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Abstract

Resonances are important features of open quantum systems. We study, in
particular, unbound and loosely bound nuclear systems. We model 5He and
6He in a few-body picture, consisting of an alpha-particle core with one and
two valence neutrons respectively. Basis-expansion theory is briefly explained
and then used to expand the nuclear system in the harmonic oscillator and
momentum bases. We extend the momentum basis into the complex plane,
obtaining the so-called Berggren basis. With the complex-momentum method
we are able to reproduce the observed resonances in 5He. The 5He Berggren
basis solutions are used as a single-particle basis to create many-body states
in which we expand the 6He system. For the two-body interaction between
the neutrons, we use two different phenomenological models: a Gaussian and
a Surface Delta Interaction (SDI). The strength of each interaction is fitted
to reproduce the 6He ground state energy. With the Gaussian interaction we
do not obtain the 6He resonance, whereas with the SDI we do. The relevant
parts of the second quantization formalism is summarized, and we provide
details for its implementation.
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Chapter 1

Introduction

The properties of a quantum mechanical system are determined by its Hamil-
tonian. Particles in a potential well with infinitely high walls form localized
bound states. Such a system is a called a closed quantum system, since the
number of particles is conserved and the particles are localized in a finite
region. The energy of a closed quantum system can only take on discrete
values, as illustrated in Fig. 1.1a with the harmonic oscillator potential.

An open quantum system, on the other hand, portrayed in Fig. 1.1c, is
a system with a finite potential. For a system with a vanishing potential
particles can enter and exit the system and, consequently, there are unbound
states. For a trivial potential these are just free particle states but for a
non-negligible potential these are denoted scattering states. Depending on the
depth of the potential well of the open system, there can be a finite number
of bound states.

In addition to the bound and unbound states, some open quantum systems
harbor resonances. These are quasi-bound states that are neither bound nor
unbound, but exhibit properties of both.

They appear in the continuum, like unbound states, but are localized, like
bound states. However, the wavefunction of a resonance is only localized for
a finite amount of time, as opposed to a bound, stationary state that forever
stays the same. A resonance can be described with a complex energy, as the
following argument suggests.

The state of a particle is described by its wavefunction ψ, which can be
written as the product of a function of time and position

ψ(t, r) = ψt(t)ψr(r). (1.1)

The wavefunction evolves according to the Time-Dependent Schrödinger
Equation (TDSE)

ih̄
∂

∂t
|ψ〉 = H|ψ〉. (1.2)

1



r

V

Bound states

(a) Closed quantum system

r

V

Unbound

(b) Free particle

Resonance state

r

V

Bound state

Unbound scattering states

C
on

ti
n
u
u
m

(c) Open quantum system

Figure 1.1: Three different quantum systems: the closed harmonic oscillator,
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An eigenstate of the Hamiltonian H with energy E, i.e. a solution to the
Time-Independent Schrödinger Equation (TISE)

H|ψ〉 = E|ψ〉 (1.3)

has the simple time evolution

ψ(t, r) = exp
(
−iE
h̄
t
)
ψt(0)ψr(r). (1.4)

With the energy E real, the exponential factor is just a phase and the
probability |ψ(t, r)|2 of finding the particle at a given r is unchanged over
time. However, if we let the energy be complex

E = E0 − i
Γ
2 ,

(1.5)

we get

|ψ(t, r)|2 =
∣∣∣∣∣exp

(
−iE0

h̄
t
)

exp
(
− Γ

2h̄ t
)
ψ(0, r)

∣∣∣∣∣

2

= exp
(
−Γ
h̄
t

)
|ψ(0, r)|2

(1.6)
describing a resonance state decaying exponentially with half-life t1/2 =
h̄ ln 2/Γ. This parameter Γ is called the width of the resonance.

We want to use the simpler formalism of the TISE, as opposed to the
more general TDSE, and we see that this is possible by letting the resonance
have a complex energy. However, complex eigenvalues pose a problem in
standard quantum mechanics, where operators are postulated to be Hermitian.
Hermitian operators can only have real eigenvalues, and are thus insufficient
for treating resonances.

The aim of this thesis is to present methods for describing resonances
using the TISE in a complex-energy framework. To demonstrate the methods,
we will study the simple nuclear systems 5He and 6He. They are relevant
because the ground state of 5He and the first excited state of both 5He and
6He are resonances. Despite the unbound nature of 5He, the ground state of
6He is actually bound, an example of a Borromean system, named after the
Borromean rings depicted on the cover of this thesis.

The thesis can conceptually be divided into two parts, the first covering
resonances in a simple two-body problem and the second part covering the
first steps toward more complicated many-body systems. In Chapter 2 the
basis expansion method for solving the Schrödinger equation is introduced.
The basis expansion method is then used in Chapter 3 to study a loosely
bound two-body nuclear system, the 5He nucleus. In Chapter 4 we use the
Berggren basis to reproduce the resonance in 5He.

3



Chapter 5 is an introduction to many-body theory, focusing on fermionic
systems. The many-body theory is then utilized in Chapter 6 to study a
three-body problem, specifically the 6He nucleus. Finally, Chapter 7 is an
outlook discussing further development of the methods.
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Chapter 2

The Basis Expansion Method

We want to study loosely bound quantum systems by solving the Time
Independent Schrödinger Equation (TISE)

H|ψ〉 = E|ψ〉, (2.1)

commonly written in the position basis as
(
− h̄2

2m∇
2 + V (r)

)
ψ(r) = Eψ(r). (2.2)

For the nuclear systems to be treated, the TISE has no known analytical
solutions, and we need to use numerical methods to solve it. We will use the
basis expansion method, writing the equation as an eigenvalue problem

∑

j

Hijψj = Eψi (2.3)

with a finite matrix H that we can diagonalize to find the eigenvalues E.
To write the TISE as a matrix equation we use basis expansion. Basis

expansion is how we make sense of the abstract Hilbert spaces, operators
and state vectors of Quantum Mechanics (QM). By expanding these abstract
objects in a basis, we can relate them to the physical world. For example,
(2.2) is the TISE for a single particle, expanded in the position basis. We will
not expand our problems in the position basis, but it will still be important,
since it is the most natural basis to express the potential in.

Before we begin, we briefly recap some well known QM facts. First we
need a complete basis, either discrete, |n〉, or continuous, |x〉. A complete
basis means that any state |ψ〉 can be written as a linear combination of the
basis states

|ψ〉 =
∑

n

ψn|n〉 or |ψ〉 =
∫

dxψ(x)|x〉. (2.4)
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The complete bases we will use in this thesis are the position basis |r〉, the
momentum basis |k〉, the harmonic oscillator basis |nlm〉 and the elusive
Berggren basis [1]. All these bases are orthonormal, i.e. all the basis vectors
satisfy

〈n|n′〉 = δnn′ or 〈x|x′〉 = δ(x− x′) (2.5)

depending on if the base is discrete or continuous. With a complete basis |n〉,
we get the very useful completeness relation

I =
∑

n

|n〉〈n| or I =
∫

dx |x〉〈x|, (2.6)

where I is the identity operator. This relation can thus be inserted anywhere
in any equation, and will find frequent use in this thesis.

Let us now expand the TISE in the abstract |n〉 basis. We start by
inserting the completeness relation for |n〉 in (2.1)

H

(∑

n′
|n′〉〈n′|

)
|ψ〉 =

∑

n′
H|n′〉〈n′|ψ〉 = E|ψ〉. (2.7)

Multiplying (2.4) with 〈n| from the left and using orthonormality, we see that
〈n′|ψ〉 = ψn′ . If we now close (2.7) with 〈n| on the left

∑

n′
〈n|H|n′〉ψn′ = E〈n|ψ〉, (2.8)

and write Hnn′ = 〈n|H|n′〉, we get

∑

n′
Hnn′ψn′ = Eψn, (2.9)

which is equivalent to the matrix equation (2.3). This is the basic method of
expanding the TISE in a basis.

2.1 Spherical Symmetry

We limit ourselves to spherically symmetric systems, i.e. systems with a
potential V (r) that only depends on the radial distance r. If we considered
three-dimensional systems with arbitrary potentials, the matrices would be
very large and solving the problem would become infeasible.

Spherical symmetry allows us to write the wavefunction ψ(r) as a product
of a radial wavefunction R(r) and a spherical harmonic Y m

l (Ωr)

ψ(r) = Rnl(r)Y m
l (Ωr). (2.10)
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Figure 2.1: An illustration of a block diagonal matrix. The eigenvalues
of different blocks are independent of each other. Thus the blocks can be
diagonalized separately.

Here l and m are the quantum numbers for the orbital angular momentum
and its projection along an arbitrary z-axis. For the matrix elements we find,
using the orthonormality of the spherical harmonics,

〈nlm|V |n′l′m′〉 =
∫ ∞

0
dr r2Rnl(r)Rn′l′(r)V (r)

∫
dΩr Y m

l (Ωr)Y m′

l′ (Ωr)

= δmm′δll′
∫ ∞

0
dr r2Rnl(r)Rn′l′(r)V (r)

(2.11)
meaning that the matrix will be block diagonal, illustrated in Fig. 2.1. This
means that systems with different l and m can be treated separately. We say
that H is diagonal in l and m.

2.2 The Harmonic Oscillator Basis

We now expand the TISE in the spherically symmetric Harmonic Oscillator
(HO) basis. The basis consists of the eigenstates |nlm〉 of the HO Hamiltonian

HHO = p2

2µ + µω2r2

2 , (2.12)

where µ is the mass of the problem and ω is the angular frequency of the
oscillator. The expansion procedure is the same as in (2.7) to (2.9) and gives
us ∑

n′l′m′
〈nlm|H|n′l′m′〉ψn′l′m′ = Eψnlm (2.13)
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and if we use the fact that H is diagonal in l and m we get
∑

n′
〈nlm|H|n′lm〉ψn′lm = Eψnlm. (2.14)

We now have a matrix equation, but we need to find the matrix elements
〈nlm|H|n′lm〉. These require some calculation (details are in Appendix A.1)
and the result is

〈nlm|H|n′lm〉 = h̄ω

2



(

2n+ l + 3
2

)
δnn′ +

√

n(n+ l + 1
2)δn,n′−1

+
√

n′(n′ + l + 1
2)δn′,n−1


+

∫ ∞

0
dr r2Rnl(r)V (r)Rn′l(r)

(2.15)

where Rnl are the radial wavefunctions of the harmonic oscillator,

Rnl(r) =

√√√√ 2 (n−l2 )!
Γ(n+l

2 + 3
2)

rl

r
l+ 3

2
0

exp
(
− r2

2r2
0

)
L

(l+ 1
2 )

(n−l)/2

(
r2

r2
0

)
, (2.16)

r0 =
√
h̄/µω is the range and Lλν(x) are the generalized Laguerre polynomi-

als. The radial wavefunction R(r) of a state will be expressed as a linear
combination of the harmonic oscillator radial wavefunctions:

R(r) =
∑

n

ψnlRnl(r). (2.17)

2.3 The Momentum Basis

The momentum, or plane wave, basis has eigenstates |k〉, each describing a
free particle with momentum p or wavevector k = p/h̄. We will only use k
and refer to it as momentum.

The expansion is done in the same way as before, giving us
∫

d3k′〈k|H|k′〉Φ(k′) = EΦ(k), (2.18)

where we denote the momentum space wavefunctions with Φ. As in position
space, these can be separated into a radial and angular part. This is shown
in Appendix A.2 along with the fact that the Schrödinger equation can be
written as

Hφ(k) = k2

2µφ(k) +
∫ ∞

0
dk′ k′2V (k, k′)φ(k′) = Eφ(k) (2.19)

V (k, k′) = 2
π

∫ ∞

0
dr r2V (r)jl(kr)jl(k′r), (2.20)
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where φ(k) is the radial part of the momentum space wavefunction and jl(kr)
are the spherical bessel functions of order l. The momentum space radial
wavefunction φ(k) is related to the position space radial wavefunction by

R(r) = il
√

2
π

∫ ∞

0
dk k2φ(k)jl(kr). (2.21)

2.3.1 Discretization and Symmetrization

The integral equation (2.19) can be rewritten as a matrix equation through
discretization, turning the integral into a sum over a finite set of points kj
and dk into a set of weights wj:

k2
i

2µφ(ki) +
N∑

j=1
wjk

2
jV (ki, kj)φ(kj) = Eφ(ki). (2.22)

A particular set of points and corresponding weights is called a quadrature, and
the choice of quadrature greatly impacts the precision of the result. A näıve
quadrature with evenly spaced kj = j∆k and a constant weight wj = ∆k
converges slowly, and should not be used. We instead use the Gauss-Legendre
quadrature, for details see Appendix B.1.

With this discretization the Schrödinger equation may be written as
∑

j

Hijφ(kj) = Eφ(ki) (2.23)

where

Hij = k2
i

2µδij + wjk
2
jVij (2.24)

Vij = 2
π

∫ ∞

0
dr r2V (r)jl(kir)jl(kjr). (2.25)

Because of the k2
j in the second term of the matrix elements (2.24), the

Hij matrix will not be symmetric. Working with a symmetric matrix is
faster, which will be explained in the following section. We perform the
transformation

φ(ki) 7→ φ′(ki) = √wikiφ(ki)

Hij 7→ H ′ij =
√
wi
wj

ki
kj
Hij,

(2.26)

which gives us a symmetric matrix

H ′ij = k2
i

2µδij +√wiwjkikjVij. (2.27)
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The Schrödinger equation then becomes

∑

j

H ′ijφ
′(kj) = Eφ′(kj), (2.28)

with the same eigenvalues E, meaning that we can work with the symmetric
H ′ij matrix. Another benefit of the symmetrization is that the norm of the
φ′(ki) incorporates the weights wik

2
i . The real space radial wavefunction R(r)

is expressed in terms of φ′(kj) as

R(r) = il
√

2
π

N∑

j=1

√
wjkjφ

′
jjl(kjr). (2.29)

2.4 Numerical Considerations

In order to perform basis expansion on a computer, we need to consider
the numerical aspects of the problem. This includes truncation of the basis,
matrix size reduction, numerical integration and eigensolver optimizations.
The momentum basis is continuous and thus requires special treatment.

The |nlm〉 and |k〉 bases are infinite, so we truncate them by only including
a finite number N of states in the basis. For an orthonormal basis, the best
approximation is to include the N first states. The more states we include in
the basis, the more accurate results we get.

The truncation gives us an N ×N Hamiltonian matrix H and the TISE
can be written in matrix notation as

Hψ = Eψ, (2.30)

where the ψ are eigenvectors. We compute the matrix elements Hij with (2.15)
and (2.27), carrying out the integrals with the Gauss-Legendre quadrature
rule (see Appendix B.1) and setting the upper limit to a finite number. If
the matrix is hermitian or symmetric, we only need to consider the elements
in the upper triangle including the diagonal, roughly halving the number of
computed elements.

When the matrix elements have been computed, the matrix is diagonalized
using a standard eigensolver algorithm. For hermitian matrices we use a
specialized, faster algorithm.
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Chapter 3

The Two-Body Nuclear System

In this chapter we investigate a simple two-body nuclear system using the
basis expansion methods from the previous chapter. We begin by discussing
the shell model, the Woods-Saxon potential and our model system, 5He. The
Schrödinger equation is then solved in the HO and momentum bases. The
solutions are studied by looking at the energies and wavefunctions while
varying parameters.

3.1 The Nuclear Shell Model

A typical example of an open quantum system is the atomic nucleus en-
countered in nuclear physics. The atomic nucleus is held together by the
short-ranged strong interaction acting between all nucleons and is commonly
studied within a shell model. This is done by introducing a mean-field
potential, often by the following procedure [2]:

Consider the Hamiltonian for a system of A interacting particles,

H =
A∑

i=1

1
2mi

∇2
i +

A∑

j<i=1
v(ri,ki, rj,kj) (3.1)

where v is the nucleon-nucleon interaction. Now add and subtract a potential
field V (r) affecting all particles,

H =
∑

i

[ 1
2mi

∇2
i + V (ri)

]
+
∑

j<i

[v(ri,ki, rj,kj)− V (ri)]

= HMF + Vres

(3.2)

where we have split the Hamiltonian into a spherically symmetric mean-field
Hamiltonian HMF in which particles do not interact directly, and the residual

11



interaction Vres that can be seen as the new interaction between particles. If
the mean-field potential V is chosen carefully, Vres can become small enough
to be treated pertubationally (if at all).

3.1.1 The Woods-Saxon Potential

For the mean-field potential we will use the established Woods-Saxon potential,
visualized in Fig. 3.1, given by

V (r) = −V0f(r)− 4Vsol · s
1
r

df

dr
, (3.3)

where

f(r) =
[
1 + exp

(
r − r0

d

)]−1
. (3.4)

The parameters are the potential depth V0, the spin-orbit coupling strength
Vso, the range r0 and the diffuseness d. There are approximate formulas for
these values, depending on the number of each kind of nucleon. Alternatively,
one can fit the parameters to reproduce experimental energy levels. We will
use both approaches.

Note that the spin-orbit coupling term can give either attractive or repul-
sive contributions, depending on how the angular momenta couples. Recall
that

l · s = 1
2
(
j(j + 1)− l(l + 1)− s(s+ 1)

)
=




l, if j = l + 1

2
−l − 1, if j = l − 1

2
, (3.5)

where we have stated the result in the case of one valence nucleon.

3.1.2 Magic Nuclei

The shell model has had some success in reproducing the general features of
nuclides[2], especially for lighter nuclei (A < 50). It is found that there are
magic numbers of nucleons, where the protons or neutrons form complete
shells with 0 total angular momentum. Of special interest to us are doubly
magic nuclei, where both proton and neutron numbers are magic. These
nuclei can be very tightly bound, and will therefore interact weakly with
nucleons in outer shells. If we add nucleons to a doubly magic nuclei, we can
thus treat it as a rigid core, interacting with valence neutrons through the
mean-field only.

We will consider the special case of core and one valence neutron, two
particles with a spherically symmetric potential. We can then perform the

12
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Figure 3.1: The Woods-Saxon potential with centrifugal barrier l(l + 1)/2µr2

added, for different waves. Parameters V0 = 47 MeV, r0 = 2 fm and d =
0.65 fm

standard procedure of reducing the problem to a one-dimensional equation
by using the relative coordinate r = |rα − rn| and the reduced mass

µ = mαmn

mα +mn

. (3.6)

3.2 The 5He Nucleus

We choose to study 5He, seen as a 4He nucleus and a valence neutron. The
4He nucleus (α particle) is doubly magic, with two s1/2-neutrons and two
s1/2-protons forming full shells, creating a stable core. Other doubly magic
light nuclei, such as 16O and its isotopes, have been studied using methods
similar to ours[3], but we will restrict ourselves to nHeuclei.

Because the s-shell is already filled in 4He, the valence neutron of 5He will
be a p-wave, with l = 1. We see in (3.5) that the p3/2-wave will get a negative
net contribution from the total spin-orbit term, also shown in Fig. 3.1. This
means that the ground state of 5He will be the p3/2 wave, with p1/2 an excited
state. Both the p3/2 and p1/2 waves have known resonances states.

The Woods-Saxon paramaters will initially be set to standard values to
investigate the general behavior of the solutions. The following values are
used [3]:
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Potential depth V0 = 47 MeV
Spin-orbit coupling strength Vso = −7.5 Mev

Range r0 = 2 fm
Diffuseness d = 0.65 fm

We later optimize the parameters to match experimentally determined energy
levels for 5He.

We use the procedures described in Chapter 2 to numerically solve the
5He Schrödinger equation for the p3/2 wave. When examining the solutions,
we are specifically looking for the ground state resonance.

3.2.1 Harmonic Oscillator Basis

We begin by solving the 5He Schrödinger equation in the HO basis. We plot
the solutions in Fig. 3.2 as a function of the range r0 of the HO potential. All
solutions have energies E > 0, meaning that they are unbound, scattering
states, and thus have unlimited range. However, we see a saddle point in energy
for the lowest energy solution when the HO range r0 ≈ 1 fm, corresponding
to radii within the nucleus. The range r0 is a measure of the

1 2 3 4 5 6 7 8
0

1

2

r0/[fm]

E/[MeV]
Unique behaviour
Regular behavior

Figure 3.2: The lowest energy eigenvalues of the 5He problem as a function of
the HO range r0. The lowest energy state behaves differently from the others.

Because the harmonic oscillator consists only of bound states and we are
trying to study unbound states, this method cannot take us much further. We
will have to switch to a basis with wavefunctions of infinite range to properly
describe this system.
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3.2.2 Momentum Basis

The momentum basis describes a plane wave, i.e. a free particle, with wave
functions of infinite range. Because all 5He solutions appear in the continuum,
this basis is better suited to the problem than the HO basis.

Momementum Space Wavefunctions

Solving the Schrödinger equation in the momentum basis gives us momentum
eigenfunctions φ(k), presented in Fig. 3.3. There is a background of wave-
functions peaking at different values of k, and one wavefunction standing out
as lower and wider. Let us first discuss the peak-shaped wavefunctions.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

k/
[
fm−1]

k
2 |Φ

(k
)|2

Resonance
Continuum state

Figure 3.3: 5He momentum probability distributions. The resonance is
significantly wider than the surrounding states. We can see a trend toward
lower and wider states around 1 fm−1, but it is merely a numerical pecularity
stemming from the normalization.

Recall the relation between wavefunctions in position and momentum
representation, (2.21)

R(r) = il
√

2
π

∫ ∞

0
dk k2φ(k)jl(kr). (3.7)

A wavefunction peaking at a single value ki corresponds to a radial wavefunc-
tion

Ri(r) = il
√

2
π
jl(kir) (3.8)
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The spherical bessel functions jl(kir) are eigensolutions to the Schrödinger
equation for free particles with spherical symmetry. We can thus conclude that
the peak-shaped solutions correspond to free particles. This is not unexpected
as we are dealing with an open quantum system that only marginally perturbs
passing particles, explaining why we find unbound solutions corresponding to
each value of k used in the discretized basis.

The unique state peaks at k = 0.17 fm−1 and is wider than the surrounding
states. The Heisenberg uncertainty relation tells us that a less well-defined
momentum corresponds to a more well-defined position. Consequently, this
state should correspond to a localized wavefunction, which is what we expect
from a resonance.

Position Space Wavefunctions

To investigate the relation between the hypothesized resonance solution and
a bound solution, we increase the depth of the potential to V0 = 70 MeV,
and successively decrease the depth until there is no bound state. This is
documented in Fig. 3.4, where the radial probability distributions r2|R(r)2|
are plotted for the widest momentum wavefunction together with an arbitrary
unbound state. With a deep potential, the bound state wavefunction quickly
tends to zero outside the potential well. As we decrease the depth below
a certain threshold, the potential well no longer supports the bound state
(E > 0), but the wavefunction remains localized. This is the region of the 5He
depth (47 MeV) where we should find the resonance. When V0 is decreased
even further, the resonance disappears.
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E = 5.63 MeV

(a) V0 = 70 MeV
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r2 |R
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)|2
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E = 5.75 MeV

(b) V0 = 52 MeV
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r2 |R
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)|2
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E = 5.80 MeV

(c) V0 = 47 MeV

20 40 60 80 100
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r2 |R
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)|2

E = 1.02 MeV
E = 5.89 MeV

(d) V0 = 40 MeV

Figure 3.4: 5He wavefunctions for varying potential depth. Plotted are
the unique localized solution (thick line) and, for comparison, an arbitrary
continuum solution (thin line). With a deep potential V0 = 70 MeV there is a
strongly bound state, which gets weaker as the potential depth is decreased.
At V0 = 52 MeV the wavefunction is highly localized, yet the energy lie in
the continuum, a sign of resonance. There is still a clearly localized state for
V0 = 47 MeV, but at V0 = 40 MeV it is practically indistinguishable from the
other continuum states.
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Chapter 4

The Complex-Momentum Basis

In Chapter 3 we studied the 5He system and found a special state in the
continuum, the resonance. We will in this chapter detail a method of extending
the momentum basis to the complex momentum plane, which gives a more
complete description of resonances. We also state the important the important
Berggren completeness relation. The 5He problem is examined once more
using the complex-momentum basis and we fit the model parameters to
experimental resonance data.

4.1 The Complex Momentum Plane

When solving the Schrödinger equation in the momentum basis, we know that
the solutions form a complete basis, expressed as a completeness relation

∑

bound

|En〉〈En|+
∫ ∞

0
dk k2|Ek〉〈Ek| = 1, (4.1)

where En are discrete bound states and Ek are continuous.
If we relate the energies E to momenta k as

E = h̄2k2

2µ or k =
√

2µE
h̄

, (4.2)

we can plot the solutions as k in the complex plane, see Fig. 4.1. We then
expect bound states, with E < 0, to be represented by discrete k along the
imaginary axis—whereas unbound states with E > 0, are found continuously
along the real axis. Resonance states, with complex E = E0 − iΓ/2, would
by this argument appear somewhere in the fourth quadrant.

It is known that bound and resonant states indeed correspond to poles in
the complex momentum plane at k =

√
2µE/h̄. The details of this is treated
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Figure 4.1: The complex k-plane. The circles represent bound states and the
triangles resonant states. Note the mirroring of the states in the imaginary
axis.

in scattering theory, and is beyond the scope of this thesis. We interpret the
bound and resonant k as complex poles and treat the unbound continuum
as a contour, mirrored in the imaginary axis, encircling the upper half plane
(Fig. 4.1a).

The integral to be evaluated along the contour is the radial momentum
space Schrödinger equation

k2

2µφ(k) +
∫ ∞

0
dk′ k′2V (k, k′)φ(k′) = Eφ(k). (4.3)

The result of a contour integration depends on the poles it encircles by the
residue theorem. The contour in Fig. 4.1a encircles the bound states, but not
the resonance. We suspect a deformation of the contour, such that it goes
below the resonance, might have an effect on the solutions.

4.1.1 The Berggren Completeness Relation

In fact, this is correct, and was proven in 1968 by Berggren [1]. The contour,
dubbed L+, can be deformed to surround the resonance poles, as illustrated in
Fig. 4.1b. The continuum states along L+ combined with the encircled bound
and resonant states form a complete basis, the Berggren basis. This result
can be stated succinctly with the Berggren completeness relation (compare
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with (4.1))
∑

bound
resonant

|En〉〈En|+
∫

L+
dk k2|Ek〉〈Ek| = 1. (4.4)

This is an important result, because of the inclusion of the resonances in the
basis. The Berggren basis is what allows us to find resonances in systems
with more particles.

An observant reader may have noticed that the resonant poles in Section 4.1
are mirrored in the imaginary axis and that the contour has a shadow on
the left half plane. Berggren showed that this symmetry allows us to restrict
ourselves to the contour segment from 0 to ∞. However, doing this leads to a
scalar product without conjugation that must be used

〈φ|φ′〉 =
∫ ∞

0
dk k2φ(k)φ′(k). (4.5)

Naturally, this also affects the norm.

4.2 5He Revisited

With the complex-momentum basis we can continue our study of the 5He
system. We use the same Woods-Saxon parameters as before, but now use
a complex contour. The solutions will be examined in a similar fashion to
Chapter 3.

4.2.1 The Discretized Complex Contour

We deform the previously real contour by a triangle-shaped downward ex-
trusion, as in Fig. 4.2. The tip of the triangle is placed below the expected
position of the resonance pole. To use the contour in computations it has
to be discretized, as before in Section 2.3.1. We use the Gauss-Legendre
quadrature, but now consider each segment of the contour separately: This
requires us to rescale the evaluation points and weights between each pair
of complex endpoints according to Appendix B.1. The discretized contour
is seen in Fig. 4.2. Note the concentration of points near the ends of each
segment, characteristic of the Gauss-Legendre quadrature.

The discretized Schrödinger equation (2.27) is unchanged from before

H ′ij = k2
i

2µδij +√wiwjkikjVij, (4.6)

but now the k and w are complex. However, when normalizing the obtained
eigenvectors, one must make sure to use the new scalar product defined in
(4.5).
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Re k

Im k

Figure 4.2: A schematic picture of the discretized complex contour. The
points are distributed on each segment according to the Gauss-Legendre
quadrature rule.

4.2.2 The 5He Resonances

We expect the position kr of the resonance poles to be fairly close to the
experimental data in Table 4.2, hence we choose a triangular contour that
extends below the expected position. Table 4.1 presents the poles and the
contours used to identify them.

We solve the Schrödinger equation using the contours and represent the
energy solutions by their momenta k =

√
2µE. The result for the p3/2

wave is shown in Fig. 4.3a. We see that most solutions follow the contour,
corresponding to non-resonant continuum states, similarly to the real case.
There is one solution that does not lie on the contour, however. It has
k = (0.173− 0.0357i) fm−1, which is reasonably close to what we expected
for the resonance. If we have indeed found the resonance, we expect it to be
unchanged when the contour is varied. In Fig. 4.3b, a rectangular contour is
used instead of the triangular, yet the pole is completely stable. We also found
that we could vary the downward extrusion of the contour to some extent
without the resonance pole moving. But with sufficiently large imaginary
parts, the matrix element integrals started to diverge. Barring such numerical
errors, we found that any contour that runs below and not too close to the

Table 4.1: Contours used to identify 5He resonances.

Wave Experimental kr Computed kr Contour vertices
p3/2 0.179 - 0.0349i 0.173 - 0.0357i (0, 0)→ (0.17,−0.2)→ (0.34, 0)→ (2.5, 0) fm−1

p1/2 0.327 - 0.164i 0.331 - 0.170i (0, 0)→ (0.35,−0.4)→ (0.7, 0)→ (2.5, 0) fm−1
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pole gives a stable resonance solution.
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(a) Triangle Contour
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(b) Rectangular Contour

Figure 4.3: Momentum solutions for a 5He p3/2 wave for different contours.
The resonance is located at 0.173− 0.0356i for both contours. we have used
V 0 = 47 MeV with kmax = 5 fm−1 with 60 points on both contours.
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Figure 4.4: The position of the resonance pole as a function of V0. The pole
begins at 70 MeV as a bound state on the imaginary axis, gradually becomes
less and less bound, jumps into the fourth quadrant (V0 ≈ 52 MeV), passes
the 5He resonance and continues further down and to the right.

Momentum Space Wavefunctions

As in Chapter 3 we can study the momentum wavefunctions obtained in
the diagonalization. Figure 4.5 shows the momentum distribution of an
arbitrary unbound solution and the resonance. We also show the corresponding
situation when using the real basis, for comparison. Note how the resonance
wavefunction is much more distinguished in the complex basis. The unbound
solution still correspond to one definite (now complex) momentum. On the
other hand, the resonance has a wide distribution, reflecting the localized
nature of the solution (remember Heisenberg—a wide momentum wavefunction
allows a localized position wavefunction). This also allows for automatically
finding the resonance among a large set of solutions by singling out the one
with the widest (or lowest) wavefunction.
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(a) Momentum space wavefunctions with a real contour.
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(b) Momentum space wavefunctions with a complex contour.

Figure 4.5: 5He momentum probability distributions for a real and complex
contour. The resonance is more prominent when solving along the complex
contour but is significantly wider than the surrounding states in both cases.
Both contours comprise 60 points in total, but the points in the complex
contour are concentrated near the origin, stemming from the Gauss-Legendre
distribution on the individual segments.

Varying the Potential Depth

We repeat the procedure from Section 3.2.2, lowering the potential well to
70 MeV and increasing it gradually, but we now plot the position of the
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bound/resonance pole in the complex plane. Figure 4.4 we see how the pole
starts on the imaginary axis at V0 = 70 MeV. It then moves downwards,
becoming less and less strongly bound. At V0 ≈ 52 MeV the pole jumps to
the fourth quadrant, becoming a resonance. As the potential well grows even
less attractive, we see that both the binding energy E0 and the width Γ of
the resonance increases.

4.2.3 Fitting to Experimental Resonance Data

Having studied the solutions and verified that we have found the resonances,
we now proceed to fit our model of 5He to experimental data. The data, taken
from [4], is presented in Table 4.2 along with simulated results. Fitting the
Woods-Saxon parameters after the four experimental data points resulted in
optimal values V0 = 47.05 MeV and Vso = −7.04 MeV.

Table 4.2: Experimental 5He resonance data [4] and computed values with
fitted Woods-Saxon parameters V0 = 47.05 MeV and Vso = −7.04 MeV. All
values are in MeV.

Wave
Experimental data Computed values
E0 Γ E0 Γ

p3/2: 0.798 0.648 0.783 0.695
p1/2: 2.068 5.57 2.111 5.560
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Chapter 5

Many-Body Theory and
Implementation

We have solved the 5He nuclear two-body problem and studied its resonances.
The next step is to add another neutron and subsequently solve the three-
body problem. However, while the two-body problem is reducible to a radial
one-dimensional problem, the general many-body problem is not. Instead, we
need to use a single particle (sp) basis to construct many-body states. This
chapter covers the construction of such states.

First, Section 5.1 discusses the mathematical consequences of identical,
indistinguishable particles, focusing on fermions. This is followed in Section 5.2
by a short introduction to the second quantization formalism, which allows
calculations with an arbitrary number of particles. The line of reasoning
as well as the notation of these sections is adapted from [5], to facilitate
further reading for the interested reader. With the same intention, the style
of [2] is employed in Section 5.3 where the concept of angular momentum
coupling is briefly explained. Finally, in Section 5.4 we discuss the use of
second quantization in computations and present a simple implementation
for fermions.

5.1 Identical Particles

A quirk of quantum mechanics is that particles that look identical are identical.
For example, consider the nucleons in a nucleus. The neutrons and protons
have different charge, and can thus be told apart, but distinguishing between
individual neutrons is impossible. This has to be taken into consideration
when dealing with many-body states of identical particles, as we will see.

We begin with an orthonormal single particle basis |αi〉, where αi represents
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all the quantum numbers that describe the state. Next, consider N identical
particles, expressed in this basis. We form product states

|α1α2 . . . αN) ≡ |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN〉 = |α1〉|α2〉 . . . |αN〉, (5.1)

which, by the orthonormality of the |α〉, are orthonormal as well

(α1α2 . . . αN |α′1α′2 . . . α′N) = δα1α′1
δα2α′2

. . . δαNα
′
N
. (5.2)

Let us assume that the system of identical particles can be described by
some linear combinations of these basis states, denoted

|α1α2 . . . αN〉. (5.3)

Since the particles are identical, and thus indistinguishable, we require the
norm of the state to be unchanged when swapping the quantum numbers of
two particles β and γ

〈α1 . . . β . . .γ . . . αN |α1 . . . β . . . γ . . . αN〉
= 〈α1 . . . γ . . . β . . . αN |α1 . . . γ . . . β . . . αN〉

(5.4)

These states can therefore only differ in phase eiϕ, and since another swap
will bring us back to the original state, the phase has to be either eiϕ = 1 or
eiϕ = −1. Symmetric states with no phase change describe bosons, whereas
antisymmetric states that change sign describe fermions. In this thesis all sp
states will be fermionic, hence we do not treat the bosonic case.

5.1.1 Antisymmetric Fermion states

We have now established that our fermion many-body states are a linear
combination of product states that satisfy

|α1 . . . αi . . . αj . . . αN〉 = −|α1 . . . αj . . . αi . . . αN〉. (5.5)

For example, in the case of two particles, the correctly normalized antisym-
metric state is

|α1α2〉 = 1√
2
(
|α1α2)− |α2α1)

)
. (5.6)

We will henceforth use the angular ket notation |. . .〉 for antisymmetric states,
as opposed to |. . .) for product states.

Let us ponder that two fermions occupy the same state. Exchanging the
two particles and flipping the sign would then result in

|ααα1 . . . αN〉 = −|ααα1 . . . αN〉 (5.7)
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which can only be true if both states are 0. We conclude that two fermions
can never occupy the same state, commonly referred to as the Pauli Principle.

It is important to note that states with permuted quantum numbers, such
as the states |α1α2〉 and |α2α1〉, represent the same physical state, as they
only differ in sign (phase). This means that we have to make sure not to
double count these states. We can do this by requiring that the sp states
always appear in the same order in the ket. If they do not, we permute two
sp states at a time until the correct ordering is reached

|αiα1 . . . αi−1αi+1 . . . αN〉 = −|α1αi . . . αi−1αi+1 . . . αN〉
= . . .

= (−1)i−2|α1 . . . αiαi−1αi+1 . . . αN〉
= (−1)i−1|α1 . . . αi−1αiαi+1 . . . αN〉.

(5.8)

With a well-defined ordering orthonormality of the normalized antisymmetric
states can be stated simply

〈α1α2 . . . αN |α′1α′2 . . . α′N〉 = δα1α′1
δα2α′2

. . . δαNα
′
N
. (5.9)

5.2 Second quantization

So far we’ve looked at a system with a fixed number of particles, but we want
to work with a system hosting an arbitrary number of identical particles. The
second quantization formalism lets us do this by introducing the Fock space, a
direct sum of Hilbert spaces of 0, 1, 2, ... particles. This means that a state in
Fock space, a Fock state, can contain any number of particles and that Fock
states with different number of particles are orthogonal.

A disclaimer is in place here: while we introduce this powerful concept,
we do not make full use of it in this thesis. It should instead be considered as
a stepping stone for readers wishing to expand on the systems and methods
that we do use.

5.2.1 Creation and Annihilation Operators

The simplest Fock state is the vacuum state |0〉, which describes a system
with no particles. All other states can be created from the vacuum state using
the creation operator a†α, which adds a particle with quantum numbers α to
a state

a†α|α1α2...αN〉 = |αα1α2...αN〉. (5.10)
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The resulting state will not necessarily be ordered, and the ordering might
contribute a sign:

a†αi
|α1α2...αi−1αi+1...αN〉 = (−1)i−1|α1α2...αi−1αiαi+1...αN〉. (5.11)

Note that when a†α acts on a state that already contains a particle with
quantum numbers α, the result is 0, because of the Pauli principle

a†α|αα1α2...αN〉 = 0. (5.12)

The adjoint of the creation operator is called the annihilation operator aα.
It can be shown to have the opposite effect, removing a particle, when acting
on a state

aα|αα1α2...αN〉 = |α1α2...αN〉. (5.13)

Here, too, a sign might appear from the ordering

aαi
|α1α2...αi−1αiαi+1...αN〉 = (−1)i−1|α1α2...αi−1αi+1...αN〉. (5.14)

Analogous to a†α, when aα acts on a state that does not contain a particle
with the quantum numbers α, the result is 0

aα|α1α2...αN〉 = 0. (5.15)

5.2.2 General Operators in Fock Space

We can now express the state of an arbitrary number of particles, but to
have any use of the states we also need to express operators such as the
Hamiltonian in the Fock space formalism. A general operator has can in
Fock space be expressed using the creation and annihilation operators. The
Fock space equivalent of an operator is able act on a state with an arbitrary
number of particles. We will only treat one- and two-body operators here, as
they are sufficient for our purposes.

One-Body Operators

A one-body operator H1 which acts on a single sp state, is represented by the
Fock space operator

Ĥ1 =
∑

αβ

〈α|H1|β〉a†αaβ. (5.16)

It is important to note that while the sum runs over the complete set of sp
states twice, only a few terms will be non-zero, because of the operator rules
in (5.12) and (5.15).
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If the sp-states are eigenstates to the one-body operator

H1|α〉 = hα|α〉 (5.17)

the matrix elements only exist on the diagonal, when α = β, and we get

Ĥ1 =
∑

α

〈α|H1|α〉a†αaα. (5.18)

The many-body matrix element becomes

〈a1 . . . aN |Ĥ1|b1 . . . bN〉 =
∑

α

〈α|H1|α〉〈a1 . . . aN |a†αaα|b1 . . . bN〉

=
N∑

i=1
〈ai|H1|ai〉〈α1 . . . αN |α′1 . . . α′N〉

= (h1 + · · ·+ hN)δa1b1 . . . δaN bN
,

(5.19)

the sum of the eigenvalues of the sp states in the bra or ket, but only if the
bra and ket are the same. The Fock space operator Ĥ1 is thus also diagonal.

Two-Body Operators

A two-body operator in Fock space becomes

Ĥ2 = 1
2
∑

αβγδ

(αβ|H2|γδ)a†αa†βaδaγ. (5.20)

Note that the ordering of the γ and δ is different for the product states and
the operators, so-called normal ordering. The factor 1/2 stems from the fact
that

(αβ|H2|γδ) = (βα|H2|δγ), (5.21)

and we are counting both.
We can also express Ĥ2 using matrix elements between antisymmetric

states
〈αβ|H2|γδ〉 = (αβ|H2|γδ)− (αβ|H2|δγ), (5.22)

but we will have to add another factor 1/2 to compensate for double counting

Ĥ2 = 1
4
∑

αβγδ

〈αβ|H2|γδ〉a†αa†βaδaγ. (5.23)

The double counting can be avoided, however, by taking into account the
ordering of the states

Ĥ2 =
∑

α<β
γ<δ

〈αβ|H2|γδ〉a†αa†βaδaγ. (5.24)
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For the special case of two particles we have

〈ab|Ĥ2|cd〉 =
∑

α<β
γ<δ

〈αβ|H2|γδ〉〈ab|a†αa†βaδaγ|cd〉

=
∑

α<β
γ<δ

〈αβ|H2|γδ〉δαaδβbδγcδδd

= 〈ab|H2|cd〉,

(5.25)

as expected.

5.3 Angular Momentum Coupling

We have now developed the theory we need to solve actual many-body
problems. Before applying these methods, however, we will discuss the concept
of angular momentum coupling. This corresponds to making a change of basis,
using the rotational symmetry of problems to make the Hamiltonian matrix
block diagonal and significantly reducing its size. In principle, coupling is not
neccesary to solve many-body problems, but its an invaluable tool. We will
limit the discussion to coupling of two particles, as we never work with more
particles here. A more complete description is found in [2].

5.3.1 The Two-Particle Coupled Basis

In previous Chapters we have studied single-particle states on the form |Ejm〉,
where we let the quantum number E represent all quantum numbers needed
to uniquely specify a state. From these we would form product states

|E1j1m1, E2j2m2) = |E1j1m1〉 ⊗ |E2j2m2〉 (5.26)

that are eigenstates to the operators J1 = J ⊗ 1 and J2 = 1⊗ J .
One often studies systems where the total angular momentum J = J1 +

J2 is conserved, but the individual angular momenta J1 and J2 are not.
Conservation of J is equivalent to the entire system being symmetric under
rotation, while J1 and J2 will only be conserved if one of the particles can
be rotated independently of the other, without affecting the solutions. This
is rarely the case when studying directly interacting particles. It is then
convenient to switch to a basis where the total angular momentum is well
defined, but the individual momenta are not.

We introduce the coupled basis with states |E1j1, E2j2; JM) meant to be
read as: the first particle is described by the quantum numbers E1j1, the
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second by E2j2, and they together have a total angular momentum JM (the
M is sometimes left out). The coupled states are related to the uncoupled by

|E1j1, E2j2; JM) =
∑

m1,m2

cm1m2|E1j1m1, E2j2m2). (5.27)

where cm1m2 are the Clebsch-Gordan coefficients (which also depend on j1, j2, J
and M , though this is suppressed for brevity). There are known expressions
for these, and values can be found in standard tables or calculated in a fairly
straight-forward way. A more in-depth treatment of the coefficients can be
found in [2].

Working with matrix elements between coupled basis states is called
working in the coupled scheme or J-scheme. If we study a system with
rotational symmetry, the Hamiltonian will be block diagonal in J and M ,
meaning that working in the coupled scheme will be much more efficient.

5.3.2 Antisymmetrizing the Coupled Basis

Since we are studying fermions, we need to use basis states that are anti-
symmetric with respect to exchange of all quantum numbers. Using the m
symmetry property of the Clebsch-Gordan coefficients,

cm2m1 = (−1)j1+j2−Jcm1m2 (5.28)

we can see that

|E2j2, E1j1; JM) =
∑

m1,m2

cm1m2|E2j2m1, E1j1m2)

= (−1)j1+j2−J
∑

m1,m2

cm1m2 |E2j2m2, E1j1m1)
(5.29)

Hence it is possible to form the antisymmetric basis vector

|E1j1E2j2; JM〉 = 1√
2
(
|E1j1E2j2; JM)− (−1)j1+j2−J |E2j2E1j1; JM)

)

=
∑

m1,m2

cm1m2|E1j1m1, E2j2m2〉.

(5.30)
Consider the case where both particles occupy the same orbital, E1j1 =

E2j2 = Ej. Since, for fermions, j is a half-integer we have (−1)j1+j2−J =
−(−1)J and the result is

∣∣∣(Ej)2; JM
〉

= 1 + (−1)J√
2

∣∣∣(Ej)2; JM
)
. (5.31)
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We see that this state is equal to zero for J odd. However, for J even, we
find that the norm

〈(Ej)2; JM |(Ej)2; JM〉 = 2 (5.32)

meaning that we have to normalize these states with an additional factor 1/
√

2.
We can write this result succinctly as

|ab; JM〉 = Nab
∑

m1,m2

cm1m2|E1j1m1, E2j2m2〉 (5.33)

Nab =

√
1 + (−1)Jδab

1 + δab
(5.34)

where we have used the notation (a, b) for (E1j1, E2j2).

5.3.3 Coupled Matrix Elements

When solving problems in practice we need to form matrix elements in the
coupled basis. Using the notation |E1E2〉 = |E1j1E2j2; JM〉 for short, we
would have

〈E1E2|Ĥ|E ′1E ′2〉 = NE1E2NE′1E′2
∑

m1,m2

∑

m′1,m
′
2

cm1m2cm′1m′2〈E1m1E2m2|Ĥ|E ′1m′1E ′2m′2〉

(5.35)
meaning that the matrix elements in the new basis are given by linear
combinations of the elements in uncoupled basis. We only need to evaluate
the elements 〈E1m1E2m2|Ĥ|E ′1m′1E ′2m′2〉, and be done. Since we do not
know what the two-body interaction may look like, we cannot do a general
treatment of that contribution. Instead we focus on the one-body term, which
was treated in (5.19). There is a subtle detail, however, that needs to be
addressed.

Even if both single-particle states are the same in the coupled basis
E1 = E2 = E, we will still sum over all m1, m2 in the ket |Em1Em2〉,
meaning that we will not order our states in that calculation. Instead (5.19)
will read

〈E1m1E2m2|Ĥ1|E ′1m′1E ′2m′2〉 = (E1 + E2)δE1E′1
δE2E′2

(
δm1m′1

δm2m′2
− δE1E2δm1m′2

δm2m′1

)
.

(5.36)
Inserted into (5.35), this results in

〈E1E2|Ĥ1|E ′1E ′2〉 = NE1E2NE′1E′2(E1 + E2)(1 + δE1E2(−1)J)δE1E′1
δE2E′2

= 1 + (−1)JδE1E2

1 + δE1E2

δE1E′1
δE2E′2

(E1 + E2),

(5.37)
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where the identity
∑
m1,m2 |cm1m2|2 = 1 was used. Remember that E1 is short

for all quantum numbers specifying that single-particle state.

5.4 Second Quantization Implementation

To use the Fock space formalism in numerical calculations we have to represent
the quantum states using available data structures. We construct sp states and
use them to form antisymmetric Fock states. The creation and annihilation
operators become functions that take the Fock states as arguments, and are
used to create the Fock operators. Furthermore, the sum in the expression of
the Fock operators can be optimized by only evaluating the non-zero terms.

5.4.1 Single-Particle-State Objects

We represent a single particle state with a record, i.e. an object with named
fields that can be assigned values. It is natural to let each quantum number,
such as l and j be a field. Moreover, we can include other information
about the state, information that is taken for granted in the mathematical
formulation. This includes a unique index for each state, the eigenvector
holding information about the wavefunction, the basis of the eigenvector
and, in the case of the plane wave basis, the contour used. Much of this
extra information is redundant, as many states share the same information.
Nevertheless, we found that this representation significantly simplifies the
structure of the program and makes it easier to understand.

5.4.2 Fock State Objects and Operator Functions

An antisymmetric many-body state |α1 . . .〉 is represented by an ordered list
of single particle objects and a sign. Since the sp state objects have a unique
index, there is a well-defined sorting order. The sign can be 1, −1 or 0,
representing |α1 . . .〉, −|α1 . . .〉 and 0, respectively.

The creation and annihilation operators are implemented as functions
on the Fock state objects, obeying (5.10) to (5.15). The creation operator
function steps through the list, flipping the sign at each step, until the correct
place for the new particle is found. If the particle is already part of the Fock
state, the sign is set to 0. The annihilation operator searches for a state, saves
its index k in the list, annihilates it and set the sign to (−1)k. If the state
not exists, the sign is set to 0.
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5.4.3 Fock Operator Matrix Elements

When computing matrix elements of a Fock space operator, most terms in
the sum vanish. This is because most states will become zero when acted
on by the creation and annihilation operators (equations (5.12) and (5.15)).
Evaluating a sum of mostly zero elements is not very efficient, but this can
be avoided by letting the sum run over just the single-particle states present
in the bras and kets.
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Chapter 6

The Nuclear Three-Body
Problem

Equipped with the many-body theory of Chapter 5 we are now ready to study
an open three-body system. The natural way to proceed is to add another
neutron to our two-body 5He system and form 6He, seen as an alpha particle
core with two valence neutrons (α+n+n). We now have to take into account
the attractive two-body interaction between the neutrons, which allows for
bound states in 6He where there were none in 5He. Nuclei with this property
are called Borromean, after the Borromean rings (Fig. 6.1). The Borromean
rings are three rings interlocked in such a way that, if any one ring is removed,
the other two will fall apart, as is the case with the core and the neutrons.

Figure 6.1: The Borromean rings
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6.1 The 6He Nucleus

We treat the 6He system as a combination of two identical 5He systems of
core and neutron, i.e. two “one-particle” systems with the same reduced mass
µ as in Chapter 3. The validity of this approach is not immediately obvious,
but if the two neutrons have like parity there will be no recoil of the core [6].
The parity depends solely on l and we only consider neutrons in the p orbitals
(l = 1), so the approach is valid.

The Hamiltonian takes on the form

Ĥ = Ĥ1 + V̂res (6.1)

where Ĥ1 is the Hamiltonian of the two-body problem and V̂res is the residual
neutron-neutron interaction. To compute the Hamiltonian matrix we will use
the eigensolutions |Ei〉 from the 5He problem as single-particle basis states.
We can do this because of the Berggren completeness relation (4.4), proving
the completeness of this basis. Using the Berggren basis in this way to build
more complex nuclei is referred to as the Gamow Shell Model.

The neutrons are fermions, so we form antisymmetric two-particle Fock
states |Ei, Ej〉, according to the theory in Chapter 5. Because our basis

consists of the eigenstates of Ĥ1, we can use (5.19) and (5.25) to write the
matrix elements as

〈ab|Ĥ|cd〉 = δacδbd(Ea + Eb) + 〈ab|Vres|cd〉, (6.2)

where Eα are the energy eigenvalues of the two-body problem. Finally,
the states are coupled according to Section 5.3 to reduce the size of the
Hamiltonian matrix. The coupled matrix elements are

〈ab; J |H|cd; J〉 = 1 + (−1)Jδab
1 + δab

δacδbd(Ea + Eb) + 〈ab; J |Vres|cd; J〉. (6.3)

6.2 Neutron-Neutron Interaction

The interaction between nucleons is complex and there is no known analytical
expression for the potential. It arises from the strong force between the quarks
that make up the nucleons. The strong force is well known at high energies
but less so at nuclear energy levels. The study of this interaction at the
nuclear level is therefore an active field of research [7].

A convenient approximation is a separable interaction,

V (r1, r2) = v(r1)v(r2), (6.4)
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Figure 6.2: The Gaussian interaction potential as seen by one of the neutrons.
The position of the other neutron determines the depth of the potential well.

a product of functions of r1 and r2, the radii of each neutron. The interaction
can be trivially separable as above or might require a multipole expansion,
covered in [2]. We study two different types of separable two-body interactions,
a gaussian interaction and a surface delta interaction.

6.2.1 Gaussian Interaction

Initially we investigate a trivially separable gaussian interaction

V (r1, r2) = −VGI exp
(
− r

2
1
R2

)
exp

(
− r

2
2
R2

)
. (6.5)

The range R and strength VGI are fitting parameters.
In Fig. 6.2 we see that the potential in a rough sense satisfies the expected

properties of the interaction. If at least one neutron is far from the core, the
other will experience little attraction. If both neutrons are in the vicinity of
the core, they will experience a stronger attraction.

Because the potential is separable

V (r1, r2) = −VGIVsep(r1)Vsep(r2), Vsep(r) = e−
r2
R2 (6.6)

we can write the two-body matrix elements as

(ab|V |cd) = −VGI〈a|Vsep|c〉〈b|Vsep|d〉 (6.7)

which in the coupled scheme becomes

〈ab; J |V |cd; J〉 =
− VGINabNcd

(
〈a|Vsep|c〉〈b|Vsep|d〉 − (−1)j1+j2+J〈a|Vsep|d〉〈b|Vsep|c〉

)
.

(6.8)
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The 〈a|Vsep(r)|c〉 are calculated by expanding Vsep in the same basis as the sp
states. In the momentum basis this is

〈a|Vsep|c〉 =
∑

i

√
wikiφ

′
a(ki)

∑

j

√
wjkjφ

′
b(kj)Vsep(ki, kj), (6.9)

with

Vsep(ki, kj) = 2
π

∫ ∞

0
dr r2V (r)jl(kir)jl(kjr), (6.10)

as in Chapter 2

6.2.2 Surface Delta Interaction

Another possible interaction is the surface delta interaction (SDI)

V (r1, r2) = −VSDIδ(r1 − r2)δ(r2 − r0) (6.11)

where VSDI is the strength and r0 is the range, chosen to have the same value
as the range of the Woods-Saxon potential.

The short-range strong force is thus approximated as a point interaction.
The physical motivation of the δ(r − r0) term is the experimental fact that
the scattering cross-section between neutrons is inversely proportional to their
kinetic energy. Since the kinetic energy has a minimum near the surface of the
nucleus (at the range r0 of the Woods-Saxon potential), we can approximate
the interaction as focused entirely in that shell.

The SDI can be expanded into separable multipole radial components

vl(r) = δ(r − r0)
r

, (6.12)

and with a complicated calculation (see [2]) one reaches the following expres-
sion for the coupled scheme matrix elements

〈ab; J |V |cd; J〉 =−KabcdNab(J)Ncd(J)(−1)la+lc+jb+jd

×
[
1 + (−1)la+lb+lc+ld

][
1 + (−1)lc+ld+J

]

× ĵaĵbĵcĵd
(
ja jb J
1
2 −1

2 0

)(
jc jd J
1
2 −1

2 0

)

Nαβ =

√
1 + (−1)Jδαβ

1 + δαβ

Kabcd =− V0r
2
0

16π ψa(r0)ψb(r0)ψc(r0)ψd(r0)

ĵα =
√

2jα + 1

(6.13)
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ψα(r) being the radial wavefunction and the

(
j1 j2 j3
m1 m2 m3

)
are the Wigner

3j symbols.

6.3 The 6He Solutions

We solve the 6He Schrödinger equation in the coupled scheme, using (6.3)
for the matrix elements. We first consider the Gaussian interaction, followed
by the SDI. The parameters of our interactions are fitted to the known 0+

ground state of 6He. Using the fitted paramaters, we then make a prediction
for the excited 2+ state—a resonance. To find the resonance, we have to
include the resonance of 5He in the sp basis.

6.3.1 Identifying the Resonance

The solutions |ψ〉 will be written on the form

|ψ〉 =
∑

E1E2

Ψ(E1, E2)|E1E2; J〉 (6.14)

where the coefficients Ψ(E1, E2) can be considered the wavefunction. These
are not easily visualized because of the two variables, but they still can be
used to obtain information about the solutions. Consider the component

Ψ(Er, Er) = 〈E2
r ; J |ψ〉, (6.15)

being the overlap between a solution and the two-particle state corresponding
to two independent 5He resonances (here Er denotes the energy of the 5He p3/2
resonance). It is found that the 2+ resonance in 6He predominantly consists
of this component, allowing for an effective way to single out the relevant
solution from a large set of scattering states.

6.3.2 Using the Gaussian Interaction

We begin by setting the range R of the gaussian potential to the same value
as the Woods-Saxon range, 2 fm. The strength VGI is fitted to reproduce the
6He ground state. Because the Gaussian interaction is degenerate in J there
is no distinction between the ground and excited states.

Decreasing the range to R = 1 fm, we find a wide resonace (Γ > 6 MeV),
but this requires large values of k to be included in the basis and thus more
scattering states. Although it might be possible to vary R and V0 to get a
resonance closer to experimental data, we do not pursue this method further.
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6.3.3 Using the Surface Delta Interaction

The SDI has only one parameter, the strength VSDI. However, because of
its unphysical nature, it will also always depend on the truncation of the
scattering states. We choose the smallest possible kmax for which the 5He
solutions converge, kmax = 2.5 fm−1. The strength is then fitted to the ground
state of 6He as before. The result is presented in Table 6.1.

Figure 6.3 shows all solutions k =
√

2µE/h̄ obtained, plotted in the
complex momentum plane. Most of the solutions correspond to energies on
the form

E = E1 + E2 or k =
√
k2

1 + k2
2 (6.16)

where E1, E2, k1 and k2 are the energies of two 5He eigenstates or their
corresponding momenta. These solutions can be interpreted as two unbound
particles, barely interacting with each other. This also explains the pattern
that is seen—the momenta are all combinations of contour points that was
used in the solution of 5He to generate the basis.

1 1.5 2 2.5 3

−0.4

−0.3

−0.2

−0.1

Re k/
[
fm−1]Im k/

[
fm−1]

Resonance
Continuum states

Figure 6.3: Momentum solutions for 6He, 2+. The resonance is located at
k = (0.241− 0.037i) fm−1. We have used the fitted Woods-Saxon parameters
V0 = 47.05 MeV, Vso = −7.04 MeV and kmax = 2.5 fm−1. The SDI interaction
was used with V0 = 998 MeV.

6.3.4 6He in the Real Momentum Basis

While it is required for the 5He resonance to be included in the basis to find
the excited 2+ state, the ground state can be found without it. For a purely
real contour, with all other parameters staying the same, a bound state with
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Table 6.1: Experimental 6He resonance data[4] and computed values with
fitted Woods-Saxon parameters V0 = 47.05 and Vso = −7.04. For the SDI,
we used interaction strength V0 = 998 MeV and range r0 = 2. The Gaussian
interaction used parameters V0 = 99 MeV and r0 = 2. 24 points were used on
the contour for each basis. All values are in MeV.

Jπ Experiment SDI Gaussian
0+ -0.975 -0.98 -0.97
2+ 0.8-0.55i 1.47-0.47i -0.97

energy −0.976 MeV is found – almost identical to the result obtained with
the Berggren basis.
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Chapter 7

Outlook

We have studied resonances in Helium isotopes and given heuristic justifica-
tions for the methods used. The 5He nucleus was modeled satisfactorily, and
we could reproduce the experimental width and position of its resonances.

The Berggren basis obtained from the 5He solutions was used to model the
6He nucleus. The interactions used were simple first approximations, but while
we were unable to reproduce the 6He resonance with the gaussian interaction,
the surface delta interaction gave us meaningful results. Consequently, an
obvious way of improving upon our results is to use a more realistic potential.
We have limited ourselves to a study of the energy spectrum, but one could also
explore the 6He system in more detail, e.g. looking at its density distribution
[8].

Other areas to further explore, covered in more detail below, are: increasing
the number of valence particles to study even more exotic systems, reducing
the computational complexity through various techniques, combining the
complex basis with other bases, better suited for describing bound states.

7.1 Realistic Two-Body Interactions

The phenomenological two-body interactions used in this thesis were chosen
because of their simplicity, and there is much room for improvement. One
approach is to make more educated guesses as to the form of the interaction,
fitting parameters to experimental data for one system and trying to make
predictions for other. Alternatively, one could begin from first principles
by using knowledge of Quantum ChromoDynamics (QCD) and the strong
interaction between the constituent quarks, the ab initio approach.
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7.2 Additional Nucleons and Other Elements

We have studied the nuclei 5He and 6He in a few-body picture as a two- and
three-body problem consisting of a core and one or two valence particles
respectively. A natural extension is to stay in the same picture, adding more
neutrons to study the more exotic 7He and 8He. With more particles has to
consider the angular momentum coupling of three or four particles. Other
than that the techniques we employ are general.

Another possibility is to study other elements than helium, still in the
core with valence neutron model. 16O and 24O are good candidates, since
they too are doubly magic nuclei. Other light elements like Li or Be are of
interest as well, as they like He, display several interesting properties of open
quantum systems. One has to take into consideration that they do not have
a well-defined core though. This could make them suitable subjects for the
methods described here.

When expanding 6He, our basis consists of only p1/2 and p3/2 waves. This
is a good approximation for 6He [3], but for other systems, more partial waves
may be needed. This poses additional challenges, since one needs to introduce
a transitionally invariant coordinate systems when treating particles of mixed
parity.

7.3 Reducing Computation Time

With an increased number of particles, the size of the Hamiltonian matrix
grows exponentially. This leads to more matrix element calculations, memory
usage requirements and slower diagonalization.

One way to reduce the matrix size is to select only the most important basis
states in computations. This is possible because certain many-body configura-
tions barely give any contribution to the energy of the (quasi-)bound solutions.
An example of a method doing this is the Density Matrix Renormalization
Group (DMRG) [9].

Another, less systematic, approach is the Monte Carlo method of randomly
sampling states to include and taking the mean. We made a minor study of a
potential Monte-Carlo approach, but cannot present any conclusive results.
We want to encourage further research on this topic, though, as the method,
while simple, could prove a useful tool.

While a larger system requires more matrix elements, many of the elements
are zero. As the size of the matrix grows, it is eventually no longer efficient to
store them as an array. Instead, a sparse-matrix representation is employed,
which only stores information about the non-zero elements.
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Furthermore, while working with sparse matrices one has to adapt the
diagonalization (eigensolver) algorithms. The Lanczos algorithm is the most
commonly used method for large, sparse matrices. It generally extracts the
largest or smallest eigenvalues, but resonances can exist in the middle of the
spectrum, so some adaptations might be required. It is also important to note
that our complex-momentum approach gives us a non-hermitian symmetric
matrix while most eigensolvers expect matrices to be hermitian. A possible
development is then to research eigensolver for non-hermitian (but symmetric)
matrices.
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Appendix A

Derivations

A.1 Harmonic Oscillator Matrix Elements

First, we express the Hamiltonian H of our problem in terms of HHO (2.12)
to get

H = HHO −
µω2r2

2 + V (r). (A.1)

We then close this equation with 〈nlm| on the left and |n′lm〉 on the right to
get three terms on the RHS, which we consider in turn. The first is just the
eigenvalues of HHO

〈nlm|HHO|n′lm〉 = Enl〈nlm|n′lm〉 = h̄ω
(

2n+ l + 3
2

)
δnn′ . (A.2)

The second follows from the known identity [10]

〈nlm|r2|n′lm〉 =

h̄

µω



(

2n+ l + 3
2

)
δnn′ −

√

n(n+ l + 1
2)δn,n′−1 −

√

n′(n′ + l + 1
2)δn′,n−1


.

(A.3)
The third term is calculated in the position basis, with

〈r|nlm〉 = Rnl(r)Y m
l (θ, φ), (A.4)

where Rnl is the HO radial wavefunctions (see (2.16)) and Y m
l are the spherical

harmonics. Because V (r) is spherically symmetric, the spherical harmonics
integrate to 1 and we get

〈nlm|V (r)|n′lm〉 =
∫ ∞

0
dr r2Rnl(r)V (r)Rn′l(r). (A.5)
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Putting it all together, we have

〈nlm|H|n′lm〉 = 〈nlm|HHO −
µω2r2

2 + V (r)|n′lm〉

= h̄ω

2



(

2n+ l + 3
2

)
δnn′ +

√

n(n+ l + 1
2)δn,n′−1

+
√

n′(n′ + l + 1
2)δn′,n−1


+

∫ ∞

0
dr r2Rnl(r)V (r)Rn′l(r).

(A.6)

A.2 Radial Momentum Space TISE

To find the momentum space Schrödinger equation, we need to write an
explicit expression for

∫
d3k′〈k|H|k′〉Φ(k′) = EΦ(k) (A.7)

To begin with, using the completeness relation with the position basis, we
note that

Φ(k) = 〈k|ψ〉 =
∫

d3r〈k|r〉ψ(r) (A.8)

Standard textbooks on quantum mechanics show

〈k|r〉 = 1
(2π) 3

2
eik·r. (A.9)

For a spherically symmetric problem, solutions can be found on the form
ψ(r) = R(r)Y m

l (Ωr). We can simplify the above integral by using the plane
wave expansion [11]

eik·r = 4π
∞∑

l=0

l∑

m=−l
iljl(kr)Y m

l (Ωk)Y m
l (Ωr)∗ (A.10)

where you can choose either factor to conjugate.
Inserting this and using orthogonality of spherical harmonics

∫
dΩrY

m′∗

l′ (Ωr)Y m
l (Ωr) = δmm′δll′ (A.11)

you obtain

Φ(k) = φ(k)Y m
l (Ωk) =

√
2
π
ilY m

l (Ωk)
∫

dr r2R(r)jl(kr). (A.12)
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In a similar manner, we evaluate

〈k|V (r)|k′〉 = 1
(2π)3

∫
d3rV (r)eik′·re−ik·r

= 1
(2π)3 (4π)2∑

l,l′

∑

m,m′
(−1)li(l+l′)Y m′∗

l′ (Ωk′)Y m
l (Ωk)

×
∫

dr r2V (r)jl(kr)jl′(k′r)
∫

dΩr Y
m′

l′ (Ωr)Y m∗

l (Ωr)

(A.13)

Here, a factor (−1)l was introduced because of the parity of the spherical
harmonics: Y m

l (−Ωk) = (−1)lY m
l (Ωk).

Inserting all of this into the Schrödinger equation and again simplifying
by using the orthogonality of the spherical harmonics twice, you immediatly
obtain the sought after equation

∫
d3k′〈k|H|k′〉Φ(k′) = k2

2µφ(k)Y m
l (Ωk) +

∫

R3
d3k′ 〈k|V (r)|k′〉φ(k′)Y m

l (Ωk′)

= k2

2µφ(k)Y m
l (Ωk) + Y m

l (Ωk)
∫ ∞

0
dk′ k′2φ(k′)V (k, k′)

= Eφ(k)Y m
l (Ωk)

(A.14)
where

V (k, k′) = 2
π

∫
dr r2V (r)jl(kr)jl(k′r). (A.15)
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Appendix B

Numerical Integration

B.1 Gauss-Legendre Quadrature

One notices that conventional integrals are computationally taxing. A con-
ventional integral approximation is to evaluate the function in evenly spaced
points with a weighted by the step length. This, however requires many points
to converge and quickly becomes unwieldly in computations.

That is why one should use the Gauss-Legendre quadrature; through a
clever choice of points and weights the integral will converge with fewer points.
The theory behind this approximation is involved [12] and is not covered here.

The idea is to pick points xi on the [−1, 1] interval that are roots of the
Legendre polynomial of a certain degree n and approximate the integral with

∫ 1

−1
f(x) dx ≈

n∑

i=1
wif(xi). (B.1)

with the weights given by [13]

wi = 2
(1− x2

i )[P ′n(xi)]2
(B.2)

where Pn is the Legendre polynomial of degree n. This can be rescaled for
any defnite integral

∫ b

a
f(x) dx ≈ b− a

2

n∑

i=1
wif

(
b− a

2 xi + a+ b

2

)
. (B.3)

It can be shown that this quadrature gives the correct value for all
polynomials of degree up to 2n− 1. The only requirement for convergence
is that the integrand can be approximated by a polynomial on the interval.
In some cases, as with singular functions, that is not possible, but for the
functions encountered in this work it is a safe approximation.
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Appendix C

Tools

All the computations were implemented in the Python programming language
using the libraries NumPy and SciPy. We used the TikZ and pgfplots libraries
to make the figures. The code was managed using Git and is available at

https://github.com/pnutus/NHQM
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