,7], [2,4,8],
[1,5,8], [2,7,8], [1,2,10], [1,2,14], [1,2,19].

(3.12)

�

In our example, the M constraint was more restrictive than the parity. This is by
no means a surprise since all states will have either positive or negative parity, while the
sum of mj :s varies more extensively. In Figure 3.3 we see how the constraints affect the
size of the basis, for A = 6, positive parity and M = 0, and different Nmax. We should
keep in mind that even though we have only plotted the constraints in the particular
case of M = 0, another choice of M would be even more restricting since it is a well
known fact from combinatorics.

3.2.3 Identifying connections using a one-body operator

Given the many-body basis, the next step of the ab initio computation would be to con-
struct the matrix representation of the Hamiltonian. Since we are exclusively interested
in the calculation of transition densities, we assume that this step has already been ac-
complished, and therefore proceed to step 5, i.e. the computation of transition density
matrix elements. To do this computation, the method is to find all connections between
many-body states for a one-body operator. A connection between the many-body states
νj and νk is defined by that the element

〈νj |a†αaβ|νk〉 (3.13)

is non-zero. This is governed by a transition rule, i.e. a condition for (3.13) to be
non-zero, according to which the many-body states νj and νk can differ by at most one
single-particle state.

In Figure 3.4 we show how the many-body states of our example connect. The grey
squares represent a connection. The numbers in the respective squares indicate what
single-particle states have been annihilated and created in order to find the connection,
using the indices of the single-particle basis. The diagonal connections are accomplished
by replacing any of the included single-particle states with itself. Further, when an-
nihilating one single-particle state, and creating a new, the resulting many-body state
representation may need to be sorted to maintain the ascending order of single-particle
states. As described in Chapter 2, this permutation may introduce a negative sign. In
practice, the sign is determined by how many steps we have to move the inserted state.
If we insert the new state at place i, and have to move it to place j, the sign will be
(−1)j−i. In the grey squares, it is indicated whether each connection comes with positive
or negative sign.

20

2 4 6
0

0.2

0.4

0.6

0.8

1

N
max

R
el

at
iv

e
si

ze
 o

f m
an

y−
bo

dy
 b

as
is

Energy truncation
Parity constraint
M constraint
Final size

Figure 3.3: Reduction of many-body states due to the parity and M constraint, for A = 6,
neutrons only. Here we chose positive parity and M = 0. The parity and M constraint were
applied independently to the energy truncated basis, so that the bars show the size of the
basis after applying the constraint, relative to the energy truncated basis. In this case, the M
constraint was by far the most restrictive.

21

[1,2,19]

[1,2,14]

[1,2,10]

[2,7,8]

[1,5,8]

[2,4,8]

[1,6,7]

[2,5,7]

[1,4,6]

[2,3,6]

[2,4,5]
+

−
7,4

+
8,5

+

+

−
7,4

−
4,7

+

−
8,5

−
4,7

+

+
5,8

+

+
7,4

+

−
5,8

+
4,7

+

+

+
14,10

+
19,10

+
10,14

+

+
19,14

+
10,19

+
14,19

+

[2,4,5]

[2,3,6]

[1,4,6]

[2,5,7]

[1,6,7]

[2,4,8]

[1,5,8]

[2,7,8]

[1,2,10]

[1,2,14]

[1,2,19]

Figure 3.4: Connections in the many-body basis of our example, for a one-body operator. Grey
square represents a connection, and the numbers in the square indicate what single-particle states
have been changed, referring to the indices of Table 3.1. On the diagonal, the connections are
made by switching any of the included single-particle states for itself. It is also indicated whether
the connection comes with positive or negative sign.

22

Example. Let us find all connections involving [2,4,5] in our example basis. To be-
gin with, a many-body state always connects to itself, with a positive sign. This is
accomplished by annihilating any of the present single-particle states, and creating it
again. Further, [2,4,5] does not connect to either [2,3,6] or [1,4,6] since more than one
single-particle state differs, and we are dealing with a one-body operator. On the other
hand, [2,4,5] does connect to [2,5,7]. If we annihilate 4 and create 7, we get the state
[2,7,5]. Since [2,7,5] is not in ascending order, it needs to be sorted. We need to move 7
from place 2 to place 3, introducing the sign (−1)3−2 = −1. The new state is therefore
− [2,5,7] and we have found a connection with a negative sign. Between [2,4,5] and
[1,6,7], all states differ and we have no connection. Finally the last connection for [2,4,5]
is to [2,4,8], if we annihilate 5 and create 8. The new state does not need to be sorted,
and we have found a connection with a positive sign. �

The brute-force approach used in the above example, of manual comparison of all many-
body states with one another, will be horribly lengthy in a real-world computation. For a
many-body basis of dimension 109 we would have to do 1018 comparisons, most of which
would be unsuccessful. A better approach would be to use an algorithm that starts with
a many-body state, and constructs new many-body states fulfilling the transition rule
(i.e. states differing with no more than one single-particle state). If the constructed
many-body states are valid (i.e. fulfills the Pauli exclusion principle, energy truncation,
has the correct momentum projection as well as parity), we know they reside somewhere
in our basis, and represent valid connections. This is the very heart of what should be
accomplished on the FPGA, and detailed algorithms will be developed in Chapter 6.

In Figure 3.4, the matrix may seem not so sparse, but in a real-world computation,
involving a many-body basis of millions or billions of elements, the matrix will be much
more sparse. The connections will therefore typically not be stored in matrix-form with
a lot of zeroes, but rather in some kind of list of all connections. The list should contain
the following information about each connection:

• The product of the probability amplitudes of the connecting many-body states,
i.e. cfνjc

i
νk
.

• The annihilated and created single-particle states β and α, used to accomplish the
connection.

• The sign of the connection.
Having this information, the next step is to compute the transition density matrix
elements.

3.2.4 Calculate transition densities for a one-body operator

Recalling (3.3), a one-body transition density matrix element is given as

〈ψf |a†αaβ|ψi〉 =
∑
νjνk

cνjcνk〈νj |a
†
αaβ|νk〉. (3.14)

This means that for each pair of single-particle states α and β, we must sum coefficients
of the type cνjcνk , referred to as probability amplitudes. Some will come with a plus
and some with a minus, according to the sign of 〈νj |a†αaβ|νk〉.

23

When having all transition density matrix elements computed, the observable can
be calculated by doing the full sum in (3.3). However, the sum is not trivial because
there might be thousands of transition density matrix elements in a real-world example.
Therefore, the number of elements should be reduced, if possible, and be ordered in a
carefully prepared way. This topic is addressed in the following chapter.

24

Chapter 4

Reduction of matrix elements and
transition densities

As the dimension of the many-body basis explodes, not only does the computations
become a headache, but also the form in which we present the results. Although the
results of the computation, i.e. the transition density matrix elements

〈ψf |a†αaβ|ψi〉, (4.1)

contain all the information we might be interested in, there will be a huge amount of
them. A real computation might include a couple of hundred single-particle states,
so that we would have tens of thousands of densities of type (4.1), and most of them
would not contribute to the computations of a given observable. However, thanks to
certain symmetries in the physics of the system, there are ways to reduce the amount of
transition density matrix elements, and group them into physically relevant categories.

This chapter briefly describes the physics of angular momenta and spherical tensors,
leading to the concept of reduced matrix elements and reduced transition densities,
which we may use to present the results in a more useful way. We conclude with an
example of how this presentation might be arranged.

4.1 Clebsch-Gordan coefficients
Let J1 and J2 be two commuting angular momentum operators and let |j1m1〉 and
|j2m2〉 be eigenstates of J2

1, J1,z and J2
2, J2,z, respectively (Jz is the projection of the

angular momentum on the z-axis). We know that the product states

|j1m1j2m2〉 = |j1m1〉|j2m2〉 (4.2)

are simultaneous eigenstates to the complete operator set

{J2
1, J1,z,J2

2, J2,z}. (4.3)

However, states of the type (4.2) do not correspond to well-defined angular momenta
in the coupled system, i.e. the states (4.2) are not eigenstates to the total angular
momentum operator

J2 = (J1 + J2)2 . (4.4)

25

The complete set of states {|j1m1j2m2〉} is thus called the uncoupled basis.
Although the operator set (4.3) is indeed complete, the complete operator set in-

cluding the total angular momentum,

{J2
1,J2

2,J2, Jz}, (4.5)

exhibits more charming properties. The eigenstates to this operator set are called the
coupled basis states, and may be constructed as linear combinations of the uncoupled
basis states,

|j1j2jm〉 =
∑

m1,m2

|j1m1j2m2〉〈j1m1j2m2|j1j2jm〉 ≡
∑

m1,m2

(j1m1j2m2|jm) |j1m1j2m2〉,

(4.6)
where we have defined the Clebsch-Gordan coefficients,

〈j1m1j2m2|j1j2jm〉 ≡ (j1m1j2m2|jm) ≡ Cjmj1m1j2m2
. (4.7)

The Clebsch-Gordan coefficients vanish unless

|j1 − j2| ≤ j ≤ j1 + j2 and m = m1 +m2 (4.8)

as is expected from the vector addition in (4.4). The values of the coefficients are easiest
found in tables, but if one wishes to actually compute them, the standard methods
involve the following recursion relation [1] (which we will need later on),√

(j ±m)(j ∓m+ 1) (j1m1j2m2|jm∓ 1) =

=
√

(j2 ∓m2)(j2 ±m2 + 1) (j1m1j2m2 ± 1|jm) +

+
√

(j1 ∓m1)(j1 ±m1 + 1) (j1m1 ± 1, j2m2|jm) .

(4.9)

4.2 Spherical tensors
When dealing with tensors, we usually represent them in terms of Cartesian coordinates.
Although the Cartesian representation might be the conceptually most straight-forward,
it has some disadvantages. For example, when rotating a tensor, it is often important
to keep track of symmetries, but in the Cartesian representation such characteristics
are generally hidden. However, a Cartesian tensor may be reduced to spherical tensor
components, exhibiting different rotational behaviour so that the symmetries of the
tensor are more explicit. Spherical tensors will be a central concept in order to reduce
the transition density matrix elements and present them in purposive groups.

In order to define spherical tensors it is instructive to start with ordinary tensors.
From classical physics we recall that a vector is what transforms as a vector under
rotation, by definition V ′i = ∑

j RijVj . We can generalize this to an arbitrary number of
indices, called tensors, which transform as T ′ijk... = ∑

i′j′k′...Rii′Rjj′Rkk′ ...Ti′j′k′... under
rotation. Here R are orthogonal matrices producing the rotation.

We now turn to quantum mechanics in which the unitary rotational operator U
describes how states transform under rotation, |α′〉 = U |α〉. For an operator O, we

26

define the rotated operator O′ by requiring that the expectation value of the rotated
operator acting on a rotated state is the same as without rotation, i.e.

〈α|O|α〉 = 〈α′|O′|α′〉. (4.10)

But for the rotated states we have

〈α′|O′|α′〉 = 〈α|U †O′U |α〉 (4.11)

so that O = U †O′U . Thus, since U is unitary, an operator transforms as

O′ = UOU †. (4.12)

Now, to define spherical tensor operators, we proceed in the same way as for Carte-
sian tensors – we define them by how they transform. We want our spherical tensors to
transform in the same way as eigenstates |jm〉 of angular momentum, i.e.

U |jm〉 =
j∑

m′=−j
|jm′〉〈jm′|U |jm〉 =

j∑
m′=−j

Dj
m′m(R)|jm′〉 (4.13)

where Dj
m′m(R) is a so-called Wigner D-function [7]. We are now ready to define the

spherical tensors. By definition, a spherical tensor TJM transforms as [1]

UTJMU
† =

J∑
M ′=−J

TJMD
J
M ′M (R). (4.14)

Here TJ is a spherical tensor of rank J , that is, it has 2J + 1 components TJM with
M = −J,−J + 1,..., J , i.e. projections on the z-axis. We see from the definition that
the components TJM couples within themselves under rotation just as the eigenstates
of angular momentum.

An equivalent definition of spherical tensors can be made using the commutators
with the angular momentum operators1

[Jz, TJM] = MTJM (4.15)

[J±, TJM] =
√

(J ∓M)(J ±M + 1)TJ,M±1 (4.16)

where J± = Jx ± iJy are the so-called ladder operators [1].
The perhaps simplest example of spherical tensors is the coordinate representation

of |jm〉, the spherical harmonics Ylm(n), with n replaced by a vector operator Vi, i.e.
TJM = Yl=J,m=M (Vi). An important property of Ylm(n) is that it is irreducible. This
holds for TJM as well [1]. By irreducible we mean that the tensor operator spans the
smallest possible space of operators that is closed under rotation [8]. These spaces have
the dimension 2J + 1.

The irreducibility is an advantage over Cartesian operators which in general are
reducible. The Cartesian operators can however be reduced into spherical tensors. For
example, a Cartesian tensor formed by the multiplication of the components of two
vectors, Tij = UiVj may be reduced to three spherical tensors of rank J = 0,1 and 2.
We see that the dimensions add up 3 × 3 = 1 + 3 + 5 = 9 [1]. The Cartesian tensor
equals the sum of three spherical tensors of different rank, whose individual behaviour
under rotation is known from (4.14).

1From now on we set ~ = 1.

27

Example. Gamma transition of a nucleus is mediated by multipole components of
the radiation field. We categorize them as electric QLM and magnetic MLM multipole
transitions. The electric multipole transition is written as [9]

QLM = iL
A∑
j=1

qjr
L
j YLM (nj) (4.17)

where the sums run over all nucleons and qj is the charge. The rank of the operator an-
swers for how much angular momentum the emitted photon carries with it. Here J = 0
is not allowed since the photon must carry at least one angular momentum quantum. �

When dealing with spherical tensors one must know how they can be combined into
new spherical tensors. With two spherical tensors we may construct a new spherical
tensor by the use of the following theorem (a proof can be found in e.g. [1]):

Theorem 4.2.1. Let XJ1M1 and YJ2M2 be two spherical tensors. Then the product

[XJ1YJ2]JM ≡
∑
M1

∑
M2

(J1M1J2M2|JM)XJ1M1YJ2M2 (4.18)

is also a spherical tensor.

We have seen that spherical tensors transform like eigenstates of the total angular
momentum, |jm〉. Just as is the case of |jm〉, spherical tensors are closely related to
Clebsch-Gordan coefficients. In the next section, we will see how.

4.3 The Wigner-Eckart theorem
We are now ready to introduce the Wigner-Eckart theorem, which states that the matrix
element of a spherical tensor can be factorized into one part containing the geometry
of the system, expressed by Glebsch-Gordan coefficients, and one rotationally invariant
part.

Theorem 4.3.1. Let TJM be a spherical tensor and let |ξjm〉 be a state with good
angular momentum j and projection m (ξ denotes other quantum numbers needed for
completeness). Then, the matrix element 〈ξ1j1m1|TJM |ξ2j2m2〉 can be factorized as

〈ξ1j1m1|TJM |ξ2j2m2〉 = (j2m2JM |j1m1)
ĵ1

〈ξ1j1||TJ ||ξ2j2〉. (4.19)

where 〈ξ1j1||TJ ||ξ2j2〉 is independent of m1, m2 and M , and where the notationally
convenient hat factor, ĵ1 =

√
2j1 + 1, has been introduced.

The Wigner-Eckart theorem is an existence theorem stating that the matrix element
of a spherical tensor may be divided into two parts. The factor 〈ξ1j1||TJ ||ξ2j2〉 makes
no reference to the orientation of the system. The geometrical dependency is instead
absorbed in the Clebsch-Gordan coefficent and we can reproduce 〈ξ1j1m1|TJM |ξ2j2m2〉
by knowing that it is proportional to 〈ξ1j1||TJ ||ξ2j2〉 times the proper Clebsch-Gordan
coefficient. It should be clear that we can evaluate 〈ξ1j1||TJ ||ξ2j2〉 for arbitrary m1, m2
and M , as it is independent of them.

28

Proof. By the use of (4.16), we have

〈ξ1j1m1| [J±, TJM] |ξ2j2m2〉 =
√

(J ∓M)(J ±M + 1)〈ξ1j1m1|TJM±1|ξ2j2m2〉. (4.20)

Further, it can be shown that the action of the ladder operators on a state |ξjm〉 is to
raise/lower the projection number [1],

J±|ξjm〉 =
√

(j ∓m)(j ±m+ 1)|ξjm± 1〉 (4.21)

so that (4.20) can be rewritten as√
(j1 ±m1)(j1 ∓m1 + 1)〈ξ1j1m1 ∓ 1|TJM |ξ2j2m2〉 =

=
√

(j2 ∓m2)(j2 ±m2 + 1)〈ξ1j1m1|TJM |ξ2j2m2 ± 1〉+

+
√

(J ∓M)(J ±M + 1)〈ξ1j1m1|TJM±1|ξ2j2m2〉.

(4.22)

This recursion relation is exactly the same as the one for Clebsch-Gordan coefficients
(4.9), if we substitute j → j1, m → m1, j1 → J and m1 → M . Since both the matrix
elements and the Clebsch-Gordan coefficients follow the same recursion relation, the
ratios between them must be the same for corresponding sets of m1, m2 and M . That
is, they differ only by a constant indpedent ofm1, m2 andM . By identifying for example
the last term in (4.22) with the last term in (4.9), and substituting M − 1 → M , we
may write

〈ξ1j1m1|TJM |ξ2j2m2〉 = (j2m2JM |j1m1)× const. indep. of m1, m2 and M, (4.23)

which proves the theorem.

4.4 Reduced one-body transition densities
We will now show how the Wigner-Eckart theorem can be used in second quantization
formalism to express matrix elements for a one-body operator in a more practical form.
We will represent our quantum numbers with |α〉 = |ξjm〉. We have seen that we can
expand an arbitrary one-body operator as

Ô =
∑

ξ1j1m1ξ2j2m2

〈ξ1j1m1|O|ξ2j2m2〉a†ξ1j1m1
aξ2j2m2 (4.24)

Now, consider a spherical tensor T̂JM . We may express the operator in the same way,
and then apply the Wigner-Eckart theorem,

T̂JM =
∑

ξ1j1m1ξ2j2m2

〈ξ1j1m1|TJM |ξ2j2m2〉a†ξ1j1m1
aξ2j2m2

=
∑

ξ1j1m1ξ2j2m2

(j2m2JM |j1m1) 〈ξ1j1||TJ ||ξ2j2〉a†ξ1j1m1
aξ2j2m2

=
∑

ξ1j1ξ2j2

ĵ−1
1 〈ξ1j1||TJ ||ξ2j2〉

∑
m1m2

(j2m2JM |j1m1) a†ξ1j1m1
aξ2j2m2 .

(4.25)

29

The operator is now factorized in one m-independent part, and one part which is inde-
pendent of the operator’s action on single particle states. We will now see that we can
rearrange some terms in the last sum to construct a new spherical tensor. By the use of
(4.16) and Jz, J± expressed in second quantization formalism one can show that a†ξjm
and ãξjm = (−1)j+maξj−m are spherical tensors, but aξjm is not [7]. We will therefore
express the last sum of (4.25) in terms of a†ξjm and ãξjm,∑

m1m2

(j2m2JM |j1m1) a†ξ1j1m1
aξ2j2m2

=
∑
m1m2

1
(−1)j2−m2

(j2m2JM |j1m1) a†ξ1j1m1
ãξ2j2−m2

=
∑
m1m2

1
(−1)j2+m2

(j2 −m2JM |j1m1) a†ξj1m1
ãξj2m2 .

(4.26)

We now use the following identity for Clebsch-Gordan coefficients [7]:

(j2m2JM |j1m1) = (−1)j2−m2 ĵ1

Ĵ
(j1m1j2 −m2|JM) (4.27)

which gives ∑
m1m2

1
(−1)j2+m2

(j2 −m2JM |j1m1) a†ξ1j1m1
ãξ2j2m2

=
∑
m1m2

1
(−1)j2+m2

(−1)j2+m2 ĵ1

Ĵ
(j1m1j2m2|JM) a†ξ1j1m1

ãξ2j2m2

=
∑
m1m2

ĵ1

Ĵ
(j1m1j2m2|JM) a†ξ1j1m1

ãξ2j2m2 .

(4.28)

By comparison with Theorem 4.2.1 we see that this constitutes a spherical tensor, that
is ∑

m1m2

(j2m2JM |j1m1) a†ξ1j1m1
aξ2j2m2

= ĵ1

Ĵ

∑
m1m2

(j1m1j2m2|JM) a†ξ1j1m1
ãξ2j2m2

= ĵ1

Ĵ

[
a†ξ1j1

ãξ2j2

]
JM

(4.29)

where we have used the “bracket notation” of Theorem 4.2.1. Insertion into (4.25) gives

T̂JM = 1
Ĵ

∑
ξ1j1ξ2j2

〈ξ1j1||TJ ||ξ2j2〉
[
a†ξj1 ãξj2

]
JM

(4.30)

which is a spherical tensor-equivalent of (4.24) with the advantage of less references to
the geometry.

We now want to find a matrix element of T̂JM . Let us say we have a many-body
state |λJM〉 which is eigenstate to J2 and Jz (here λ denotes other quantum numbers

30

for many-body states, equivalent to ξ for single particle states). Then, by the use of
(4.30)

〈λfJfMf |T̂JM |λiJiMi〉 =

= 1
Ĵ

∑
ξ1j1ξ2j2

〈ξ1j1||TJ ||ξ2j2〉〈λfJfMf |
[
a†ξ1j1

ãξ2j2

]
JM
|λiJiMi〉.

(4.31)

Now, since
[
a†ξ1j1

ãξ2j2

]
JM

is a spherical tensor, we are allowed to use the Wigner-Eckart
theorem for the last factor,

〈λfJfMf |
[
a†ξ1j1

ãξ2j2

]
JM
|λiJiMi〉 =

= 1
Ĵf

(JiMiJM |JfMf) 〈λfJf ||
[
a†ξ1j1

ãξ2j2

]
J
||λiJi〉.

(4.32)

If we insert (4.32) into (4.31) we can express the matrix element as

〈λfJfMf |T̂JM |λiJiMi〉 =

= (JiMiJM |JfMf)
Ĵf Ĵ

∑
ξ1j1ξ2j2

〈ξ1j1||TJ ||ξ2j2〉〈λfJf ||
[
a†ξ1j1

ãξ2j2

]
J
||λiJi〉

(4.33)

or since we can use Wigner-Eckart on the left side as well,

〈λfJf ||TJ ||λiJi〉 =

= 1
Ĵ

∑
ξ1j1ξ2j2

〈ξ1j1||TJ ||ξ2j2〉〈λfJf ||
[
a†ξ1j1

ãξ2j2

]
J
||λiJi〉. (4.34)

The factor 〈λfJf ||
[
a†ξ1j1

ãξ2j2

]
J
||λiJi〉 is called a matrix element for the reduced one-body

transition density and is independent of both the geometry and the operator TJ (apart
from its rank) [7]. The factor 〈λfJf ||TJ ||λiJi〉 is called the reduced matrix element and
is independent of the geometry.

Example (the number operator). The number operator summed up in m,

Nξj =
∑
m

a†ξjmaξjm, (4.35)

can be expressed in the form of a spherical tensor as

Nξj = ĵ
[
a†ξj ãξj

]
00
, (4.36)

i.e. a spherical tensor of rank 0. Inserted into (4.33) with J = M = 0 and i = f we get

〈λiJiMi|N̂ξj |λiJiMi〉

= (JiMi00|JiMi)
Ĵi0̂

∑
ξ1j1ξ2j2

〈ξ1j1||N0||ξ2j2〉〈λiJi||
[
a†ξ1j1

ãξ2j2

]
0
||λiJi〉

= 1
Ĵi
〈ξj||N0||ξj〉〈λiJi||

[
a†ξj ãξj

]
0
||λiJi〉

(4.37)

31

The factor 〈ξj||N0||ξj〉 can be calculated using the Wigner-Eckart theorem backwards,

〈ξj||N0||ξj〉

= ĵ

(jm100|jm2)〈ξjm1|Nξj |ξjm2〉

= ĵ

(jm100|jm2)〈ξjm1|
∑
m

a†ξjmaξjm|ξjm2〉

= ĵ

(jm00|jm) = ĵ

(4.38)

so that, inserted into (4.37), we get

〈λiJiMi|N̂ξj |λiJiMi〉 = ĵ

Ĵi
〈λiJi||

[
a†ξj ãξj

]
0
||λiJi〉. (4.39)

We recognize the factor 〈λiJi||
[
a†ξj ãξj

]
0
||λiJi〉 as a reduced one-body transition density

matrix element for a rank 0-operator, so if we manage to calculate such transition den-
sity matrix elements, the occupation numbers are given by multiplication by a simple
constant. �

To calculate the reduced one-body transition densities, we use the Wigner-Eckart the-
orem backwards and split up the operator

[
a†ξ1j1

ãξ2j2

]
JM

, and the result turns out to
be

〈λfJf ||
[
a†ξ1j1

ãξ2j2

]
J
||λiJi〉

= Ĵf Ĵ

(JiMiJM |JfMf) ĵ1

∑
m1m2

(j2m2JM |j1m1) 〈λfJfMf |a†ξ1j1m1
aξ2j2m2 |λiJiMi〉.

(4.40)

A proper approach could therefore involve computing the standard one-body transitions
densities, and then use them in all relevant sums to form the reduced one-body transition
densities, arranged in proper groups. The concept will be explained in the following
section.

4.5 Structure of presentation of reduced transition densi-
ties

The objective of our computations will be to calculate matrix elements for the reduced
one-body transition density, i.e. elements

〈λfJf ||
[
a†ξ1j1

ãξ2j2

]
J
||λiJi〉, (4.41)

and group them in proper lists. However, from (4.40) we deduce that they will be zero
unless

|Ji − J | ≤ Jf ≤ Ji + J. (4.42)

32

We can also see, by the use of the property

(JiMiJM |JfMf) = (−1)Ji−Mi
Ĵf

Ĵ
(JfMfJi −Mi|JM) (4.43)

that
|Jf − Ji| ≤ J ≤ Jf + Ji (4.44)

must hold as well. Thus, a spherical tensor can only connect states with a difference in
angular momenta less than or equal to the tensor’s rank.

Because of the Clebsch-Gordan coefficients in Theorem 4.2.1, the same condition
holds also for the creation and annihilation operators, so that a given pair of creation
and annihilation operators with angular momenta j1 and j2 are only relevant for an
operator with rank J satisfying

|j1 − j2| ≤ J ≤ j1 + j2 (4.45)

provided that (4.44) holds. When calculating the reduced one-body transition densities,
we do not need to evaluate the sum in (4.40) if the triangle condition in (4.45) is not
fulfilled.

This makes it appropriate to list reduced transition density matrix elements between
two eigenstates for different ranks of the operator. The amount of reduced transition
density matrix elements can then be reduced, since only the creation and annihilation
operators for which (4.45) is fulfilled are relevant. When the specific operator is known,
e.g. an electromagnetic moment, we can choose the appropriate list and calculate (4.34)
based on the transition density matrix elements in this list.

In Table 4.1 we show the structure of such a list. For the first pair of eigenstates we
have chosen Ji = Jf = 3/2. By (4.44) we get four possible spherical tensors that can
connect these state, J = 0,1,2,3. For every one of these operators we list the reduced
one-body transition density matrix elements, for all pairs of annihilation and creation
operators allowed by (4.45). The second pair of eigenstates has Ji = 3/2 and Jf = 1/2,
from which we get J = 1,2, and finally Ji = Jf = 1/2 makes J = 0,1.

In Figure 4.1 we show a more explicit example produced by a full implementation
in MATLAB, using the basis in the example of Chapter 3. The values have no physical
significance since the eigenstates were randomly generated. We have used the same
arbitrary eigenstate Js as in Table 4.1. a+ and a- are the creation and annihilation
operators characterized by reduced single particle states defined in the top of Figure
4.1. We can see how (4.45) plays its part: for operators of rank J = 0, a+ and a- cannot
have different j. This is reflected by the fact that all transition densities have the same
creation as annihilation operator for all operators of rank J = 0. However, based solely
on this fact, we would have expected e.g. single particle state no 1 to couple to single
particle state no 3, but these states have different parities, hence it cannot happen.
Further, for J = 1, we see only pairs of a+ and a- whose difference in j is 0 or 1, which
is what we would have expected from (4.45).

33

Table 4.1: Possible arrangement of the output. The reduced one-body transition densities in
the rightmost column are ordered by: 1) the initial and final eigenstates, 2) the rank J of the
operator and 3) the created and annihilated single particle states in the transition. For a given
pair of eigenstates, the operator ranks of interest are given by (4.44), and for a given operator
rank, the annihilation and creation operator pairs are given by (4.45), provided they give rise
to any non-zero connection. The eigenstates have been chosen to have J = 3/2 and J = 1/2
which is an arbitrary choice though not impossible as ground state and first excited state for a
real physical system.

Transitions densities for initial state |λiJi = 3/2〉 to final state |λfJf = 3/2〉
Operator of rank J = 0
a†ξ1j1

ãξ2j2 〈λfJf = 3/2||
[
a†ξ1j1

ãξ2j2

]
J=0
||λiJi = 3/2〉

...
...

...
Operator of rank J = 1
a†ξ1j1

ãξ2j2 〈λfJf = 3/2||
[
a†ξ1j1

ãξ2j2

]
J=1
||λiJi = 3/2〉

...
...

...
Operator of rank J = 2
a†ξ1j1

ãξ2j2 〈λfJf = 3/2||
[
a†ξ1j1

ãξ2j2

]
J=2
||λiJi = 3/2〉

...
...

...
Operator of rank J = 3
a†ξ1j1

ãξ2j2 〈λfJf = 3/2||
[
a†ξ1j1

ãξ2j2

]
J=3
||λiJi = 3/2〉

...
...

...

Transitions densities for initial state |λiJi = 3/2〉 to final state |λfJf = 1/2〉
Operator of rank J = 1
a†ξ1j1

ãξ2j2 〈λfJf = 1/2||
[
a†ξ1j1

ãξ2j2

]
J=1
||λiJi = 3/2〉

...
...

...
Operator of rank J = 2
a†ξ1j1

ãξ2j2 〈λfJf = 1/2||
[
a†ξ1j1

ãξ2j2

]
J=2
||λiJi = 3/2〉

...
...

...

Transitions densities for initial state |λiJi = 1/2〉 to final state |λfJf = 1/2〉
Operator of rank J = 0
a†ξ1j1

ãξ2j2 〈λfJf = 1/2||
[
a†ξ1j1

ãξ2j2

]
J=0
||λiJi = 3/2〉

...
...

...
Operator of rank J = 1
a†ξ1j1

ãξ2j2 〈λfJf = 1/2||
[
a†ξ1j1

ãξ2j2

]
J=1
||λiJi = 3/2〉

...
...

...

34

Figure 4.1: Output from our MATLAB-implementation in reduced form. The many-body basis
was the same as in the example of Chapter 3. Here, the probability amplitudes of the eigenstates
were generated by random. The values for a- and a+ (annihilated and created states) refer to the
indices in the list of reduced single particle states. For a given pair of eigenstates, the operator
ranks of interest are given by (4.44), and for a given operator rank, the annihilation and creation
operator pairs are given by (4.45), provided that they give rise to a non-zero connection.

35

Chapter 5

Properties of FPGAs

This project concerns the FPGA-implementation of the calculation of transition den-
sities. Hence the properties and use of an FPGA are cornerstones in motivating and
explaining developed algorithms and methods, in later chapters. Therefrom, we obtain
the main objective of the current chapter, i.e. to explain such concepts. This will be
made in two parts, where we in a first section treat general properties of FPGAs, prop-
erties built into the very hardware, while the latter part regards the programming of the
specific FPGA, that will be used. More exactly, it concerns the Maxeler programming
interface and their MaxelerOS, adjoined with the MAX3 card.

5.1 Technical limitations and possibilities of an FPGA
We shall now give a brief description of what an FPGA is and introduce important
concepts such as pipelining, dataflow programming and kernels.

An FPGA is essentially a reconfigurable electronic circuit. It is built out of many
small logic blocks with programmable interconnections, which makes it possible to recon-
figure the circuit by only changing the code describing it. This code – called Hardware
Description Language, or HDL – describes how the logic blocks, which represent differ-
ent operations, are configured and interconnected. With this reconfigurability comes the
ability to employ all the on-chip resources of the FPGA into the specific requirements
of a computation. In a conventional CPU, this is typically not the case [10].

The different components of which the FPGA is composed of, are:

• LUTs: Look Up Table. Main component of the FPGA that implements logic
functions by modelling them as truth tables.

• FFs: Flip-Flops. Used to keep track of values as counters and pipeline stages.

• BRAM: On-chip memory, Block RAM, that might be accessed very quickly.

• DSP slices: Digital Signal Processing elements, good for multiplications and other
arithmetic operations.

The limitation of the FPGA is that, once configured, the layout cannot be changed

36

1

Figure 5.1: An anology comparing an FPGA to an CPU. The FPGA can, like the stairs,
process many inputs at the same time but it takes a while for each input to pass. The CPU, on
the other hand, can like a small elevator only process one input at any given time, but does so
more quickly than the FPGA.

as long as it is performing calculations1. Thus, it must be decided beforehand exactly
what calculations are to be done, since all operations have to be connected statically in
such a way that an input constantly flows from one operation to the next.

With the dataflow-style of the FPGA, on the other hand, comes the ability to process
several inputs in parallel. Let us as an analogy compare the CPU and the FPGA to a
small elevator and a flight of stairs, respectively, as seen in Figure 5.1. In the elevator
one person enters, goes up and sends it down again before the operation is completed.
This limits us to process one person at any given time while the rest have to wait at
the bottom. Using the stairs, several persons could climb them at once; there is enough
space for people to go side by side and there is room for new persons to enter as soon
as the previous ones have advanced to the second step. If the number of people desiring
to go up is small, it will be considerably faster to use the elevator. But if there are a
couple of thousand persons that for some reasons want to climb to the top, the elevator
will not suffice and a queue will form. The stairs, on the other hand, will allow many of
them to climb at the same time and thus increase the flow.

The FPGA is, as the flight of stairs, not as fast at each individual step as the CPU –
it has a much lower clock frequency – but has the capacity to process numerous inputs at
the same time. Since each step is a separate block of hardware in the kernel, the FPGA
has the ability to continuously take in new inputs and therefore process one input each
clock cycle. Connecting several operations in such a way that an output from one stage

1This is not entirely true: it is possible to reconfigure parts of the FPGA during run-time. The catch
is that this takes time and would significantly slow down the application to such an extent that it in
most cases makes the FPGA much slower than a CPU. Thus we will in this report consider the FPGA
as static after compilation.

37

is directly connected to the input of the next stage, without intermediate storage in
memory, is commonly called pipelining and greatly increases the speed at which the
FPGA can process inputs.

Furthermore, the complete set of instructions, which together form a kernel, can be
duplicated inside the hardware if the resources allow it. This would in our analogy be
represented with the set of stairs being wide enough to allow multiple persons to go
side by side. One could thus build a design in which two identical, but independent,
kernels exists. Such a design would double the rate at which inputs are processed and
further enhance the performance of the FPGA. These two traits, the pipelining and the
parallelism, are the two greatest strengths of an FPGA and will be used extensively in
our implementations.

As a final example, note that the FPGA on the MAX3 card has a clock frequency of
75MHz in its standard configuration. Compared to the 3.5GHz of many modern CPUs
this might seem slow, but if each input requires for example 200 separate operations
then the process rate of the CPU reduces roughly to 3.5 GHz

200 = 17.5 MHz of inputs, while
the FPGA still accepts new inputs at a rate of 75MHz. This demonstrates the ability
of the FPGA to process highly regular calculations at an extremely high speed.

5.1.1 Dataflow programming

The programming style used for programming an FPGA is called dataflow programming.
The name comes from the need to keep track of how data flow from one operation to
another in the pipelining structure.

A consequence of having to know how the data will flow through the hardware is
that loops that execute an unspecified number of times are impossible to implement.
Implementing such a loop would require preparing for the worst-case scenario: an in-
finite loop. However, because of the pipelining, every iteration of the loop must be
implemented as a separate set of hardware elements and thus an infinite loop would
require an infinite amount of hardware. Furthermore, as each input has to pass through
all steps of this infinite pipeline, processing a single input would take infinite time.

This leads to the concept called pipeline depth. This would in the analogy in the
previous section be the number of steps in the stairs, and is essentially the number
of clock cycles one input requires to pass through the kernel. In applications with few
inputs but many operations this will be a limiting factor but as the the number of inputs
grows beyond the pipeline depth its significance will diminish.

5.1.2 Architecture of the MAX3 card

The MAX3 card that is used in this project, contains a Xilinx Virtex 6 FPGA and
is built into a CPU-based computer system. The structure of the card and how the
different parts connect to each other can be seen in Figure 5.2. The card communicates
with the CPU using a PCIe 2x8 interface which has the maximal bandwidth 4GB/s in
both directions. The MAX3 card also contains an external DRAM of 48GB, close to the
FPGA. The connection between the DRAM and the FPGA operates at a bandwidth of
up to 38GB/s.

38

Manager

Kernel

FPGA

Host computer

MAX3 card

PCIe

DRAM

Figure 5.2: Schematic view of the MAX3 card and how the different parts are connected to
each other. Only parts linked with arrows can directly communicate with each other.

39

5.2 Maxeler programming interface
This section serves to illustrate the Maxeler programming interface, used to implement
algorithms described in later chapters. The interface consists of a suite of programming
languages, compilers and libraries designed to make the implementation of an application
on the FPGA easier, as opposed to using a HDL, since the interface allows one to
program in a high-level language [11]. It also includes tools for simulating and debugging
implementations to verify correct function and/or finding errors in designs. Important
concepts that will be explained are: kernels, managers, input/output, counters, on-board
memory, DRAM and scalar inputs.

The main elements needed to program an FPGA-implementation are kernels and
a manager. Kernels are the programming constructs specifying the datapaths within
the hardware implementing the basic arithmetic and logical computations required for
a specific algorithm. A manager is a dataflow controller containing the logic for direct-
ing streams of data between the different components within a Maxeler system. The
separation of the two is purposeful because this way, kernels can have high degrees of
dataflow computations while the programmer can disregard synchronization consider-
ations which otherwise have to be taken into account when programming on multiple
control-flow based cores.

5.2.1 Kernels

The kernel is as previously mentioned the part of the FPGA-implementation that per-
forms calculations. HDL is normally used to specify kernels. However, for the Maxeler
machine, kernels are specified in a high-level language, the Java programming language.
By compiling this high level code, the MaxelerOS converts it to HDL and thereafter
optimizes it to maximize its performance when implemented on the FPGA hardware.

The optimization MaxelerOS performs can be seen in Figure 5.3 which contains
graphs rendered with the tool maxRenderGraphs provided by Maxeler for debugging.
The graphs show the pipelined stages of an implementation of a simple kernel, before
and after optimization, respectively. To optimize the dataflow, three buffers have been
inserted which allows the input to more conveniently flow from one stage to the next.

Input and output

The Maxeler programming interface implements data transfers to/from the FPGA, using
streams. This streaming of data can be thought of as arrays that are incrementally
passed to/from the FPGA. It is possible to use a boolean condition to determine whether
or not for a given clock cycle, a data transfer should occur. However note that the type
of data being transferred in a stream is always the same. Streams can be defined between
the FPGA and CPU, the FPGA and DRAM and the CPU and DRAM.

Counters

A counter represents an integer value, which in steps can be incremented. For example,
it is possible to use a counter to keep track of the number of clock cycles that a kernel
has been run. To implement this, a counter is instantiated that increments its value each

40

Figure 5.3: A kernel generated with Maxelers RenderGraph tool, with its layout before (left)
and after (right) optimization. The figure shows how different operations connect to each other
within the kernel. This kernel takes two inputs, x1 and x2, and outputs the largest of the sum
or the product of these as y. In the final version three elements have been added. These are
buffers to align the inputs and are a kind of null operation. This allows the input to flow forward
at each cycle instead of waiting in the plus and multiplication operators until the comparison is
complete.

41

clock cycle. However, the base class for counters, also allows more flexible behaviours.
More specifically, a counter can be defined with:

• A maximum value, i.e. a highest value that it can reach. Also, there are possi-
bilities to specify what happens when this value is reached. For example, it could
wrap and restart counting from zero (its initial value).

• An enable-condition, i.e. a condition that controls whether the counter should
increment its value, in a given clock cycle.

• A reset-condition, i.e. a condition that if true resets the value of the counter to
zero.

Besides the use of counters to keep track on the number of clock cycles that a kernel has
been run, they are important control structures that can be used to govern the behavior
of the kernel. More specifically, the counter can be used to make a kernel execute a for-
loop, similar to those in conventional programming languages. In such implementations,
the value of the counter is equivalent to the index-variable of the for-loop. Using enable-
conditions, it is also possible to connect two or more counters, that is to chain them, so
that their values replicate the behavior of the index-variables in a nested for-loop.

On-chip memory and DRAM

Besides the earlier mentioned external DRAM, the FPGA also has on-chip memory
referred to as ROM. It can be noted that the amount of ROM is very small and therefore
only can store limited amounts of data. On the other hand, it has very high bandwidth,
meaning that read/write operations can be performed very fast. When it comes to the
DRAM, it is much larger, but read/write operations are not as fast as for ROM. In
conclusion, only data that must be accessed closely to the application, should be stored
in ROM, while other forms of data are kept in DRAM.

It is important to note that the addressing of a DRAM is done in units called bursts.
The size of a burst unit is given by the burst-size, which is 384 byte, for the DRAM of
the MAX3 card. This burst-size is the smallest amount of data that can be read/written
to DRAM. For applications where the size of a data item is much smaller, it leads to
that the bandwidth of the DRAM cannot be fully utilized.

Kernel example

The code in listing 5.1 gives an example of the syntax used when specifying a kernel.
More specifically, we show the syntax for arrays (KArray), scalar inputs, counters and
input/output. Note the similarities to the programming language Java.

1 pub l i c c l a s s ExampleKernel extends Kernel {

3 /∗ Dec la ra t i on o f an arraytype . ∗/
pub l i c KArrayType<HWVar> arrayType = new KArrayType<HWVar>(hwInt (32) ,

2) ;
5

pub l i c ExampleKernel (KernelParameters parameters) {
7

42

super (parameters) ;
9

/∗ Sca la r input , s e t from the CPU. ∗/
11 HWVar s c a l a r = i o . s c a l a r Inpu t (’ ’ s c a l a r ’ ’ , hwInt (32)) ;

13 /∗ Dec la ra t i on o f counter parameters and i n s t a n t i a t i o n o f counter . ∗/
Count . Params params = con t r o l . count . makeParams (32) ;

15 Count . Counter counter = con t r o l . count . makeCounter (params) ;

17 /∗ Input stream that accept s a r rays o f the type type , p r ev i ou s l y
de f ined . ∗/

KArray<HWVar> inputArray = io . input (’ ’ inputArray ’ ’ , arrayType) ;
19

/∗ I n s t a n t i a t i o n o f output array . ∗/
21 KArray<HWVar> outputArray = arrayType . newInstance (t h i s) ;

23 /∗Performs a c a l c u l a t i o n and a s s i g n s the va lue s to the output array . ∗/
outputArray [0]<==inputArray [0] ∗ counter . getCount () ;

25 outputArray [1]<==inputArray [1] ∗ s c a l a r ;

27 /∗ Sends the output array to the CPU, by means o f an output stream . ∗/
i o . output (’ ’ outputArray ’ ’ , outputArray , arrayType) ;

29 }
}

Listing 5.1: Example of the syntax when specifying a kernel. This kernel has inputs of two
kinds, one being a scalar input (named scalar) and one being an array of two elements (named
inputArray). The kernel also has a counter, that increments its value each clock cycle. The
function of the kernel is to in each clock cycle accept a new input array, which is transferred
in a stream from the CPU. It then produces a new array (named outputArray) by multiplying
the elements of input by the value of the scalar input and counter respectively. The code then
specifies that the array with calculated elements should be transferred back to the CPU, by
means of a stream.

Concerning the example code shown in listing 5.1, it represents a kernel that takes
two inputs. The first input is a scalar input, which is set from a CPU, before running
any calculations. This way it is possible to pass a constant to a kernel, without the need
to recompile the design. Besides this input, there is an input stream that in each clock
cycle delivers an array, consisting of two elements. Additionally, the kernel implements
a counter, which keeps track on the number of clock cycles that have been executed. An
output is produced in the form of a new array, also consisting of two elements. In this
example, these are calculated by multiplying the respective elements of the input array,
by the value of the scalar input and counter, respectively. The output array is finally
transferred to the CPU, using an output stream.

5.2.2 Manager

The manager in a design is the element responsible for controlling the dataflow between
kernels and the various components in a Maxeler system. It contains all the logic related
to streams. This logic specifies which components data is streamed to/from, and over
which medium. For example, a stream may be declared to pass values between the CPU
and a kernel over the PCIe bus. Also, there are possibilities to incorporate blocks of

43

HDL code, alongside with kernels written in the described high-level language. This
makes it possible to use HDL, which in many instances can be more flexible than the
high-level programming interface [12].

44

Chapter 6

Algorithm design for one-body
operators

In this chapter, we discuss a number of possible algorithm designs that make use of
an FPGA to calculate transition densities for a one-body operator. Its non-zero matrix
elements are characterized by that connecting many-body states differ with no more than
one single-particle state, as described in Chapter 3. By studying these, we can present
the major challenges of an FPGA-implementation as well as computational structures
that can also be used to check transition rules for two- and three-body operators.

6.0.1 Computational complexity of the calculation of transition den-
sities

The first important fact about the calculation of transition densities is that it is very
computationally intense. The calculation is often structured by sequentially processing
many-body states, using an inner loop to find out what other many-body states that
initial states connect to. If computational resources were not a concern, one might
suggest to let the inner-loop form all possible pairs of many-body states and check if
they connect. Doing so would however result in the computational complexity

O(#mbState2), (6.1)

which, since #mbState often is of order 109, becomes very large. Actually it is so huge
that the calculations become unfeasible [13], even for the biggest computing clusters.

Here, we will instead use a different approach. This approach is based on the tran-
sition rule for a one-body operator, which makes the corresponding matrix very sparse.
Specifically, we can limit the load of the inner-loop by only considering connections to
many-body states that are formed by interchanging one single-particle state. Doing this,
we obtain the computational complexity

O(A · #mbState · #spState), (6.2)

which generally is smaller than for the former approach, as #spState and A are much
more modest numbers than #mbState. Since the process of interchanging single-particle
states exhibits a regular structure, we deem it appropriate for FPGA-implementation.

45

6.0.2 FPGA- and CPU-based parts of the calculation

The general structure for calculating transition densities, by performing single-particle
state interchanges, is given by:
InputStream : mbState ;

2 f o r (i in {1,...,A})
f o r (spState ∈ SmbState,i)

4 Use spState to r ep l a c e the s t a t e at p o s i t i o n i
in mbState ;

6 i f (Modif ied mbState i s v a l i d)
Add the con t r i bu t i on o f the product o f p r obab i l i t y ampl itudes o f

the found connect ion , to the reduced t r a n s i t i o n dens i ty ;
8 end

end
10 end

Here, the mbStates are provided to the FPGA as an input-stream. Their connections
are then found by replacing individual single-particle states, using new single-particle
states belonging to an appropriately designed set SmbState,i

1. When a connection is
found, we form the product of probability amplitudes for the connecting states, and add
its contribution to the reduced transition density, as discussed in Chapter 4. This latter
calculation is unfortunately rather complicated to perform on an FPGA. In this project
we therefore chose to perform it off the FPGA, in a CPU-based calculation. The task
for the FPGA will be to present the CPU-based calculation with a list of all connections,
with all information needed to calculate the reduced transition density. A flow-chart for
the chosen sub-division is shown in Figure 6.1. Also, we chose to focus on optimizing
the FPGA-part of the calculation. The list provided to the CPU, by the FPGA, will
only consist of valid connections, and we might hence suspect that it only needs limited
computing efforts to be converted to a reduced transition density2.

6.0.3 Specific parts of the calculation of transition densities

In this chapter we discuss both the FPGA- and CPU-based computations that are used
to calculate reduced transition densities. Since the FPGA-part of the implementation is
less straightforward than the CPU-part, it will be our main focus. A selection of choices
and computations that must be explained is:

• How many-body states should be represented in the FPGA computation.

• How many-body states should be supplied as input to the FPGA.

• Where probability amplitudes should be kept, in order to be accessed when needed.

• How single-particle state interchanges should be performed in order to generate
valid connections.

1When we optimize the calculation, we aim at minimizing the size of SmbState,i, so that we can calculate
the non-zero matrix element with as limited amount of work as possible.

2Or otherwise one might have to reconsider to also implement this part of the calculation on the
FPGA, but which will have to be a topic of a further study. This matter will be discussed in Chapter 8.

46

CPUFPGA

elements
Reduced transition
density

mbState Probability amplitudes

Non−zero

Figure 6.1: Flow-chart of the main features of the computation. We supply the FPGA with
an input-stream of many-body states. The FPGA identifies the valid connections and outputs
them to a CPU, where the calculation of the reduced transition density is performed. At some
point, either on the FPGA or CPU, we retrieve probability amplitudes which are associated with
the found connections.

• The calculation of signs for found connections.

• The creation of representations for many-body states obtained by single-particle
state interchanges.

• Implementation of a hash-function, to access probability amplitudes.

• The form and method of delivery of output, from the FPGA.

The following presentation will begin by describing representations of many-body
states and choices regarding I/O in Section 6.1. This will be followed by a description,
in Section 6.2, of how the FPGA-kernel should be designed, incorporating the more
computational steps. Only as a final part, we will describe the off-FPGA calculations.
This is done in Section 6.3.

6.1 Data representation and FPGA-related I/O-design
This section describes a number of representations for many-body states which later will
be used, within FPGA-implementations. We also discuss how they can and should be
supplied to the FPGA as well as how probability amplitudes can be stored and accessed.
Finally we specify the desired output from the FPGA, that is needed for the calculation
of the reduced matrix-representation.

6.1.1 Representation of many-body states

To obtain a size-efficient representation, we describe the many-body states by a list of
occupied single-particle states. Within the FPGA, such a list can be represented as an
array of numbers, identifying the single-particle states. These numbers can for example
be the indices of the single-particle states, in an enumeration. Note however, that such
representation does not directly provide any information about the physical properties

47

A

N
si

ng
le

,m
ax

Number of bits

2 4 6 8 10
2

4

6

8

10

12

14

20

40

60

80

100

120

140

160

180

200

Figure 6.2: Minimal number of bits needed to represent many-body states, using a list-
representation, for the cases 2 ≤ Nsingle,max ≤ 15 and 2 ≤ A ≤ 10.

of the single-particle states. One must instead store such information in on-chip ROMs
or provide it as additional input. The latter option will be further explored in one of
our kernel-designs.

Besides the above mentioned kernel-design, we will also propose designs that do not
need any additional input, except the many-body states, whose connections shall be
found. In these contexts, we will denote our single-particle states by their quantum
numbers (i.e. n, l, j and mj). The benefit of this representation is that we directly can
evaluate all possible properties about the described many-body state.

Note that the bit-sizes of the above representations affect the number of many-body
states that can be transferred to the FPGA, due to that input bandwidth is limited. If
using minimal types, both representations however are of similar size, given by

|mbState| = 3A · log2(Nsingle,max) +O(A) (6.3)

bits. Based on this expression, we give numerical values for the sizes of our represen-
tations of many-body states, which are found in Figure 6.2. We see that the sizes of
the representations range over about one order of magnitude, from 20 to 200 bits, for
systems with up to 10 particles and 15 units of energy, with 100 bits, being a somewhat
typical value.

Finally, concerning both of the proposed representations, they are only unique up
to permutation. This is a slight problem as we need unique representations in order
to construct well-defined hash-addresses, i.e. memory addresses used to retrieve prob-
ability amplitudes. To solve this, we will sort the single-particle states in ascending

48

order, according to some appropriate ordering. However, when a single-particle state
is replaced, it cannot a priori be known where in the old representation that the new
state should be inserted, so that the resulting representation becomes properly sorted.
This highlights that the construction of new representations of many-body states, needs
an FPGA-based insertion algorithm. This will be further discussed when we outline
kernel-designs in Section 6.2.

6.1.2 Implementation of minimal data types

The calculations of bit-sizes for representations, in the previous section, assumed that
we could use minimal data types. Out of the hardware perspective, this is straightfor-
ward to implement. However, inputs (as well as outputs) should also be compatible with
the types of the CPU-interface for the FPGA, which is written in C++. Implementing
minimal types would therefore demand the use of bit-array structures. As this is a fea-
sibility study, we will limit ourselves to use integer types which is more straightforward,
but at the cost of that the representations become larger than necessary. On the other
hand, we will not try to increase parallelism by instantiating many kernels, meaning
that limits of input-bandwidth will not be that much of a critical issue.

6.1.3 Input-source for many-body states and bandwidth aspects

In this project, we will use the PCIe to transfer input, i.e. many-body states, to the
FPGA. The PCIe has the bandwidth3 BPCI = 2 GB/sand assuming that the FPGA
operates at its standard frequency f = 75 MHz, we can transfer

B

f · |mbState|
(6.4)

many-body states per clock cycle. For example, in the earlier described case |mbState| =
100 bits, we could theoretically transfer 2many-body states per clock cycle. An impor-
tant question is whether this will be a bounding factor for our implementations. How-
ever, as we later will see, our kernels will individually not be able to process many-body
states at this rate. In order for input-bandwidth to become a bottleneck, we would have
to implement many parallel kernels. In that situation, we would on the other hand most
certainly have problems with bounds related to output-bandwidth, as the amount of
output will be larger than the amount of input.

6.1.4 Storage of probability amplitudes

In addition to the many-body states, vectors of probability amplitudes are another form
of input, which need to be accessed when a valid connection is found. Which probability
amplitudes that become needed in a specific step of the calculation, can however not
be predicted. As a result, the access of probability amplitudes must be from memory,
with run-time calculation of addresses. Since our FPGA-implementations only aim at

3There were some trouble in finding proper documentation of the what edition of PCIe-express, that
the MAX3 card used. Some documentation indicated the bandwidth 4GB/s, but 2GB/s was the value
that experimentally could be verified, as will be seen in Chapter 7.

49

identifying the non-zero matrix elements on the FPGA, we may perform the lookups,
either from FPGA-based or CPU-based DRAM.

A first important matter concerning the storage of probability amplitudes is that
the respective DRAMs must be of sufficient size. To evaluate this, we note that the
probability amplitudes either are single or double precision floats, i.e. numbers of sizes
S = 32 bit or 64 bits. As there are one probability amplitude for each state in the
many-body basis, we estimate that they will need

S ·#mbState (6.5)

of memory, if stored in an array. For the many-body bases illustrated in Chapter 3,
this is equivalent to up to 1GB of memory. Some additional amount of memory must
however also be added to store keys and over-size the addressing space, as the probability
amplitudes are stored by hashing. On the other hand, the DRAM of the FPGA has
a volume of 48GB and the DRAM of the CPU might be even larger, leading to the
conclusion that size is not a limit, at least not for the many-body bases available in this
project.

Another important point concerning lookups is that consecutive such typically corre-
spond to uncorrelated reads of memory. This means that we will not be able to efficiently
use the bandwidth of the storage-resource, unless the burst-size is small (similar to ei-
ther 32 or 64 bits, with the addition of bits corresponding to the storage of a hash-key).
Compared to this, the burst-size of the FPGA-DRAM is quite big, W = 3072 bits, re-
sulting in a maximum lookup rate of BDRAM/f ·W = 1.32 lookups/clock-cycle. This
number is smaller than the rate at which input can be accepted and since each many-
body state will have several connections, it might become a bottleneck. As there also
is more flexibility in storing the probability amplitudes in the DRAM of the CPU, we
chose to do so, in the current project.

6.1.5 Output from FPGA to CPU

As described in Chapter 3, an FPGA-implementation that does not calculate the reduced
transition density on the FPGA, will need to produce the following information about
the valid connections:

• What single-particle states that have been destroyed and created.

• The signed product of probability amplitudes corresponding to the connecting
many-body states.

As we, in this project, perform probability amplitude lookups off the FPGA, we must
however also know from/to what many-body state the connections go. To keep track on
the many-body state from which a connection goes, we can use a counter. Concerning
the many-body state that the connection goes to, it can be identified with an FPGA-
calculated hash-key. There could be some benefits in transferring all mentioned outputs
in individual output-streams. However, as the Maxeler programming interface limits
the number of I/O-streams, we will transfer them in array-format (in one stream). The
transfer will be performed by use of the PCIe, as indicated in the initial flow-chart of
this chapter, found in Figure 6.1.

50

6.1.6 Conclusion regarding FPGA-related I/O

Based on the discussion in the previous sections, we make the following choices regarding
I/O:

• The many-body basis will be represented as an array of occupied single-particle
states. This representation will furthermore be streamed to the FPGA, using the
PCIe. This will typically not be a bottleneck, compared to other forms of I/O.

• Probability amplitudes can either be stored in FPGA- or CPU-based DRAM,
depending on whether lookups are performed on or off the FPGA. As the burst-
size of the FPGA is large and there is larger flexibility in using the DRAM of the
CPU, it will be chosen for this project.

• Each found connection will be transferred to the CPU, in array-format, using the
PCIe. The array will contain the information described in the previous section.

6.2 Design of the computational kernel
This section describes FPGA-kernels that perform the FPGA-part of the calculation
of transition densities, described in Section 6.0.2. An important part of this is the
algorithm that is used to identify the valid connections. We will describe three different
algorithms, one that uses no pre-calculated control inputs (besides the many-body basis)
and two that does. In spite of differences in the detailed design, the overall structure
of the computation is the same, illustrated in Figure 6.3. The Figure shows how our
kernels will accept many-body states as input:

mbState = [α1,...,αA] (6.6)

and in parallel interchange their single-particle states αi. These processes are imple-
mented in hardware with different output-streams and can hence produce up to A valid
connections, simultaneously in a clock cycle. Therefore, we can increase the throughput
of an individual kernel, compared to a design that only performs one single-particle state
interchange at a time. However, the real benefit is that we can customize the imple-
mentation of the interchanges of single-particle states, depending on the position of αi
in mbState. Specifically, this makes the creation of new representations for many-body
states as well as calculation of the sign of a connection straightforward, as such matters
will depend on the position of the replaced states, which must be hard-coded in an
FPGA-implementation.

This section will also present an evaluation of the algorithms with respect to their
performance, in terms of the number of clock cycles they need to identify the connections
of the many-body states in the many-body basis4.

Besides describing the algorithms that identify valid connections, this section also
describes how surrounding calculations should be FPGA-based. This concerns:

4As the FPGA operates on a constant frequency, the number of clock cycles is proportional to the
execution time for the computation. The use of this performance measure is motivated by that the
pipelined computational architecture makes it straightforward to calculate the number of clock cycles,
needed by an algorithm.

51

..

.

α̃1,1

α̃1,2

α̃1,3

..

.
α̃A,3

α̃A,2

α̃A,1

mbState
[α1, . . . , αA]

...

FPGA

α1 αA

Figure 6.3: Structure of the kernels used to identify non-zero matrix elements of one-body
operators. The many-body state, consisting of single particle states αi, is sent as input. For
each single-particle state, one block of hardware is assigned which performs the interchanges of
the single-particle state αi to a set of new states α̃i,j . These processes generate connections in
parallel, with individual output-streams to the CPU.

52

• How the list representations for many-body states should be sorted.

• How new properly sorted representations for many-body states should be calcu-
lated, after performing a single-particle state interchange.

• How to calculate the sign of a connection.

• How to calculate hash-keys used to identify the many-body states to which con-
nections go (later used for lookups).

6.2.1 Sorting of many-body states

The representation of many-body states by enumerations of constituent single-particle
states, results in the need of sorting, in order to create unique representations. If the
single-particle states are denoted using an enumeration, this sorting is to order them in
ascending order.

When representing single-particle states by their quantum numbers, we however need
a more complicated rule to sort them. One way of constructing such rule is to compare
quantum numbers and let (n1,l1,j1,mj1) ≤ (n2,l2,j2,mj2) be equivalent to

{n1 < n2}|{(n1 == n2) ∧ (l1 < l2)}|{(n1 == n2) ∧ (l1 == l2) ∧ (j1 < j2)}...
...|{(n1 == n2) ∧ (l1 == l2) ∧ (j1 == j2) ∧ (mj1 ≤ mj2)}.

Another option is to find an injective mapping of the quantum numbers and order the
single-particle states in ascending order, according to their values under this mapping.
For example, we could use the following theorem [14]:

Theorem 6.2.1. Let pi be distinct primes and Pi = ∏
i 6=j pj. It then holds true that

(x1,....,xn) ∈
⊕
i

Zpi →
∑
i

xiPi (6.7)

is an injective mapping.

The theorem is associated with the construction of a solution to congruence equations
in the Chinese remainder theorem. If pi are chosen appropriately, so that the quadruples
(n,l,j,mj) are distinct elements of ⊕iZpi , we can use the mapping (6.7) to order them.

When working with algorithms that represent single-particle states by their quantum
numbers, we have chosen to use the mapping (6.7). The reason for this is that it lets
us calculate comparison values for the single-particle states in the input many-body
state, once in the code. Ordering single-particle states by comparing their quantum
numbers (i.e. the first rule that was suggested to order them) leads to more complicated
expressions that must be repeated at each place in the code, where we need to determine
the ordering of two single-particle states. This choice is however not obvious as the
multiplications in the mapping, creates a need of larger types for the quantum numbers,
than what is beneficial out of an I/O-perspective. Also, type-casts are expensive to
implement in hardware. However, as we have chosen to work with integer data types,
this will not be that much of a concern.

53

6.2.2 Insertion of new single-particle states

The input many-body states to our kernels will be sorted arrays of single-particle states.
Since it is these sorted representations that are used to construct hash-addresses we
need a way to remove old single-particle states and replace them by new ones, without
violating the sorting. To show how this is done, consider a many-body state

mbState = [α1,...,αA], (6.8)

where αi are single-particle states, such that αi ≤ αi+1. Also assume that the state αi
has been removed, and replaced by a new state αnew. We can then construct a sorted
representation for the many-body state obtained by replacing αi with αnew:

mbStatenew = [α̃1,...,α̃A] (6.9)

by using the ternary-if operator5 and write

α̃1 = (αnew > α1)?α1 : αnew
α̃k = (αnew > αk)?αk : ((αnew > αk−1)?αnew : αk−1) 1 < k < i
α̃i = (αnew > αi+1)?αi+1 : ((αnew > αi−1)?αnew : αi−1)
α̃k = (αnew > αk+1)?αk+1 : ((αnew > αk)?αnew : αk) i < k < A
α̃A = (αnew > αA)?αnew : αA

(6.10)

with slight modifications when i = 1 or i = A. Note that this algorithm for insertion is
dependent on the position of the removed single-particle state. However, as interchanges
for different αi are associated with different hardware implementations, there are no
problems related to hard-coding the special design, for each such interchange process.

6.2.3 Calculating the sign of a connection

In Chapter 3, the product of probability-amplitudes, for a connection, was seen to be
associated with a sign, occurring in the calculation of its contribution to the reduced
transition density. More specifically, the sign of a connection is given by

(−1)i−j , (6.11)

where i denotes the index6 of the single-particle state that is being replaced and j is the
index of the single-particle that is being inserted.

Now, let ±i denote the sign for a connection which has resulted by removing a single-
particle state at position i in a many-body state. We can then calculate ±i by using the
ternary-if operator.

Example. In the case of A = 3 particles, we can use the following expressions to
calculate signs:

±1 = (αnew < α2)?1 : ((αnew < α3)?− 1 : 1),
±2 = (αnew < α1)?− 1 : ((αnew < α3)?1 : −1),
±3 = (αnew < α1)?1 : ((αnew < α2)?− 1 : 1).

(6.12)

5By definition, we have that B?a1 : a2 = a1 if B is true and B?a1 : a2 = a2 if B is false.
6Here, index refers to the position the single-particle state has in the list-representation of the many-

body state, to which it belongs.

54

Note that the expressions differ, dependent on the position of the removed single-particle
state. �

The generalization to arbitrary A essentially involves differing the number of nested
ternary-if:s.

6.2.4 Algorithm 1: Algorithm only using many-body basis as input
(non-dynamic energy-bound strategy)

In this section, we describe our first algorithm to find matrix connections. In this
algorithm we denote single-particle states by their quantum numbers. Furthermore, the
algorithm will use no inputs besides the many-body states, whose connections shall be
found. As a starting point in deriving the algorithm, we note that a replacement of
a single-particle state only results in a valid connection if the following conditions are
fulfilled:

• The total energy of the new many-body state, obtained by the single-particle state
replacement, does not exceed the maximum energy Ntot.

• The new state has the correct parity.

• The total angular momentum projection has the correct value.

• The newly inserted single-particle state does not coincide with an already occupied
state.

What we seek is a way to describe, i.e. parametrize, new single-particle states to replace
old ones in the many-body states, so that a subset or all of these conditions automatically
are fulfilled7. To formulate a way of doing this, we note that the interchange of αi =
(ni,li,ji,mji) by αnew,i = (n′i,l′i,j′i,m′ji), only can be valid provided that:

• li + ∑
k 6=i lk ≡ l′i + ∑

k 6=i lk mod 2, according to the parity condition. Hence it
follows that l′i = 2l̃ + li mod 2, where l̃ is a non-negative integer

• mji +∑
k 6=imjk = m′ji +∑

k 6=imjk ⇒ mji = m′ji, according to the condition for
the total magnetic moment projection.

From this, it can be seen that we can use the variables (ñ,l̃, j̃) and limit our efforts to
consider single-particle states αnew,i, such that:

n′i = ñ,

l′i = 2l̃ + li mod 2,
j′i = j̃,
m′ji = mji.

(6.13)

Even though the variables (ñ,l̃, j̃) were introduced when interchanging a single-particle
state at a specific position i in a many-body state, it is possible to use the same variables
to parametrize interchanging single-particle states for all of the parallel processes in

7Hence we can reduce the number of single-particle state interchanges that must be considered, which
is beneficial for performance.

55

Figure 6.3, simultaneously. All that needs to be done, is to find a control structure
that varies (ñ,l̃, j̃) appropriately. The meaning of appropriately, is defined by that all
relevant αnew,i should be considered.

To determine the relevant range of (ñ,l̃, j̃), we begin by noting that the maximum
total energy condition lets us limit our considerations to triplets for which there exists
an i, with: ∑

k 6=i
(2nk + lk) + 2ñ+ 2l̃ + li mod 2

 ≤ Ntot (6.14)

Differently written, we must consider all (ñ,l̃, j̃) such that

ñ+ l̃ ≤ 1
2

Ntot −min
i

∑
k 6=i

(2nk + lk) + li mod 2

 = Ñ . (6.15)

Note that without any pre-calculated control inputs, the only way to incorporate that
Ñ depends on the currently processed many-body state, is by using a register. Such
implementation will however be associated with delays, due to the pipe-lining structure
of the FPGA, and is hence a poor choice. The remaining option is to use the rather
brute-force non-dynamic bound

Ñ = Ntot/2. (6.16)
If we use chained counters, as described in Chapter 5, to parametrize (ñ,l̃,j̃), we must
however make the further simplification to allow

max{ñ, l̃} ≤ Ñ . (6.17)

instead of ñ + l̃ ≤ Ñ . Doing so, the total number of clock cycles, to identify the valid
connections of a many-body state will be

2 · (Ñ + 1)2. (6.18)

As the dimension of the single-particle basis has a cubic dependence on energy, this
strategy results in an improvement by a factor A · Ntot, compared to if all possible
single-particle state interchanges were considered and performed sequentially, for one αi
at a time.

Algorithm implementation with counter-based control structure

The details concerning the implementation of the described algorithm are shown in
code in Listing 6.1. The code includes three counters c1, c2 and c3 as control structure,
chained to each other and hence forming a three-fold nested loop. Their individual
ranges are given by c1, c2 = 0,...,Ñ and c3 = 0,1, respectively8. In the context of the
previous section, we set

(ñ,l̃, j̃) = (c1,c2,c3). (6.19)
Based on (ñ,l̃, j̃), the next step in the code is to calculate the quantum numbers of new
single-particle states αnew,i = (n′i,l′i,j′i,m′ji). This is followed by three checks, to ensure
that replacing αi by αnew,i, results in a valid many-body state, and hence a connection.
These are:

80,1 corresponding to j = |l ± 1/2|, respectively.

56

• To check that the constructed single-particle state, actually is a valid single-particle
state. In our case, this is equivalent to that

VS = 2(l′i + j′i) > |m′ji|, (6.20)

where j′i is represented by 0 or 1 and m′ji is twice its physical value (to let us work
with integer types).

• To check that the total energy of the many-body state, after performing the single-
particle state interchange, does not exceed its maximum value. This is checked by
the condition

VE = Ntot −N + 2ni + li − 2n′i − l′i ≥ 0, (6.21)

where N is the total energy of the input many-body state, calculated in a previous
step of the code.

• Finally, we check that the Pauli exclusion principle is fulfilled, i.e. that the newly
inserted single-particle state does not coincide with an already occupied state. This
means that a new single-particle state can coincide with the state it is replacing,
but not any other of the occupied single-particle states. Expressed formally, it
shall hold that

P = ¬(αnew,i ∈ {α1,...,αA} \ {αi}). (6.22)

Note that this expression will result in that the diagonal of matrix for the one-body
operator is produced A times, corresponding to that each of the single-particle
states in [α1,...,αA] replaces itself.

After all checks have been performed, the newly constructed many-body state is
sorted according to Section 6.2.2, resulting in a representation that is used to calculate
a hash-key. This is encapsulated by the line of code:

key = hash(α̃1,...,α̃A), (6.23)

with further explanation in Section 6.2.7. We also calculate the sign ±i, of the performed
exchange of single-particle states.

In a final step of the algorithm, it is verified whether all the booleans VS , VE and P
are true, which would mean that a valid matrix connection has been found. If so, we
output the relevant information described in Section 6.1.5, to the CPU.
Control s t r u c tu r e : Three counter s c1 , c2 and c3 , where the two former takes

the va lue s 0 , 1 , . . . , Ñ and the l a t t e r takes the va lue s 0 and 1 . The
counter s are chained , meaning that c1 , c2 and c3 can be thought o f as the
index v a r i a b l e s o f a three−f o l d nested loop .

2

InputStream : accept s a many−body s t a t e mbState = [α1,...,αA] , where
αi = (ni,li,ji,mji) , i f c1 = c2 = c3 = 0 ;

4

/∗ Calcu la t i on o f t o t a l energy o f the input many−body s t a t e . ∗/
6 N = 2n1 + ...2ni + ...+ 2nA + l1 + ...li + ...+ lA ;

8 /∗ Pa r a l l e l p r o c e s s e s in t e r chang ing s i ng l e−p a r t i c l e s t a t e s . ∗/
f o r in p a r a l l e l (i in { 1 , . . . ,A})

57

10

/∗New s i ng l e−p a r t i c l e s t a t e . ∗/
12 αnew,i = (n′i,l′i,j′i,m′ji) ;

14 n′i = c1 ;
l′i = 2c2 + li mod 2 ;

16 j′i = c3 ;
m′ji = mji ;

18

/∗Check i f the s i n g l e−p a r t i c l e s t a t e i s v a l i d . ∗/
20 Boolean : VS = 2(l′i + j′i) > |m′ij | ;

22 /∗Check i f the energy o f the new many−body s t a t e i s sma l l e r than
maximum. ∗/

24 Boolean : VE = Ntot −N + 2ni + li − 2n′i − l′i ≥ 0 ;

26 /∗Check whether the new s i ng l e−p a r t i c l e s t a t e a l r eady i s occupied . ∗/
Boolean : P = ¬(αnew,i ∈ {α1,...,αA} \ {αi}) ;

28

/∗ Calcu la te the hash−key f o r the new many−body state , as we l l as the
s i gn o f the connect ion . ∗/

30 key =hash (α̃1 , . . . , α̃A) ;

32 Calcu la te ±i ;

34 /∗ I f a l l c ond i t i on s are met , output the r e s u l t i n g connect ion . ∗/
i f (VS ∧ VE ∧ P)

36 OutputStream : Array o f r e l e van t in fo rmat ion about the i d e n t i f i e d
connect ion ;

end
38

end

Listing 6.1: Algorithm based on three-fold chained counters, for calculating valid connections,
only using many-body states as input.

Possibilities of using ROMs for complex parametrization patterns

In the previous algorithm outline, we were unable to exactly parametrize the triangular
region, defined by the non-negative integer solutions of

ñ+ l̃ ≤ Ñ . (6.24)

Instead, we made the simplification to parametrize the quadratic region, defined by the
non-negative integer solutions of

max{ñ, l̃} ≤ Ñ , (6.25)

which resulted in a doubling of the total number of clock cycles used for calculation. To
obtain a better parametrization, we note that counters primarily are structures that can
be used to internally govern the state of the FPGA, while memory is more useful for
describing meaningful properties. Specifically we could enumerate all valid pairs (ñ,l̃,j̃),
defined by (6.24), and store them in on-chip ROM. A counter could then be used to
generate addresses to access them. This also extends to more complex parametrization
patterns, where the option of using chained counters, is not viable.

58

0 5 10 15
0

0.2

0.4

0.6

0.8

1

N

P
ro

ba
bi

lit
y

A=2
A=4
A=6
A=8
A=10

Figure 6.4: Proportion of states in the many-body basis having a specific energy N . This is
shown for a number of different A, but with all bases having Ntot = 16. Note that most of the
many-body states have the highest possible energy, i.e. N = 16.

6.2.5 Algorithm 2: Algorithm with dynamically set upper energy-
bound

In our first algorithm, we were forced to use a non-dynamic energy-bound, i.e. we could
not make use of that

ñ+ l̃ ≤ 1
2

Ntot −
∑
k 6=i

(2nk + lk)− li mod 2

 , (6.26)

both has a dependency on the many-body state, being processed, as well as the replaced
single-particle state, within that many-body state. The right hand side in (6.26) can
however be pre-calculated off the FPGA and supplied as a control input to limit the
number of single-particle state interchanges that the FPGA considers. Doing this, will
be our second suggestion for an algorithm that identifies connections. In the course of
this, we will make the slight change of notation to denote the right hand side of (6.26)
by Ñdynamic. Our reasons to believe that dynamically setting the energy-bound Ñdynamic
is beneficial, stems from that:

• A large proportion of the many-body states have an energy close to the maximally
allowed total energy. This is indicated in Figure 6.4, which shows how the total
energy is distributed, among the states in the many-body basis, for bases with
Ntot = 16, but different number of particles.

• Single-particle states of low energies are predominant in the many-body states,

59

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

N

P
ro

ba
bi

lit
y

A=2
A=4
A=6
A=8
A=10
A=12

Figure 6.5: Energy distributions of single-particle states within the many-body states, for a
number of different many-body bases, with Ntot = 16. The distributions are shifted to lower
energies as the number of particles is increased.

compared to their occurrence in the single-particle basis. This can be motivated
by that the average energy of the single-particle states in a many-body state always
must be smaller than or equal to

Ntot/A. (6.27)

The effects of this are numerically illustrated in Figure 6.5, where we have cal-
culated the energy-distribution of single-particle states, that occur in many-body
states of various many-body bases.

The conclusion is that the total energy of a many-body state, often is close to Ntot, but
that the removal of one single-particle state, does not have a significant effect on the
energy of the state. This exactly means that using the worst case bound Ñ = Ntot/2, as
was done in the first algorithm, leads to severely redundant case testing, compared to if
we would use Ñdynamic to limit the number of single-particle state interchanges that are
considered.

To implement a dynamic energy-bound, there are two options. One of these is to
use Ñdynamic as given by (6.26). The interchanges of single-particle states at different
positions in the list-representation for many-body states, would then need individual
control structures, provided that we insist on using the kernel-design in Figure 6.3. This
is however not a particularly well-suited solution to implement on the FPGA hardware,
but as the kernel-design in Figure 6.3 has several (earlier described) other benefits,
we chose to make the slight alteration of the algorithm, to use a uniform (but still

60

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

50

#c
lo

ck
 c

yc
le

s/
m

bS
ta

te

N
tot

A=2, Dynamic energy−bound
A=4, Dynamic energy−bound
A=8, Dynamic energy−bound
Non−dynamic energy−bound

Figure 6.6: Average number of clock cycles per many-body state, needed to find all valid
connections, as a function of Ntot, when using the dynamic energy-bound strategy. Also included
is the corresponding average number of clock cycles for the algorithm with non-dynamic energy-
bound.

61

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

A=2, Dynamic energy−bound
Non−dynamic energy−bound

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

#c
lo

ck
 c

yc
le

s/
m

bS
ta

te

A=4, Dynamic energy−bound
Non−dynamic energy−bound

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

Size of basis

A=8, Dynamic energy−bound
Non−dynamic energy−bound

Figure 6.7: The number of clock cycles, needed to find all valid connections, per many-body
state, when using the dynamic energy-bound strategy, as a function of dimension of the many-
body basis, using a logarithmic scale. Also included is the corresponding number of clock cycles,
for the non-dynamic energy-bound.

62

dynamically set) energy-bound, defined by

Ñdynamic,uniform = 1
2

Ntot −min
i

∑
k 6=i

(2nk + lk) + li mod 2

 . (6.28)

This energy-bound is more straightforward to supply and incorporate in the control
structure of the kernel.

Implementation of kernel using dynamic energy-bound

The kernel that is used to implement the dynamic energy-bound Ñdynamic,uniform is sim-
ilar to that for our first algorithm. The only difference is that we use control inputs to
adjust the control structure to consider a more limited set of values for (ñ,l̃,j̃). How
this is done depends on whether the control structure is formed by chaining counters, as
was illustrated for the first algorithm, or is a single counter that parametrizes memory
addresses, storing the values of (ñ,l̃,j̃).

If the alternative involving chained counters is used, we need two control inputs to
set the maximums of the counters which set the values of ñ and l̃. Using these control
inputs we are actually able to exactly parametrize the non-negative integer solutions
of ñ + l̃ ≤ Ñdynamic,uniform, without resorting to simplifications such as max{ñ,l̃} ≤
Ñdynamic,uniform, which we were forced to do when we did not use control inputs.

In explaining how the ROMs can be used to implement the dynamic energy-bound,
we chose for simplicity to forget about j̃ and only consider (ñ,l̃). These pairs are then
stored in on-chip ROM, with memory addresses ordered according to increasing ñ+ l̃.

Example. If we use ROMs to parametrize (ñ,l̃), and we allow energies such that
ñ + l̃ ≤ 2, we can according to the above description store (ñ,l̃) with the following
addressing:

Address 1 2 3 4 5 6
ñ 0 0 1 2 1 0
l̃ 0 1 0 0 1 2
ñ+ l̃ 0 1 1 2 2 2
Index 1 3 6

�
In the above table, we have indicated the highest memory address for each ñ + l̃,

with an index. Now, if we process a many-body state which has the dynamic energy-
bound Ñdynamic,uniform, we should let the counter used as control structure range from
zero up to the index corresponding to Ñdynamic,uniform = ñ+ l̃. If the values for ñ and l̃,
stored at the corresponding memory addresses, are used to perform single-particle state
interchanges, we will consider all necessary possibilities. To reset the counter, so that
the kernel can start processing a new many-body state, once it has reached the index of
Ñdynamic,uniform, we use a reset-signal. This is much more I/O-efficient, than the above
use of two control inputs to set maximum values for counters, since a reset-signal only
needs to transfer one bit per clock cycle, to the FPGA.

63

Table 6.1: Values for the constants CA and EA, that describe the quotient of the number
of clock cycles, M(d), for the non-dynamic energy-bound and dynamic energy-bound strategy,
needed to find matrix connections.

A CA EA M(109) M(1012)
2 1.1990 0.0891 7.6 14.1
4 1.5411 0.0902 10.0 18.6
8 7.2905 0.0157 10.1 11.3

Numerical evaluation of uniformly setting the upper energy-bound

To determine the performance when using Ñdynamic,uniform to parametrize the inter-
changes of single-particle states, we have calculated the average number of clock cycles
needed to process a many-body state, as a function of Ntot. This is shown in Figure 6.6.
We have also included the corresponding number of clock cycles, for our first algorithm
with a non-dynamic energy-bound. Note that the gain compared to our first algorithm
is largest for systems of many particles.

Even though Figure 6.6 indicates that the benefits of setting a dynamic energy-bound
increases with energy, it is less obvious how to quantify this trend. To easier do this, we
have calculated the average number of clock cycles as a function of the dimension of the
many-body basis, shown in Figure 6.7. The Figure indicates that the average number
of clock cycles has a linear dependence on dimension, both for the non-dynamic and
dynamic energy-bound, with respect to a logarithmic scale. The quotient of the number
of clock cycles needed when using the non-dynamic energy-bound and the corresponding
number for the dynamic energy-bound, can hence be written as

M(d) = CAd
EA , (6.29)

where d is the dimension of the many-body basis and CA, EA are constants, depending
on A. The constants can be determined by linear curve-fitting, with values found in
Table 6.1. The table also shows extrapolated values, for systems of higher dimension,
than those considered in this study. Note thatM(d) represents the performance increase
from using the dynamic energy-bound compared to the non-dynamic energy-bound.

6.2.6 Algorithm 3: Algorithm using mj-parity groups

We now turn to our third algorithm for finding connections of a one-body-operator.
In this algorithm we no longer denote single-particle states by their quantum-numbers,
but rather use an index in an enumeration. Specifically we group the single-particle
states in such a way that interchanging particles belonging to the same group results
in that the mj- as well as parity-condition is fulfilled. The strategy is hence called the
mj-parity group strategy and it will be shown that the groups can be parametrized so
that we only perform interchanges of single-particle states that fulfill the maximum total
energy condition. Hence we can restrict the interchanges of single-particle states in a
similar way as when using the dynamic energy-bound strategy, but with the additional
advantages:

64

• By using an index to parametrize single-particle states, we can restrict our atten-
tion to consider interchanges for which a removed single-particle state is replaced
by one with a higher index. Since the relation representing connecting many-body
states is symmetric, this induces no loss of generality, but ideally lets us limit the
number of tested interchanges by a factor two.

• We only attempt to replace single-particle states with entities that indeed are valid
single-particle states. Using the strategies that work directly with the quantum
numbers of single-particle states, this could not with certainty be assured.

Construction of mj-parity groups

The mj-parity groups refer to the following sorting of the single-particle basis, which we
may assume contains all single-particle states, with energies not larger than Nsingle,max:

• Single-particle states with the same value of mj and parity are said to form an
mj-parity group. The states within each such mj-parity group are listed according
to decreasing energy.

• The ordered lists corresponding to different mj-parity groups are concatenated
to form a single list containing all single-particle states in the basis. The single-
particle states are then assigned the index they obtain in this list.

An example of this, corresponding to Nsingle,max = 2, is shown Table 6.2. In this table,
we have also assigned the different mj-parity groups with a group index, which can be
used to identify them.

Algorithm outline

Based on the presentation in the previous section, we are now ready to present how the
mj-parity groups shall be used to find connections for a one-body-operator. To do this,
we supply the FPGA, with two arrays

mbState = [α1,...,αA] and maxState = [α1,max,...,αA,max],

where the first array represents a many-body state, where αi are the indices of its single-
particle states, sorted in ascending order. An element αi,max of maxState is called a
maximum state, and is given by the highest index for which there is a single-particle
state belonging to the same mj-parity group as αi. Hence, the maximum states are
properties of the mj-parity groups. These are exemplified in Table 6.3, for the case of a
single-particle basis with Nsingle,max = 2.

Using the two inputs, we can employ the kernel-design shown in Figure 6.3. Its paral-
lel processes are used to generate connections by increasing the indices of the individual
single-particle states in mbState. To generate all connections, this should be performed
for as long as the new indices are smaller than or equal to their corresponding maxi-
mum states. The resulting single-particle state interchanges not only preserve the total
angular momentum projection and parity, but also fulfill the total energy-constraint,
since the energy of the single-particle states form a decreasing function of index (within
each given mj-parity group). As control structure to perform the single-particle state

65

Table 6.2: Table showing how the single-particle basis can be sorted, according to the descrip-
tion of mj-parity groups, in the case of Nsingle,max = 2.

N = 2n+ l l j 2mj Parity Group index Index
2 2 1 -5 1 1 1
2 2 1 -3 1 2 2
2 2 0 -3 1 2 3
2 0 1 -1 1 3 4
2 2 1 -1 1 3 5
2 2 0 -1 1 3 6
0 0 1 -1 1 3 7
2 0 1 1 1 4 8
2 2 1 1 1 4 9
2 2 0 1 1 4 10
0 0 1 1 1 4 11
2 2 1 3 1 5 12
2 2 0 3 1 5 13
2 2 1 5 1 6 14
1 1 1 -3 -1 7 15
1 1 1 -1 -1 8 16
1 1 0 -1 -1 8 17
1 1 1 1 -1 9 18
1 1 0 1 -1 9 19
1 1 1 3 -1 10 20

Table 6.3: Table showing the maximum states corresponding to mj-parity groups, for the
mj-parity groups formed in Table 6.2.

Group index 1 2 3 4 5 6 7 8 9 10
Maximum state 1 3 7 11 13 14 15 17 19 20

66

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

50

N
tot

#c
lo

ck
 c

yc
le

s/
m

bS
ta

te

A=4 mj−parity groups
A=4 mj−parity groups
A=8 mj−parity groups
Non−dynamic energy−bound

Figure 6.8: Average number of clock cycles per many-body state, needed to find all valid matrix
connections, as a function of Ntot, when using the mj-parity group strategy. Also included is
the corresponding numbers of clock cycles for the non-dynamic energy-bound strategy.

interchanges, we use a counter. To perform the interchanges, we simply add the value
of this counter to the respective indices of the single-particle states in mbState. To
perform all necessary single-particle state interchanges, we should let the counter range
up to

∆ = max{maxState− mbState}. (6.30)

Note that ∆ is dependent on the many-body state that is being processed and needs
to be supplied to the FPGA, as a pre-calculated reset-signal reset. This reset-signal
should be used to reset the counter whenever it reaches its maximum value ∆, followed
by that the kernel accepts a new many-body state, to be processed.

Example Consider a system with four particles and Nsingle,max = 2. The many-body
state

mbState = [1,4,8,12] (6.31)

is then, according to the Tables 6.2 and 6.3, seen to correspond to the maximum list

maxState = [1,7,11,13]. (6.32)

We also have that
maxState− mbState = [0,3,3,1] (6.33)

67

and hence that ∆ = 3. The counter that governs the single-particle state interchanges
should therefore be supplied with the reset-signal9

reset = 0001, (6.34)

which resets its value, once it reaches 3. �
Now, lets finally have a look on the checks that must be performed in order to ensure

that an A-tuple, constructed according the above method, is a valid many-body state
and hence results in a valid connection. In total, these are:

• Verifying that the Pauli exclusion principle holds, i.e. that the inserted single-
particle state does not coincide with some already occupied state.

• Checking that the inserted state does not exceed its maximum state, i.e. belongs
to the same mj-parity group as the removed single-particle state.

The former of these checks is implemented equivalently to what is done in Section 6.2.4,
while the latter simply is the evaluation of an inequality. The last check does in some
sense capture the simplicity of the method, i.e. that all three checks concerning that a
many-body state has the correct total angular momentum projection, parity and energy
can be summarized in one inequality.

Table 6.4: Values for the constants CA and EA, that describe the factor by which the total
number of clock cycles is reduced, M(d), when using the mj-parity groups instead of a non-
dynamic energy-bound strategy to find matrix connections.

A CA EA M(109) M(1012)
2 2.8199 0.0865 16.9 33.1
4 3.4069 0.0945 24.1 46.3
8 12.9565 0.0328 24.8 32.1

Numerical evaluation of algorithm performance

To evaluate performance, we have calculated the average number of clock cycles needed
to process a many-body state, as a function of Ntot, for a number of different A, when
using the mj-parity group strategy. This is shown in Figure 6.8, where we also have
included the average number of clock cycles needed when using the non-dynamic energy-
bound strategy. Compared to this benchmark we see that the mj-parity groups achieve
a significant reduction of the number of necessary clock cycles. Compared to the corre-
sponding numbers for the dynamic energy-bound strategy, there is also an improvement
by a factor approximately two, which is expected as the mj-parity group strategy only

9The zeros in reset correspond to that the counter does not reset its value, i.e. continues to increment
its value by one, each clock cycle. Since we want the counter to count from 0 to 3, we begin by supplying
it with three zeros. However, in the fourth clock cycle where it has the value 3, we want it to reset
to zero, so that the kernel can start processing a new many-body state. This is done by supplying the
number one at the fourth position of reset.

68

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

#c
lo

ck
 c

yc
le

s/
m

bS
ta

te

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

Size of basis

A=2 mj−parity groups
Non−dynamic energy−bound

A=4 mj−parity bound
Non−dynamic energy−bound

A=8 mj−parity groups
Non−dynamic energy−bound

Figure 6.9: The number of clock cycles, needed to find all valid connections, per many-body
state as a function of the dimension of the many-body basis, when using the mj-parity group
strategy. Also included are the corresponding numbers of clock cycles, for the non-dynamic
energy bound strategy.

considers connections for which single-particle states are interchanged by new states
with higher indices.

Finally, to predict how the performance of the mj-parity group strategy develops
compared to the performance of the non-dynamic energy-bound strategy, for larger
systems, we have illustrated the average number of clock cycles used to process a many-
body state, for both of these strategies, as a function of the dimension of the many-body
basis. This is shown in Figure 6.9. The Figure indicates that the average number of
clock cycles has a linear dependence on dimension, both for themj-parity groups and the
no-dynamic energy-bound strategy, with respect to a logarithmic scale. The quotient of
the number of clock cycles needed when using the non-dynamic energy-bound and the

69

corresponding number for the mj-parity groups, can hence be written as

M(d) = CAd
EA , (6.35)

where d is the dimension of the many-body basis and CA, EA are constants, depending
on A. Their values values are found in Table 6.4, determined by linear curve-fitting.
The table also shows extrapolated values of M(d), for a selection of systems of higher
dimension. These can be compared to equivalent values for the dynamic energy-bound
strategy, found in the previously introduced Table 6.1.

6.2.7 Implementation of hash map

In our FPGA-implementations, we need to use a hash-function to retrieve probability
amplitudes corresponding to many-body states. For a discussion of the general principles
of hashing, the reader is referred to appendix B. Here, we will present an XOR-shift
hash-algorithm [15], which operates on binary words. To begin with, we must therefore
convert [α1,...,αA] into a binary word. If αi are represented by indices, this can be
done by concatenating the bits of these numbers. When using the quantum number
representation for αi, we can concatenate the corresponding images under the mapping
(6.7). The binary word w, formed according to this method, is unique and can hence
be used as a key. To this key, we should then apply XOR-shift operations:

w = w∧(w >> p1),
w = w∧(w << p2),
w = w∧(w >> p3),

(6.36)

where p1, p2 and p3 are appropriately chosen primes, to ensure sufficiently long period
[15]. To convert the word into a memory address of appropriate size (number of bits), lets
say l, we slice the word into parts of length l, followed by applying the XOR-operation
to combine the resulting parts. Collisions are dealt with, by storing the key together
with its probability amplitude.

To evaluate the performance of the described hashing algorithm, we have made
calculations based on a many-body basis, corresponding to A = 6 and Ntot = 10. This
many-body basis has the dimension d = 364728. A compact, non-hashing approach, for
storing the probability amplitudes would then demand

log2(d) = 18.48 (6.37)

bits for addressing. If we use hashing, we must however oversize the addressing space
by some appropriate factor. The effect of this, is shown in Figure 6.10, where we have
calculated the number of elements occupying each memory address, for a number of
different sizes of the addressing space. The Figure indicates that if we use an 19 bit
addressing space, we will not have more than ten collisions for any memory address.
Additional over-sizing does not have a significant effect on the worst case number of
collisions.

Besides the worst case, number of collisions, an important feature is the distribution
of the number of collisions. This is shown in Figure 6.11, from which we conclude that
19 bits for addressing results in 70% chance of no collisions, with almost zero probability
of more than two collisions.

70

Figure 6.10: Number of many-body states per memory address, when using the XOR-shift
hash-function, for different sizes of the addressing space. Note that 18.48 is the minimal number
of bits that are needed to assign each item an individual address.

71

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of collisions

P
ro

ba
bi

lit
y

17 bit addressing
18 bit addressing
19 bit addressing
20 bit addressing
21 bit addressing
22 bit addressing

Figure 6.11: Distribution of collisions when using the XOR-shift hash-function, applied to a
many-body basis of size 18.48 bits.

72

6.3 CPU-based computations
In this section, we present the calculation of the reduced transition density, which is
based on output produced by the FPGA, as illustrated in Figure 6.1. We also make
a comment about the off-FPGA pre-calculation costs for the algorithms using control
inputs.

6.3.1 Pre-calculation costs

First and most importantly, the calculation cost for control inputs is linear in terms
of the dimension of the many-body basis. Also, the control inputs are determined by
properties such as the energy of many-body states and their calculation could hence be
incorporated in the generation of the many-body basis, where such quantities already
are calculated. In conclusion, the calculation of control inputs can be performed with
limited computational costs.

6.3.2 Calculation of reduced matrix representation

Once the FPGA-based computation has found all valid connections, we use a CPU to
compute the reduced matrix elements of the transition density. This section presents
an algorithm for this computation, which can be implemented in C++, MATLAB or
similar programming languages. The approach is quite straightforward, but with some
less obvious steps, concerning which this text aims at bringing clarity.

Since the reduced matrix-representation is defined with respect to a single-particle
basis with quantum numbers (n,l,j) instead of (n,l,j,mj), we begin by creating a mapping
from the latter to the former states. To explain this mapping, we define

• A two-dimensional array spBasis, whose constituent rows contains the quantum
numbers of single-particle states, for the original basis using (n,l,j,mj).

• A two-dimensional array reducedSpBasis whose constituent rows contains the
quantum numbers of single-particle states, for the reduced basis using (n,l,j).

The mapping is then constructed as a vector spBasisMapping, of the same length as
the spBasis. It is constructed according to the rule:

spBasisMapping[i] = index of the single-particle state in reducedSpBasis
which has the same first three quantum numbers as spBasis[i] = (n,l,j,mj).

Now, we have established all necessary tools to use FPGA-output, to calculate the
reduced transition density matrix elements. The code for this is shown in Listing 6.2.
It uses the following inputs:

• The arrays spBasis, reducedSpBasis and spBasisMapping, constructed accord-
ing to the previous description.

• Lists of created a+ and destroyed a- single-particle states, with respect to their
indices in spBasis, for the found connections. These are output from the FPGA.

73

• Signed products of probability amplitudes, denoted amplitudes, for the found
connections. These are retrieved through lookups, using FPGA-output.

• Total angular momenta of the initial and final eigenstates in order to choose the
correct ranks of the spherical tensor, described in Chapter 4.

The method of calculation, is to sequentially consider the found connections and add
their contributions to the reduced matrix elements of the transition density. The results
are finally written to a file. The detailed motivation of the steps is treated in Chapter
4.

1 Input spBasis /∗ Sing le−p a r t i c l e b a s i s . ∗/
Input reducedSpBasis /∗Reduced s i ng l e−p a r t i c l e b a s i s . ∗/

3 Input spBasisMapping /∗ Mapping from spBasis to reducedSpBasis ∗/
Input amplitudes /∗ Array o f products o f ampl itudes f o r a l l connect ions ,

i n c l ud ing the s i gn o f the connect ion . ∗/
5 Input a+ and a- /∗ Arrays o f i n s e r t e d / destroyed s i ng l e−p a r t i c l e s t a t e in

a l l v a l i d connect i ons . ∗/
Input Ji and Jf /∗ Angular momenta o f i n i t i a l and f i n a l e i g e n s t a t e s . ∗/

7

Array OpRanks = {|Ji − Jf |, |Ji − Jf |+ 1, ..., Ji + Jf} /∗ Only s ph e r i c a l t en s o r s o f the se
ranks w i l l couple the i n i t i a l and f i n a l s t a t e . ∗/

9 f o r (J in OpRanks)
A l l o ca t e transitionDensityJ = 2D−array o f s i z e (l ength o f reducedSpBasis)2 ; /∗

In these 2D arrays , we w i l l save reduced t r a n s i t i o n dens i ty matrix
e lements . ∗/

11 end

13 Mi = Mf = minimum of Ji and Jf ; /∗ Arbi t rary cho i c e s f o r momentum
pro j e c t i on , w i l l be used to f i nd Clebsch−Gordan c o e f f s . ∗/

15 /∗ For a l l connect ions , f i nd what t r a n s i t i o n dens i ty e lements the
connect ion con t r i bu t e s to and add i t the re . ∗/

f o r (i ∈ a l l connec t ions) /∗ i . e . the l ength o f amplitudes or a+/a- . ∗/
17 M = 0 ; /∗ Arbi t rary cho i c e f o r t enso r component , Wigner−Eckart guarantees

independence . ∗/
m = spBasis(a-(i,4)) ; /∗ m−value o f d e s t ru c t i on operator . ∗/

19 j1 = spBasis(a-(i,3)) ; /∗ j−value o f d e s t ru c t i on operator . ∗/
j2 = spBasis(a+(i,3)) ; /∗ j−value o f c r e a t i on operator . ∗/

21

/∗ Get the i n d i c e s f o r the reduced r ep r e s en t a t i o n s o f the cur rent
ope ra to r s . ∗/

23 a-,red = spBasisMapping(a-) ;
a+,red = spBasisMapping(a+) ;

25

Jlist = i n t e r s e c t i o n o f opRanks and {|j1 − j2|, |j1 − j2|+ 1, ..., j1 + j2} ; /∗ The only
s ph e r i c a l t enso r ranks which the cur rent ope ra to r s may cont r i bu t e to
. ∗/

27

/∗ Add the connect ion where i t c on t r i bu t e s . ∗/
29 f o r (J in Jlist)

transitionDensityJ(a+,red,a-,red) = transitionDensityJ(a+,red,a-,red)
31 +(−1)j2−m ∗ ClebschGordan(j1,j2,J,m,−m,M) ∗ amplitudes ;

end
33 end

74

35 /∗ Mult ip ly a l l 2D−t r a n s i t i o n d e n s i t i e s with common f a c t o r independent o f
a-,red and a+,red ∗/

f o r (J in OpRanks)
37 transitionDensityJ =√

2J + 1 ∗ transitionDensityJ/((−1)Ji−MiClebschGordan(Jf ,Ji,J,Mf ,−Mi,M)) ;
Write transitionDensityJ to f i l e ;

39 end

Listing 6.2: Algorithm for computation of a reduced transition density, using FPGA output,
following (4.40).

75

Chapter 7

Results

In this chapter we present results that will lead to a conclusion regarding the feasibility
to implement the calculation of transition densities on an FPGA. These results will be
presented as an analysis in two parts, where the first part concerns the performance
of FPGA-kernels while the second part treats calculations made on a CPU, to convert
FPGA output to reduced transition densities, as described in Chapter 6.

In the first part, we will specifically verify that the implemented kernels produce the
correct results, study their hardware costs, and make timing measurements to determine
their efficiency. The main focus will however not be optimization, but rather to give
reasonable estimates for the bottle-necks of the calculation.

The second part of the analysis will consist of timing measurements on the conversion
of FPGA-output to a reduced transition density. In addition to this, we will compare
the performance of the FPGA-implementations with the performance of Trdens [18],
a CPU-based code currently used by the nuclear theory group at the department of
fundamental physics at Chalmers, which calculates transition densities in reduced form.

7.1 Implemented algorithms
To evaluate the possibility of using FPGAs to calculate transition densities, we have
made efforts to implement the computational algorithms, described in Chapter 6, to
a maximum extent. However, due to time limits, the following restrictions have been
made:

• Timing measurements and hardware-cost evaluations have been performed on full
implementations of kernels, as described in Chapter 6. These are designed such
that memory lookups should be performed outside of the FPGA using hash-keys,
which are provided as output.

• The off-FPGA calculation of transition densities has been implemented, except
the part that makes lookups by the use of hashing. Instead, we have used an
intermediate step that finds the addresses of probability amplitudes by making
searches in an array of many-body states. This constitutes an unnecessarily time-
consuming step, but it is a step which vanishes whenever a hash implementation

76

is available for the CPU code. Also, the implementation is in MATLAB, which
typically will not be optimal for performance.

Concerning the FPGA-implementations, we have also been forced to make a non-optimal
design choice, since the high-level part of the Maxeler programming interface does not
easily allow an unknown amount of output to be read from the FPGA. This is however
needed, since we cannot a priori know how many non-zero matrix elements that will be
found. As a temporary work-around, we have programmed the kernels to create output
every clock-cycle, with a dumb value if no connection is found. With this solution,
the implementations suffer higher risks of hitting I/O-bounds. Note, however, that this
non-optimal design choice is not an indication that FPGAs would be less suited for
the current calculations, but rather that the implementation demands more advanced
programming in a HDL.

Finally, the specific FPGA-kernels, that were implemented, are

• Kernels using counters as control structure and the non-dynamic energy-bound,
for systems of sizes A = 2, 4 and 8.

• Kernels using counters as control structure and the dynamic energy-bound, for
systems of sizes A = 2, 4 and 8.

• Kernels using mj-parity groups, for systems of sizes A = 2, 4 and 8.

References to source-code are found in Appendix C.

7.2 Verification of correctness
To verify that the implemented kernels produce the correct results, their output has
been compared to the corresponding output from a MATLAB script (see Appendix C).
This script uses reliable, though not very efficient, brute-force approach.

As a result, we have only been able to test systems of dimension up to 104. For
larger systems we have counted the number of non-zero matrix elements, and confirmed
that this number is the same between the different kernel-designs.

In addition to testing the correctness of the kernel-calculations, we have also verified
the results of the MATLAB-implementation which converts FPGA-output to a reduced
matrix-representation. This has been done by comparing the output with Trdens, for
systems where input to the latter code has been available.

7.3 Calculated one-body matrices and kernel load
By using the implemented kernels, we have calculated the non-zero matrix elements of
one-body operators, for a number of different cutoff energies, which is exemplified in the
Figures 7.1, 7.2 and 7.3. The densities in these matrices might appear blurred; this is
an intentional choice to increase the visibility of the non-zero elements. Furthermore,
the scale is individual for each matrix in an attempt to make each figure as informative
as possible.

77

(a) Ntot = 2 (b) Ntot = 4 (c) Ntot = 6

(d) Ntot = 8 (e) Ntot = 10 (f) Ntot = 12

Figure 7.1: Density of non-zero matrix elements for one-body operators, corresponding to
A = 2 and Ntot = 2, 4, 6, 8, 10 and 12.

(a) Ntot = 8 (b) Ntot = 10

Figure 7.2: Density of non-zero matrix elements for one-body operators, corresponding to
A = 4 and Ntot = 8, 10.

78

(a) Ntot = 8 (b) Ntot = 10

Figure 7.3: Density of non-zero of matrix elements of one-body operators, corresponding to
A = 8 and Ntot = 8, 10.

Note that the locations of non-zero elements in these matrix representations ex-
hibit a self similar, almost fractal structure. This is dependent on the ordering of the
many-body basis, and could be altered if the many-body basis is sorted differently.
Such considerations could be important in some applications where load-balancing is of
essence, for example in parallel CPU-environments, but is of less importance within the
current context.

Additionally, we have calculated the average number of non-zero matrix elements
associated with each many-body state, i.e. how many other states each many-body
state couples to on average. This is shown in Figure 7.4 together with the average
number of clock cycles needed to process each many-body state for the two different
kernel-designs using control inputs. The corresponding numbers for the non-dynamic
energy bound kernels are much larger and have hence been excluded to improve visuality.
The figure indicates that both strategies use an average number of clock cycles that is
lower than the average number of non-zero matrix elements. This is possible since each
kernel can identify up to A non-zero matrix elements in parallel. Our conclusion is
that we on average identify at least one non-zero matrix element per clock-cycle. This
should not be too far from optimal considering that the number of clock-cycles needed to
process one many-body state is set uniformly for all the parallel processes that perform
single-particle state interchanges.

7.4 Hardware costs
The hardware costs of a kernel refers to the amount of hardware-components, i.e. lookup
tables (LUTs), flip-flops (FFs), digital signal processing units (DSPs) and block RAMs
(BRAMs), that are needed to implement the kernel. In Table 7.1 these costs have
been summarized for the different kernel-designs. Note that none of the designs utilize
more than 10% of the FPGA because of their relative low amount of calculations.
For the designs that use a non-dynamic or dynamic energy-bound algorithm the LUTs

79

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

Size of basis

[m
bS

ta
te

−
1]

Average number of iterations − Dynamic energy−bound, A=2
Average number of iterations − Dynamic energy−bound, A=4
Average number of iterations − Dynamic energy−bound, A=8
Average number of iterations − m

j
−parity groups, A=2

Average number of iterations − m
j
−parity groups, A=4

Average number of iterations − m
j
−parity groups, A=8

Figure 7.4: The solid lines represents the average number of non-zero matrix elements per
many-body state, calculated with the implemented kernels, for A = 2, 4 and 8. These can be
compared with the dashed lines with Xs and triangles, which represent the average number of
clock-cycles needed to process the many-body states for kernels using a dynamic energy-bound
and mj-parity groups, respectively.

80

Table 7.1: Hardware resources needed to build one kernel of the specified type. It can be
seen that the resource usage grows linearly or possibly slightly slower, as the particle number is
increased. Also note that none of the hardware-resources are utilized to more than 10%, which
leaves a large part of the FPGA unused.

Algorithm type LUT [%] FF [%] DSP [%] BRAM [%]
MAX3 (FPGA)
total resources 297600 100. 595200 100. 1064 100. 2016 100.
Non-dynamic
energy-bound, A=2 9480 3.19 12112 2.03 23 2.16 48 2.38
Non-dynamic
Energy-bound, A=4 12960 4.35 18910 3.18 23 2.16 96 4.76
Non-dynamic
energy-bound, A=8 28161 9.46 41191 6.92 47 4.42 192 9.52
Dynamic energy-
bound, A=2 9501 3.19 12757 2.14 28 2.63 48 2.38
Dynamic energy-
bound, A=4 14148 4.75 19548 3.28 28 2.63 96 4.76
Dynamic energy-
bound, A=8 28717 9.52 42249 7.10 52 4.89 192 9.52
mj-parity groups,
A=2 7419 2.49 9222 1.55 0 0 12 1.79
mj-parity groups,
A=4 10390 3.49 13852 2.33 0 0 21 1.97
mj-parity groups,
A=8 21528 7.23 31270 5.25 0 0 37 3.48

and BRAMs are the most limiting hardware-resources. The kernels that use mj-parity
groups generally use fewer components, especially DSPs and BRAMs. This is because
these kernels perform less arithmetic operations on the FPGA.

Another important issue is the dependence between hardware-cost and particle num-
ber, A. We see that the use of hardware-resources grows linearly, or slightly slower, as
A increases. The explanation for this is that when we increase the number of particles,
we essentially add an equivalent number of identical computational units which perform
single-particle state interchanges.

Based on such estimates, it could be expected that the current FPGA has sufficient
hardware-resources to implement kernels with tenths of particles or designs in which
several kernels work in parallel effectively doubling the process speed. However, this does
not mean that it actually would be possible to implement such system. For example the
I/O-interface is actually a more limiting factor as we shall see from following sections.

81

7.5 Performance of FPGA-implementations
To evaluate kernel-performance, we have measured the execution time to process the
many-body basis for different cutoff energies. Since some of the bases are quite small we
made measurements on multiple runs of the FPGA and could hence increase the stability
of the measurement. As shown in Figure 7.5, we have then calculated the average
execution time per many-body state as a function of the dimension of the many-body
basis which increases with greater cutoff energies.

From these measurement results we see that the kernels can process the many-body
states at a speed of 0.5-8µs/many-body states, depending on what cutoff energy and
kernel that is used. We see that the largest differences in performance for kernels with
the same particle number A occur between kernels that use and do not use control
inputs. The corresponding relative acceleration of the calculation when these kernels
are compared is shown in Figure 7.6, and goes up to a factor larger than a magnitude
for large systems. The performance difference between the two designs, which both use
control inputs, is however less, typically a factor two in the limit of large systems.

As seen in Figure 7.5, the average time per many-body state decreases as a function
of the size of the many-body basis, for the smallest bases. This decline is because of
the pipeline depth of the kernels. In these cases the number of input states is less than
the pipeline depth and thus we essentially measure the time it takes for the inputs to
pass the pipeline. Therefore the total run time is about the same for all of these small
bases but since we increase the number of states the average time decreases. The slight
increase for larger bases originates in that an increased number of single-particle state
interchanges must be considered, as the increased size of the basis also implies higher
cutoff energy. In our design this is accounted for by making the kernel use the same
input several times and thus decreases how often it accepts new inputs. Therefore, the
time per many-body state increases.

From studying the effective frequency of the FPGA, as seen in Figure 7.7, we can
identify some informative patterns. The effective frequency is calculated by dividing the
number of clock cycles needed to perform the calculations, without counting the pipeline
length, with the execution time. We see that in all cases the frequency starts out low
and whereafter increases asymptotically to some value. This frequency is lower than
the frequency at which the FPGA is expected to operate, 75MHz, and only depends
on the number of particles, A, but not on the kernel-design. We can also note that this
assumptotic value decreases as 1/A at the same time as the output generated by the
kernels increases linearly with A, which indicates an I/O-bound. If we account for the
size of the output that each clock-cycle produces we can see that all final frequencies
correspond to an output rate of 2GB/s. This is the PCIe-bandwidth which has been
measured by others using the same machine from Maxeler, for example [16] and [17],
which additionally proves the assumption of an I/O-bound.

7.6 Performance of reduced matrix calculation
In order to evaluate the performance of the MATLAB-implementation, we have mea-
sured the execution times for a number of different systems and cutoff energies. The
calculations and time measurements were performed using an Intel i5 3.3GHz processor,

82

10
2

10
3

10
4

10
5

10
6

10
0

10
1

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
[µ

s]

Dynamic energy−bound, A=2
Dynamic energy−bound, A=4
Dynamic energy−bound, A=8

10
2

10
3

10
4

10
5

10
6

10
0

10
1

Non−dynamic energy−bound, A=2
Non−dynamic energy−bound, A=4
Non−dynamic energy−bound, A=8

10
2

10
3

10
4

10
5

10
6

10
0

10
1

Size of basis

m

j
−parity groups, A=2

m
j
−parity groups, A=4

m
j
−parity groups, A=8

Figure 7.5: Average execution time per many-body state, for different kernel-designs and
dimensions of the many-body basis. There are two competing factors that affect performance.
The first is pipeline length, which is significant for small systems, while the second is that
larger bases correspond to higher cutoff energies which results in that more single-particle state
interchanges must be considered for each many-body state.

83

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

Dynamic energy−bound, A=2
m

j
−paity groups, A=2

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

A
cc

el
er

at
io

n
fa

ct
or

Dynamic energy−bound, A=4
m

j
−paity groups, A=4

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

Size of basis

Dynamic energy−bound, A=8
m

j
−paity groups, A=8

Figure 7.6: Acceleration factor for the kernels using control inputs, compared to those using
a non-dynamic energy bound.

84

10
3

10
4

10
5

10
6

10
7

10
8

0

2

4

6
x 10

7

Non−dynamic energy−bound, A=2
Non−dynamic energy−bound, A=4
Non−dynamic energy−bound, A=8

10
3

10
4

10
5

10
6

10
7

10
8

0

2

4

6
x 10

7

E
ffe

ct
iv

e
fr

eq
ue

nc
y

[H
z]

Dynamic energy−bound, A=2
Dynamic energy−bound, A=4
Dynamic energy−bound, A=8

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

2

4

6
x 10

7

Clock cycles

m
j
−parity groups, A=2

m
j
−parity groups, A=4

m
j
−parity groups, A=8

Figure 7.7: Effective frequency of the FPGA, i.e. the number of clock-cycles needed to process
the many-body basis, without counting the pipeline length, divided by the execution time. Note
that this frequency always is lower than 75MHz, which is the frequency at which the FPGA is
expected to run. The asymptotic value for the effective frequency for different kernels is seen to
scale inversely to A. As the amount of output is proportional to A, this indicates that we have
an I/O-bound.

85

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
3

10
4

10
5

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
pe

r
m

an
y−

bo
dy

 s
ta

te
 [

µs
]

Size of basis

A=2
A=4
A=8

Figure 7.8: Execution time per many-body state of the MATLAB-implementation, for a
number of different A and sizes of the many-body basis. This essentially shows how long time
it took for MATLAB to process all non-zero elements originating from one many-body state.

with results shown in Figure 7.8. From the figure, we see that the average execution
time per many-body state grows with the dimension of the many-body basis, which is
due to that the number of non-zero matrix elements per many-body state increases with
the size of the basis. For the bases that were studied, we see that the average execution
times correspond to that the connections for between 102 − 103 many-body states being
processed per second.

When comparing the performance for the FPGA-based calculation and the MATLAB-
implementation, we see that the latter is several orders of magnitude less efficient and
will hence be the bottleneck of the overall implementation. Note however, that this
statement is both dependent on the hardware used for computation and the degree of
optimization of the code. With larger off-FPGA computational resources and imple-
mentation in a more efficient language, such as C++, the calculation would have been
much more efficient.

7.7 Performance compared to Trdens
To benchmark the FPGA-based calculations, we have measured execution times for the
CPU-based Trdens-code, which calculates reduced transition densities without the use
of FPGAs. These measurements have been performed using a Dual Core AMD Opteron
1.8GHz processor, with results that can be found in Figure 7.9. If the results in this
figure are compared to those of the FPGA-kernels and the MATLAB implementation,
we see that the former is around two orders of magnitude faster than Trdens, while the

86

10
2

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

Size of basis

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
[µ

s]

trDens, A=4
trDens, A=8

Figure 7.9: Execution time per many-body state of Trdens, for systems with a number of
different A and sizes of the many-body basis.

latter is slower, by a similar factor. Hence, the off-FPGA calculation, which converts
FPGA output to a reduced transition density, makes the overall performance less effi-
cient than that of Trdens. This is remarkable as the MATLAB-implementation was
run on a CPU with higher clock-frequency than that which was used for the Trdens
computations.

However, even if Trdens only uses about 10% of its total execution time to cal-
culate non-zero matrix elements, our FPGA-kernels would be significantly faster. This
implies that the main issue in making FPGAs a competitive choice for the calculation
of transition densities is whether the conversion to a reduced matrix representation can
be made more efficient.

It might be noted that if all calculations could be performed on the FPGA it would
not significantly increase the execution time of the FPGA, as it only would increase the
pipeline length. The possibility of this, together with other optimization related aspects
will be further discussed in Chapter 8.

87

Chapter 8

Discussion

In Chapter 7, we presented performance results from the use of FPGAs to calculate
transition densities, according to methods described in Chapter 6. Here, we aim at
identifying how these results imply whether FPGAs are feasible for the calculation. We
also point out how the devised methods can be improved and extended to more general
contexts.

8.1 Feasibility of using FPGAs for the calculation of tran-
sition densities

In the first part of this section, we will discuss the feasibility of implementing the cal-
culation of transition densities on an FPGA. However, as seen from the results this will
not in principle be a question about the efficiency of the on-FPGA calculations, but
rather a discussion if the necessary off-FPGA calculations can be made more efficient.
Following this, we analyze which of the currently devised algorithms that is the most
effective. Then, in a final part, we address how the algorithms should be improved and
give recommendations for the future design of FPGA-kernels. This will also include a
suggestion of how to move a larger part of the computation to the FPGA and hence
reduce the amount of off-FPGA calculation.

8.1.1 Conclusion regarding the feasibility

According to the obtained results, it was seen that the time needed for the FPGA-based
calculation of non-zero elements was only a fraction of the time needed by Trdens,
when the latter was run on a single CPU-kernel. Of course, this is not a reflection of the
overall efficiency of the FPGA-implementation, but indicates that the implementation
can be competitive with Trdens, when Trdens is run with MPI1, on several CPU-
kernels, provided that the off-FPGA calculations do not become too time-consuming.
Unfortunately this was exactly what happened in the MATLAB-implementation that
converted FPGA-output to a reduced matrix representation. Hence, the conclusion

1Message Passing Interface; a protocol that makes it possible to perform computations in parallel,
on many CPU-kernels.

88

about the feasibility of an FPGA-implementation becomes a conditional statement, de-
pendent on whether this CPU-computation can be made more efficient or implemented
on the FPGA. We begin with discussing the first of these options.

Since the feasibility of an FPGA-implementation was seen to depend on the possibil-
ity to improve the conversion of FPGA-output to a reduced matrix-representation, we
should make an analysis of whether such improvements should be deemed possible. In
this matter, it has been noted that a first step towards a more efficient implementation
is to use a more well-suited programming language such as C++. However, the reason
that the MATLAB-implementation is so slow, has a rather specific origin. It is related
to the calculation of Clebsch-Gordan coefficients. In spite of that the total number of
different Clebsch-Gordan coefficients is rather modest, they occur in many parts of the
calculation and are re-calculated, whenever they are needed. Our observation is that
this may be the bottleneck as, for example, the coefficient

C1,1
3/2,3/2,3/2,−1/2, (8.1)

needs 0.379ms to be calculated2, using the same algorithm as in the implementation.
As the execution times of the MATLAB-implementation, were between 2ms and 10ms
(on average per many-body state), it had not been possible to calculate more than
between 5 and 26 Clebsch-Gordan coefficients for each many-body state. However, for
each many-body state several Clebsch-Gordan coefficients must be calculated and it
is therefore probable that a major part of the execution time was consumed by their
calculation. If the Clebsch-Gordan coefficients instead had been calculated with e.g.
C++, the calculation would have been more than two orders of magnitude faster, as
indicated by [19]. This would have made the overall execution time comparable to that
of Trdens, which would make FPGAs competitive.

Finally, we note that whether an FPGA-implementation should be recommended is
not an unconditional question about whether it can perform better than Trdens. The
decisive factor is its cost-effectiveness. Specifically one has to consider the hardware and
maintenance costs compared to CPU-clusters. Note that, what other uses one might
have of the hardware, except calculating transition densities, also needs to be considered.
However, this is a question beyond the scope of this study but that might be interesting
to investigate.

8.1.2 Optimal choice of algorithm

The most important issue, when determining what algorithm that is most efficient, is
its performance in the limit of large many-body bases since real problems could have
dimensions exceeding 109. Note, however, that the three strategies that have been
developed within this project have only been tested for bases of small to moderate sizes,
which means that we cannot make conclusions based on straightforward measurement
results. Instead, we must interpret these results in such a way, that we can simply
extrapolate the performance to calculations with larger bases.

For the implementations in this report, which create output each clock cycle, this is
however rather straightforward since the FPGA approaches a stable effective frequency

2Actually, we performed the calculation 105 times, in a for-loop and formed an average.

89

due to the I/O-bound. This means that the execution time is proportional to the average
number of clock cycles per many-body state, used to find connections. This quantity was
analyzed in Chapter 6, see Figure 6.6 and 6.8. Based on this, we can generally expect
growing benefits from using the strategies with control inputs as the dimension of the
many-body basis, i.e. cutoff energy, increases. Also, the benefits of these strategies
increase as the number of particles increase, as interchanges to single-particle states of
high energies are generally uncommon in the many-body states.

In choosing between using the dynamic energy-bound andmj-parity group strategies,
the main trade-off is increased amount of input in favor for a performance increase by a
factor of two, when choosing the latter of these strategies. Since input has never been
an issue compared to the bounds due to output for any of our implementations, we
conclude that the mj-parity group strategy is the optimal choice3 for performance in
the limit of large systems.

Note that the statement in the previous paragraph, about which algorithm is optimal
in performance, is highly dependent on that the kernel-load does not affect the effective
frequency of the FPGA4. If the issue regarding output generation, mentioned in Section
7.1, is solved, so that the kernels only send output when a connection is found, different
considerations must be made. Specifically, it is only meaningful to optimize how many
non-zero elements are found each cycle, up to the point where the bandwidth of the
output channel is saturated. If it is possible to saturate the bandwidth using a strategy
that does not need pre-calculated control inputs, then such a strategy should of course
be used, as it results in the same FPGA-performance without any pre-calculation costs.

Finally, our conclusion is that the optimal choice of algorithm in some sense depends
on what FPGA that is used. For example, the current FPGA has large hardware-
resources compared to the dimensions of its I/O-interface, and it would hence in principle
be best to instantiate many parallel kernels with a non-dynamic energy-bound, instead
of using pre-calculated control inputs5. On the other hand, if the hardware-resources of
the FPGA are more limited compared to the I/O-interface, it is better to use a strategy
with control inputs. This raises the question of what ratio between the dimensions of
the I/O-interface and hardware-resources, that leads to the most cost-effective solution.
However, this is beyond the scope of this study.

8.1.3 Improvements of the implemented algorithms and kernels

This section singles out a number of areas where further work can be done on the
FPGA-implementations, in order to improve their performance. Also, we point out that
the CPU-based conversion of FPGA-output to a reduced transition density, could be
incorporated into the on-FPGA calculations. We note that this could be a way to make
the FPGA-implementation of the calculation competitive with Trdens.

3Also partly motivated by that the pre-calculation cost of control inputs is similar to that for the
dynamic energy-bound strategy.

4Since the same amount of output is generated each clock cycle, resulting in a constant I/O-bound
and hence no fluctuations in the effective frequency.

5This is not entirely true when using the Maxeler programming interface, since multiple kernels would
demand a greater number of I/O-streams, a number that is not allowed to exceed eight.

90

Use of HDL

In a final implementation it would be desirable to have kernels that only generate output
when a non-zero matrix element is found. As a part of this, one must incorporate more
advanced programming than was used within this project. For example, one could create
an output-buffer where output accumulates, with the ability to signal to the CPU to
read data whenever the buffer becomes full. This could either be incorporated in the
currently used high-level code, as an HDL block, or one could consider to make the full
implementation in an HDL. The latter will be a more demanding solution, but allows
more degrees of freedom. For example, it might also be possible to use the eight I/O-
streams more flexibly, so that their limited number does not become an obstacle for the
possibility of instantiating more kernels.

Use of on-chip ROMs

The possibilities to use ROMs to store values, for example parametrizations of single-
particle states, has previously been discussed, but was never utilized in the implemen-
tations. However, if ROMs were used, they would increase the performance of the
non-dynamic energy-bound strategy by a factor two. It would also be possible to use
less control inputs for the dynamic energy-bound andmj-parity group strategies. Specif-
ically, in the latter case, we could use the ROMs to store the maximum states on the
FPGA and hence avoid to transfer them with each many-body state. In conclusion,
there are many benefits of ROMs, and we therefore encourage that a future kernel
implementation does not leave them unused.

Suggestions to perform a larger amount of the calculations on the FPGA

A final area of further study is to investigate whether a larger part of the calculation
of transition densities, can be implemented on the FPGA. For example, we chose to
perform lookups to find probability amplitudes off the FPGA, due to the large burst-
size of the DRAM. But, after implementing the kernels and making measurements, we
found that the identification of non-zero matrix elements was not much faster than the
DRAM. As a conclusion, we find it appropriate for a future implementation to perform
lookups on the FPGA, with probability amplitudes stored in DRAM (which for the
MAX3 card has the size 48GB).

Beside the lookups, it might be considered that calculations related to the reduced
matrix-representation also could be performed on the FPGA. For example, one idea is to
use FPGA-based memory to accumulate the values of the reduced matrix elements. As
the on-chip ROM is rather small, this accumulation must be performed using DRAM.
Doing this is however not very simple and it must be resolved how the contributions
to the reduced matrix elements should be updated in a way that is compatible with
the pipelined architecture of the FPGA. Also there might be problems regarding the
possibilities of parallelization and issues related to burst-size of the DRAM.

If possible, though, such an implementation has potential to be considerably faster
than Trdens since these last steps would not increase the calculation time on the
FPGA considerably. It would add new operations at the end of the pipeline and thus
increase the pipeline depth but not the number of clock cycles needed to begin processing

91

all inputs. Therefore it would not significantly increase the calculation time for large
systems; it might actually reduce the total time since the output would be significantly
decreased. Thus FPGAs have the capacity to vastly accelerate the calculation of reduced
transition densities if these last issues can be solved.

8.2 Algorithm generalizations
Up to this point, we have only considered systems with one kind of particle, such as
neutron-droplets. However, a real, stable nucleus usually consists of approximately equal
amounts of protons and neutrons. Also, besides one-body operators, two- and three-
body operators are often of interest in the study of many physical properties. In this
section, we aim at explaining how the FPGA-based implementations can be extended
to include these possibilities.

8.2.1 Nuclei incorporating both protons and neutrons

A mathematical formalism to describe systems with both protons and neutrons, is that
of isospin, where all particles are considered as states of a generic particle, the nucleon.
The isospin appears as an additional quantum-number, t = 1/2, with two projections
mt = ±1/2. It is the value of this projection, which characterizes whether a nucleon is
a proton or neutron.

For the algorithms that work directly with quantum-numbers, i.e. algorithm 1 and 2,
the implementation of isospin is straightforward and can achieved done by adding a fifth
quantum number that is transferred to the kernel. If the Chinese remainder theorem is
used to order the single-particle states, the difference is that one must use five, instead of
four primes. However, a choice that must be made, is whether the particles are allowed
to change type. This would be the case, e.g. when considering weak processes such as
beta-decay transitions. If this is the case, one can use an additional chained counter that
extends the already existing control structure, to vary mt. Otherwise, we can leave mt

unchanged, exactly the same way as we have done with mj . Concerning the mj-parity
group strategy, the implementation of a fifth quantum-number affects the grouping of
single-particle states. The kernels, on the other hand, do not need to be modified.

8.2.2 Generalization of algorithms 1 and 2 to two- and three-body
operators

This section outlines how the FPGA-based strategies that work directly with the quan-
tum numbers of single-particle states, can be generalized to find non-zero matrix el-
ements of two-body operators. Additionally, some features of the generalization to
three-body operators, will be mentioned.

The difference between one- and two-body operators is that the latter allows in-
terchanges of two single-particle states, instead on just one. To find the corresponding
non-zero matrix elements, we can use a similar approach to that for one-body operators,
and sequentially, for each many-body state

mbState = [α1,...,αA], (8.2)

92

find what other states it connects to. However, we need to consider interchanges of
pairs of single-particle states (αi;αr) = (ni,li,ji,mji;nr,lr,jr,mjr). These can be per-
formed in parallel, with individual hardware implementations that remove and inter-
change states at specific positions i and r in mbstate. All which must be done is to
find an efficient way to parametrize what pairs of new single-particle states (α′i;α′r) =
(n′i,l′i,j′i,m′ji;n′r,l′r,j′r,m′jr), that we should try to replace the old ones by. To accomplish
this, we begin by noting that alongside the maximum total energy condition and Pauli
exclusion principle, the interchange of single-particle state pairs must fulfill:

• l′i + l′r ≡ li + lr mod 2, according to the parity constraint.

• m′ji+m′jr = mji+mjr, according to the projection of magnetic moment constraint.

Compared to the equivalent conditions for a one-body operator, we now have additional
degrees of freedom, which implies that we need more variables to parametrize the inter-
changes, than in the case for one-body operators. A closer analysis, indicates that it is
sufficient to use eight variables, denoted by ñ1, l̃1, j̃1, ñ2, l̃2, j̃2, P̃ and m̃. These are
then used to set:

New single particle state α′i New single particle state α′r
n′i = ñ1 n′r = ñ2
l′i = 2l̃1 + P̃ l′r = 2l̃2 + (li + lr − P̃) mod 2
j′i = j̃1 j′r = j̃2
m′ji = m̃ m′jr = mji +mjr − m̃.

(8.3)

To perform all necessary interchanges of pairs of single-particle states, we should consider
all appropriate combinations of the introduced variables. This means that we should
consider combinations where j̃1, j̃2 and P̃ take the values 0 and 1 (note that for j̃1, j̃2,
we let 1 represent j = l+ 1

2 while 0 represents j = l− 1
2). This should also be combined

with ñ1, l̃1, ñ2 and l̃2 ranging over the non-negative integer solutions of

ñ1 + ñ2 + l̃1 + l̃2 ≤
1
2

Ntot −
∑
k 6=i,r

2nk + lk − (li + lr)mod 2

 = Ñ , (8.4)

together with m̃ taking allowed values for the projection of magnetic moment for a
single-particle state.

Use of on-chip ROMs and strategies for optimization

One way to implement the above parametrization, is by using several chained counters,
imitating the behavior of a for-loop. Our experience however tells us that such imple-
mentation would be inefficient, since the chaining of counters is not very flexible. On
the other hand, none of these drawbacks would be present if storing the parametrization
in on-chip ROM and using a counter to generate addresses, which therefore is recom-
mended.

Another point, worth exploring, is how control inputs can be used to increase the
kernel performance. The same way as for one-body operators, we could dynamically set
Ñ , dependent on what many-body state that is being processed. To evaluate the benefits

93

of this, we let SÑ denote the number of non-negative integer solutions to equation (8.4).
It can then be shown that

∆SÑ =
(
Ñ + 3

3

)
= 1

6(Ñ + 3)(Ñ + 2)(Ñ + 1), (8.5)

from which it follows that SÑ ∼ Ñ4. Dynamically setting Ñ is especially important for
systems with many particles, for which the removal of two single-particle states has a
negligible effect on the total energy of the many-body states.

Comment regarding kernel-design

As previously noted in this section, when dealing with two-body operators we suggest
that each pair of indices i and r, corresponding to different positions in mbState, should
be assigned with a hardware implementation and output stream of its own. This is
similar to what was done for one-body operators, with the motivation that calculations
related to connections often have dependencies on i and r, which otherwise can be
difficult to incorporate in the hard-coded design of the kernel. However, the number of
needed output streams grows fast, given by(

A

2

)
= 1

2A(A− 1), (8.6)

where A is the number of particles. This means that the maximum of eight I/O-streams,
allowed by the Maxeler programming interface, will be even more restricting than for
one-body operators since A often is of order 10 or higher. As a conclusion, imple-
mentations for two-body operators are exclusively recommended to be performed in an
HDL.

Three-body operators

The possibility to make the further generalization to three-body operators essentially
involves further degrees of freedom in the conditions for parity and projection of angular
momentum. The same way as for two-body operators this can be incorporated by using
a suitable number of variables to parametrize interchanges of (in this case triplets of)
single-particle states. It turns out that the benefits of dynamically setting Ñ , will
be even larger than for two-body operators. The maximum number of allowed I/O-
streams, will however also be even more limiting than in the former case, meaning that
implementation in an HDL is absolutely necessary.

8.2.3 Generalizing the mj-parity group strategy

The possibility to generalize the mj-parity group strategy to two- and three-body op-
erators has been investigated. In the case of a two-body operator, this generalization
would be performed by forming a two-body basis, in which the elements are grouped
according to parity and angular momentum projection. For a three-body operator, the
only difference would be that we use a three-body basis instead of a two-body basis.

94

Similarly to the case with a one-body operator, the main benefit of the mj-parity
group strategy is that it can be used to with a very high probability find a connection
in each clock cycle. It is possible to perform interchanges of groups of single-particle
states so that the only condition that can be violated is the Pauli exclusion principle.
However, in spite of this it turns out that the generalization to two- and three-body
operators is less suited for FPGA-implementation.

The reason for this, is that it demands too large amounts of on-chip ROM. This
occurs as a many-body state is specified in terms of its occupied single-particle states.
It is this representation that is used to create memory addresses for lookups. However,
if an interchange of two single-particle states is performed using an index for a pair of
single-particle states, this index must at some point be converted into information about
what individual single-particle states that have been created. This needs to be stored as
a conversion table in on-chip ROM. To see that this is not possible, we consider a kernel
with A = 8 and maximum allowed single-particle energy Nsingle,max = 10. In this case,
there are #spState=572 states in the single-particle basis, which results in roughly(

#spState
2

)
= 163306 (8.7)

two-body states. Using the same kernel-design as previously described, there are

1
2A(A− 1) = 28 (8.8)

parallel process that need access to the conversion table. As the ROMs only have two
ports this means that we need 14 copies of the conversion table. Also, each index in the
two-body basis corresponds to two indices of single-particle states, which we assume are
single-precision numbers. Based on this, we identify a need of

2 · 14 · 163306 · 4 B = 18.29 MB (8.9)

ROM. This is more than five times as much ROM as is available using the FPGA in this
project [20]. Also, the need of memory scales badly with A, which leads to the conclusion
that generalizations of the mj-parity group strategy should not be implemented on an
FPGA. However, it is believed that the strategy will be efficient in a CPU-environment.
Specifically, the method will benefit from the better control structures of a CPU, com-
pared to those of an FPGA.

95

Chapter 9

Conclusions and
recommendations

Here we present a condensed list of conclusions regarding the feasibility of FPGA-based
computations of transition densities, as well as recommendations about how such com-
putations should be performed:

• In this study, transition densities were calculated using a subdivision of tasks with
an FPGA-part that identifies valid connections, and a CPU-part that converts the
connections into reduced transition densities. Using MATLAB to implement the
CPU-based part, the overall performance was found inferior to the CPU-based
code Trdens, which performs the full calculation.

• A closer look at the implementation shows that the FPGA-based part of the com-
putations only consumes a small fraction of the total time used by Trdens, when
ran on a single CPU-kernel. This indicates that the FPGA-implementation would
become feasible if the off-FPGA calculations could be optimized.

• To optimize the off-FPGA calculations, we recommend that the computation
should be performed in C++. Focus should be put on the calculation of Clebsch-
Gordan coefficients and the possibility to pre-calculate them.

• The full calculation of transition densities could also in principle be implemented
on the FPGA. The execution time of the FPGA would not be affected by this, as it
would correspond to additional stages being added to the pipeline. Hence, we rec-
ommended further investigation of this possibility as it would make FPGA-based
computations competitive. There are however issues regarding how computational
results should be accumulated in DRAM.

• I/O will be a bounding factor for FPGA-implementations using the same subdivi-
sion of calculations as in this project. The I/O-bound stems from that information
about a large number of connections must be transferred to the CPU. This is an
even larger problem for two- and three-body operators that have much larger
amounts of connections.

96

• In this project we have used a kernel design with separate blocks of hardware for
interchanges of single-particle states at different positions in the many-body states.
This design was chosen because the calculations differ depending on the position
of the removed single-particle state. It may also be a good design choice for future
FPGA-implementations.

• The performance of an FPGA-implementation was seen to be boosted by using pre-
calculated control inputs. The calculation cost of these was linear with respect to
the size of the many-body basis. Using control inputs we have been able to identify
more than one connection per clock-cycle. Of the designs implemented during this
project, the algorithm denoted mj-parity groups was the most efficient.

• For two- and three-body operators, we recommend generalizing the dynamic energy-
bound strategy. We believe that such an implementation could have the same ben-
efits as for one-body operators. Generalizations of the mj-parity group strategy,
were on the other hand found less applicable for FPGA-implementation, due to
limited amount of ROM.

• We recommend that a future implementation should use HDL to a greater extent.
This would allow implementing structures unavailable in Maxeler’s programming
interface. The benefits would include a more flexible I/O-interface.

• The project has identified some desirable properties to seek in an FPGA for future
implementations. These are: smaller burst-size than 384 bytes, more on-chip
ROM, and, if possible, support for more streams than the current FPGA.

97

References

[1] Sakurai, J.J., Napolitano, Jim J. (2010) Modern Quantum Mechanics. Edition 2.
New Jersey: Pearson.

[2] Dickhoff, W. H. and Van Neck, D. (2005) Many-Body Theory Exposed! Singapore:
World Scientific.

[3] Barrett, B. R., Navrátil, P. and Vary, J. P. (2013) Ab initio no core shell model.
Progress in Particle and Nuclear Physics, vol. 69, pp. 131-181.

[4] Cockrell, C., Vary, J. P. and Maris, P. (2012) Lithium isotopes within the ab initio
no-core full configuration approach. Physical Review C, vol. 86, p. 034325.

[5] Maris, P. et al. (2012) Large-scale ab initio configuration interaction calculations
for light nuclei. Journal of Physics: Conference Series, vol. 40.

[6] Maris, P., Vary J. P. and Shirokov A. M. (2009) Ab initio no-core full configuration
calculations of light nuclei. Physical Review C, vol. 79, p. 014308.

[7] Suhonen, J. (2007) From Nucleons to Nucleus. Berlin, Heidelberg: Springer-Verlag.

[8] Deutsch, I. (1996) Irreducible Tensor Operators and the Wigner-Eckart Theorem.
The University of NewMexico. http://info.phys.unm.edu/~ideutsch/classes/
phys522s03/lecturenotes/tensoroperators.pdf (April 7, 2013).

[9] Brown, B.A. (2005) Lecture Notes in Nuclear Structure Physics. Michi-
gan State University. http://www.nscl.msu.edu/~brown/Jina-workshop/
BAB-lecture-notes.pdf (April 27, 2013).

[10] Sourdis, I., Gaydadjiev, G. N. (2011) HiPEAC: Upcoming Challenges. In Reconfig-
urable Computing: From FPGAs to Hardware/Software Codesign, red. M. P. João,
M. Hubner, pp. 35-52. New York: Springer.

[11] Maxeler Technologies Inc (2012) Dataflow Programming with MaxCompiler, Max-
eler Technologies Inc, Palo Alto.

[12] Maxeler Technologies Inc (2012) MaxCompiler – Manager Compiler Tutorial, Max-
eler Technologies Inc, Palo Alto.

[13] Sternberg, P. et al. (2008) Accelerating Configuration Interaction Calculations for
Nuclear Structure. In Proceedings of the 2008 ACM/IEEE conference on Supercom-
puting; November 15-21, 2008, Austin, Texas, USA.

98

[14] Hardy, G. H., Wright, E.M. (2008), An Introduction to the Theory of Numbers.
Oxford: Oxford University Press.

[15] Marsaglia, July 2002, Xorshift RNGs, Journal Statistical Software, Vol. 7, Issue 3

[16] Chow, G.C.T. (2012) A mixed precision Monte Carlo methodology for reconfig-
urable accelerator systems. In ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays; February 22-24, 2013, Monterey, California. p. 7.

[17] Tkachov, T. (2012) Accelerating Unstructured Mesh Computations using Custom
Streaming Architectures. London: Imperial College. (Exam thesis under the De-
partment of Computing.) p. 23.

[18] Navrátil, P. (2004) Translationally invariant density. Physical Review C, vol. 70, p.
014317.

[19] Rasch, J. and Yu, A. C. H. (2003) Efficient storage scheme for precalculated Wigner
3J, 6J and Gaunt coefficients. SIAM Journal on Scientific Computing, vol. 25, issue
4, pp. 1416-1428.

[20] Stojanovic, S. (2011) An Overview of Selected Hybrid and Reconfigurable Archi-
tectures University of Belgrade. http://home.etf.rs/~vm/os/vlsi/predavanja/
Survey-ADV_v11.pdf

[21] Mizusaki, T. (2005) Shell model calculation. University of Tokyo. http://www.cns.
s.u-tokyo.ac.jp/summerschool/ciss05/lecturenotes/Mizusaki.pdf (May 9,
2013)

[22] Goodrich, M. T., Tamassia, R. (2011) Data Structures and Algorithms in Java,
John Wiley & Sons.

99

Appendix A

M-scheme and J-scheme

We have seen how a many-body basis can be constructed to obey the Pauli exclusion
principle by the use of second quantization. However, there are some other properties
that we may want to consider as well. In finding eigenvectors of the Hamiltonian we
want to employ the smallest basis possible. The fact that the Hamiltonian is spherically
symmetric allows us to diagonalize the matrix representation in Ĵz and Ĵ2, see Chapter
2.

In the choice of basis there are two conventionally used techniques, M-scheme and
J-scheme. In the M-scheme we choose a basis whose states are eigenfunctions of Ĵz. This
is the scheme used in this project. In the J-scheme, the basis states are eigenfunctions
of both Ĵ2 and Ĵz. The J-scheme basis is smaller but harder to construct than the
M-scheme basis. As an M-scheme basis we can use the basis discussed in Chapter 2 and
3, as we will show in the next section.

A.1 Angular momentum operators
In this section we will define the total angular momentum operator for our many-body
states and show that the basis discussed in this report has M , but not J as a good
quantum number, i.e. constitutes a M-scheme basis.

We will use the notation α = ξjm to label our single-particle states. We let ξ absorb
all other quantum numbers besides jm. We will use α when a more dense notation is
needed. For the total angular momentum operator for a single particle we have

~j2|ξjm〉 = j(j + 1)|ξjm〉 (A.1)
jz|ξjm〉 = m|ξjm〉. (A.2)

~j2 can be written in terms of the lowering and raising operators given by j± = jx ± ijy
as

~j2 = j−j+ + j2
z + jz. (A.3)

The total angular momentum operator is given by

~J =
A∑
k=1

~jk. (A.4)

100

We are interested in constructing eigenstates of the two operators Ĵ2 and Ĵz. In second
quantisation, Ĵz can be written as a one-body operator

Ĵz =
∑
α1α2

〈ξ1j1m1|Jz|ξ2j2m2〉a†α1aα2 =
∑
α1α2

m2〈ξ1j1m1|ξ2j2m2〉a†α1aα2 =

=
∑
ξjm

ma†ξjmaξjm.
(A.5)

However, we see from (A.4) that Ĵ2 will mix indices, hence it is a two-body operator.
Ĵ2 is simplest written as [9]

Ĵ2 = Ĵ−Ĵ+ + Ĵ2
z + Ĵz (A.6)

where
Ĵ± =

∑
ξjm

√
j(j + 1)−m(m± 1)a†ξjm±1aξjm. (A.7)

We let Ĵz operate on an anti-symmetric state |α1α2...αA〉,

Ĵz|α1α2...αA〉 =
A∑
k=1

mka
†
αk
aαk |α1α2...αA〉 =

A∑
k=1

mk|α1α2...αA〉 = M |α1α2...αA〉.

(A.8)
Here we used (A.5) and the fact that the only non-zero contributions to the sum comes
from summing over the single-particle states in |α1α2...αA〉. Further, since we annihilate
the same state as we create, we will not get any change of sign, see Chapter 2. We see
that |α1α2...αA〉 are eigenstates of Ĵz with M = ∑A

k=1mk as eigenvalues.
However, |α1α2...αA〉 will not be an eigenstate of Ĵ2. We know that |α1α2...αA〉 is

an eigenstate of Ĵz, hence also of Ĵ2
z + Ĵz. Since

Ĵ+|α1α2...αA〉 =
A∑
k=1

√
j1(j1 + 1)−m1(m1 + 1)a†ξ1j1m1+1aξ1j1m1 |α1α2...αA〉 (A.9)

we understand that |α1α2...αA〉 will not be an eigenstate of Ĵ−Ĵ+ in general. We see
the from the fact that after applying Ĵ−, the indices of raised and lowered particles will
be mixed. Recalling (A.6), we conclude that |α1α2...αA〉 cannot be an eigenstate of Ĵ2

either.
Our constructed basis will, as we have seen, have M as a good quantum number

but not J in general. We denote these elements as |φM〉 and the final eigenstate of our
Hamiltonian as |λJM〉. λ is the enumeration of states with same J , since eigenstates
of the Hamiltonian in general will be degenerate in J . We know from Chapter 2 that
|φM〉 will be a sufficient basis since Ĥ will not couple states with different M . We can
however construct eigenstates of Ĵ2 from |φM〉 as we will see in the following section.

A.2 Projection operator
Even though |φM〉 are no eigenstates of Ĵ2, we know that the Hamiltonian commutes
with Ĵ2. This means that eigenstates of Ĥ will simultaneously be eigenstates of Ĵ2.

101

Such eigenstates are constructed as linear combination of |φM〉,

|λiJiMi〉 =
DM (Mi)∑

j

cj |φjMi〉, (A.10)

where DM (Mi) is the number of states |φM〉 with M = Mi. Every |φM〉 will be a part
of the linear combinations constructing |λJM〉 with J ≥M . The system (A.10) can be
solved for |φM〉 and we get

|φM〉 =
Jmax∑
J≥M

DJ (J)∑
λ=1

dλ,J |λJM〉 (A.11)

where DJ(J) is the number of |λJM〉 with equal J . This is the set which λ runs over.
It is possible to construct eigenstates of Ĵ2 with the use of a projection operator on
|λJM〉. It can be shown [9] that the projection operator

PJ =
Jmax∏

Ji=M,Ji 6=J

Ĵ2 − Ji(Ji + 1)
J(J + 1)− Ji(Ji + 1) (A.12)

will only leave the angular momentum J in the original state

PJ |φM〉 =
DJ (J)∑
λ=1

dλ,J |λJM〉 =
DM (M)∑
k=1

ek|φkM〉. (A.13)

This system can be solved for ek and we can explicitly form linear combinations of |φkM〉
that will be eigenstates of Ĵ2. This can be used to further diagonalize our matrix1.

A.3 M-scheme
When we construct our basis with a specific choice of M , we have to take into consid-
eration what J these states can be projections of i.e. what eigenstates of Ĵ2 we can
represent. With the choice of M we can construct eigenstates with good quantum num-
ber J ≥M . M = 0 can originate from all J . If we instead are interested in finding just
one particular state with quantum number J , it would be wise to choose M = J , since
this would minimize the basis. It is instructive to walk through a number of examples
on how to create an M-scheme basis. These examples will show how properties of the
many-body states can be deduced for a number of single-particle configurations.

Our single-particle states will consist of quantum numbers (n,l,j,m). We are only
interested in the quantum numbers jm. We will refer to k numbers of particles in a
specific orbital with e.g. (j = 5/2)k, leaving out nl, with the only possibility that the
k particles differ in m, because of the Pauli exclusion principle. If we instead write
(j = 5/2)(j = 5/2), these two parenthesis refer to a different set of nl, in this case both
particles can have the same m. The crucial point is whether or not the Pauli exclusive
principle has to be taken into account. Hence the notation (j = 5/2)(j = 3/2) could
refer to the same set of nl as well as different ones.

1These state might not be normalized. Further, if DM (M) > DJ(J) this will be an over-complete
system of equation. There are however ways to deal with this, see [9].

102

Example 1. Now we consider an example of how to construct an M-scheme basis. Let
us look at the case (j = 5/2)(j = 3/2)(j = 1/2) which is shown in Table A.1. The table
shows the occupied state of every single-particle state and to what quantum number
J it contributes. An equivalent way of seeing this is to form all different J a specific
M could originate from. Here all particles are in different orbitals and we get values
of J ranging from the maximum Jmax = 5/2 + 3/2 + 1/2 = 9/2, to the minimal value
Jmin = 1/2.

Since we are dealing with vectors we see that some Js arise more than once. The
first M = 9/2 can only originate from J = 9/2,which is when all vectors point the same
way. From J = 9/2 comes 2M = 9,7,5,3,1,− 1,− 3,− 5,− 7,− 9. However, we get three
possible arrangements for M = 7/2. One is accounted for by J = 9/2, and the other
two come from two different ways two couple J = 7/2. The same goes for all other J
with the exceptions J = 9/2 and J = 1/2, which can only be constructed in one way. �

If we denote the M-scheme dimensions with DM (M) (e.g. DM (7) = 3 in Table A.1).
We can get the dimension of J , DJ(J), which is the total number of states with J as

DJ(J) = DM (J)−DM (J + 1). (A.14)

The quantum number λ, introduced before, ranges over this set of same J . Our basis
will, after diagonalised in Ĵ2, be degenerate in Ĵ2.

Example 2. A more interesting physical case is when all particles occupy the same
orbital. The configuration (j = 5/2)2 is shown in Table A.2. We see that no J occur
more than once, because there is only one way to form each vector. More interesting is
that neither J = 1 nor J = 3 occurs. This is entirely due to the Pauli exclusion princi-
ple. We start in the highest state Jmax, with all particles occupying the highest available
sub-orbits. There is only one way to decrease M one step and this is done by lowering
the lowest occupied sub-orbit, otherwise we would violate the Pauli exclusion principle.
The dimensions of Jmax− 1 is given by DJ(Jmax− 1) = DM (Jmax− 1)−DM (Jmax) = 0.
Hence Jmax − 1 is not possible. The case is similar for J = 1. The fact that Jmax − 1
is not possible to construct holds true for anyl number of particles occupying the same
orbital. �

Example 3. In a concluding example we look at (j = 5/2)2(j = 1/2) which is shown
in Table A.3. Since we now couple two different orbitals we can deduce the table by
coupling the first system (j = 5/2)2, which we know has J1 = 0,2,4, with J2 = 1/2 from
a second system. We use the relation |J1 − J2| ≤ J ≤ J1 + J2 which for J1 = 0 gives
J = 1/2, J1 = 2 gives J = 3/2, 5/2 and J1 = 4 gives J = 7/2, 9/2. This is what we see
in Table A.3. Here we do not have to consider the Pauli exclusion principle since we
coupled two different orbits. �

103

Table A.1: Here we show the case (j = 5/2)(j = 3/2)(j = 1/2). The list is arrange in
decreasingM and we have left outM < 0 since the list is completely symmetrical. The rightmost
column shows the possible J for each configuration of M .

2j 5 5 5 5 5 5 3 3 3 3 1 1
2m 5 3 1 -1 -3 - 5 3 1 -1 -3 1 -1 2M 2J

x x x 9 9
x x x 7 9,7,7
x x x 7

x x x 7
x x x 5 9,7,7,5,5
x x x 5

x x x 5
x x x 5

x x x 5
x x x 3 9,7,7,5,5,3,3
x x x 3

x x x 3
x x x 3

x x x 3
x x x 3

x x x 3
x x x 1 9,7,7,5,5,3,3,1

x x x 1
x x x 1

x x x 1
x x x 1

x x x 1
x x x 1

x x x 1

Table A.2: Possible configuration of single-particle states for (j = 5/2)2. Only one x can occur
for each m, because of the Pauli exclusion principle. The list is arrange in decreasing M and we
have left out M < 0 since the list is completely symmetrical for negative values. The rightmost
column shows the possible J for each configuration of M .

2j 5 5 5 5 5 5
2m 5 3 1 -1 -3 - 5 2M 2J

x x 8 8
x x 6

x x 4 8,4
x x 4

x x 2
x x 2
x x 0 8,4,0

x x 0
x x 0

104

Table A.3: Possible configuration of single-particle states for (j = 5/2)2(j = 1/2) . The
table shows the occupied state of every single-particle denoted by an x. The list is arrange
in decreasing M and we have left out M < 0 since the list is completely symmetrical. The
rightmost column shows the possible J for each configuration of M .

2j 5 5 5 5 5 5 1 1
2m 5 3 1 -1 -3 - 5 1 -1 2M 2J

x x x 9 9
x x x 7 9, 7
x x x 7
x x x 5 9,7,5

x x x 5
x x x 5
x x x 3 9,7,5,3

x x x 3
x x x 3

x x x 3
x x x 1 9,7,5,3,1
x x x 1

x x x 1
x x x 1
x x x 1

A.4 J-scheme
Here we will give a brief description on how to form a J-scheme basis. As stated before,
this basis will be smaller, but we will encounter some computational difficulties. This
usually makes the M-scheme basis more preferable and is the reason why this project
has used the M-scheme instead of J-scheme.

In order to construct a J-scheme we have to turn to Glebsch-Gordan coefficients to
couple the spin of different states. In the case with two particles with quantum numbers
αi = ξijimi, the procedure is known

|ξ1j1ξ2j2; JM) =
∑
m1m2

(j1m1j2m2|JM) |α1α2). (A.15)

We are interested in the states that obey the Pauli exclusion principle i.e. we use the
anti-symmetrizing operator A. By use of some Clebsch-Gordan identities, see Chapter
4 we can deduce that [9]

|ξ1j1ξ2j2; JM〉 = N12
∑
m1m2

(j1m1j2m2|JM) |α1α2〉 where N12 = 1√
1 + δξ1ξ2

.

(A.16)
With the use of second quantisation we can write this as

|ξ1j1ξ2j2; JM〉 = N12
∑
m1m2

(j1m1j2m2|JM) a†α1a
†
α2 |0〉. (A.17)

105

We can interpret the expression in front of |0〉 as an operator that operates on the
vacuum state producing a many-body state with good quantum number J and M . The
operator is a linear combination of creation-operators. We can generalise this to higher
numbers of particles. The procedure is tedious but straight-forward, see [9] for more
details.

We can continue to couple (A.17) with a third state by the use of a new set of
Clebsch-Gordan coefficients, and continue in this manner. If all states have the same ξ
we write it as

|ξAλJM〉 = Z+(ξAλJM)|0〉 (A.18)

where Z+ is the operator constructed by linear combination of creation operators. Here
λ is the quantum number that enumerates the different states with same J . A degeneracy
will arise since we can couple states in different order.

For states occupying different ξ we couple the Z+ operators instead. As for example
with two different ξ,

|AλJM〉 =
∑
M1M2

(J1M1J2M2|JM)Z+(ξn1
1 λ1J1M1)Z+(ξn2

2 λ2J2M2)|0〉 n1 + n2 = A.

(A.19)
From this we see that the computations needed to be done increase rapidly for

higher number of particles. The J-scheme basis will be inferior to M-scheme basis in
terms of computer resources for large systems [21]. For smaller system J-scheme can be
an alternative.

106

Appendix B

Hash tables

A hash table is a data structure which uses a hash function to map a set of keys to a set
of values [22]. It is usually implemented as an associative array, where the hash function
maps the keys to a particular index in this array. If each key maps to a unique index,
the hash function is said to be perfect. Given a specific key, a value can be retrieved
very quickly, i.e. lookups are very efficient. This is one of the key advantages of a hash
table, although it is important to note that two different keys will normally map to the
same index, i.e. a collision will happen. This appendix presents some of the concepts
and terminology related to hash tables, which are necessary for the developments in
Chapter 6.

B.1 Main features of hash tables
As pointed out in the introductory paragraph the main advantage of a hash table is
that lookups can be performed very quickly, essentially in constant time, i.e. in O(1)
average time complexity. Delete and insert operations can be performed equally quickly.
Finally, hash tables are storage efficient since storage space scales proportionally to the
number of keys, that is, its space complexity is O(n).

B.2 Collisions
Ideally, each key should map to an unique index. However this rarely occurs in practice.
As was alluded to in the introductory paragraph, when two or more keys map to the
same index, a collision occurs. Collisions are unwanted and reducing the number of
collisions is an important part of implementing an efficient hash table. A large part of
this consists of designing or choosing an appropriate hash function. Also one has to
oversize the array by some appropriate factor compared to the number of keys. This
way, the number of collisions can be made few, but they will still be present.

There are different ways to handle collisions for a hash table. One option is to use a
chained hash table, where each index is a chained list. When a lookup is performed, it
is necessary to search through this list and in order to be able to distinguish the values
from each other, the values are stored with their corresponding keys. Note, however,

107

that the performance of the hash table will decrease as the depth of the chained lists
increase.

A second way to handle collisions is to use open addressing, where all key and value
pairs are stored in a single array. For an insertion, an initial index is calculated and if
the index is unoccupied, the pair is stored there. If a collision occurs, the pair is stored
at the first unoccupied index, starting with the next index after the hashed one, and
continuing according to a specific probe scheme. An example of such a probe scheme is
linear probing, where the number of indices between each probe is fixed, usually 1. When
retrieving a value, the process is similar. Starting from the hashed index, a search is
performed until a value is found using the aforementioned probe scheme. If a particular
value is not found, the value does not exist in the hash table.

108

Appendix C

Link to source-code

Table C.1 provides a description of code that has been used within this project, which
also can be found on http://fy.chalmers.se/subatom/kand/2013/FPGA. The code is
grouped according to its use, in packages.

Table C.1: Table containing a description of code, used within the project.

Package Description
Many-body basis Functions to generate the many-body basis, for parti-

cles of one kind and different values of A, Ntot, M as
well as parity. There are two such functions, one using
MATLAB and one using C++. The basis is expressed
in terms of an enumeration of occupied single-particle
states, denoted by indices in the enumeration.

Non-dynamic energy-bound Kernel and CPU-code to FPGA-implement the algo-
rithm that uses a non-dynamic energy-bound. When
using this kernel, the many-body states should be
sorted by use of the Chinese remainder theorem and
the package contains code for that.

Dynamic energy-bound Kernel and CPU-code to FPGA-implement the algo-
rithm that uses a dynamic energy-bound. The pack-
age also includes code to generate control inputs.

mj-parity groups Kernel and CPU-code to FPGA-implement the algo-
rithm that uses mj-parity groups. The package also
includes code to generate maximum states as well as
control inputs.

Verification of results MATLAB script to calculate the non-zero matrix el-
ements of a one-body operator, using a brute-force
approach.

MATLAB implementation of
Trdens

Transforms the non-reduced transition density, calcu-
lated by the FPGA-kernels, into a reduced matrix-
representation.

109

