
 

 

 

Andreas Ask 

Jonas Helsen 

Emil Molander 

Theresa Nilsson 

Susanne Petterson 

Peter Svensson 

 

 
Degree project for Bachelor of Science in 

Physics 
15 hec 

 
Department of Physics 

University of Gothenburg 

Supersymmetric Quantum 
Mechanics with Applications 

in Mathematics  
 

Subtitle if needed 
on one to three lines 



Abstract

This report presents the work done during a bachelor thesis project in supersymmetry quan-
tum mechanics with applications in mathematics. The project has, from calculation and
literature study, resulted in a text whose aim is to introduce the concept of supersymmetry
in a simple and pedagogical manner to third year physics students. Thus the text assumes
that the reader is familiar with concepts such as quantum mechanics, analytical mechanics,
linear algebra and has some knowledge of tensor calculus. Due to the target group, the
pedagogical aspect of the text is important, and compared to similar texts that treat this
subject a lot of e�ort has been done to show detailed calculations. The text is presented
in the main part of this report and consists of 6 chapters. Chapter 1 is an introduction to
supersymmetry and an overview of content of the following chapters. Chapter 2 and 3 cover
the theory of supersymmetry in �at space and in chapter 4 and 5 curvature is applied to the
theory. The last chapter is a concluding part where the mathematical results are discussed
and some ideas of further theories are brie�y touched upon.



What is it indeed that gives us the feeling of elegance in a solution, in a

demonstration? It is the harmony of the diverse parts, their symmetry, their

happy balance; in a word it is all that introduces order, all that gives unity,

that permits us to see clearly and to comprehend at once both the ensemble

and the details.

Henri Poincaré
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About the Project

Background

After hearing the grandiose name supersymmetry thrown around in the world of physics, as a
student of physics one naturally gets curious. Thus in this report we �nally get to investigate
the theory behind the alluring name! The building blocks of Nature, the elementary particles,
come in to distinct types: the fermions, which are the matter particles, and the bosons,
which carry forces between the matter particles. For instance, the electron is a fermion and
it interacts with other fermions via exchanges of photons, which carry the electromagnetic
force. The idea of supersymmetry is to unify these two classes of particles, by postulating that
they should all come in boson-fermion pairs with the same mass and charge. The ongoing
experiments at the LHC at CERN in Geneva are searching for evidence of supersymmetry
in Nature, but so far the predicted superpartners have not yet been found.

Nevertheless supersymmetry has proven to be a useful tool in many �elds of study e.g. the
most important to us, the connection to a topological invariant (the Euler characteristic) of
the manifold one is working in. So in this report we will not focus on the possible phenomeno-
logical applications of supersymmetry, but rather study a certain supersymmetric version of
quantum mechanics, which turns out to have fascinating applications in mathematics. So
however we want to continue our studies in physics supersymmetric quantum mechanics will
be a good tool in our physical toolboxes.

Aim

The aim of our report was to transform the complicated texts on supersymmetric quantum
mechanics and bring them to a level suited for a physics student in his or her third year,
like ourselves. The speci�c parts within supersymmetry we wished to elucidate were the
methods which pave the way from supersymmetric quantum mechanics to solving di�erential
equations, via de Rham cohomology and the Atiyah-Singer index theorem. As a third year
student, we expect the reader to have some basic knowledge in linear algebra, analytical
mechanics and quantum mechanics. In more detail, what we wish to explain in a pedagogical
manner is:

1. Why the Witten index of a supersymmetric quantum mechanics is equal to the Euler
characteristic of the cohomology of the Q-operator (supercharge).

2. Why the Witten index of a supersymmetric sigma model on a curved Riemannian
manifold M computes the Euler characteristic of M . This is a stronger statement than
the one given in 1.

3. (A bonus if we have time to spare). Show that our results can be used in solving
di�erential equations, through a physical proof of the Atiyah-Singer index theorem.

An e�ective way of knowing if we have succeeded in our aim, namely to explain the theory
in a pedagogical manner, would be to test it on a third year physics student. If there are no
volunteers during spring, we will get our doom in the beginning of June from our opponents.

Problem Formulation

The aim was to explain aspects of supersymmetric quantum mechanics. This brought us to
the task of explicitly calculating and exposing all the steps commonly skipped in texts on
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supersymmetry and present them in a pedagogical manner. In the course of this, and to
be able to actually calculate the steps, we had to reach deeper into classical and quantum
mechanics, where we e.g needed to learn the path integral formalism. We had to compute
partition functions for di�erent models and learn mathematics as ζ-function regularisation
and Poisson resummation. We also had to study the concepts behind the words in the goals
above, such as indices, manifolds, cohomology, Euler characteristic etc.

It was also necessary to keep our target audience in mind and �gure out how to best
present and explain the material we produced.

Method

Our bachelor project is a theoretical and mathematical investigation into supersymmetry
together with a presentation. Our main sources have been:

• Mirror Symmetry; Vafa, Hori et al (Only ch 10 will be covered) [1].

• Gravitation, Gauge Theories and Di�erential Geometry; T. Eguchi, P.B. Gilkey, A.J.
Hanson (mainly ch 2-3) [6].

• Topology and Geometry for Physicists; C. Nash, S. Sen [8].

• Supersymmetric harmonic oscillator; Per Salomonson [4].

The learning process has included lectures with the supervisors on relevant topics for the
project. We have had weekly meetings with them, where we discussed and presented what
we have learnt from literature and our own calculations. These calculations form a vital
part of the project, as you can not really understand a subject until you have checked it for
yourself. We have also written typed texts about the subjects we cover, where we express
the theory in our own words. These texts have been made available to all of us via a Dropbox
account that we share. Partially they have been included in the �nal report. It has been
important for us to reach speci�c goals 1 and 2 together, meaning that everyone has more or
less worked through all of the parts of the �nal report.

Limitations

This project is limited to supersymmetric quantum mechanics and we will not encounter
quantum �eld theory in higher dimensions. Our research has been focused on supersymmetric
quantum mechanics in �at space and to some extent supersymmetric quantum mechanics with
non-trivial curvature.

Results

Our studies of the supersymmetric QM and its applications in mathematics have resulted in
a report, that hopefully is suited as an introduction to the �eld for physics students.

We start our report by establishing some results in analytical mechanics and how they
carry through to quantum mechanics. We also introduce the path integral technique, presum-
ably not known to the reader. We carry on by applying these techniques to a supersymmetric
system in �at one-dimensional space and �nd the Witten index. To proceed with more com-
plicated manifolds we have a chapter dedicated to introducing the necessary mathematical
techniques. After this we can �nd the Witten index of the supersymmetric theory, and its
connection to the Euler characteristic through the de Rham cohomology in a more interesting
manifold. We also have a number of appendices which concern some speci�c calculations and
proofs, omitted in the report to not disrupt the �ow.

So far our work has not been read by a fellow student, but our aim to understand and
calculate missing steps of the literature on supersymmetry (especially Mirror Symmetry;
Vafa, Hori et al) for our part has been successful, since we were able to �nish the paper
intended as our goal. So our paper re�ects what we all have learned during the build up of
the report, since we were almost ignorant of the subject before starting. Our decision not to
split the work and let separate parts of the group handle di�erent areas of the theory, has
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resulted in a good understanding of more or less the entire report, by each and every one of
the group. In addition to theory we have all learned mathematical techniques which will be
useful in our future study of physics.

Discussion and Conclusion

The character of this bachelor project, has been like a mix of doing research and taking a
course. Even though we have not done any actual research ourselves, the working methods
have shown many similarities to the methods used by a practising researcher. Unlike a regular
course, where the literature often slowly introduces the subject to the reader, starting o� with
the most fundamental, basic knowledge, and gradually introducing new concepts, the texts
studied in this project has often left much unanswered. Big leaps from one equation to
another have been common, and the literature have often assumed a better prior knowledge
of the subject that we might have had. As a consequence, a lot of time has been spent on
�lling out these missing steps in the literature, and include them in our own report. We
would also like to mention, that our main focus during this project has been the learning
process itself. One could argue that we should have spent more time actually writing on the
report, instead of doing calculations, but we feel that the subject was so comprehensive that
the time we spent on studying was necessary for the quality of the report.

Before we started this project, we discussed di�erent approaches to it. Our report would
probably have contained more material, if we had chosen to divide the subject amongst each
other, letting everybody focus on their own part separately. However, we were convinced that
this would deeply a�ect our understanding of supersymmetry. We think that the broader
perspective, which is already lacking when you jump into a subject like this, is of big impor-
tance and would be hurt if you do not go through all the calculations yourself. Therefore, as
much as possible, everyone has done all the calculations, and we only split up the work of
explaining them in the �nal report.

In the beginning of the project we held a series of lectures to each other and our supervi-
sors. They were a good exercise in presentation, and they made us aware of the hard work
needed to really understand something good enough to be able to explain it to someone else.
But since all of us had already done the calculations that were presented each week, we felt
that the time with our supervisors could be spent more e�ciently, and we stopped doing this
a couple of months into the project.

One of the true advantages of doing a project of this kind, is the opportunity to repeat
a lot of material covered in previous courses. Classical mechanics, quantum mechanics and
linear algebra are all subjects that we have improved our understanding of, all at the same
time as we have been learning something new. And it is not only supersymmetry itself
that was new to us. On our way to understand supersymmetry, we have learned about
di�erential geometry, tensors, manifolds and many other useful concepts, both in physics
and mathematics, that we believe will be useful in further studies at master level. This
makes us feel that this was a good end to our studies at bachelor level, and hopefully it will
leave us well prepared for whatever awaits us in the future.
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Chapter 1

Introduction

1.1 Introduction

Symmetry is a fascinating concept. The search for mathematical descriptions of the physi-
cal world has always revolved around �nding patterns and invariants which bring order and
regularity to the universe. Some of these patterns express themselves as symmetries, i.e.
things that seem to be unchanged when one looks at them in a di�erent manner. A prime
example of a symmetry would be the rotational invariance that a spherical object, like the
earth we all live on, possesses. If you were to take a spherical object in your hands and rotate
it around, every part of it would look identical to you, not a single point is di�erent. This
makes describing a spherical object very simple. This simpli�cation is true in general for
symmetries and it is the prime reason to incorporate symmetries when trying to construct a
description of the world around us, i.e. a physical theory. Now, in constructing such theories
the language used has since long been that of mathematics. This means we better have
a mathematical description of symmetry too. This particular role was eventually �lled by
mathematical objects called groups. The groups that describe continuous symmetries, like
rotational invariance or translational symmetry, are called Lie groups, after the mathemati-
cian Sophus Lie who developed the theory in the end of the 19th century.

For a long time it was thought that all symmetries that a physical theory could possibly
have were known, but in the middle of the 20th century a new possible symmetry of nature
was conceived and described in a mathematical framework. Dubbed supersymmetry, it em-
bodied a radical new idea intimately linking the bosons, which in modern particle theory
are the carriers of the fundamental forces (such as the photon) and fermions, which are the
particles of matter (such as protons and neutrons). The idea was that a physical theory
should be invariant under a special type of transformation that interchanges every boson
with a fermionic particle, and every fermion with a bosonic particle, their respective super-
partner. The search for the superpartners and evidence for an actual physical manifestation
of supersymmetry as a theory, is an ongoing research project at CERN institute in Geneve.
Though, no such particles have yet been found, which have made physicist starting to ques-
tion whether or not the superpartners actually exists

Over the following years and decades theorists played around with incorporating supersym-
metry in other sub �elds of physics such as quantum �eld theory and string theory. At some
point they also tried to work out how the older theory of quantum mechanics would look like
if it incorporated supersymmetry. This e�ort proved successful because even though there
seemed to be no direct connection between supersymmetry and physical particles in quan-
tum mechanics it did prove to be a fruitful ground for theoretical considerations. It spawned
numerous new methods that often were simpler and more elegant than earlier theories and
sometimes problems that were di�cult to calculate even approximately suddenly allowed for
simple or even exact solutions using the ideas of supersymmetry. Theorists would also �nd a
deep connection between supersymmetric quantum mechanics and the seemingly completely
detached mathematical �elds of di�erential geometry and topology. It is this connection,
and more precisely the connection between the Witten index (after Edward Witten) and a
topological invariant called the Euler characteristic that we will look into in this report. The
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Witten index is a quantum mechanical operator that counts the relative amount of fermionic
and bosonic states a quantum mechanical system possesses. It is connected to a concept in
the seemingly detached �eld of topology called the Euler characteristic. This Euler character-
istic is a topologically invariant number. This means that it is unchanged under continuous
deformation of the topological space it is de�ned on. In our report this space will always be
a smooth Riemannian manifold. The Euler characteristic is a measure of the relative amount
of odd and even dimensional objects that 'make up' the manifold. A topological invariant
can be very di�cult to calculate using conventional techniques but it turns out that they
sometimes have a natural interpretation in physics, in the case of the Euler characteristic it is
the quantum mechanical Witten index. This means you can use physics to learn things about
purely mathematical objects. This connection is surprising in a sense. One would at �rst
not suspect that developing a physical theory would lead to discoveries in pure mathematics.
Finding such a connection gives a sense of deep signi�cance. It is really the melting together
of two separate �elds of scienti�c study, leading to fruitful cooperations and major advances
that bene�t both those �elds and human knowledge in general.

1.2 Reader's Guide

In chapter 2 we begin by reviewing certain aspects of quantum theory and classical mechan-
ics. Some of the ideas and methods introduced here, like the Lagrangian and Hamiltonian
formalisms and the quantum mechanical operator formalism, will probably be known to the
reader. Others, such as the concept of path integral quantization, will be new. We work
the calculations involved through thorougly, with plenty of examples and explanations. In
chapter 3 we will, using the techniques from chapter 2, start to build our �rst supersymmetric
versions of quantum mechanical systems (called sigma models, for historical reasons). These
are relatively simple models, using simple target manifolds such as R and S1 (the circle).
However, a lot of the concepts we encounter while working these systems, such as the Witten
Index and the supersymmetry charge operator Q, carry over to a more advanced setting.
The most important fact we will bring with us from these systems is the connection between
the Witten index and the zero states of the Hamiltonian. We will again provide plenty of
explicit calculations and calculate the Witten index for some example systems in order to
gain a good understanding of the behaviour of this object under di�erent circumstances. A
lot of the knowledge we gain here we will use when we start calculating more intricate sigma
models. These sigma models are de�ned on manifolds of arbitrary curvature, so in order
to successfully interpret systems like this we have to �rst introduce some new mathematical
machinery. This we will do in chapter 4. This chapter develops the mathematical theory
of di�erential manifolds. Di�erential manifolds are some of the most general mathemati-
cal objects that still possess enough structure to allow physics to develop on them. Topics
that will be introduced include manifolds, di�erential forms, the Riemann curvature tensor
and the de Rham cohomology. The de Rham cohomology is a very powerful mathematical
construct that will prove to be the bridge linking supersymmetric quantum mechanics on
a manifold and the topological properties of that manifold. We will provide a de�nition of
the Euler index in terms of the de Rham cohomology through de Rham's theorem, which
links the topological and di�erential structures of a manifold. In chapter 5 it is �nally time
to realise that connection. We construct a supersymmetric quantum mechanics on a com-
pact Riemannian manifold of arbitrary curvature. We start doing this by �rst building a
classical system using something called the superspace technique. Again we will carefully
work through every calculation and provide ample explanations at every point. Once we
have this classical system we can then proceed to quantum mechanics using the time-tested
Dirac quantization scheme. The resulting quantum mechanical Hilbert space will prove to
be intimately linked to the Hilbert space of the di�erential forms on our manifold. Using
this link we can �nd an expression for the de Rham cohomology in terms of a cohomology
generated by the supersymmetry charge Q. The last step of our journey consists of linking
the Witten index to this Q-cohomology using its connection to the zero energy states of the
sigma model. This will provide us with a �nal equality between the topological Euler index
and the quantum mechanical Witten index.
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1.3 References
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Chapter 2

Preliminaries on Quantum

Mechanics

In this chapter, we encounter conserved charges in classical mechanics, and partition functions
in quantum mechanics. A review of classical mechanics is necessary to make the leap to
quantum mechanics surmountable. There are di�erent ways to describe quantum mechanics.
In section 2.2 we consider and compare operator formalism and path integral formalism in
two examples. In the last of these examples, we will for the �rst time encounter a sigma
model, a quantum mechanical system where the target space is by some means nontrivial.
Our main references are 'Mirror Symmetry' [1] and the book of Nakahara [7].

2.1 Classical Mechanics

In the 17th century, the Newtonian mechanics were developed as a method to describe the
motion of a system of particles. During the next century, an alternative method was devel-
oped, the analytical mechanics. In this view of physics, the concepts of energy and integrals
are more important, rather than the concept of force. For advanced problems, the analyti-
cal approach is superior. We will in this section have a short look at this approach, derive
Lagrange's equations of motion, and investigate the Hamiltonian formalism of mechanics. In
the Hamiltonian formalism the Poisson bracket is introduced, which takes us from classical
mechanics to quantum mechanics. Lagrange's equations are used to prove Noether's theo-
rem, one of the most important theorems in physics. It relates a continuous symmetry to
a conserved quantity, e.g. translation invariance in time leads to conservation of energy. In
later chapters we will return to Noether's theorem to see what conserved quantities the su-
persymmetry gives rise to. The section ends with the Hamiltonian formulation of mechanics.

2.1.1 Lagrangian Mechanics

Consider the motion of a mechanical system in N dimensions. Introduce n generalized coor-
dinates qν(t), ν = 1, 2, . . . , n to describe the system. Also introduce the generalised velocities
q̇ν which are de�ned as

q̇ν =
d

dt
(qν) . (2.1)

Let T (q, q̇) be the kinetic energy of the system and V (q) be the potential energy (notably
not depending on the generalised velocities). Then the Lagrangian of the system is de�ned
as

L(q, q̇) = T (q, q̇)− V (q). (2.2)

Now, look at the evolution of the system during the time interval [t1, t2], from one point
qν1 = qν(t1) to another point qν2 = qν(t2). The system will take a de�nite path from qν1 to
qν2 . This is the actual path, q

ν(t), t ∈ [t1, t2]. Hypothetically, we could think of the system
taking another path from qν1 to qν2 . Let this path be written as qνε (t) = qν(t) + δqν(t),where
δqν(t) is small so that in every moment the hypothetical path is a small deviation from the
real path. For some reason, qνε (t) is avoided in favour of qν(t). This fact is very fundamental,
and often stated in terms of Hamilton's variational principle:
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�The motion of a mechanical system between two points qν1 and qν2 is such that the time
integral of the Lagrangian between qν1 and qν2 is stationary under in�nitesimal variations of
the path.�

Due to this principle, it is natural to introduce a quantity S called the action, which is
the time integral of the Lagrangian mentioned above

S =

∫ t2

t1

dt L(q, q̇). (2.3)

Hence, we may express Hamilton's variational principle in mathematical terms as δS = 0.
There is no proof for Hamilton's variational principle, except that no experiment has been

performed so far that contradicts it. We may use it to derive the equations of motion of the
system. In the following we use Einstein's summation convention: this implies that whenever
an index (for example ν) appears once as a superscript and once as a subscript in a single
term, it must be summed over. As a simple example we could for instance have

qνpν = q1p1 + q2p2 + · · ·+ qnpn. (2.4)

We will now introduce the aforementioned variation and demand that the action is stationary

0 = δS = δ

∫
dt L(q, q̇) =

∫
dt δL(q, q̇) =

∫
dt L(q + δq, q̇ + δq̇)− L(q, q̇)

=

∫
dt

(
∂L

∂qν
δqν +

∂L

∂q̇ν
δq̇ν
)

=

∫
dt

∂L

∂q

ν

δqν +
∂L

∂q̇ν
d

dt
(δqν)

=

∫
dt

∂L

∂qν
δqν +

d

dt

(
∂L

∂q̇ν
δqν
)
− d

dt

(
∂L

∂q̇ν

)
δqν

=

∫
dt

(
∂L

∂qν
− d

dt

(
∂L

∂q̇ν

))
δqν +

[
∂L

∂q̇ν
δqν
]t2
t1

.

(2.5)

Since the endpoints of the path are assumed to be �xed, we have δqν1 = δqν2 = 0 at the
endpoints. This means that the integrated term must be zero. Then we are left with the

integral, which must be zero for all possible δqν . Then ∂L
∂qν
− d

dt

(
∂L
∂q̇ν

)
must be identically

zero for all ν. We call the equations we get Lagrange's equations of motion

∂L

∂qν
− d

dt

(
∂L

∂q̇ν

)
= 0, ν = 1, 2, . . . , n. (2.6)

2.1.2 Noether's Theorem

Noether's theorem, proved by the German mathematician Emmy Noether in 1915, states that
for every continuous symmetry of the motion, there exists a quantity conserved in time. A
continuous symmetry is an invariance of a system under a continuous transformation of the
coordinates in that system. For instance, a system that has rotational symmetry (a sphere
for example) is invariant under a continuous rotation of the coordinate system (a sphere looks
the same no matter from what angle you look at it). Because we are talking about continuous
symmetries it is enough to only work with in�nitesimal coordinate transformations.

To prove Noether's theorem we consider such an in�nitesimal transformation of the co-
ordinates, characterised by: qν → q′ν = qν + δqν , where δqν = fν(q, q̇). We again consider
δqν to be very small (in�nitesimally small). We can now posit some function g(q, q̇) so that
we are able to write the variation of the Lagrangian under this coordinate transformation as
a total time derivative of this function

δL = (L(q′, q̇′)− L(q, q̇)) =:
d

dt
g(q, q̇). (2.7)

For the rationale behind this we look at the variation of the action

δS =

∫
dt δL =

∫
dt

d

dt
g(q, q̇) = g(q, q̇)

∣∣qν1
qν2

= 0. (2.8)
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So our action is manifestly invariant if we write δL this way. We can also look at δL in a
di�erent manner by means of the total di�erential. This gives us

δL =
∂L

∂qν
δqν +

∂L

∂q̇ν
δq̇ν

=

(
∂L

∂qν
− d

dt

∂L

∂q̇ν

)
δqν +

d

dt

(
∂L

∂q̇ν
δqν
)

=
d

dt

(
∂L

∂q̇ν
δqν
)

=
d

dt

(
∂L

∂q̇ν
fν(q, q̇)

)
,

(2.9)

where we have used Lagrange's equations. If we subtract (2.7) and (2.9) we get

d

dt

(
∂L

∂q̇ν
fν(q, q̇)

)
− d

dt
( g(q, q̇)) =

d

dt

(
∂L

∂q̇ν
fν(q, q̇)− g(q, q̇)

)
= 0. (2.10)

The quantity Q = ∂L
∂q̇ν f

ν(q, q̇) − g(q, q̇) is then constant in time. We call Q the conserved
charge.

We have proved Noether's theorem in classical mechanics. It generalizes to quantum �eld
theory, but the proof is much more advanced and we will not pursue it here. Let us compute
the conserved charges that follow from three symmetries.

• Example 1

Consider a particle in R3 acted on by a conservative force F = −∇V . If the coordinates
are xi, i = 1, 2, 3, then classically

L(x, ẋ) =
1

2
mẋiẋi − V (x). (2.11)

If there is a symmetry under translation in time, t→ t+ε, where ε is some in�nitesimally
small number then we get the variations of the coordinates as

δxi = xi(t+ ε)− xi(t) =
dxi

dt
ε = εẋi, f i(x, ẋ) = εẋi. (2.12)

Note that ε has the dimension of time. We calculate the variation of the Lagrangian

δL = L(t+ ε)− L(t) = ε
dL

dt
= εL̇, g = εL(x, ẋ). (2.13)

This leads us to our conserved charge

εQ =
∂L

∂ẋi
εẋi − εL(x, ẋ) = ε

(
mẋiẋ

i −
(

1

2
mẋiẋ

i − V
))

= ε(T + V ) = εE,

Q = E,

(2.14)

where E is the total energy of the system. Translation symmetry in time thus results
in conservation of energy.

• Example 2

Now study a particle whose motion is described by the coordinates qν , ν = 1, 2, . . . , n.
Suppose that L is invariant under translation of one of them, say q1. Then

δqν = εδν1 , fν = εδν1 , (2.15)

δL = L(q1 + δq1)− L(q1) = 0, g = 0. (2.16)

If L is invariant under translation of q1, then L does not depend on q1 and δL = 0.
The conserved charge becomes

εQ =
∂L

∂q̇ν
δqν − 0 =

∂L

∂q̇1
ε = εmẋ1, Q = mẋ1. (2.17)

This result also follows directly from Lagrange's equations of motion. We conclude that
translation symmetry in space results in conservation of momentum.
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• Example 3

Suppose a particle moves in space R3 under in�uence of a central force F = −∇V (r).
We write most easily the Lagrangian in spherical coordinates

L =
1

2
mv2 − V (r) =

1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2)− V (r). (2.18)

We note that no φ appears in the Lagrangian. This means that we have translational
invariance in the eφ direction. Let us look at the following coordinate transformation:

δr = 0, δθ = 0, δφ = ε. (2.19)

Since L does not depend on φ

δL = L(φ+ ε)− L(φ) = 0. (2.20)

Then we see that

εQ =
∂L

∂φ̇
δφ− 0 = mr2 sin2 θ φ̇ ε, Q = mr2 sin2 θ φ̇ (2.21)

We may rewrite Q as Q = m(r sin θ)(r sin θ φ̇), where r sin θ is the distance from the
z-axis and r sin θ φ̇ is the speed around the same axis. Thus Q is the classical angular
momentum in the z direction. If L is invariant under translation in φ, that is, if we
have isotropy in this thin ring of space de�ned by the azimuthal angle φ, then it leads
to conservation of angular momentum in the direction around which φ circles.

We have seen some standard examples showing the connection between symmetry and con-
served charge. In the special case of supersymmetry, we will get conserved supercharges.
They will be an important topic from chapter 3 and onwards.

2.1.3 The Hamiltonian Formalism and Poisson Brackets

There is another way of looking at classical mechanics called the Hamiltonian formulation.
As we saw before the Lagrangian formalism leads to N second order di�erential equations for
a system with n degrees of freedom (generalized coordinates qν). The Hamiltonian formalism
will eventually lead to 2n �rst order di�erential equations. This can make certain systems
easier to solve and understand. The Hamiltonian formalism also leads to the notion of a
Poisson bracket, a mathematical object that serves as a gateway between classical mechanics
and quantum theory. We �rst de�ne the generalised conjugate momentum to be

pν :=
∂L

∂q̇ν
.

If we take q to be the standard coordinate x, then p is the standard momentum in the x
direction, hence the name. Now we de�ne an object called the Hamiltonian to be

H(p, q, q̇) := pν q̇
ν − L(q, q̇)

where L is the Lagrangian of the system. The Hamiltonian is a function of both the gen-
eralised coordinates and the conjugate momenta. Now consider an in�nitesimal variation
of H

δH = q̇νδpν + pνδq̇
ν − ∂L

∂qν
δqν − ∂L

∂q̇ν
δq̇ν

= q̇νδpν + pνδq̇
ν − ∂L

∂qν
δqν − pνδq̇ν

= q̇νδpν −
∂L

∂qν
δqν

= q̇νδpν −
d

dt

∂L

∂q̇ν
δqν

= q̇νδpν − ṗνδqν ,

(2.22)
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where we used Lagrange's equations of motion. But on the other hand we also have

δH =
∂H

∂qν
δqν +

∂H

∂pν
δpν . (2.23)

Equating (2.22) and (2.23) gives us a set of 2N linear di�erential equations, namely

q̇ν =
∂H

∂pν

ṗν = −∂H
∂qν

.

(2.24)

These are called Hamilton's equations of motion. Now consider a physical variable A which is
a function of pν and qν . If we look at the time dependence of A(p, q) we get some interesting
results

d

dt
A(p, q) =

∂A

∂pν
ṗν +

∂A

∂qν
q̇ν

=
∂A

∂qν
∂H

∂pν
− ∂A

∂pν
∂H

∂qν

=: {A,H}P .

(2.25)

We call this last object, de�ned this way, the Poisson bracket. It is a very important tool
for elucidating the correspondence between classical and quantum physics. As an example
we will calculate the Poisson bracket between the standard x coordinate and its standard
momentum. This gives

{x, p}P =
∂x

∂x

∂p

∂x
− ∂x

∂p

∂p

∂x
= 1. (2.26)

2.2 Two Ways to Approach Quantum Mechanics

The reader's �rst encounter with quantum mechanics was probably through the concept of
operators. These correspond to classical quantities, e.g. −i~∇ corresponds to the momentum
of a particle in three dimensions. This operator formalism was developed in the 1920's.
Later, another way of approaching quantum mechanics using path integrals was introduced,
which generalizes the concept of action in classical mechanics to quantum mechanics. In
this section these two formalisms will be introduced, and then visualized by working through
two examples, the quantum harmonic oscillator, and the sigma model on a circle. In both
examples, we get the same partition function of the system, independently of which of the
two formalisms we use.

2.2.1 Operator Formalism

The principle of Hamiltonian quantization, also sometimes called the Dirac quantization
scheme, essentially consists of replacing all the physical variables with operators on a Hilbert
space (which might be in�nite dimensional!). The calculational rules for these operators are
obtained by calculating all the Poisson brackets of the variables of the system and replacing
them with commutators or anti-commutators of the operator equivalents of these variables
times i~, where i is the imaginary unit and ~ is the reduced Planck constant or Dirac constant.
In symbols, for given variables A and B

{A,B}P → i~[Â, B̂]. (2.27)

The commutator and anti-commutator between two operators Â and B̂ are de�ned as[
Â, B̂

]
:= ÂB̂ − B̂Â,{

Â, B̂
}

:= ÂB̂ + B̂Â.
(2.28)

The hats on Â and B̂ serve to make it clear that they are now operators. Later we will drop
the hats when it cannot cause confusion. For clearer presentation we will from now on use
natural units, i.e. we set the Dirac constant equal to unity and we also set the mass m = 1.

8



Example: QM harmonic oscillator in operator formalism

Let us try the operator approach to calculate the partition function for the quantum me-
chanical version of the simple harmonic oscillator. We de�ne the Hamiltonian for the QM
harmonic oscillator to be

H =
p2

2
+
x2

2
. (2.29)

Here x is the position operator and p is the corresponding momentum operator (in the
classical scheme this was ẋ). Using the Dirac quantization scheme together with the Poisson
bracket in section 2.1.3 we obtain the following commutation rule

[x, p] = i. (2.30)

Using this property we can rewrite the Hamiltonian in a form that will prove more tangible
down the road

p2

2
+
x2

2
=

1

2

(
p2 + x2 + 1− 1

)
=

1

2

(
p2 + x2 + 1 + i[x, p]

)
=

1

2

(
p2 + x2 + ixp− ipx+ 1

)
=

1

2
(p+ ix) (p− ix) +

1

2
.

(2.31)

We now de�ne two new operators

a =
1√
2

(p− ix), (2.32)

a† =
1√
2

(p+ ix). (2.33)

These are called the lowering and raising operators, the reason for these names will become
apparent soon. We can now rewrite our Hamiltonian as

H = a†a+
1

2
. (2.34)

The commutator between a and a† is

[a, a†] = aa† − a†a =
1

2
((p− ix)(p+ ix)− (p+ ix)(p− ix))

=
1

2

(
p2 + x2 − ixp+ ipx− p2 − x2 + ipx− ixp

)
= −i[x, p] = 1.

(2.35)

It is also of use to calculate the commutators between the raising and lowering operators and
the Hamiltonian

[H, a] = Ha− aH

= a†aa+
1

2
a− aa†a− 1

2
a

= [a†, a]a = −[a, a†]a = −a,

(2.36)

and

[H, a†] = Ha† − a†H

= a†aa† +
1

2
a† − a†a†a− 1

2
a†

= a†[a, a†] = a†.

(2.37)

Now we posit a set of eigenstates |ψ〉 for H, so

H|ψ〉 = E|ψ〉. (2.38)
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Here E is a real number that corresponds to the energy of the state |ψ〉, which we know is
real because our Hamiltonian operator is Hermitian. We can now try and �nd out how the
lowering (or raising) operator a�ects such a state |ψ〉. We get

Ha|ψ〉 = ([H, a] + aH) |ψ〉
= (−a+ aH)|ψ〉
= a(H − 1)|ψ〉 = (E − 1)a|ψ〉.

(2.39)

Now we see why it makes sense to call a the lowering operator, as it e�ectively lowers the
energy of a state by one unit of energy. A similar calculation for the raising operator gives
us

Ha†|ψ〉 = (E + 1)a†|ψ〉.

The raising operator can be used repeatedly to reach higher energy states without limit. But
the lowering operator cannot lower the energy in an in�nite number of steps, since the energy
always must be positive. Why is that? We see in (2.34) that H and a†a only di�er by a
constant. Thus, they have the same eigenfunctions, which is obviuos from

(a†a+
1

2
)|ψ〉 = E|ψ〉. (2.40)

Let λ be the eigenvalue of a†a. Then

a†a|ψ〉 = λ|ψ〉, E = 〈ψ|H|ψ〉 = 〈ψ|
(
a†a+

1

2

)
|ψ〉 =

(
λ+

1

2

)
. (2.41)

Since a† and a are complex conjugates of each other, we have that

〈ψ|a†a|ψ〉 = 〈aψ|aψ〉 =⇒ λ〈ψ|ψ〉 = 〈aψ|aψ〉. (2.42)

But the norm of the Hilbert space, H, of our ψ functions is positive, hence λ is non-negative.
But then E = λ + 1

2 is positive. Therefore, we can de�ne a ground state |0〉, which is
annihilated by a, written

a|0〉 = 0.

The ground state energy is then

H|0〉 = (a†a+
1

2
)|0〉

=
1

2
|0〉.

(2.43)

Using the raising operator, we can iteratively de�ne the n-th energy state as

|n〉 = (a†)n|0〉.

This gives us
H(a†)n|0〉 =

(
(a†)nH + [H, (a†)n]

)
|0〉

here we use [H, (a†)n] = n(a†)n, that gives

= ((a†)nH + n(a†)n)|0〉
= (a†)n(H + n)|0〉

= (a†)n(n+
1

2
)|0〉

= (n+
1

2
)|n〉.

(2.44)

Now the energy states |n〉 de�ne a basis in which H is diagonal (it is an eigenbasis for
H). This means we can calculate the partition function, expressed as Z(β) = Tr exp(−βH),
with relative ease in this basis. Maybe the reader is familiar with the partition function from
statistical mechanics, where it simply was the sum of Boltzmann factors for all quantum
states. In fact, the partition function is a more general mathematical concept, which plays
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an important role in quantum �eld theory. It is useful when computing probabilities and
expectation values etc. To conclude the section of the operator formalism we compute the
partition function for the QM harmonic oscillator

Z(β) = Tr exp(−βH) =

∞∑
n=0

exp[−β(n+
1

2
)]

= exp(−β/2)

∞∑
n=0

(exp[−β])
n

=
exp(−β/2)

1− exp(−β)
=

1

2 sinh(β/2)
.

(2.45)

2.2.2 Path Integral Formalism

The action S(X) is a function of the coordinate X, which we will assume only depends on
time t, so thatX = X(t). If L(X) is the Lagrangian of the system, then in the non-relativistic
case with mass m = 1 we get

S(X) :=

∫
dt L(X, Ẋ) =

∫
dt T (Ẋ)− V (X) =

∫
dt

1

2

(
dX

dt

)2

− V (X). (2.46)

We de�ne the partition function for this system in the path integral formalism to be

Z(X2, t2;X1, t1) :=

∫ X2

X1

DX(t) eiS(X(t)), (2.47)

where, X1 = X(t1) and X2 = X(t2). The integration is over all possible paths that may be
taken from X1 to X2, that is, from time t1 to t2. We do not know how to interpret DX yet,
but we state the de�nition like this and hope it will be fruitful.

The imaginary unit i was not present in statistical mechanics. It is here now since X is a
variable in quantum mechanics with probability amplitude interpretation. We do not want
to integrate, i.e. to sum complex numbers with di�erent phases like this, since it might make
the integral divergent. A way out of this would be to Euclideanize it. If we rotate the time
variable an angle π

2 counterclockwise in the complex plane, we get a new imaginary time
coordinate τ . That is, t→ it =: τ . This rotation yields the identities

t = −iτ,
dt = −idτ,

dX

dt
=

1

−i
dX

dτ
,

(2.48)

and then for the action we get

S(X(τ)) =

∫
−i dτ

(
1

2

(
1

−i

)2(
dX

dτ

)2

− V (X)

)
= i

∫
dτ

1

2

(
dX

dτ

)2

+ V (X). (2.49)

Now de�ne the Euclidean action SE as

SE :=

∫
dτ

1

2

(
dX

dτ

)2

+ V (X). (2.50)

We see that S(X) = iSE(X) and the Euclidean partition function ZE becomes

ZE = ZE(X2, τ2;X1, τ1) =

∫ X(τ2)

X(τ1)

DX(τ) e−SE(X). (2.51)
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Example: QM harmonic oscillator in path integral formalism

We now turn to the speci�c example of the quantum harmonic oscillator. If the spring
constant is k = 1, we have V (X) = 1

2X
2 and (2.50) becomes

SE =
1

2

∫
dτ

(
dX

dτ

)2

+X2. (2.52)

If V (X) is a positive semi-de�nite function ofX (as is the case here), then SE is a non-negative
number, and the convergence of (2.51) seems probable. So far, we have only considered
integration from X1 to X2 where those are di�erent points in a space. We could also carry
out the integration on a circle in time, with time of revolution β. Then, X(τ + β) = X(τ),
since we come back to the same point. Using this, the action may be written in a nice way.

To �nd this new form we start by de�ning an operator Θ = − d2

dτ2 + 1. Then we compute

XΘX = X

(
− d2

dτ2
+ 1

)
X = −Xd2X

dτ2
+X2. (2.53)

Using the fact that

d

dτ

(
X
dX

dτ

)
=

(
dX

dτ

)2

+X
d2X

dτ2
, (2.54)

we can write

XΘX =

(
dX

dτ

)2

− d

dτ

(
X
dX

dτ

)
+X2. (2.55)

This enables us to express the action in a simple way∫ X(τ+β)

X(τ)

dτ

(
dX

dτ

)2

+X2 =

∫ X(τ+β)

X(τ)

dτ XΘX +
d

dτ

(
X
dX

dτ

)
=

∫ X(τ+β)

X(τ)

dτ XΘX +

[
X
dX

dτ

]τ+β

τ

=

∫ X(τ+β)

X(τ)

dτ XΘX,

(2.56)

since X(τ + β) = X(τ) and dX
dτ

∣∣
τ+β

= dX
dτ

∣∣
τ
. Thus we end up with the following expression

for the partition function

ZE =

∫ X(τ+β)

X(τ)

DX(τ) e−
1
2

∫
dτ XΘX . (2.57)

To be able to calculate this complicated integral, a change of variables is useful. We �nd
orthonormal eigenfunctions fn to the operator Θ

∫
dτ f∗m(τ)fn(τ) = δn,m, Θfn = λnfn,

(
− d2

dτ2
+ 1

)
fn = λnfn, (2.58)

d2fn(τ)

dτ2
+ (λn − 1)fn(τ) = 0 (2.59)

with solutions in two modes

fn(τ) = A cos(
√
λn − 1 τ) +B sin(

√
λn − 1 τ). (2.60)

We have the same boundary condition for fn as we had for X, that is: fn(τ + β) = fn(τ).
This gives

fn(τ + β) = A cos(
√
λn − 1 (τ + β)) +B sin(

√
λn − 1 (τ + β))

= A cos(
√
λn − 1τ +

√
λn − 1β) +B sin(

√
λn − 1τ +

√
λn − 1β).

(2.61)
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The condition is ful�lled whenever
√
λn − 1β = 2πn, where n is a non-negative integer. The

eigenvalues become

λn = 1 +

(
2πn

β

)2

. (2.62)

We have now found a basis of orthonormal eigenfunctions {fn} for our space. If we express
X as X =

∑
n cnfn, where the cn are real numbers reaching from −∞ to ∞, we get

∫
dτ XΘX =

∫
dτ
∑
m

cmfmΘ
∑
n

cnfn =

∫
dτ
∑
m

cmfm
∑
n

cnλnfn

=
∑
m

∑
n

λncmcn

∫
dτ fmfn = {fn are real} =

∑
m

∑
n

λncmcnδmn

=
∑
n

λnc
2
n.

(2.63)

And the partition function becomes

ZE(β) =

∫
DX(τ) e−

1
2

∑
n λnc

2
n =

∫
DX(τ)

∏
n

e−
1
2λnc

2
n . (2.64)

We now have an integrand expressed in the variables cn. Then we need to express DX in
terms of cn as well. We note that∫ ∞

−∞
dcn e

− 1
2λnc

2
n =

√
2π

λn
,

∫ ∞
−∞

dcn√
2π

e−
1
2λnc

2
n =

1√
λn
. (2.65)

The factor
√

2π was shu�ed to the LHS to make the RHS as simple as possible. We have a
product of n such integrands. Then it is very natural to interpret the path integral variable
as DX =

∏
n
dcn√

2π
. In such a case

ZE(β) =

∫ ∏
n

dcn√
2π

∏
n

e−
1
2λnc

2
n =

∏
n

∫
dcn√

2π
e−

1
2λnc

2
n =

∏
n

1√
λn

=
1√

det Θ
.

(2.66)

When n = 0 we have λn = 1 and f0 = constant. For n=1,2,3, . . . , fn consists of two linearly
independent functions, sinx and cosx. Thus we have two modes and the multiplicity of each
eigenvalue is 2. Thus, rather than multiplying λ1λ2λ3 . . . we should multiply λ

2
1λ

2
2λ

2
3 . . . Then

ZE(β) = 1

∞∏
n=1

1

λn
=

∞∏
n=1

1

1 +
(

2πn
β

)2 =

∞∏
n=1

(
2πn

β

)−2 ∞∏
n=1

1

1 +
(

2πn
β

)−2 . (2.67)

We are now left with the mathematical issue to calculate these products. The second one
is the easiest. As Euler showed in the 18th century, the elementary functions have in�nite
product representations. For sinh z we have the product

sinh z = z

∞∏
n=1

(
1 +

z2

π2n2

)
. (2.68)

This identity can be shown in many ways. A proof using residue calculus is found in Ap-
pendix B.1. Then, by just changing variables in (2.68) to z = β

2 , we arrive at the expression

∞∏
n=1

1

1 +
(

β
2πn

)2 =
β

2 sinh
(
β
2

) . (2.69)

The other product,
∏∞
n=1

(
2πn
β

)−2

is much more di�cult. Here we must use the method of

ζ function regularisation. Instead of looking at the product, let us look at the corresponding
sum
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ζ1(s) =

∞∑
n=1

(
2πn

β

)−2s

. (2.70)

If we now di�erentiate the sum with respect to s, we get

ζ ′1(s) =

∞∑
n=1

ln

(
2πn

β

)
(−2)

(
2πn

β

)−2s

, ζ ′1(0) =

∞∑
n=1

ln

(
2πn

β

)−2

. (2.71)

Then we take the exponential of ζ ′1(0) and �nd a useful expression

eζ
′
1(0) = e

∑∞
n=1 ln( 2πn

β )
−2

=

∞∏
n=1

eln( 2πn
β )
−2

=

∞∏
n=1

(
2πn

β

)−2

. (2.72)

Our de�nition of ζ1(s) is very similar to the common Riemann ζ function, which is simply
ζ(s) =

∑∞
n=1

1
ns , when s > 1. Expressed in this function, our ζ1(s) becomes

ζ1(s) =

(
2π

β

)−2s ∞∑
n=1

1

n2s
=

(
2π

β

)−2s

ζ(2s). (2.73)

If we di�erentiate the �rst and last expressions above with respect to s we get

ζ ′1(s) = ln

(
2π

β

)−2(
2π

β

)−2s

ζ(2s) +

(
2π

β

)−2s

2ζ ′(2s) (2.74)

ζ ′1(0) = ln

(
2π

β

)−2

ζ(0) + 2ζ ′(0). (2.75)

But what are ζ(0) and ζ ′(0)? So far we have just used Riemann's ζ function for s > 1. For

example, by using Fourier series one proves that ζ(2) = π2

6 . For s = 1 the function coincides
with the harmonic series, which is certainly divergent. But by doing an analytic continuation
in the complex plane, one can �nd that ζ(0) = − 1

2 and ζ ′(0) = − 1
2 ln(2π). Proofs are found

in Appendices B.2 and B.3. With the equation above we simply get

ζ ′1(0) = ln

(
2π

β

)−2(
−1

2

)
+ 2

(
−1

2
ln(2π)

)
= − lnβ,

∞∏
n=1

(
2πn

β

)−2

= e− ln β =
1

β
.

(2.76)
Then (2.67), the partition function, becomes

ZE(β) =
1

β

β

2 sinh
(
β
2

) =
1

2 sinh
(
β
2

) . (2.77)

We see that this is the same result for the partition function as we got in the operator formal-
ism, at least if the not Euclideanized partition function is the same thing as the Euclideanized
partition function. Why can we actually go from real time to complex time in (2.48)? A
simple answer is that t → it =: τ is just an ordinary change of variables in the complex
plane, and integration in general is independent of the choice of parameter. A more involved
answer demands deeper insights in quantum �eld theory and path integrals. However, we
got the same result using both formalisms in the example, so in this case it worked.

2.2.3 Sigma Model on a Circle

We will now proceed by introducing a sigma model, and we do this by using a simple example
on a circle. The circle is an example of a nontrivial target space. In contrast to the real line
the circle is closed, which makes it an interesting target space. We use the same approach
here as we did for the harmonic oscillator above, i.e. �rst we calculate the partition function
using operator formalism and then we compare it to the partition function calculated using
path integral formalism. In later chapters, we will apply the sigma model to more complex
spaces.
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Operator formalism

As mentioned above our target space is a circle S1
R, with the circumference R. We set the

potential V (X) = 0. The coordinate X is periodic in R, i.e. X ∼ X + R. The Hamiltonian
for our system is given by

H =
p2

2
=

1

2

(
−i d
dX

)(
−i d
dX

)
= −1

2

d2

dX2
. (2.78)

Let us calculate the eigenfunctions ψn using the Hamiltonian H given in (2.78)

Hψn = Enψn =⇒ −1

2

(
d2

X2

)
ψn = Enψn , n ∈ Z. (2.79)

Solving the above equation yields

ψn = ψn(X) = Aei
√

2EnX , (2.80)

where A is a constant. For simplicity, we set A = 1. While X is a periodic variable, we have
ψn(0) = ψn(R), which gives us

ψn(0) = 1 =⇒ ψn(R) = ei
√

2EnR

= ei2πn. (2.81)

From (2.81) we get the expression for the eigenvalues En accordingly

i
√

2EnR = i2πn =⇒ En =
2π2n2

R2
. (2.82)

Using (2.82) we can rewrite the expression for the eigenfunctions ψn,

ψn(X) = ei2πnX/R, (2.83)

where we have expressed our variable in terms of the circumference R. This provides us with
the partition function

Z(β) = Tre−βH =

∞∑
−∞

e−β2π2n2/R2

. (2.84)

Path integral formalism

Now we calculate the partition function using path integral formalism. We start with the
expression

Z(β) =

∫
DXe−SE(X) (2.85)

where SE(X) is the Euclidean action given by

SE(X) =

∫ (
1

2

(
dX

dτ

)2

+ V (X)

)
dτ. (2.86)

As for the operator formalism, V (x) = 0 which gives us the partition function

Z(β) =

∫
DXe−

∫ β
0

1
2 ( dXdτ )

2
dτ . (2.87)

Integration over all maps S1
β to S1

R requires introducing the winding number m. To get a
picture of what the winding number is, let us imagine the situation in �gure 2.1, where a
person stands in the middle of the red path representing the motion of the black particle. As
the particle follows the path around, the person in the middle follows it with his eyes. The
winding number m increases by one for every round the person has to take in his reference
frame (represented by the blue path) while keeping his eyes on the particle. In this case
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Figure 2.1: A visual representation of the winding number m, [17].

m = 2. All of these winding sectors will have to be considered. Thus, the path integral
becomes

Z(β) =

∞∑
m=−∞

∫
DXme

−SE(Xm), (2.88)

where Xm(β) = X(0) +Rm is a variable that for every m represents a map. We can express
Xm(τ) as Xm(τ) = mτR

β + X0(τ). Here, X0(τ) is a periodic function. Using the expression
for Xm we can rewrite the action accordingly(

dXm

dτ

)2

=

(
mR

β
+

d

dτ
X0(τ)

)2

⇒ (2.89)

SE(Xm) =
1

2

∫ β

0

[
m2R2

β2
+

2mR

β

d

dτ
X0(τ) +

(
d

dτ
X0(τ)

)2
]
dτ

=
m2R2

2β
+

1

2

∫ β

0

(
d

dτ
X0(τ)

)2

dτ.

(2.90)

In the middle step, the integration of 2mR
β

d
dτX0(τ) yields zero, because X0(τ) is a periodic

function (start point and end point are the same). Following the same procedure as in the
case of the harmonic oscillator we de�ne∫

dτẊ2 =
1

2

∫
dτXΘX, (2.91)

where Θ = − d2

dτ2 . The eigenfunctions fn have eigenvalues λn =
(

2πn
R

)2
. We can now rewrite

the partition function once more,

Z(β) =

∞∑
m=−∞

e−
m2R2

2β

∫
DX0e

− 1
2

∑
n c

2
nλn =

∞∑
m=−∞

e−
m2R2

2β

∫
DX0

∏
n

e−
1
2 c

2
nλn . (2.92)

In the expression above DX0 =
∏
n
dcn√

2π
, as in the example of the QM harmonic oscillator.

We now have two cases, n = 0 and n 6= 0, needed to be treated separately

Z(β) =

∞∑
m=−∞

e−
m2R2

2β

∫
DX0e

− 1
2 c

2
0λ0︸ ︷︷ ︸

n=0

∫
DX0

∏
e−

1
2 c

2
nλn︸ ︷︷ ︸

n6=0

. (2.93)

For n = 0 we have λ0 = 0, so the part of the expression where n = 0 becomes
∫
DX0. From

this mode we get a normalization constant 1/
√
β accordingly

fn(t) = A cos(
√
λnt) +B sin(

√
λnt) ⇒ f0(t) = A cos(0) +B sin(0) = A, (2.94)
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1 =

∫
f∗0 f0dt = A2

∫ β

0

dt = A2β ⇒ f0(t) = 1/
√
β. (2.95)

We have to take the normalization constant under consideration when we set the limits in
the integration. The limits for the zero mode is thus [0, R

√
β], and we get∫ R

√
β

0

DX0 =

∫ R
√
β

0

dc0√
2π

=
R
√
β√

2π
. (2.96)

For n 6= 0 we do the substitution,

y2 = c2nλn,
dcn
dy

=
1√
λn
. (2.97)

The above relations provide us with the expression for the part where n 6= 0∫ ∞
−∞

∏
n 6=0

e−
1
2y

2

√
2π

dy√
λn

=
∏
n 6=0

1√
λn

=
1√

det′Θ
, (2.98)

where det′Θ is the determinant with all λn except λ0. Multiplying both parts (n = 0 and
n 6= 0) provides us with

R
√
β√

2π

1√
det′Θ

=
R
√
β√

2π

1√
det′

(
− d2

dτ2

) . (2.99)

The expression for the determinant is given by

det′
(
− d2

dτ2

)
=
∏
n 6=0

(
2πn

β

)2

= β2, (2.100)

where the last step is done by ζ function regularisation as in section 2.2.2. So we get the
path-integral

Z(β) =
R√
2πβ

∞∑
m=−∞

e−
m2R2

2β . (2.101)

This does not look the same as (2.84), the partition function via the operator formalism, but
with the use of a technique called Poisson resummation we can write them in the same form,

in e�ect turn
∞∑

m=−∞
e−m

2R2/2β into
∞∑

n=−∞
e−β2π2n2/R2

. We start the Poisson resummation

with the identity

∞∑
n=−∞

δ(x+ 2πn) =
1

2π

∞∑
m=−∞

eimx. (2.102)

We can see that this identity is correct by �nding the Fourier series for the delta-function

f(x) =

∞∑
n=−∞

δ(x+ 2πn) =

∞∑
m=−∞

cme
imx. (2.103)

The coe�cients cm are found in the usual Fourier series manner

cm =
1

2π

2π∫
0

f(x)e−imxdx =
1

2π

∞∑
n=−∞

2π∫
0

δ(x+ 2πn)e−imxdx =
1

2π
· 1 =

1

2π
. (2.104)

In the integration interval [0, 2π] only one of the delta functions of the summation contributes,
when n = 0. If g(x) = e−imx and n = 0, the delta-function picks out the value of g(0) =
e−im·0 = 1, making the whole sum and integral equal to 1, proving the identity. Now we
multiply the identity by e−

α
2 x

2

and integrate over x
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∞∑
n=−∞

∞∫
−∞

δ(x+ 2πn)e−
α
2 x

2

dx =
1

2π

∞∑
m=−∞

∞∫
−∞

eimx−
α
2 x

2

dx. (2.105)

Using the de�nite integral 1
2

√
π
a

∞∫
−∞

e2bx−ax2

dx =
√

π
a e
b2/a on the right hand side, we get

the relation

∞∑
n=−∞

e−
α
2 (−2πn)2 =

1√
2πα

∞∑
m=−∞

e−
1
2αm

2

. (2.106)

When we set α = β
R2 this yields

∞∑
n=−∞

e−
β2π2n2

R2 =
R√
2πβ

∞∑
m=−∞

e−
m2R2

2β , (2.107)

as we wanted. Now we clearly see that the partition function of the operator formalism (2.84)
and path integral formalism (2.101) again are equal!

If we want to change our target space to the real line, we can still use the sigma model
here developed but with a little trick. This is neat because there arises some problems when
doing a straightforward calculation on the real line. Consider an example of a system without
a potential, V (X) = 0. The action is then

S =

∫
1

2
Ẋ2dt (2.108)

with the Hamiltonian given by H = 1
2p

2 = − 1
2
∂2

∂X2 . When p = k, the wave number, we have
the plane-wave solution Ψk = eikX . The energy for each eigenstate is

Ek =
1

2
k2. (2.109)

The wave-functions Ψk still obey the orthogonality relation∫
Ψ∗k(X)Ψk′dX = 2πδ(k − k′) (2.110)

but are no longer square normalizable, because of their non-localized nature. And, due to
V (X) = 0, the spectrum becomes continuous so the partition function Z(β) = Tr e−βH is no
longer well de�ned. The trick to overcome these di�culties is to use the sigma model on S1

R

but let R→∞, then by (2.101) we get the partition function

Z(β) = lim
R→∞

R√
2πβ

∞∑
m=−∞

e−
m2R2

2β =
lim
R→∞

R
√

2πβ
. (2.111)
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Chapter 3

Supersymmetric Quantum

Mechanics - Part I

Supersymmetric QM is a mathematical construct that connects every fermion to a bosonic su-
perpartner and every boson to a fermionic superpartner. It harbours conserved supercharges
Q which are the supersymmetric equivalents to the conserved charges we saw in Noether's
theorem. By using the supercharges it is possible to map back and forth between fermionic
and bosonic states in Hilbert space,

Q|boson〉 = |fermion〉.

In this chapter we will begin to explore supersymmetric QM by applying the methods from
chapter 2. We start with an introduction of Grassmann numbers that will be used through-
out the rest of the paper. If already familiar with this algebra, the reader may skip section
3.1 without loosing any of the supersymmetry concepts. We proceed with the Lagrangian
formulation and apply supersymmetric transformations to �nd an expressions for the super-
charges. After quantization of the system we can use our supercharges to study the properties
of supersymmetry. We will come across the Witten index which gets us halfway to our goal
of connecting supersymmetric QM to topological invariants of the manifold we are working
in. We will end the chapter with two examples computing the Witten index for two di�erent
systems. Our main references for this chapter are 'Mirror Symmetry' [1] and 'Constraints on
Supersymmetry Breaking' [2].

3.1 Grassmann numbers

To be able to study supersymmetric quantum mechanics we must use bosonic and fermionic
operators. Bosonic operators commute with each other but fermionic operators anti-commute
and to be able to do functional integration of fermionic �elds, a new kind of numbers must
be introduced. These numbers are called Grassmann numbers and are di�erent from real
and complex numbers.

Let θi, θ2 be two independent Grassmann numbers that are not composed out of di�erent
Grassmann numbers, we call them basic Grassmann numbers. Basic Grassmann numbers
are odd and have the property that they anti-commute with each other.

{θi, θj} = θiθj + θjθi = 0

⇒ θiθj = −θjθi,
(3.1)

which makes the square of a basic Grassmann number zero,

θ2
i = 0

since it is the only way the condition θiθi = −θiθi can be ful�lled. Basic Grassmann numbers
commute with real and complex numbers. In symbols, let x ∈ R, a∈ C, and then

θix = xθi, θia = aθi. (3.2)
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The di�erentiation of a basic Grassmann number is de�ned in the following way

∂θj
∂θi

= δij

∂(aθj)

∂θi
= a

∂θi
∂θj

= aδij

∂(θiθj)

∂θi
= θj

∂(θiθj)

∂θj
= −θi,

(3.3)

whereas integration may be de�ned as

∫
dθi a = 0∫
dθi aθk = aδik∫
dθi θjθi = −θj∫
dθiθiθj = θj .

(3.4)

We also have the double integrals de�ned as

∫
dθidθj(−iθiθj) = 1∫
dθidθj(θi) = 0∫
dθidθja = 0.

(3.5)

The factor of i in (3.5) is not necessary, but this is the de�nition we will use later on in
section 5.1.2 for convenience in calculations.

Let us now study a real Grassmann algebra, where we have an arbitrary number of real
numbers r1, r2, ...rn and an arbitrary number of basic Grassmann numbers θ1, θ2, ...θn. A
Grassmann number is the arbitrary sum of an arbitrary product of real numbers and basic
Grassmann numbers. So a Grassmann number z, can be expressed as

z = zr + zg, (3.6)

where zr is a real number and zg a general Grassmann number (also called Grassmann
variable). The set of all Grassmann numbers is called a real Grassmann algebra. A general
Grassmann number can be expressed as a sum of even and odd Grassmann numbers

zg =

N∑
n=1

θ1θ2...θn. (3.7)

Where θ1 is an odd Grassmann variable and θ1θ2 is an even Grassmann variable since it
is composed of the basic Grassmann numbers θ1, θ2...θn which are odd. So any product of
an even number of basic Grassmann number will result in an even Grassmann variable and
any product of an odd number of basic Grassmann number will result in an odd Grassmann
variable. Odd Grassmann variables follow the same rules as the basic Grassmann number
since both have the properties of being odd. That is, odd Grassmann variables anti-commute
with each other but commute with real and complex numbers, and the square of such a
variable is zero. Even Grassmann numbers on the other hand commute with each other

[θ1θ2, θ3θ4] = θ1θ2θ3θ4 − θ3θ4θ1θ2 = θ1θ2θ3θ4 + θ3θ1θ4θ2

= θ1θ2θ3θ4 − θ1θ3θ4θ2 = θ1θ2θ3θ4 − θ1θ2θ3θ4 = 0
(3.8)
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where θ1θ2 and θ3θ4 are two even Grassmann variables. The even Grassmann numbers does
also commute with real and complex numbers. Odd and even Grassmann variables commute
with each other

[θ1, θ2θ3] = θ1θ2θ3 − θ2θ3θ1 = 0. (3.9)

The square of an even Grassmann number does not have to be zero but it is possible

(θ1θ2)2 = θ1θ2θ1θ2 = −θ1θ2θ2θ1 = −θ1θ
2
2θ1 = 0 (3.10)

since θ2
2 = 0 still holds. But if one for instance has the even Grassmann variable θ1θ2 + θ3θ4

the square is non-zero

(θ1θ2 + θ3θ4)2 = θ1θ2θ1θ2 + θ1θ2θ3θ4 + θ3θ4θ1θ2 + θ3θ4θ3θ4 = 2θ1θ2θ3θ4 (3.11)

So the squares of even Grassmann variables behave in di�erent ways. The Grassmann number
z can always be written as the sum of an even and an odd part

z = ze + zo, (3.12)

where ze is the even part and zo the odd part. They can then be expressed as

ze = zr +

N/2∑
n=1

θ1θ2...θ2n,

zo =

N/2∑
n=1

θ1θ2...θ2n−1.

(3.13)

The even part ze is commutating and the odd part zo is anti-commutating. The fermionic
variables are described by odd Grassmann numbers and the bosonic variables are even Grass-
mann valued.

3.2 The Lagrangian and Supersymmetry Transformations

In this section we will �rst show that a given Lagrangian, for a general potential theory of
one variable, is supersymmetric by expressing it as a total time derivative. By then invoking
Neothers theorem we �nd the supercharges. We end the section by quantizing the system.

3.2.1 Supersymmetric Lagrangian

To show that a given Lagrangian is supersymmetric, we begin our journey with a Lagrangian
retrieved from Mirror Symmetry [1]

L =
1

2
ẋ2 − 1

2
(h′(x))2 +

i

2
(ψ̄ψ̇ − ˙̄ψψ)− h′′(x)ψ̄ψ (3.14)

where ψ is a complex fermionic parameter (with complex conjugate ψ̄) and the superpartner
of x. h(x) is the superpotential that enters in the bosonic and fermionic potential energy
terms. It is the symmetry between the bosonic and fermionic variables that creates the
supersymmetry and it will emerge through the following transformation of the parameters

δx = εψ̄ − ε̄ψ, δẋ = ε ˙̄ψ − ε̄ψ̇

δψ = ε(iẋ+ h′(x)), δψ̇ = ε(iẍ+
d

dt
h′(x))

δψ̄ = ε̄(−iẋ+ h′(x)), δ ˙̄ψ = ε̄(−iẍ+
d

dt
h′(x)).

(3.15)

Here ε is a complex fermionic parameter and has the complex conjugate ε̄. These transfor-
mations are speci�c to the Lagrangian and found through trial and error. We compute the
variation of the Lagrangian using the supersymmetric transformations,

δL =
1

2
δ(ẋ)2 − 1

2
δ(h′(x))2 +

i

2
δ(ψ̄ψ̇ − ˙̄ψψ)− δ(h′′(x)ψ̄ψ)

= ẋδ(ẋ)− h′(x)δ(h′(x)) +
i

2
δψ̄ψ̇ +

i

2
ψ̄δψ̇ − i

2
δ ˙̄ψψ − i

2
˙̄ψδψ

− δh′′(x)ψ̄ψ − h′′(x)δψ̄ψ − h′′(x)ψ̄δψ.

(3.16)
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We know that δh′(x) = h′′(x)δx which gives

δh′′(x)ψ̄ψ = h′′′(x)δxψ̄ψ = h′′′(x)(εψ̄ − ε̄ψ)ψ̄ψ = 0, (3.17)

since ψ is an odd Grassmann number and ψ2 = 0. This gives

δL = ẋ(ε ˙̄ψ − ε̄ψ̇)− h′(x)h′′(x)(εψ̄ − ε̄ψ) +
i

2
ε̄(−iẋ+ h′(x))ψ̇ +

i

2
ψ̄ε(iẍ+

d

dt
h′(x))

− i

2
ε̄(−iẍ+

d

dt
h′(x))ψ − i

2
˙̄ψε(iẋ+ h′(x))− h′′(x)ε̄(−iẋ+ h′(x))ψ − h′′(x)ψ̄ε(iẋ+ h′(x))

= ε ˙̄ψẋ− ε̄ψ̇ẋ− εψ̄h′(x)h′′(x) + ε̄ψh′(x)h′′(x) +
1

2
ε̄ψ̇ẋ+

i

2
ε̄ψ̇h′(x)

− 1

2
ψ̄εẍ+

i

2
ψ̄ε

d

dt
h′(x)− 1

2
ε̄ψẍ− i

2
ε̄ψ

d

dt
h′(x)

+
1

2
˙̄ψεẋ− i

2
˙̄ψεh′(x) + iε̄ψẋh′′(x)− ε̄ψh′′(x)h′(x)− iψ̄εẋh′′(x)− ψ̄εh′′(x)h′(x)

=
1

2
ε ˙̄ψẋ− 1

2
ε̄ψ̇ẋ+

i

2
ε̄ψ̇h′(x) +

i

2
ε̄ψ

d

dt
h′(x)− i

2
˙̄ψεh′(x)− i

2
ψ̄εẋh′(x) +

1

2
εψ̄ẍ− 1

2
ε̄ψẍ.

(3.18)

Using the fact that d
dth
′(x(t)) = h′′(x)ẋ we write the variation of the Lagrangian as a total

time derivative which shows that it is supersymmetric

δL =
d

dt

(
1

2
[εψ̄ẋ+ ψε̄ẋ+ iε̄ψh′(x)− iψ̄εh′(x)]

)
. (3.19)

3.2.2 Supercharges

If the variation of the Lagrangian δL can be written as a total time derivative there exists
a conserved charge by Noether's theorem, as we saw in chapter 2. We will now express the
total time derivative in two ways, subtract them and thereby �nd the supercharges. We have
already found one way (3.19) in the previous section using the supersymmetric transforma-
tions directly, and now we will �nd another through di�erentiation of the Lagrangian. We
get

δL =
∂L

∂x
δx+

∂L

∂ẋ
δẋ+ δψ

∂L

∂ψ
+ δψ̇

∂L

∂ψ̇
+ δψ̄

∂L

∂ψ̄
+ δ ˙̄ψ

∂L

∂ ˙̄ψ
. (3.20)

When we di�erentiate functions of the odd Grassmann variables ψ and ψ̄, we need to be very
careful with the partial derivatives. We have introduced the convention that ∂

∂ψ1
(ψ1ψ2) = ψ2

and ∂
∂ψ2

(ψ1ψ2) = −ψ1. Consider for example a function HF := ψ̄ψ. Di�erentiating this

gives δHF = δ(ψ̄ψ) = (δψ̄)ψ + ψ̄δψ. If we then naively write δHF = ∂HF
∂ψ̄

δψ̄ + ∂HF
∂ψ δψ, and

then by using the di�erentiation convention we get δHF = ψδψ̄ − ψ̄δψ, which is not equal
to the δHF received by di�erentiating directly (a minus sign di�ers). If we instead write
δHF = δψ̄ ∂HF

∂ψ̄
+ δψ ∂HF∂ψ we get the correct result. Therefore, the convention used for the

fermionic variables here, and throughout the text, is

δψ
∂F (ψ)

∂ψ
,

∂

∂ψi
(ψiψj) = ψj (3.21)

where F is an arbitrary function of ψ. Putting the variation to the right of the bosonic
variables is mainly to display the di�erence compared to the fermionic ones. One could
equally put them to the left.

Back to our calculation of δL, the Lagrangian equation of motion(
∂L

∂x
− d

dt

∂L

∂ẋ

)
δx = (0)δx = 0, (3.22)

and the mathematical trick

∂L

∂ẋ
δẋ =

d

dt

(
∂L

∂ẋ
δx

)
− d

dt

(
∂L

∂ẋ

)
δx, (3.23)
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provide us with the second expression for the variation

δL =
d

dt

[
∂L

∂ẋ
δx+ δψ

∂L

∂ψ̇
+ δψ̄

∂L

∂ ˙̄ψ

]
. (3.24)

Inserting the supersymmetric transformations

∂L

∂ẋ
δx = ẋ(εψ̄ − ε̄ψ), δψ

∂L

∂ψ̇
= − i

2
ε(iẋ+ h′(x))ψ̄, δψ̄

∂L

∂ ˙̄ψ
= − i

2
ε̄(−iẋ+ h′(x))ψ (3.25)

we get

δL =
d

dt

(
ẋ(εψ̄ − ε̄ψ)− i

2
ε(iẋ+ h′(x))ψ̄ − i

2
ε̄(−iẋ+ h′(x))ψ

)
. (3.26)

Now we use the two expressions (3.19) and (3.26) of δL to calculate the supercharges Q and
Q̄. As the two variations are equivalent they subtract to zero and we get

0 =
d

dt

1

2
[εψ̄ẋ+ ψε̄ẋ+ iε̄ψh′(x)− iψ̄εh′(x)]︸ ︷︷ ︸

α

− d

dt

[
∂L

∂ẋ
δx+ δψ

∂L

∂ψ̇
+ δψ̄

∂L

∂ ˙̄ψ

]

=
d

dt

[
α− ẋ(εψ̄ − ε̄ψ) +

i

2
ε(iẋ+ h′(x))ψ̄ +

i

2
ε̄(−iẋ+ h′(x))ψ

]
=

d

dt

[
α− ẋεψ̄ + ẋε̄ψ − 1

2
ẋεψ̄ +

i

2
εψ̄h′(x) +

1

2
ẋε̄ψ +

i

2
ε̄ψh′(x)

]
=

d

dt

[
−ẋεψ̄ + ẋε̄ψ + iε̄ψh′(x) + iεψ̄h′(x)

]
=

d

dt

[
ε̄(ẋ+ ih′(x))ψ + ε(−ẋ+ ih′(x))ψ̄

]
=

d

dt

[
−iε̄ψ(−iẋ+ h′(x))− iεψ̄(iẋ+ h′(x))

]
=

d

dt

[
−iε̄Q̄− iεQ

]
.

(3.27)

Now we have found the longed for conserved supercharges

Q = ψ̄(iẋ+ h′(x)),

Q̄ = ψ(−iẋ+ h′(x)).
(3.28)

3.2.3 Hamiltonian Quantization

So far, we have just considered the classical theory, where x has been a simple number,
and ψ and ψ have been odd Grassmann numbers. Now, we want to quantize the system
so that these variables become operators. To be able to quantize the system, we need the
correct commutators and anti-commutators. We �nd these by just multiplying their classical
analogue, the Poisson bracket, with i~.

Consider a speci�c example where the Lagrangian L is the di�erence between kinetic and
potential energy, L = T −V . The Hamiltonian H is the sum of kinetic and potential energy,
H = T + V . Then H + L = 2T . For one simple variable in one dimension, T = 1

2 ẋp, and

p is the (generalised) momentum p = ∂L
∂ẋ . We get 2T = ẋ∂L∂ẋ in this simple case, as we saw

in section 2.1.3. But in the present discussion, we also have two other variables, ψ and ψ.
Thus, the Hamiltonian becomes

H = 2T − L = ψ̇
∂L

∂ψ̇
+ ˙̄ψ

∂L

∂ ˙̄ψ
+ ẋ

∂L

∂ẋ
− L

= − i
2
ψ̇ψ̄ − i

2
˙̄ψψ + ẋẋ− 1

2
ẋ2 +

1

2
(h′(x))2 − i

2
(ψ̄ψ̇ − ˙̄ψψ) + h′′(x)ψ̄ψ

=
1

2
ẋ2 +

1

2
(h′(x))2 + h′′(x)ψ̄ψ

=
1

2
ẋ2 +

1

2
(h′(x))2 +

1

2
h′′(x)(ψ̄ψ − ψψ̄).

(3.29)
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We have chosen to rewrite the last term h′′(x)ψ̄ψ in H as two terms, using the anti-
commutativity of the odd Grassmann numbers. It will be obvious later why we do this.

We now turn to the Hamiltonian formulation of analytical mechanics. Instead of La-
grange's equation of motion in con�guration space, which are of second order, we get Hamil-
ton's equations in phase space, which are di�erential equations of �rst order. As usual, we
start with the action S,

S =

∫
dt L =

∫
dt

(
ψ̇
∂L

∂ψ̇
+ ˙̄ψ

∂L

∂ ˙̄ψ
+ ẋ

∂L

∂ẋ
−H(x, ẋ, ψ, ψ̄)

)

=

∫
dt

(
ẋẋ+

i

2
(ψ̄ψ̇ − ˙̄ψψ)−H(x, ẋ, ψ, ψ̄)

)
=

∫
dt

(
pẋ+

i

2
(ψ̄ψ̇ − ˙̄ψψ)−H(x, p, ψ, ψ̄)

)
.

(3.30)

In the last step we have written p instead of ẋ, and the mass m = 1. Remembering the
correct order of variation and partial derivative for the odd Grassmann variables, we may
write the variation of the action

δS =

∫
dt δL

=

∫
dt

[
(δp)ẋ+ pδẋ+

i

2

(
(δψ̄)ψ̇ + ψ̄δψ̇ − (δ ˙̄ψ)ψ − ˙̄ψδψ

)
− ∂H

∂x
δx− ∂H

∂p
δp− δψ∂H

∂ψ
− δψ̄ ∂H

∂ψ̄

]
=

∫
dt

[(
ẋ− ∂H

∂p

)
δp+ p

d

dt
(δx) +

i

2
(δψ̄)ψ̇ +

i

2
ψ̄
d

dt
(δψ)− i

2

d

dt
(δψ̄)ψ − i

2
˙̄ψδψ

− ∂H

∂x
δx− δψ∂H

∂ψ
− δψ̄ ∂H

∂ψ̄

]
=

∫
dt

[(
ẋ− ∂H

∂p

)
δp+

d

dt
(pδx)− ṗδx+

i

2
(δψ̄)ψ̇ +

i

2

d

dt
(ψ̄δψ)− i

2
˙̄ψδψ

− i
2

d

dt

(
(δψ̄)ψ

)
+
i

2
(δψ̄)ψ̇ − i

2
˙̄ψδψ − ∂H

∂x
δx− δψ∂H

∂ψ
− δψ̄ ∂H

∂ψ̄

]
=

∫
dt

[(
ẋ− ∂H

∂p

)
δp−

(
ṗ+

∂H

∂x

)
δx+

(
−i ˙̄ψ +

∂H

∂ψ

)
δψ +

(
−iψ̇ +

∂H

∂ψ̄

)
δψ̄

]
+

[
(pδx) +

i

2
(ψ̄δψ)− i

2

(
(δψ̄)ψ

)]end point

start point

= 0

(3.31)

with the integrated term equal to zero. The remaining integral shall be zero for all super-
symmetric variations. Then each term in the brackets must be identically zero. Thus we
obtain Hamilton's equations of motion

ẋ =
∂H

∂p
; ṗ = −∂H

∂x
; ψ̇ = −i∂H

∂ψ̄
; ˙̄ψ = −i∂H

∂ψ
. (3.32)

Now we are ready to �nd an expression for the Poisson bracket that we met in (2.25). By
using Hamilton's equations in the following expression for the time derivative of the action
S = S(x, p, ψ, ψ̄) we reach our goal

Ṡ =
dS

dt
=
∂S

∂p
ṗ+

∂S

∂x
ẋ+

∂S

∂ψ
ψ̇ +

∂S

∂ψ̄
˙̄ψ = −∂S

∂p

∂H

∂x
+
∂S

∂x

∂H

∂p
− i∂S

∂ψ

∂H

∂ψ̄
− i∂S

∂ψ̄

∂H

∂ψ

= S

(←−
∂

∂x

∂

∂p
−
←−
∂

∂p

∂

∂x
− i

(←−
∂

∂ψ

∂

∂ψ̄
+

←−
∂

∂ψ̄

∂

∂ψ

))
H =: {S,H}P .

(3.33)
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We de�ne
←−
∂
∂x as a partial di�erentiation to the factor on the left. Let us compute some

Poisson brackets, using the de�nition given in (3.33) above

{x, x}P = 0; {p, p}P = 0; {x, p}P = 1; {ψ,ψ}P = 0; {ψ̄, ψ̄}P = 0; {ψ, ψ̄}P = −i.
(3.34)

We now leave the classical physics behind and turn wholeheartedly to quantum mechanics.
We multiply the Poisson brackets with i~ and get commutators [ , ] in the case of bosonic
variables (x and p), and anti-commutators { , } in the case of fermionic variables (ψ and ψ̄).
We skip the convention to write hat � over the variables which now have become operators.
When setting ~ = 1 we get

[x, x] = 0; [p, p] = 0; [x, p] = i; {ψ,ψ} = 0; {ψ̄, ψ̄} = 0; {ψ, ψ̄} = 1 (3.35)

Let us restate the Hamiltonian we de�ned before

H =
1

2
p2 +

1

2
(h′(x))2 +

1

2
h′′(x)(ψ̄ψ − ψψ̄). (3.36)

Notice that the terms of H are operators on a Hilbert space from now on.

3.3 General Structure of the Hilbert Space and the Wit-

ten Index

The purpose of this section is to introduce the Witten index Tr(−1)F . To reach this goal
we �rst have to study the structure of the Hilbert space. We will see how the Hilbert space
decomposes into fermionic and bosonic subspaces, and with this decomposition we will �nd
the Witten index.

3.3.1 Supersymmetric Hilbert Space

In this section we will investigate some of the properties which we can ascribe the Hilbert
space. We note the important identity following from the anti-commutator between x and p

[p, f(x)] = −if ′(x) (3.37)

where f is an arbitrary (albeit analytic) function of x. The proof of this identity can be
found in appendix A.1.

We now introduce an operator F , de�ned as

F = ψ̄ψ. (3.38)

This operator is generally called the Fermion number operator, we will see later on why this
name is chosen. F satis�es the following commutation relations

[F,ψ] = ψ̄ψ2 − ψψ̄ψ = −(
{
ψ, ψ̄

}
− ψ̄ψ)ψ

= −ψ
[F, ψ̄] = ψ̄ψψ̄ − ψ̄2ψ = ψ̄(

{
ψ, ψ̄

}
− ψ̄ψ)

= ψ̄.

(3.39)

This works because the square of a fermionic (odd Grassmann) variable is always zero. We
now de�ne a state |0〉 as

ψ|0〉 = 0. (3.40)

In order to assure ourselves that this de�nition makes sense let us see what ψ does to a
randomly chosen state |v〉. There are two options here

ψ|v〉 = 0

ψ|v〉 6= 0.
(3.41)

In the �rst case we can set |v〉 = |0〉, in the second case we can set ψ|v〉 = |0〉 because

ψ(ψ|v〉) = ψ2|v〉 = 0|v〉 = 0. (3.42)
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So ψ|v〉 then satis�es our de�ning condition. We can think of ψ and ψ̄ as analogous to
the raising and lowering operators used in the treatment of the simple harmonic oscillator
(section 2.2.1). This means that we can use the 'raising' operator ψ̄ to build up a 'tower' of
states from |0〉. But because ψ̄2 = 0 the tower contains only two vectors, namely

|0〉, ψ̄|0〉. (3.43)

These vectors span a two-dimensional space. We impose a coordinate system by setting

|0〉 := (1, 0)T and ψ|0〉 := (0, 1)T . (3.44)

In this basis ψ and ψ̄ are represented by

ψ :=

(
0 1
0 0

)
and ψ̄ :=

(
0 0
1 0

)
. (3.45)

This is only one part of the total Hilbert space on which the full Hamiltonian operates. The
other part is spanned by the eigenvectors of the position operator (or the momentum operator:
same space, di�erent representation). This space is the space of square normalizable complex
functions of a real variable (think wave functions). This space is denoted by L2(R,C) for
short. The full Hilbert space is then given by the tensor product of these two spaces

H = L2(R,C)⊗ Space(|0〉, ψ̄|0〉) (3.46)

or equivalently
H = L2(R,C)|0〉 ⊕ L2(R,C)ψ̄|0〉. (3.47)

We now call the �rst and second component of H the space of bosonic states and the space
of fermionic states, respectively. We write this as

HB = L2(R,C)|0〉
HF = L2(R,C)ψ̄|0〉.

(3.48)

Note that the operator F is the zero operator in the bosonic space and the identity operator
in the fermionic space, which makes the choice of name apparent. We introduce an opera-
tor (−1)F that is the identity operator in the bosonic space and minus the identity in the
fermionic space. This induces a Z2-grading on the space H. A Zp-graded vector space is a
space that can be decomposed into a direct sum of subspaces indexed by the elements of Zp.
In our case p = 2 and the two subspaces are HB and HF . We now use the charges Q and Q̄
we de�ned earlier. We repeat them for clarity

Q = ψ̄ (ip+ h′(x)) ,

Q̄ = ψ (−ip+ h′(x)) .
(3.49)

Let us evaluate the commutator of Q with the Hamiltonian

[H,Q] =

[
1

2
p2 +

1

2
(h′(x))2 +

1

2
h′′(x)(ψ̄ψ − ψψ̄), ψ̄ (ip+ h′(x))

]
=
ψ̄

2

[
p2, ip

]
+
ψ̄

2

[
p2, h′(x)

]
+
ψ̄

2

[
h′(x)2, ip

]
+
ψ̄

2

[
h′(x)2, h′(x)

]
+

1

2

[
h′′(x)ψ̄ψ, ψ̄ (ip+ h′(x))

]
− 1

2

[
h′′(x)ψψ̄, ψ̄ (ip+ h′(x))

]
=
ψ̄

2

[
p2, h′(x)

]
+
ψ̄

2

[
h′(x)2, ip

]
+
ψ̄

2
h′′(x)ψψ̄ (ip+ h′(x)) +

ψ̄

2
(ip+ h′(x))ψψ̄h′′(x)

=
ψ̄

2
pph′(x)− ψ̄

2
h′(x)pp− ψ̄

2
h′(x)h′′(x) +

ψ̄

2
(ih′′(x)p+ iph′′(x)) + ψ̄h′′(x)h′(x)

=
ψ̄

2

(
h′(x)p2 + [p, h′(x)]p+ p[p, h′(x)]− h′(x)p2

)
+
ψ̄

2
(ih′′(x)p+ iph′′(x))

= − ψ̄
2

(ih′′(x)p+ iph′′(x)) +
ψ̄

2
(ih′′(x)p+ iph′′(x))

= 0

(3.50)
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This means that Q is a conserved quantity. Hence the notion we have of Q as a conserved
charge in classical mechanics carries over into the quantum realm. In a similar calculation
we �nd

[H, Q̄] = 0. (3.51)

We can also evaluate the commutator of Q with F

[F,Q] = FQ−QF
= ψ̄ψψ̄(ip+ h′(x))− ψ̄(ip+ h′(x))ψ̄ψ

=
(
{ψ̄ψ} − ψψ̄

)
ψ̄(ip+ h′(x))− ψ̄ψ̄ψ(ip+ h′(x))

= (1− ψψ̄)ψ̄(ip+ h′(x))

= ψ̄(ip+ h′(x))

= Q.

(3.52)

Similarly we can �nd that
[F, Q̄] = −Q̄. (3.53)

Now rewrite (−1)F as
(−1)F = 1− 2F.

It is possible to do so since this new operator 1− 2F does the same thing as (−1)F . When
F = 0 both operators equal 1, and when F = 1 both operators are -1. It is then easier to see
that Q and (−1)F anticommutes

Q(−1)F = Q(1− 2F )

= Q− 2Q(ψ̄ψ)

= Q− 2Q+ 2ψ̄(ip+ h′(x))ψψ̄

= Q− 2Q+ 2
(
ψ̄ψ
) (
ψ̄(ip+ h′(x))

)
= (1− 2 + 2FQ

= (1− 2 + 2F )Q

= −(1− 2F )Q = −(−1)FQ.

(3.54)

Note the subtle order of operations and the use of the anti-commutator of ψ and ψ̄. Similarly
we can see that

Q̄(−1)F = −(−1)F Q̄. (3.55)

This tells us that the charges Q and Q̄ map bosonic states onto fermionic states and vice
versa. Because ψ2 = ψ̄2 = 0 the charges are nilpotent and we get

{Q,Q} = {Q̄, Q̄} = 0.

We also know that
Q2 = (Q†)2 = 0. (3.56)

Now we compute the anti-commutator between Q and Q̄

{Q, Q̄} = {ψ̄ (ip+ h′(x)) , ψ (−ip+ h′(x))}
= {ψ̄ip, ψ(−ip)}+ {ψ̄h′(x), ψh′(x)}+ i{ψ̄p, ψh′(x)} − i{ψ̄h′(x), ψp}
= p2 + (h′(x))2 + i(ψ̄ψ − ψψ̄)[p, h′(x)]

= p2 + h′(x)2 + h′′(x)(ψ̄ψ − ψψ̄)

= 2H,

(3.57)

this means we can write the Hamiltonian as,

H =
1

2
(QQ† +Q†Q). (3.58)

It is actually easier to calculate the commutators between H and Q, Q̄, with the Hamiltonian
written in the form (3.58).
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We know that the operator (−1)F , that denotes our Z2 grading, obeys the relations:
Q(−1)F = −(−1)FQ and Q̄(−1)F = −(−1)F Q̄. Because of that we will call the supercharges
odd. The Hamiltonian however, is even for the following reason

H(−1)F =
1

2
(QQ† +Q†Q)(−1)F

=
1

2
(QQ†(−1)F +Q†Q(−1)F )

=
1

2
(−Q(−1)FQ† −Q†(−1)FQ)

=
1

2
((−1)FQQ† + (−1)FQ†Q)

= (−1)FH.

(3.59)

We denote the subspace of H on which (−1)F = 1, where F has to be an even number, by
the even (bosonic) subspace HB , and the subspace of H on which (−1)F = −1, with F an
odd number, by the odd (fermionic) subspace HF .

As alluded to earlier in this section the supercharges map one subspace to the other, i.e
when the charges act on one of the subspaces it takes it to the other subspace

Q,Q† : HB → HF

Q,Q† : HF → HB .
(3.60)

We show this by using the basis vector for each subspace |0〉 and ψ̄|0〉 and let Q and Q† act
on them. Note that p and h′(x) have no impact on which space we are in and therefore we
do not need to take them into consideration

Q|0〉 ∝ ψ̄|0〉 ∈ HF (3.61)

and

Q̄ψ̄|0〉 ∝ ψψ̄|0〉 =
(
{ψ, ψ̄} − ψ̄ψ

)
|0〉

= 1|0〉 − F |0〉
= 1|0〉 ∈ HB .

(3.62)

This method of proving the mapping relations stated above, gives rise to some complications
when we consider how Q̄ maps a bosonic state and how Q maps a fermionic state. If we use
the same method as before we get

Q̄|0〉 ∝ ψ|0〉 = 0,

Qψ̄|0〉 ∝ ψ̄2|0〉 = 0.
(3.63)

The zero vector is not a state, that we can de�ne as either bosonic nor fermionic. To really
prove all the relations above we will consider a more general case, in which the fermion
number operator F can take values F = n, n = 0, 1, 2... Then

F |ψn〉 = n|ψn〉, (3.64)

ψn =

{
bosonic if n is even
fermionic if n is odd.

(3.65)

Now, let F count on the state Q|ψn〉 instead

FQ|ψn〉 = ([F,Q] +QF )|ψn〉
= (Q+QF )|ψn〉
= (n+ 1)Q|ψn〉.

(3.66)

So F counts to n+ 1 on the state Q|ψn〉. If n is even, n+ 1 is obviously odd and vice versa,
i.e. we have made the transition from our original state to the other, by letting Q act on it.
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And by using the commutation relations once again, we come to the same conclusion about
the action of Q̄ on a given state,

FQ̄|ψn〉 = (n− 1)Q̄|ψn〉. (3.67)

The Hamiltonian on the other hand will map a state on itself. It is easily seen when we
express the Hamiltonian as H = 1

2 (QQ̄ + QQ̄). Now Q or Q̄ will �rst take you from your
original state to the other, but then Q or Q̄ will take you back to the state you �rst started
in. One can say that the Hamiltonian preserves the decomposition of the Hilbert space:
H = HB ⊕HF .

The scalar product that de�nes the Hilbert space, implies that the norm of a vector is
positive

‖ Q|α〉 ‖≥ 0. (3.68)

Since Q|α〉 is complex taking the norm of it means that we multiply it with its complex
conjugate 〈α|Q̄

〈α|Q̄Q|α〉 ≥ 0. (3.69)

In the same way we get that ‖ Q̄|α〉 ‖≥ 0 and

〈α|QQ̄|α〉 ≥ 0. (3.70)

If we add these two expressions, we can draw the conclusion that the Hamiltonian H is a
positive operator,

〈α|Q̄Q|α〉+ 〈α|QQ̄|α〉 = 〈α|Q̄Q+QQ̄|α〉 = 〈α|2H|α〉 ≥ 0

i.e

H =
1

2
{QQ̄} ≥ 0. (3.71)

Now, assume there is a ground state with zero energy H|α〉 = 0. This means that
〈α|H|α〉 = 0 and ‖ Q|α〉 ‖ + ‖ Q̄|α〉 ‖= 0. As we said before, the norm is always positive,
and therefore

H|α〉 = 0 ⇐⇒ Q|α〉 = Q̄|α〉 = 0. (3.72)

A state that is annihilated by the supercharges is invariant under supersymmetry and we will
call such a state a supersymmetric state. What we just showed above is that the zero energy
ground state is in fact a supersymmetric state. It also implies the converse: a supersymmetric
state is a zero energy ground state. We will call such a state, not that surprisingly, a
supersymmetric ground state.

The Hilbert space can be decomposed in terms of eigenspaces of the Hamiltonian

H = ⊕n=1,2...H(n), such that H|H(n)
= E(n). (3.73)

We have already seen that Q, Q̄ and (−1)F all commute with the Hamiltonian. So, if we
operate on a state with one of these operators, the energy level does not change, they preserve
the energy levels

Q, Q̄, (−1)F : H(n) 7→ H(n). (3.74)

However, the decomposition of our Hilbert space does not stop here. We have earlier in this
section showed that we can split up each energy level into bosonic and fermionic subspaces, or
even and odd subspaces if you like (referring to the number counted by the fermion number
operator F ),

H(n) = HB(n) +HF(n). (3.75)

We repeat that the supercharges map one subspace to the other, but now with the new
subscript

Q,Q† : HB(n) 7→ H
F
(n) ; HF(n) 7→ H

B
(n). (3.76)
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3.3.2 Witten Index

Now it is time for the Witten index, the future gateway to the Euler characteristic [2]. Let us
start by forming a new operator Q1 := Q+Q†. Since Q and Q† square to zero, this operator
connects to the Hamiltonian in the following way

Q2
1 = 2H. (3.77)

This newly formed operator commutes with the Hamiltonian and preserves each energy level.
It also maps the bosonic subspace to the fermionic subspace and vice versa. Let us look at
the inverse of Q1, such that Q1Q

−1
1 = Q−1

1 Q1 = 1. We use that Q2
1 at the nth energy level,

i.e. in the subspace H(n), squares to Q
2
1 = 2En. The inverse is then Q−1

1 = Q1

2En
. This is

easily seen by

Q1Q
−1
1 = Q−1

1 Q1 =
Q2

1

2En
= 1. (3.78)

As long as the energy En > 0 the inverse exists, and as we can see the inverse will map the
two states back to their original state. So the operator Q1 de�nes an isomorphism between
the two subspaces HB(n) and H

F
(n)

HB(n)
∼= HF(n). (3.79)

Thus, each excited energy level comes with a paired bosonic and fermionic state. Note that
we wrote each excited level, since we have no such restrictions on the zero energy state.
Hence the supersymmetric ground states do not have to be paired.

The Witten index Tr(−1)F states that the number of bosonic ground states minus the
number of fermionic ground states,

Tr(−1)F = {number of bosonic ground states} − {number of fermionic ground states},

is invariant. To see the logic in this statement we consider a continuous deformation of the
theory of energy states we have developed so far. Now the energy levels may split up into
several levels. We may have newly formed energy states but there must be the same number of
bosonic and fermionic states at each level, due to the isomorphism discussed above. A positive
energy state may be annihilated and a zero energy state may acquire positive energy, again
the positive energy state must come with both a bosonic and fermionic state. We represent
this in a more mathematical way as

Tr(−1)F = dimHB(0) − dimHF(0). (3.80)

Since the operator (−1)F is −1 for a fermionic state and +1 for a bosonic state, when we
calculate the trace, all the excited energy states will be cancelled out. The only states that
survive is the supersymmetric ground states. One should not take (3.80) too literally, but
rather look at it as a useful de�nition. Since it is an in�nite summation, over all states,
it is ill de�ned and not convergent. One can regularize Tr(−1)F and get a commonly used
expression for the Witten index,

Tr(−1)F e−βH . (3.81)

This expression is not dependent of β, since all non zero energy states cancels. It also gives
back the �rst expression in the case where β → 0.

3.4 Example: Ground States in the Supersymmetric Po-

tential Theory

To �nd the supersymmetric ground states of a supersymmetric potential theory, we start by
representing the supercharges in the two-dimensional ground state basis (|0〉, ψ̄|0〉)

Q = ψ̄(ip+ h′(x)) =

(
0 0

d/dx+ h′(x) 0

)
,

Q̄ = ψ(−ip+ h′(x)) =

(
0 −d/dx+ h′(x)
0 0

) (3.82)
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where p is the usual operator p = −i ∂∂x . A supersymmetric ground state is a state annihilated
by the supercharges (Q̄ψ = Qψ = 0). If we write a state on the form Ψ = f1(x)|0〉+f2(x)ψ̄|0〉,
and operate on it with Q and Q̄ we can �nd the di�erential equations that f1(x) and f2(x)
must ful�ll to make Ψ a ground state

QΨ = 0 ⇒
(
d

dx
+ h′(x)

)
f1(x) = 0 (3.83)

Q̄Ψ = 0 ⇒
(
− d

dx
+ h′(x)

)
f2(x) = 0 (3.84)

with the solutions
f1(x) = c1e

−h(x), f2(x) = c2e
h(x). (3.85)

We want these two solutions to be square normalizable which means we have to look at how
h(x) behaves when x→ ±∞. We consider three di�erent behaviours of h(x)

• Case 1: h(x)→∞ at both x→ ±∞. Here e−h(x) is normalizable but eh(x) is not. The
supersymmetric ground state is given by

Ψ = f1(x)|0〉 = c2e
−h(x)|0〉. (3.86)

This state belongs to HB with the supersymmetric index

Tr(−1)F = 1. (3.87)

• Case 2: h(x) → −∞ at both x → ±∞. Here eh(x) is normalizable but e−h(x) is not.
We again have one supersymmetric ground state

Ψ = f2(x)ψ̄|0〉 = c2e
h(x)ψ̄|0〉. (3.88)

This of course belongs to HF and the Witten index is

Tr(−1)F = −1. (3.89)

• Case 3: h(x)→ −∞ when x→ −∞ and h(x)→∞ when x→∞ or the opposite when
the sign of h(x) is �ipped. Here none of eh(x) or e−h(x) are normalizable, so in this case
we have no supersymmetric ground state, giving us the Witten index

Tr(−1)F = 0. (3.90)

3.5 Example: Ground States and Spectrum of the Super-

symmetric Harmonic Oscillator

We remember the Hamiltonian given in (3.36)

H =
1

2
p2 +

1

2
(h′(x))2 +

1

2
h′′(x)(ψ̄ψ − ψψ̄).

In the preceding example, the superpotential h(x) was quite general. Now we consider the
special case of the harmonic oscillator, with potential energy term V (x) = 1

2ω
2x2. Then, since

in the Hamiltonian above 1
2 (h′(x))

2
= V (x), we get (h′(x))2 = ω2x2, and h(x) = 1

2ωx
2. We

also �nd that h′′(x) = ω. Thus the Hamiltonian becomes

H =
1

2
p2 +

1

2
ω2x2 +

1

2
ω(ψ̄ψ − ψψ̄). (3.91)

Let us for simplicity assume that ω > 0. Then h(x) → ∞ when ±x → ∞, so following the
analysis of the preceding example in 3.4, we �nd the supersymmetric ground states to be
ψ(x) = e−

1
2ωx

2 |0〉.
What is then the spectrum of the supersymmetric harmonic oscillator? Let us divide

the Hamiltonian H in (3.91) into two parts, one bosonic part HB and one fermionic part

31



HF . Since they commute, they will act separately and we can treat their respective spectra
separately

H = HB +HF ; HB =
1

2

(
p2 + ω2x2

)
, HF =

1

2
ω(ψ̄ψ − ψψ̄). (3.92)

We found the bosonic spectrum for HB in section 2.2.1. There we used a Hamiltonian for
which ω = 1. When we include ω in the calculations we get the result

1

2
ω,

3

2
ω,

5

2
ω, . . . .

One can repeat the process of using raising and lowering operators for the fermionic part of
the harmonic oscillator, but we will �nd its spectrum in another way.

In the preceding chapters, we have used {|0〉F ; ψ̄|0〉F } as the basis for the fermionic part
of the Hilbert space. We use our matrix representations (3.45) for ψ and ψ̄

ψ =

(
0 0
1 0

)
, ψ̄ =

(
0 1
0 0

)
. (3.93)

Then the fermionic part of the Hamiltonian may be expressed as

HF =
1

2
ω(ψ̄ψ−ψψ̄) =

1

2
ω

[(
0 1
0 0

)(
0 0
1 0

)
−
(

0 0
1 0

)(
0 1
0 0

)]
=

1

2
ω

(
−1 0
0 1

)
.

(3.94)
Now we want the eigenvalues of this operator

1

2
ω

(
−1 0
0 1

)
x = λx. (3.95)

For non-trivial x we have ∣∣∣∣ −ω2 − λ 0
0 ω

2 − λ

∣∣∣∣ = 0, λ = ±ω
2
. (3.96)

Since −ω2 < ω
2 for ω > 0, we take −ω2 to be the fermionic ground state energy. We �nd the

fermionic spectrum to be − 1
2ω,

1
2ω.

The spectrum of the total Hamiltonian is the sum of the two spectra above. We add the
eigenvalues separately. We get one series of energies when the fermion number is zero

−ω
2

+
ω

2
,−ω

2
+

3

2
ω,−ω

2
+

5

2
ω, . . . = 0, ω, 2ω, 3ω, . . . (3.97)

We get another series of energies when the fermion number is one

ω

2
+
ω

2
,
ω

2
+

3

2
ω,
ω

2
+

5

2
ω, . . . = ω, 2ω, 3ω, . . . (3.98)

See �gure 3.1. Note that there is no state for which F = 1 where the energy is zero. For

Figure 3.1: Spectrum of the supersymmetric harmonic oscillator.

all higher states there is a pairing with two states, one bosonic and one fermionic for each
energy, but this pairing is broken for the ground state energy level.
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Having found the spectrum of the Hamiltonian, it is not di�cult to compute the partition
function of the Witten index of the system. When calculating traces of operators, we must
know which Hilbert space we are in. If we treat the Hamiltonian as two di�erent parts, we
must accordingly treat the Hilbert space as two di�erent Hilbert spaces. Let L2 = L2(R,C)
be the Hilbert space of the bosonic harmonic oscillator, and C2 = C|0〉⊕Cψ̄|0〉 be the Hilbert
space of the fermionic oscillator. Then the total Hilbert space H is

H = L2 ⊗ C2

= L2 ⊗ (C|0〉 ⊕ Cψ̄|0〉)
=
{
L2(R,C)⊗ C|0〉

}
⊕
{
L2(R,C)⊗ Cψ̄|0〉

}
.

(3.99)

We make the direct sum of two spaces which can be seen as the two columns in �gure 3.1.
The spaces represented by these columns are tensor products of the bosonic space and the
two halves of the fermionic space. The partition function is

Z(β) = TrH e−βH

= TrH e−β(HB+HF )

= TrH
(
e−βHB · e−βHF

)
= TrL2 e−βHB · TrC2 e−βHF .

(3.100)

We calculate the traces separately, �rst for L2

TrL2 e−βHB =

∞∑
n=0

e−β(n+ 1
2 )ω = e−

β
2 ω

∞∑
n=0

(
e−βω

)n
=

e−
β
2 ω

1− e−βω
=

1

e
β
2 ω − e− β2 ω

=
1

2 sinh βω
2

,

(3.101)

and then for C2

TrC2 e−βHF = e−β(−ω2 ) + e−β
ω
2 = 2 cosh

βω

2
. (3.102)

In total we get

Z(β) =
1

2 sinh βω
2

· 2 cosh
βω

2
= coth

βω

2
. (3.103)

We clearly see that the partition function depends only on β, the circumference in time of
the circle. The Witten index becomes

Tr(−1)F = TrH
(
(−1)F e−βH

)
= TrH

(
(−1)F e−βHBe−βHF

)
= TrH

(
e−βHB

[
(−1)F e−βHF

])
= TrL2 e−βHB · TrC2

(
(−1)F e−βHF

)
.

(3.104)

We �nd

TrC2

(
(−1)F e−βHF

)
= (−1)0e−β(−ω2 ) + (−1)1e−β

ω
2 = 2 sinh

βω

2
. (3.105)

Then we get the Witten index

Tr(−1)F =
1

2 sinh βω
2

2 sinh
βω

2
= 1. (3.106)

We note that this is the same result as predicted in the preceding study of ground states for
di�erent spaces. Since h(x) → ∞ for both x → ±∞, we are in case 1, where Tr(−1)F = 1.
We also note that Tr(−1)F does not depend on β, as it must be if we want Tr(−1)F to
count a number of physical states. One could also study �gure 3.1, take the di�erence of the
fermionic and bosonic ground states and come to the same conclusion.
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Chapter 4

Basics of Riemannian Geometry

and Topology

In this chapter we will introduce a number of mathematical concepts and results that will
be needed when we start working on sigma models in curved manifolds. The major part of
the text will focus on elements of basic di�erential geometry beginning with the fundamental
concept of a manifold. A manifold can be looked upon as the formalisation of the intuitive
notion of a 'curved' space, we can for instance describe the sphere and the torus as manifolds.
On these manifolds we can de�ne vector space structures which will allow us to describe
notions such as length, area and curvature in a mathematically rigorous manner through the
concept of a di�erential form. These di�erential forms will give rise to a group structure
called the de Rham cohomology, which has ties to the topological structure of the manifold it
is de�ned on. Detailed calculations and examples will as usual be included throughout. We
must stress that the purpose of this chapter is solely to introduce the necessary mathematics,
so readers familiar with the theory of di�erential geometry may skip this chapter and move
on directly to the sigma models in chapter 5.

The text is not intended to be mathematically complete in all aspects, and only covers
what is needed for next chapter. For further reference, see for example [6] or [8], which will
be important for all the sections of the chapter.

4.1 Manifolds

In this section we will introduce the important concept of manifolds. We will concentrate on
Riemannian manifolds which are manifolds endowed with a metric. These manifolds will be
useful later on as we go from �at to curved space. Let us begin with a general de�nition of
a manifold.

De�nition: A manifold M of dimension n is a topological space that around each point
p ∈M resembles the Euclidian space Rn. A Riemannian manifold is a manifold M equipped
with a Riemannian metric tensor g.

We introduce a set of neighbourhoods Ui on M . The neighbourhoods are subspaces of
Rn, and patching these subspaces together gives us M . For example, one can take M to be
the two-dimensional sphere in R3, which is patched together by the pieces Ui to build up an
empty shell, i.e. it has a similar construction as a soccer ball. Between each U and Rn there
is a coordinate generating function φi,

φi : M ⊃ Ui → Rn, (4.1)

which maps every point p in U to a point in Rn,

φ(p) = [x1
p, x

2
p, . . . , x

n
p ] ∈ Rn. (4.2)

Suppose we have an intersection between two subsections onM , Ui with a function φi and Uj
with a function φj , and we want to know how to relate φi and φj . Then we can de�ne φ−1

i as
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the inverse that maps back from Rn toM , which yields the expression for the transformation
from φi to φj ,

φji = φj · φ−1
i . (4.3)

Important is that the map above needs to be in�nitely di�erentiable. In other words, the
map is C∞, independent of the way we move in M .

Tangent Space and Cotangent Space

Two important spaces when working with manifolds are the tangent space Tp(M) and the
cotangent space T ∗p (M) inM . Let us start by introducing Tp(M), which is the space spanned

by all the tangent vectors in a point p ∈ M . The basis of Tp(M) is given by
{

∂
∂xi

}
, and

it has the same dimension as M , (i = 1, 2, . . . , n). One can make a comparison to classical
mechanics, where the velocity space corresponds exactly to the tangent space above.

With the basis for Tp(M) given, we can de�ne the dual space to Tp(M) as the space with
the basis dxj which ful�lls the inner product

〈 ∂
∂xi

, dxj〉 = δji . (4.4)

The space with this sort of basis is called the cotangent space T ∗p (M) in M , and it also has
a corresponding role in classical mechanics, namely the momentum space.

Example: the n-sphere

In �gure 4.1 we see an example of a simple manifold, a two-dimensional sphere in R3. This
is a special case of the n-sphere Sn, where n = 2,

Sn = {x ∈ Rn+1 : ‖x‖ = r}. (4.5)

In the case n = 0 we get a pair of points at the ends of a line segment, and in the case n = 1
we get a circle.

Figure 4.1: Example of manifold: a two-dimesional sphere. [18]

Orientation of M

Using the two-dimensional sphere from the example above we can de�ne orientability of a
manifold. The sphere, or the empty shell, has two sides, one inside and one outside. We can
orient the sides in R3 by assigning normal vectors to them, n = ±er, where er is the unit
vector in the radial direction.

All surfaces are not orientable, though. A Möbius strip is the two dimensional manifold
obtained by taking a rectangle, twist it 180◦, and then join its ends together, see �gure 4.2.
Pick a point p with normal vector n. Now, follow the strip around until you come back to
p. On our way around the strip we have to pass the 180◦ twist, which will make our normal
vector switch direction to the opposite compared to before. Thus we have two normal vectors
in p, and we have a non-orientable surface.

If the manifold is a more complicated one than the two-dimensional Möbius strip, is there
any way to determine if it is orientable or not? Let us consider our manifold with two di�erent
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bases {e1, e2, . . . , en} and {e′1, e′2, . . . , e′n}, of the n-dimensional vector space V . Between the
two bases we have a transformation matrix A,

e′i = Aei. (4.6)

By calculating the determinant of A we can decide whether the bases have the same orien-
tation or not. If det A > 0 the bases have the same orientation, and vice versa. In our case
of the Möbius strip we can take our bases to be

{e′1, e′2} = {e1,−e2}, (4.7)

where the primed coordinates are the ones received after one cycle. The vector product of
the two pairs of bases yields the normal vectors ±n.

Now, using the determinant method above, we see that our transformation matrix is given
by,

A =

(
1 0
0 −1

)
. (4.8)

Then det A < 0, and our bases do not have the same orientation, just as we expected.
The set of all bases for V can be divided into two groups, or equivalence classes, one

for spaces that transform with a matrix A with a positive determinant, and one where the
determinant is negative.

Figure 4.2: The Möbius strip. [19]

4.2 Di�erential Forms

We de�ne an object called the tangent bundle as

T (M) =
⋃
p∈M

Tp(M), (4.9)

and we can de�ne the cotangent bundle in the same way. We can use this to de�ne objects
called di�erential forms which are functions on the cotangent bundle (and its tensor products).
A di�erential p−form or just p−form is then de�ned as a tensor of rank p that is antisymmetric
under change of any pair of indices. To begin the study of di�erential forms the �rst thing
that we have to do is to de�ne Cartan's wedge product, also known as the exterior product

dx ∧ dy =
1

2
(dx⊗ dy − dy ⊗ dx). (4.10)

We stress that these forms depend on the position in M . The wedge product is an anti-
symmetric tensor product of dx and dy which are di�erential line elements, 1−forms. The
wedge product is anti-commutative,

dx ∧ dy = −dy ∧ dx, (4.11)

and it follows from the de�nition that the the wedge product of any pair of 1−forms is zero,
that is

dx ∧ dx = 0. (4.12)
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The wedge product is a way of constructing 2−forms out of 1−forms. The 2−form constructed
in this way has the property of a di�erential area element. If we change variables to x′(x, y),
y′(x, y) the wedge product of dx′ and dy′ is the given by

dx′ ∧ dy′ =

(
∂x′

∂x

∂y′

∂y
− ∂x′

∂y

∂y′

∂x

)
dx ∧ dy = Jacobian(x′, y′;x, y)dx ∧ dy. (4.13)

If we have a manifold M of dimension n, then 0−form are simply functions on M and there
will exist n+ 1 di�erent kinds of p−forms

0− forms f(~x) functions
1− forms ai(~x)dxicovariant vectors
2− forms Tij(~x)dxi ∧ dxjantisymmetric covariant tensors of rank 2

.

.

.
n− forms fi1...1n(~x)dxi1 ∧ ... ∧ dxinantisymmetric covariant tensors of rank n,

(4.14)
where fi1...in is a totally antisymmetric tensor. The algebra of di�erential forms is called
the exterior algebra and is denoted by Λ(Vn), where Vn is a vector space of dimension n
and there will be n + 1 subspaces Λp(Vn). Let Λp(x) be the subspace spanned by the
anti-symmetric p−forms at a point x in Vn. Then this will be a vector space of dimension(
n
p

)
= n!/p!(n − p)! Then C∞(Λp) is the space of di�erentiable smooth p−forms, where the

p−forms are represented as

p− forms fi1...1p(~x)dxi1 ∧ ... ∧ dxip . (4.15)

The antisymmetric tensor fi1,i2...(~x) will have p indices contracting with the wedge product
of p di�erentials. There will be n+ 1 elements of C∞(Λk) and they are explicitly given as

C∞(Λ0) = {f(~x)} dim = 1
C∞(Λ1) = {f(~x)idx

i} dim = n
C∞(Λ2) = {f(~x)ijdx

i ∧ dxj} dim = n(n− 1)/2!
C∞(Λ3) = {f(~x)ijkdx

i ∧ dxj ∧ dxk} dim = n(n− 1)(n− 2)/3!
.
.
.

C∞(Λn−1) = {f(~x)i1...1n−1
∧ ... ∧ dxin−1} dim = n

C∞(Λn) = {f(~x)i1...1ndx
i1 ∧ ... ∧ dxin dim = 1.

(4.16)

From this it is possible to observe that the two vector spaces Λp and Λn−p have the same
dimension. If p > n, then Λp = 0 since when the p−forms are expressed in terms of local
coordinates as in (4.15) then at least one pair of di�erentials along dxi1 ...dxip would have to
be equal and will then be annihilated.

The next thing that has to be introduced in the study of di�erential forms is the exterior
derivative denoted by d, which is an operator that takes p−forms into (p+ 1)−forms and is
de�ned as

d : C∞(Λ0) −→ C∞(Λ1); d(f(x)) =
∂f

∂xi
dxi

d : C∞(Λ1) −→ C∞(Λ2); d(fj(x)dxj) =
∂fj
∂xi

dxi ∧ dxj

d : C∞(Λ2) −→ C∞(Λ3); d(fjk(x)dxj ∧ dxk) =
∂fjk
∂xi

dxi ∧ dj ∧ dxk

(4.17)

and so on. An important property of the exterior derivative is that when applied twice it
gives zero. That is, if for an arbitrary p-form ωp, it follows that

ddωp = 0. (4.18)

Let αp be a p−form and βq a q−form, then

αp ∧ βq = (−1)pqβq ∧ αp. (4.19)
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This shows that odd forms anti-commute and the wedge product of two 1−forms will always
be zero if they are identical. This is very similar to the property of the Grassmann algebra
where odd Grassmann numbers anti-commute and squares to zero. The exterior derivative
of αp ∧ βq is given by

d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq (4.20)

so the exterior derivative anti-commutes with 1-forms.
From (4.16) it was observed that C∞(Λk) and C∞(Λn−k) have the same number of

dimensions. Since the vector spaces have the same dimension there exists an isomorphism
between them. There must exist a duality between C∞(Λk) and C∞(Λn−k). We will therefore
introduce the duality transformation, also know as the Hodge dual operator or Hodge ?. The
Hodge ? is de�ned in �at Euclidean space as

?(dxi1 ∧ ... ∧ dxip) =
1

(n− p)!
εi1,i2...ip,ip+1,...indx

ip+1 ∧ . . . ∧ dxi1n , (4.21)

where εijk... is the totally antisymmetric tensor in n-dimensions. The Hodge ? operator thus
transforms p-forms into (n−p)−forms. The square of the Hodge dual on an arbitrary p−form
ωp is given by

? ? ωp = (−1)p(n−p)ωp. (4.22)

In the special case of p = n we get

dxi1 ∧ ... ∧ dxin = εi1,...indx
1 ∧ dx2 ∧ ... ∧ dxn. (4.23)

Let us now study another concept using the Hodge dual called the inner product, de�ned
as

(αp, βp) =

∫
M

αp ∧ ?βp, (4.24)

where αp and βp are arbitrary p−forms. One property of the inner product that follows from
the identity αp ∧ ?βp = βp ∧ ?αp is that

(αp, βp) = (βp, αp). (4.25)

Another important application of the Hodge ? operator on a manifold is to de�ne the adjoint
d† of the exterior derivative d as

d† = (−1)np+n+1 ? d ? . (4.26)

It follows that {
d† = − ? d? for n even, all p

d† = (−1)p ? d? for n odd, all p.

The adjoint d† works in the opposite way of the exterior derivative d, i.e. it transforms a
p−form into a (p − 1)−form. Just like d, the adjoint exterior derivative squares to zero, so
for a p−form ωp it follows that

d†d†ωp = 0. (4.27)

The exterior derivative and the adjoint exterior derivative are given as

d : C∞(Λp) −→ C∞(Λp+1)

d† : C∞(Λp) −→ C∞(Λp−1).
(4.28)

The Laplace Beltrami operator ∆ on a manifold can now be described in terms of d and d†

and is given as
∆ = (d+ d†)2 = d2 + dd† + d†d+ (d†)2 = dd† + d†d. (4.29)

It takes a p−form back into a p−form, that is

∆ : C∞(Λp) −→ C∞(Λp). (4.30)

If the p−form ωp obeys ∆ωp = 0 it is harmonic, which happens if and only if dωp = 0 (closed)
and d†ωp = 0 (co-closed). A p−form is called exact if it can be written as

ωp = dωp−1, (4.31)

38



where ωp−1 is a (p− 1)−form, and a p−form is said to be co-exact if

ωp = d†αp+1. (4.32)

Let us now look at Stokes' theorem for di�erential forms which is a statement about the
integration of p−forms in manifolds. Stokes' theorem says that the integral of a (p−1)−form
ωp−1 over the boundary ∂M of some orientable manifold M is equal to the integral of the
exterior derivative d of ωp−1 over the whole manifold M , that is∫

M

dωp−1 =

∫
∂M

ωp−1. (4.33)

For 0−forms, i.e. functions, we get the fundamental theorem of calculus∫ b

a

df(x) = f(b)− f(a), (4.34)

where M is a line segment from a to b. For a 1−form we get∫
surface

d(A · dx) =

∮
line

A · dx, (4.35)

and for 3−forms we get the familiar Gauss' law∫
∇ ·E d3x =

∫
volume

dω =

∫
surface

ω =

∫
E·dS. (4.36)

4.3 Curvature

We will now combine the study of manifolds and di�erential geometry, to form the basic
structure of manifolds endowed with a metric. We will de�ne some useful relations and
identities, that will come to use later on in the paper. We end this part with a discussion
about the important Riemann tensor, and how it relates to the curvature of the manifold.

4.3.1 Cartan Structure Equations and the Levi-Civita Connection

First we want to de�ne two type of indices, Greek indices, like, α, γ, µ, and Latin indices,
a, b, c... The Greek letters refer to curved space, or curved manifolds, while the Latin letters
refer to �at space. Note that this notation is somewhat di�erent from the one used in the
book of Nakahara [7].

Given a Riemannian manifold M , we can ascribe it a metric tensor gµν(x), with local
coordinates xµ. The invariant length is then written as

ds2 = gµν(x)dxµ dxν . (4.37)

This is the distance between two in�nitesimally nearby points xµ and xµ + dxµ.
There is a connection between a curved metric and a �at metric. They are connected via

the so called vielbeins, also called solder forms, eaµ. In just a moment, we will see that they
transform the curved coordinate basis of the tangent space of a manifold to an orthonormal
basis of the tangent space. The �at metric is denoted by ηab. The classic example of a �at
metric is the Euclidean space, where

ηab = δab, a, b = 1, 2, 3, 4, (4.38)

or the Minkowski space, where

ηab =


−1

1
1

1

 . (4.39)

The �at metric is connected to the curved metric through the vielbeins,

gµν = ηabe
a
µe
b
ν

ηab = gµνeaµe
b
ν

(4.40)
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We de�ne an inverse of eaµ,

E µ
a = ηabg

µνebν . (4.41)

By the relations in (4.40), it can easily be seen that E µ
a is indeed the inverse

E µ
a ecν = ηab g

µνebµe
c
ν︸ ︷︷ ︸

ηbc

= ηabη
bc = δca. (4.42)

In the last step we used that ηab and η
ab are each others inverses. The same thing is true for

gµν and gµν . Though it is not a general property of a tensor that raised or lowered indices
creates an inverse, it is merely a property of the metric tensor. With the inverse of the
vielbeins we can de�ne similar relations like in (4.40),

gµν = ηabE µ
a E ν

b ,

ηab = gµνE
µ
a E ν

b .
(4.43)

Thus, we can conclude that eaµ and E
µ
a can be used to interconvert Greek and Latin indices.

Now, we come to an important role of the vielbeins. As we stated before, they are in fact
the matrices that transforms the coordinate basis dxµ of the dual tangent space T ∗x (M) to
an orthonormal basis of T ∗x (M),

ea = eaµdx
µ (4.44)

Similarly, E µ
a is a transformation from the basis ∂/∂xµ of the tangent space Tx(M) to an

orthonormal basis,
Ea = E µ

a ∂/∂xµ. (4.45)

We will now introduce a couple of equations, called Cartan's structure equations. The
equations themselves are not used in the rest of the text, but the �rst of them de�ne what is
called the a�ne spin connection ωab , which we will use later on. And once that equation is
de�ned, we are not far away from the famous Bianchi identities. Therefore, we will continue
until we have derived the Bianchi identities. One can see it as a good exercise in the rules
and structure of di�erential forms, that we introduced in the previous section. The �rst of
Cartan's structure equations, that de�nes the a�ne spin connection ωab 1−form, is

T a = dea + ωab ∧ eb =
1

2
T abc e

b ∧ ec. (4.46)

T a is called the torsion 2−form of the manifold. The second of Cartan's equations de�nes
the curvature 2−form Rab as

Rab = dωab + ωac ∧ ωcb =
1

2
Rabcde

c ∧ ed. (4.47)

If we take the exterior derivative of (4.46), we can �nd a connection between (4.46) and
(4.47),

dT a = d(dea)︸ ︷︷ ︸
=0

+d(ωab ∧ eb)

= dωab ∧ eb − ωab ∧ deb.
(4.48)

The connection is then given by

dT a + ωab ∧ T b = dωab ∧ eb − ωab ∧ deb + ωab ∧ (deb + ωbc ∧ ec)
= dωab ∧ eb + ωac ∧ ωcb ∧ eb

= (dωab + ωac ∧ ωcb) ∧ eb

= Rab ∧ eb.

(4.49)

The Bianchi identities are found by taking the exterior derivative of the curvature 2−form
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of the manifold (4.47), together with two wedge products of (4.47) itself,

dRab + ωac ∧Rcb −Rac ∧ ωcb = dωac ∧ ωcb − ωac ∧ dωcb︸ ︷︷ ︸
dRab

+ ωac ∧ dωcb + ωac ∧ ωcd ∧ ωdb︸ ︷︷ ︸
ωac∧Rcb

− dωac ∧ ωcb − ωad ∧ ωdc ∧ ωcb︸ ︷︷ ︸
Rac∧ωac

= 0.

(4.50)

From this condition, we can de�ne a covariant derivative of a general di�erential form V ab
of degree p,

DV ab = dV ab + ωac ∧ V cb − (−1)pV cb ∧ ωac . (4.51)

The Bianchi identities (4.50) then read,

DRab = 0. (4.52)

All the equations we have looked at so far, can of course be expressed in terms of curved
coordinates. We simply multiply an expression with the vielbeins or their inverses, to make
the transition from �at to curved coordinates. We can even derive an expression for the
Riemann tensor from the curvature 2−form,

Rab =
1

2
Rabcde

c ∧ ed =
1

2
Rabµνdx

µ ∧ dxν , (4.53)

where the Riemann tensor then can be written as

Rαβµν = E α
a ebβR

a
bµν . (4.54)

However, this expression gives very little insight into the meaning of the Riemann tensor.
Therefore, we will soon leave what we can call the Cartan di�erential form approach to
Riemannian geometry and continue to a more conventional formulation of the Riemann
tensor. Before we do that however, we have to translate the torsion 2−form to curved
coordinates as well,

T a =
1

2
T abc e

b ∧ ec =
1

2
T aµν dx

µ ∧ dxν

Tαµν = E α
a T aµν .

(4.55)

On our way to a meaningful formulation of the Riemann tensor, we �rst want to un-
derstand why we need a new kind of derivative, the covariant derivative, and introduce the
Christo�el symbol Γλµν of the Levi-Civita connection. We need a new derivative because the
usual derivative of an arbitrary tensor vµ does not transform as a tensor

∂vµ′

∂xν′
=

∂

∂xν′

(
vµ
∂xµ

∂xµ′

)
=
∂vµ
∂xν

∂xν

∂xν′
∂xµ

∂xµ′
+ vµ

∂2xµ

∂xµ′∂xν′
. (4.56)

We get an additional term. We want to avoid this with a derivative that transforms as a
tensor, therefore we have the covariant derivative (in a di�erent form than (4.51))

Dµ(vν) := ∂µvν − Γλµνvλ, (4.57)

for a covariant tensor, and
Dµ(vν) := ∂µv

ν + Γνµλv
λ, (4.58)

for a contravariant tensor. The Christo�el symbol takes care of the additional term from the
usual derivative we got in (4.56), it is also important to note that the Christo�el symbol is
not a tensor. If we want to di�erentiate higher ranked tensors we just add an extra Christo�el
symbol for each added index. Through the covariant derivative we can get an expression for
the Christo�el symbol in terms of the metric. Let the Levi-Civita connection be determined
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by two conditions, the covariant constancy of the metric tensor, and the absence of torsion.
In tensor notation, these conditions are written as

covariant constancy of the metric : Dαgµν = ∂αgµν − Γλαµgλν − Γλανgµλ = 0

no torsion : Tµαβ =
1

2
(Γµαβ − Γµβα) = 0.

(4.59)

From these relations we can derive an explicit expression for the Christo�el symbol. We will
see that the Christo�el symbol is written as,

Γµαβ =
1

2
gµν(∂αgνβ + ∂βgνα − ∂νgαβ). (4.60)

By using the conditions in (4.59) we can prove this to be correct,

Γµαβ =
1

2
gµν(∂αgνβ + ∂βgνα − ∂νgαβ)

=
1

2
gµν(Γλανgλβ︸ ︷︷ ︸

A

+Γλαβgλν + Γλβνgλα︸ ︷︷ ︸
B

+Γλαβgλν − Γλναgλβ︸ ︷︷ ︸
A

−Γλνβgλα︸ ︷︷ ︸
B

)

=
1

2
gµν(2Γλαβgλν )

= Γλαβδ
µ
λ

= Γµαβ .

(4.61)

4.3.2 Riemann Tensor

Now that we have found a de�nition of the covariant derivative and seen how it is related to
the metric of the manifold through the Christo�el symbol, we can move on to �nd a more
intuitive form of the Riemann tensor. The Riemann tensor tells us everything we need to
know about the curvature of the manifold. We can see it as a measure of how much a vector
will di�er from its original position when we have transported it around on the manifold.
For example, consider a two dimensional spherical surface. We put a vector at a point at the
equator. Then we transport the vector on a great circle to the 'north pole' without twisting
its direction, then transporting it on a di�erent great circle back to the equator and then we
go back to the starting point. Now the vector will not point in the same direction as when it
started, schematically shown in �gure 4.3a. As a little test, think of the same procedure on
a �at surface. In this case the vector will of course come back in the same condition, hence
the surface is �at as in �gure 4.3b. The Riemann tensor at a point on a manifold is written

(a) Vector displacement on spherical
surface.

(b) Vector displacement on �at surface.

Figure 4.3: Vector displacements.

Rαβµνvα = [Dµ, Dν ] vβ = DµDνvβ −DνDµvβ , (4.62)

where Dµ and Dν are covariant derivatives. We can intuitively understand why this is a
measure of the curvature, if we take the derivative in a little square on the manifold we
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measure the change of the vector and probe the manifold curvature. If the Riemann tensor is
non-zero anywhere on the manifold, the space is curved. Writing out the derivatives explicitly
we get

[Dν , Dµ] vβ = (DνDµ −DµDν) vβ = Dν(∂µvβ − Γρµβvρ)−Dµ(∂νvβ − Γρνβvρ)

= ∂ν(∂µvβ − Γρµβvρ)− Γσνµ(∂σvβ − Γρσβvρ)− Γσνβ(∂µvσ − Γρµσvρ)

− ∂µ(∂νvβ − Γρνβvρ) + Γσµν(∂σvβ − Γρσβvρ) + Γσµβ(∂νvσ − Γρνσvρ)

= ∂µΓρνβvρ − ∂νΓρµβvρ + ΓσνβΓρµσvρ − ΓσµβΓρνσvρ

= Rρβµνvρ.

(4.63)

The last step is obtained by using the no torsion condition (4.59), Γρµν = Γρνµ. Omitting
the test vector vβ , which we only inserted for clarity, the Riemann curvature tensor reads

Rρβµν = ∂µΓρνβ − ∂νΓρµβ + ΓσνβΓρµσ − ΓσµβΓρνσ. (4.64)

Now we want to know how the Riemann tensor behaves, if it is symmetric in its indices or
not. It is antisymmetric when interchanging its two last indices

Rρβνµ = ∂νΓρµβ − ∂µΓρνβ + ΓσµβΓρνσ − ΓσνβΓρµσ = −Rρβµν . (4.65)

To get the rest of the relations one will have to lower the �rst index. We do this with the
metric tensor gαρ

Rρσµν = gαρR
α
σµν = gαρ

(
∂µΓανσ + ΓαµγΓγνσ − ∂νΓαµσ − ΓανγΓγµσ

)
. (4.66)

What is ∂µΓανσ in (4.66)? It is not completely trivial, since the Christo�el symbol involves
a product. In fact

∂µΓανσ = ∂µ
1

2
gακ(gκν,σ + gκσ,ν − gνσ,κ)

=
1

2
(∂µg

ακ)(gκν,σ + gκσ,ν − gνσ,κ) +
1

2
gακ(gκν,σµ + gκσ,νµ − gνσ,κµ),

(4.67)

where the comma before an index µ (,µ) means partial derivative with respect to the index
µ. What then is ∂µg

ακ? gακ is the inverse of gγλ. What then is the derivative of an inverse?
Generally, for a matrix M and its inverse M−1, we have MM−1 = 1. Di�erentiate this
equation, to get

0 = δ1 = (δM)M−1 +M(δM−1). (4.68)

Multiply this equation from left by M−1,

0 = M−1(δM)M−1 + (M−1M)(δM−1), and δM−1 = −M−1(δM)M−1 (4.69)

In this speci�c case

δgακ = −gαγ(δgγλ)gλκ, (4.70)

and the corresponding partial derivative becomes

∂µg
ακ = −gαγ(∂µgγλ)gλκ = −gαγgγλ,µgλκ (4.71)

The �rst term in (4.67) is then

(∂µg
ακ)

1

2
(gκν,σ + gκσ,ν − gνσ,κ) = −gαγgγλ,µgλκΓκνσ, (4.72)

and all together
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gαρ(∂µΓανσ) = gαρ

(
−gαγgγλ,µgλκΓκνσ +

1

2
gακ(gκν,σµ + gκσ,νµ − gνσ,κµ)

)
= −δγρgγλ,µgλκΓκνσ +

1

2
δκρ (gκν,σµ + gκσ,νµ − gνσ,κµ)

= −gρλ,µΓλνσ +
1

2
(gρν,σµ + gρσ,νµ − gνσ,ρµ).

(4.73)

The �rst two terms in (4.66) are therefore

gαρ
(
∂µΓανσ + ΓαµγΓγνσ

)
= −gρλ,µΓλνσ +

1

2
(gρν,σµ + gρσ,νµ − gνσ,ρµ) + ΓρµγΓγνσ. (4.74)

The last two terms in (4.66) are just the same as the two �rst, except that µ has taken the
place of ν and vice versa. We therefore just interchange the two indices in (4.74) to get

gαρ
(
−∂νΓαµσ − ΓανγΓγµσ

)
= gρλ,νΓλµσ −

1

2
(gρµ,σν + gρσ,µν − gµσ,ρν)− ΓρνγΓγµσ. (4.75)

The total Riemann tensor is thus the sum of (4.74) and (4.75)

Rρσµν = −gρλ,µΓλνσ+gρλ,νΓλµσ+
1

2
(gρν,σµ−gνσ,ρµ−gρµ,σν+gµσ,ρν)+ΓρµγΓγνσ−ΓρνγΓγµσ.

(4.76)
Now to see if the Riemann tensor is symmetric in the two �rst indices we can test it in an
inertial frame where all Christo�el symbols are zero, and get

Rρσµν =
1

2
(gρν,σµ − gνσ,ρµ − gρµ,σν + gµσ,ρν). (4.77)

Because of the commutativity of the second derivatives, gρν,σµ = gρν,µσ, we can see that

Rρβµν = Rµνρβ = −Rβρµν . (4.78)

We know this result holds in every frame of reference because (4.77) is a tensor equation.
The Riemann tensor is therefore antisymmetric under interchange of its two �rst indices but
symmetric under interchange of the two �rst indices with the two last indices. We also get
the important cyclic identity

Rρσµν +Rρνσµ +Rρµνσ = 0. (4.79)

All these relations greatly reduces the work one has to do when calculating the curvature.

4.3.3 Riemann Tensor of the 2-sphere

To get more familiar with the Christo�el symbols and Riemann tensor we will calculate an
example. These calculations are rather straightforward although there are many lengthy
steps if you work with complicated manifolds in higher dimensions. One has to calculate all
the combinations of indices in the Christo�el symbols and Riemann tensor. Therefore we will
calculate the simple example of the Riemann tensor for the 2−sphere. We start by �nding
the metric tensor for the sphere. Distances in spherical coordinates in 3 dimensions can be
written

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 = ηabdx
adxb. (4.80)

This is our curved surface embedded in a three dimensional �at Euclidean space. We can get
our curved two-dimensional metric by setting r = R a constant, thus our metric will be

gµν =

(
R2 0
0 R2 sin2 θ

)
. (4.81)

With the inverse

gµν =

(
1
R2 0
0 1

R2 sin2 θ

)
. (4.82)
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We proceed by calculating the Christo�el symbols. The no torsion condition (4.59) and the
fact that only g22 is not constant leaves only three of the Christo�el symbols non-zero and
two of them are equal

Γ1
22 =

1

2
g11(∂ϕg12 + ∂ϕg12 − ∂θg22) =

1

2R2
(−∂θ(R2 sin2 θ))

= − sin θ cos θ

Γ2
12 =

1

2
g22(∂θg22 + ∂ϕg21 − ∂ϕg12) =

1

2R2 sin2 θ
∂θ(R

2 sin2 θ)

=
cos θ

sin θ
= Γ2

21.

(4.83)

Now we can calculate the Riemann tensor. Here we eliminate more work through the sym-
metry of the Riemann tensor Rρβµν = −Rβρµν = −Rρβνµ and many combinations will end
up zero because of the small number of non-zero Christo�el symbols, but here is two of the
non-zeros

R1
212 = Γ1

22,θ − Γ1
21,ϕ + Γ1

11Γ1
22 + Γ1

21Γ2
22 − Γ1

12Γ1
21 − Γ1

22Γ2
21

= − cos2 θ + sin2 θ + sin θ cos θ
cos θ

sin θ

= sin2 θ,

R1
221 = Γ1

21,ϕ − Γ1
22,θ + Γ1

12Γ1
21 + Γ1

22Γ2
21 − Γ1

11Γ1
22 − Γ1

21Γ2
22

= cos2 θ − sin2 θ − sin θ cos θ
cos θ

sin θ

= − sin2 θ.

(4.84)

Already the second one is super�uous to calculate because of the antisymmetry. Here R1
212

is a measure of how much a vector pointing in the θ−direction will swing over and point
in the φ−direction when parallel transported around a square on the surface. In e�ect the
Riemann tensor tells us how a vector transported around on the surface will di�er from its
original direction when returned to the starting point, as mentioned earlier. In this case we
can also write the Riemann tensor on a more compact form (getting rid of the Christo�el
symbols)

Rρβµν =
1

R2
(δρµgβν − δρνgβµ). (4.85)

Here we can, in addition, see the constant value 1/R2 of the Gaussian curvature of the
2-sphere.

4.4 de Rham Cohomology

Two important mathematical constructs are homology and cohomology. Homology is a tool
in topology to distinguish manifolds with di�erent topological structure. Cohomology is an
algebraic invariant, which distinguishes manifolds with di�erent algebraic structure. The
main issue of this section will be de Rham cohomology, but we will also encounter homology,
since these concepts are closely related. In fact, considering homology and cohomology as
vector spaces, they can be shown to be dual to each other. This duality builds a bridge
between the topological properties of manifolds and their di�erentiable structure.

4.4.1 De�nition of de Rham Cohomology

Let M be a manifold of dimension n and consider the di�erential forms in M . Di�erential
forms were discussed in section 4.2. We will denote a general p−form by ωp. Recall also
the exterior derivative d from the same section, which operates on di�erential forms. The
following terminology that we occasionally met there is crucial for the de�nition of de Rham
cohomology:

ωp is a closed form if dωp = 0,
ωp is an exact form if ωp = dap−1 for some p− 1 form ap−1.
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Now introduce ZpDR(M) as the set of all closed forms inM . In fact, ZpDR(M) is not only a set,
but also a group with composition law given by addition of forms. For a brief introduction
to group theory, see Appendix A.2. It is evident that ZpDR(M) is a group since it ful�lls the
group axioms. The sum of two closed forms is always closed, d(ωp + ω′p) = dωp + dω′p, since
d is linear. Associativity is immediate. The unit element is just the form 0p (d0p = 0), and
the inverse of ωp is (−ωp) ∈ ZpDR(M), since ωp + (−ωp) = 0p.

Also, construct the group BpDR(M) as the set of all exact forms in M . The composition
law is again given by addition, and it is easy to check that also BpDR(M) is a group.

Remember from section 4.2 that the exterior derivative applied twice on any form always
give 0, d2ωp = ddωp = 0. This means that every exact form is also closed, for if ωp = dap−1 is
exact, then dωp = d2ap−1 = 0, and ωp is also closed. This means that BpDR(M) is a subgroup
of ZpDR(M).

Next, consider the cosets of ZpDR(M) with respect to its subgroup BpDR(M). A general
coset can be written ωp+BpDR(M). Let dap−1 be an element of BpDR(M), so that any element
ω′p of the coset can be written as ω′p = ωp + dap−1. That is, ω

′
p ∼ ωp if they di�er only by an

exact form. Thus, the group ZpDR(M) of closed forms is partitioned into a set of equivalence
classes, where the elements in each equivalence class only di�er by an exact form. From the
set of equivalence classes we construct the quotient group

Hp
DR(M) = ZpDR(M)/BpDR(M). (4.86)

This quotient group Hp
DR(M) is the de Rham cohomology of M . It consists of the set of

closed modulo exact forms. The unit element of Hp
DR(M) is simply BpDR(M), i.e. all exact

forms. All the exact forms are equivalent to 0 since they all di�er from 0 by themselves,
i.e. they di�er from 0 by exact forms. This is also clear from the fact that if BpDR(M) is
�multiplied� (added) to any of the other cosets of Hp

DR(M), this operation does not change
that coset. The elements in the coset will all still di�er only by an exact form. A simpler
analogy to this abstract group is given as an example in Appendix A.2.

4.4.2 de Rham Cohomology and Harmonic Forms

In section 4.2 harmonic forms were brie�y discussed. We noted that a form ωp is harmonic
if and only if it is both closed (dωp = 0) and coclosed (d†ωp = 0). Let the set of harmonic
p-forms in M be denoted by Harmp(M,R).

Hodge decomposition theorem states that any form ωp in a compact manifold M without
boundary can be decomposed into an exact form, a coexact form and a harmonic form γp.
In symbols

ωp = dαp−1 + d†βp+1 + γp. (4.87)

If now ωp is closed so that dωp = 0, we have

0 = ddαp−1 + dd†βp+1 + dγp.

Since γp is harmonic, it is also closed. But then dd†βp+1 = 0 and d†βp+1 = 0. And this in
turn implies that

ωp = dαp−1 + γp,

so that γp only di�ers from ωp by an exact form. But then ωp and γp belong to the same
cohomology class. This means that it is always possible to choose a harmonic representative
for each cohomology class. If ωp is harmonic, then d†dαp−1 = 0, so dαp−1 = 0 and ωp = γp.
Hence the de Rham cohomology is isomorphic to the set of harmonic p-forms,

Hp
DR(M,R) ∼= Harmp(M,R), (4.88)

a fact that will be used in the end of chapter 5.

4.4.3 Closed Forms which are not exact

A question rises immediately from the de�nition of the de Rham cohomology. We know that
exact forms are always closed, but could there be closed forms which are not exact? Let us
consider a speci�c example which shows that it really is so.
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Take the punctured plane R2 − {0} to be our manifold and consider the 1−form

ω1 =
−y

x2 + y2
dx+

x

x2 + y2
dy. (4.89)

It is possible to choose ω1 as a form on R2 − {0} since the origin is excluded1, thereby
avoiding division by 0. ω1 is really closed since

dω1 =
∂

∂y

(
−y

x2 + y2

)
dy ∧ dx+

∂

∂x

(
x

x2 + y2

)
dx ∧ dy

=
−1(x2 + y2)− (−y)2y

(x2 + y2)2
dy ∧ dx+

1(x2 + y2)− x(2x)

(x2 + y2)2
dx ∧ dy

=
y2 − x2

(x2 + y2)2
(dy ∧ dx+ dx ∧ dy)

= 0.

(4.90)

The functions −y
x2+y2 and x

x2+y2 look like partial derivatives of the arctan function. Consider

the 0−form (function) a0(x, y) = arctan
(
y
x

)
. Then

da0(x, y) =
∂

∂x

(
arctan

(y
x

))
dx+

∂

∂y

(
arctan

(y
x

))
dy

=
1

1 + y2

x2

(
− y

x2

)
dx+

1

1 + y2

x2

1

x
dy

=
−y

x2 + y2
dx+

x

x2 + y2
dy,

(4.91)

which seems to be equal to ω1. But the arctan function must be single-valued. It is de�ned as
the inverse of the tan function with angles in (−π, π). We have to delete the nonpositive real
axis to guarantee single-valuedness. So the function a0(x, y) is only de�ned on R2 − R(−)

2.
In this space ω1 = da0(x, y), but not in all of R2 − {0}.

Is there any other 0−form (function), f0(x, y) say, which works better? On R2−R(−) we
must have ω1(x, y) = df0(x, y) = da0(x, y), and d(f0(x, y) − a0(x, y)) = 0. This means that
∂
∂x (f0(x, y)− a0(x, y)) = 0, and

∂

∂x
f0(x, y) =

∂

∂x
a0(x, y)⇒ f0(x, y) = a0(x, y) + g(y),

where g(y) is an arbitrary function of y. Also, ∂
∂y (f0(x, y)− a0(x, y)) = 0 and

∂

∂y
f0(x, y) =

∂

∂y
a0(x, y)⇒ ∂a0(x, y)

∂y
+ g′(y) =

∂a0(x, y)

∂y
⇒ g′(y) = 0,

which means that g must be a constant. Then f0(x, y) = a0(x, y) + g which also only is
de�ned on R2 − R(−), and so there are no functions on all of R2 − {0} that ful�lls ω1 = df .
Therefore, ω1 is closed but not exact in M .

4.4.4 Calculation of some de Rham Cohomologies

The de Rham cohomology H0
DR(M) is special, since there are no (−1)−forms. That is, no

closed 0−form in M can be written as ω0 = dap−1. In other words, there are no exact forms
except zero. Then every 0−form can only be equivalent to itself, since the only exact form
by which two forms can di�er is 0, and in that case the two forms are the same. Hence, the
cohomology group H0

DR(M) is the set of equivalence classes consisting of individual elements
of Z0

DR, the closed forms. Then Hp
DR = ZpDR. The 0−forms are the functions f in M , and

the closed 0−forms obey df = 0, so that f must be constant. From this

H0
DR(M) = {space of constant functions}, (4.92)

1The notation R2 − {0} means all real (x, y) except (0,0).
2The notation R2 − R(−) means all real (x, y) except those for which x ≤ 0 and y = 0.
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and

dim H0
DR(M) = number of connected pieces of the manifold. (4.93)

Recall from section 4.2 that there are no p−forms for p > n. This follows from the fact that
the wedge product is antisymmetric. Therefore

Hp
DR(M) = 0, p > n. (4.94)

After these general remarks about all manifoldsM , we will now look speci�cally at manifolds
which are contractible to a point. A sphere is contractible to a point, and also a circular
disk, but not a circular ring. For such contractible manifolds Poincaré's lemma holds.

Poincaré's lemma says that if M is contractible to a point, then all closed forms on M
are also exact. This means that BpDR(M) coincides with ZpDR(M). As stated before, BpDR
is the unit element of Hp

DR(M), and Hp
DR(M) thus only exists of the unit element, that is

Hp
DR = 0. Another way of understanding this is to say that every closed form only di�ers

from 0 by an exact form, which is the closed form itself. Hence all forms are equivalent to
0, and they all belong to the same equivalence class. Poincaré's lemma is proved by actually
writing each form ωp as an exact form, which is a bit technical, see [8].

Directly from Poincaré's lemma we have for the space Rn, which is contractible to a point

Hp
DR(Rn) = 0, 1 ≤ p ≤ n. (4.95)

From the result about 0−forms in (4.92) and (4.93) above it is evident that

H0
DR(Rn) = R, dimH0

DR(Rn) = 1. (4.96)

The content of Poincaré's lemma is probably known to the reader in the case when
M = R3. If a 1−form (a vector) A is closed, i.e. if ∇×A = 0, then A is also exact, so that
a 0−form (a scalar function) φ exists with A = ∇φ. We only get into trouble if there are
singularities somewhere in the space. But as long as the space is contractible to a point, we
can always �nd a scalar potential to A if the curl of A vanishes. In the example of section
4.4.3, the closed forms were not exact, due to the fact that the punctured plane R2 − {0} is
not contractible to a point.

We also state some cohomologies when M = Sn, the n-sphere, which are also proven in
[8]:

Hp
DR(Sn;R) = 0, 1 ≤ p ≤ n,

Hp
DR(Sn;R) = R, p = n.

(4.97)

The notation including R in Hp
DR(Sn;R) will get its motivation later.

Just to see how the de Rham cohomology depends on the speci�c properties of the man-
ifold M , note the following results for p = n

• If M is a compact, connected, orientable manifold, then

Hn
DR(M ;R) = R. (4.98)

• If M is a compact, connected, non-orientable manifold, then

Hn
DR(M ;R) = 0. (4.99)

• If M is a non-compact, connected manifold then

Hn
DR(M ;R) = R. (4.100)

4.4.5 Duality between Homology and de Rham Cohomology

Homology

Homology is de�ned as a quotient group exactly as the de Rham cohomology, but di�erential
forms are exchanged by chains. A p−chain is a linear combination of submanifolds of dimen-
sion p in M . For more details on chains, see Appendix A.3. Also, the exterior derivative d
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is replaced by the boundary operator ∂. Acting with ∂ on a chain means taking its oriented
boundary.

A p−chain cp which is closed by ∂ so that ∂cp = 0 is called a cycle.

A p−chain cp that can be written as a boundary of a (p + 1)−chain, cp = ∂bp+1 is simply
called a boundary.

Let Zp(M) = {cp in M |∂cp = 0}, i.e. the set of p−cycles in M .

Let Bp(M) = {cp in M |cp = ∂bp+1}, the set of p−boundaries in M .

These two sets can be considered as groups in the same way as ZpDR and BpDR. Then, due to
the fact that ∂2 = 0 (a boundary does not have a boundary), all boundaries are cycles and
Bp(M) is a subgroup of Zp(M). The homology of the manifold is then de�ned as

Hp(M) = Zp(M)/Bp(M), (4.101)

in complete analogy with the de�nition of de Rham cohomology. It consists of the equivalence
classes of Zp whose elements only di�er by a boundary. In other words, Hp(M) is the set
of cycles modulo boundaries. Figure 4.4 shows three cycles a, b and c on a torus. a and b
belong to the same equivalence class since they only di�er by a boundary, the boundary of
the gray strip. a and c do not belong to the same equivalence class, since they do not di�er
by a boundary.

The R in the notation Hp(M ;R) means that the linear combination of submanifolds of
M which build a cycle has real coe�cients. If one for example has complex coe�ents, the
homology is written Hp(M ;C).

Figure 4.4: The 1−cycles a and b are equivalent since they bound a twodimensional strip. a
and c are not equivalent.

de Rham's theorem

From the similar de�nitions of the homology and the de Rham cohomology, one might guess
that there is some relation between them. To show their duality, one starts with Stokes'
theorem for di�erential (n− 1)−forms in a manifold M∫

M

dωn−1 =

∫
∂M

ωn−1, (4.102)

which was introduced in section 4.2. Instead of integrating over the whole manifold, one can
integrate over a cycle c in M . This de�nes the inner product π(cp, ωp) of a cycle cp ∈ Zp and
a closed form ωp ∈ ZpDR

π(cp, ωp) =

∫
cp

ωp. (4.103)

The inner product is a real number and is sometimes referred to as the period. Now recall
that the elements in Hp

DR and Hp are equivalence classes. The form ωp is a representative
of its equivalence class in Hp

DR and the cycle cp is a representative of its equivalence class in

49



Hp. Is the period independent of the choice of representatives? Take another representative
w′p ∼ ωp. By Stokes' theorem

∫
cp

ω′p =

∫
cp

wp + dap−1 =

∫
cp

ωp +

∫
cp

dap−1 =

∫
cp

ωp +

∫
∂cp

ap−1 =

∫
cp

ωp, (4.104)

since ∂cp = 0. Also try another cycle c′p ∼ cp∫
c′p

ωp =

∫
cp+∂bp+1

ωp =

∫
cp

ωp +

∫
∂bp+1

ωp =

∫
cp

ωp +

∫
bp+1

dωp =

∫
cp

ωp, (4.105)

since dωp = 0. Hence, one can choose arbitrary representatives and still get the same period.
Then the inner product π de�nes a map

π : Hp(M ;R)⊗Hp
DR(M ;R)→ R.

In 1931 de Rham proved [13] that the homology Hp(M ;R) and the de Rham cohomology
Hp
DR are dual with respect to π. The theorem is called de Rham's theorem, and applies to a

compact manifold M with no boundary. We will now regard the homology and the de Rham
cohomology as vector spaces. Let {ci}, i = 1, 2, . . . , r = dim Hp be a basis of p-cycles for
Hp(M ;R). Then

• i.) one can always �nd a closed p−form ω for any set of real numbers νi, i = 1, 2, . . . , r
so that

νi = π(ci, ω) =

∫
ci

ω, i = 1, . . . , r.

Also,

• ii.) if all the νi are zero for a p−form ω,

0 = π(ci, ω) =

∫
ci

ω, i = 1, . . . , r,

then ω is exact.

If ω is exact it belongs to the same equivalence class as 0, and as a vector it is 0. Thus, what ii.)
says is that if ω is a basis element (which of course is not zero) ofHp

DR(M ;R), then the column
vector π(ci, ω) must be nonzero. Apply this to all basis vectors {ωj}, j = 1, 2, . . . ,s =dimHp

DR

of Hp
DR(M ;R). Then, from the s column vectors νi = (ci, ωj), i = 1, . . . , r we may construct

the period matrix

πij = π(ci, ωj) =


∫
c1
ω1

∫
c1
ω2 . . .

∫
c1
ωs∫

c2
ω1

∫
c2
ω2 . . .

∫
c2
ωs

...
...

. . .
...∫

cr
ω1

∫
cr
ω2 . . .

∫
cr
ωs

 , (4.106)

for which we know that all columns are nonzero.
Consider a linear combination with real coe�cients xj , j = 1, . . . , s of the s column

vectors in the matrix. Then

x1


∫
c1
ω1

...∫
cr
ω1

+ . . .+ xs


∫
c1
ωs

...∫
cr
ωs

 =


∫
c1
x1ω1 + . . .+ xsωs

...∫
cr
x1ω1 + . . .+ xsωs

 , (4.107)

by linearity of integration. Choosing real coe�cients xj , j = 1, . . . , s re�ects the fact that
we deal with Hp(M,R). For the cohomology Hp(M,C) we would instead have used complex
coe�cients. The resulting form x1ω1 + . . . xsωs is a closed p−form by i.). Then set (4.107)
equal to zero. Applying ii.), the form x1ω1 + . . . xsωs must then be equal to 0. But since
{ωj}, j = 1, . . . , s is a basis for Hp

DR, all xj , j = 1, . . . , s are zero. Thus, the column vectors
in (4.107) are all linearly independent. The only way in which s vectors can be linearly
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independent in Rr and still span Rr is if s = r. r linearly independent column vectors in
Rr yield an invertible matrix. We have thus found that the period matrix πij in (4.106) is
invertible, and by de�nition Hp

DR(M ;R) is dual to Hp(M,R). Often, the cohomology Hp

(not de Rham) is de�ned as the dual of the homology Hp. Then, what we have shown is that
the de Rham cohomology is equal to that cohomology. Let us therefore drop the subscript
DR of Hp

DR.
Duality of Hp and H

p means that they are naturally isomorphic,

Hp(M ;R) ∼= Hp(M,R), (4.108)

and having the same numbers of elements we can de�ne the p:th Betti number of M as

bp(M) = dimHp(M ;R) = dimHp(M,R). (4.109)

Then the Euler characteristic of M , further discussed in Appendix A.3,

χ(M) =

n∑
p=0

(−1)pbp(M), (4.110)

can be found from the de Rham cohomology instead of homology. Another way of expressing
this is to say that the topological Euler characteristic of homology is equal to the analytic
Euler characteristic of de Rham cohomology. As a bridge-builder, de Rham's theorem is
clearly one of the most important theorems used in this paper.

Complexes

Now, let Cp be the set of chains in M which are in�nitely di�erentiable, and let Ωp denote
the set of p−forms in M . Then the action of ∂ and d respectively, on these series of spaces,
so called complexes, can be illustrated as

. . .
∂p−1←− Cp−1

∂p←− Cp
∂p+1←− Cp+1

∂p+2←− . . .

. . .
dp−1−→ Ωp−1

dp−→ Ωp
dp+1−→ Ωp+1

dp+2−→ . . .
,

(4.111)

where the duality of Hp and Hp is re�ected in the fact that ∂ and d operate in di�erent
directions. Duality also guarantees that there are as many C spaces as Ω spaces.

Regarding ∂p as an operator ∂p : Cp → Cp−1, it is evident that the homology of M also
may be written as

Hp(M,R) = Ker ∂p/Im ∂p+1, (4.112)

where Ker ∂p is the kernel of ∂p and Im ∂p+1 is the image of ∂p+1. Equivalently, since dp+1

is the operator dp+1 : Ωp → Ωp+1, the cohomology is

Hp(M ;R) = Ker dp+1/Im dp. (4.113)
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Chapter 5

Supersymmetric Quantum

Mechanics - Part II: Sigma Models

In chapter 3 we analysed the supersymmetric quantum mechanics in �at space. To really see
the connection between the physics of supersymmetric quantum mechanics and the mathe-
matics introduced in chapter 4, we have to repeat the calculations we did for a �at metric,
but now on a compact manifold with curvature. That is, we will �nd the Lagrangian, whose
variation in terms of supersymmetric variations of its coordinates can be written as a total
time derivative. Hence there are conserved supercharges whose commutator essentially gives
the Hamiltonian of the system. These supercharges will then guide us from the physics of
supersymmetric quantum mechanics to the mathematics of de Rham cohomology.

5.1 The Supersymmetric Lagrangian on a curved Mani-

fold

We consider a particle moving in a compact Riemannian manifold M of dimension n. Since
the manifold is supposed to be curved, the metric depends on the position qµ, µ = 1, 2, . . . n
in the manifold, gµν = gµν(q). The position vector qµ of the particle gives the bosonic
part of the theory. In the supersymmetric quantum mechanics, there must also be fermions.
They will in the classical theory be represented by two variables ψµ1 and ψµ2 , which are odd
Grassmann numbers.

5.1.1 The Superspace Technique

Due to the fact that the manifold is curved, the Lagrangian L now involves the Riemann
tensor. To be able to write the variation of the Lagrangian δL as a total time derivative,
we must di�erentiate the Riemann tensor. The Riemann tensor involves several Christo�el
symbols of the Levi-Civita connection, which all involve derivatives of the metric. We will
end up with a huge expression for δL with derivatives of the metric up to order three. To
bring such a monstrous expression into a nice time derivative will become a painstaking task.

Instead, we turn to another method, the superspace technique. It is used in supersymmetry
to solve speci�c problems. It provides us with a way to �nd what we want, a Lagrangian
that is manifestly supersymmetric and supercharges whose commutator is the Hamiltonian.

For a particle moving in M the Lagrangian would just be

L =
1

2
v2 =

1

2
gµν q̇

µq̇ν . (5.1)

The supersymmetric extension of this Lagrangian must also involve a fermionic part. Using
the superspace technique, we have to do two important transformations. In addition to time,
the system also evolves in two new coordinates θ1 and θ2, which are odd Grassmann numbers.
Second, the position coordinate qµ is substituted by a �eld, a super�eld φµ. In short

t → t, θ1, θ2

qµ(t) → φµ(t, θ) := qµ(t) + iθaψ
µ
a (t)− iθ1θ2F

µ(t).
(5.2)
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In the expression for the super�eld above, a = 1, 2. Note that a is not a tensor index, just
a summation index. F is an auxiliary �eld that can be eliminated from the Lagrangian by
using Lagrange's equations of motion, which we also will do in next section. The superspace
technique also involves the introduction of two kinds of di�erentiation operators

Da := ∂
∂θa
− iθa ∂∂t := ∂a − iθa∂t,

D̄a := ∂
∂θa

+ iθa
∂
∂t := ∂a + iθa∂t,

(5.3)

which are each other's complex conjugates. To get acquainted with the algebra of these
operators we investigate their commutation properties. First, it is clear that {∂a, θb} = δab
since by using the Grassmann property of θ

{∂a, θb} =

(
∂

∂θa
θb + θb

∂

∂θa

)
=
∂θb
∂θa
− θb

∂

∂θa
+ θb

∂

∂θa
= δab, (5.4)

where still a = 1, 2; b = 1, 2. The anti-commutator of D̄a and D̄b is then easily computed as

{D̄a, D̄b} = D̄aD̄b + D̄bD̄a

= (∂a + iθa∂t)(∂b + iθb∂t) + (∂b + iθb∂t)(∂a + iθa∂t)

= {∂a, ∂b}+ i{∂a, θb}∂t + i{∂b, θa}∂t − {θa, θb}∂t∂t
= 0 + iδab∂t + iδba∂t − 0

= 2iδab∂t.

(5.5)

In the same way one can show that

{Da, Db} = −{D̄a, D̄b} = −2iδab∂t. (5.6)

We will later need {Da, D̄b}. Actually it is zero,

{Da, D̄b} = DaD̄b + D̄bDa

= (∂a − iθa∂t)(∂b + iθb∂t) + (∂b + iθb∂t)(∂a − iθa∂t)
= {∂a, ∂b}+ i{∂a, θb}∂t − i{∂b, θa}∂t + {θa, θb}∂t∂t
= 0.

(5.7)

What are the supersymmetric variations of q, ψ and F? They can be found by performing
a variation of the super�eld, φ → φ′ = φ + δφ. From its de�nition in equation (5.2),
φµ(t, θ) = qµ(t) + iθbψ

µ
b (t)− iθ1θ2F

µ(t), and the variation becomes

δφµ = δqµ + iθbδψ
µ
b − iθ1θ2δF

µ. (5.8)

The variation of φ can also be written as a D̄a derivative acting on φ. Let εa be a small odd
Grassmann number and write

δφµ = εaD̄aφ
µ = εa(∂a + iθa∂t)φ

µ = εa
∂φµ

∂θa
+ iεaθaφ̇

µ. (5.9)

For clarity, compute ∂φµ

∂θa
and φ̇µ separately. First,

∂φµ
∂θa

=
∂

∂θa
(qµ(t) + iθbψ

µ
b (t)− iθ1θ2F

µ(t))

= iδabψ
µ
b − iεabθbF

µ

= iψµa − iεabθbFµ,

(5.10)

where εab is the Levi-Civita tensor in two dimensions, ε12 = 1, ε21 = −1, ε11 = ε22 = 0.
Hence, remembering that εa is an odd Grassmann number,

εa
∂φµ

∂θa
= iεaψ

µ
a − iεaεabθbFµ

= iεaψ
µ
a + iθbεaεabF

µ

= iεaψ
µ
a + iθaεbεbaF

µ

= iεaψ
µ
a − iθaεbεabFµ.

(5.11)
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It is evident from (5.2) that φ̇µ = q̇µ + iθbψ̇
µ
b − iθ1θ2Ḟ

µ, and

iεaθaφ̇
µ = iεaθa(q̇µ + iθbψ̇

µ
b − iθ1θ2Ḟ

µ)

= iεaθaq̇
µ − εaθaθbψ̇µb

= −iθaεaq̇µ − θ1θ2εaεabψ̇
µ
b .

(5.12)

Adding the results from (5.11) and (5.12), (5.9) becomes

δφµ = iεaψ
µ
a − iθaεbεabFµ − iθaεaq̇µ − θ1θ2εaεabψ̇

µ
b

= (iεaψ
µ
a ) + iθa(−εaq̇µ − εbεabFµ)− iθ1θ2(−iεaεabψ̇µb ).

(5.13)

Having written δφµ in this form, it is easy to read o� the supersymmetric transformations of
q, ψ and F , comparing (5.8) and (5.13). The result is

δqµ = iεaψ
µ
a ,

δψµa = −εaq̇µ − εbεabFµ,
δFµ = −iεaεabψ̇µb .

(5.14)

We have not shown that they yield a supersymmetric Lagrangian, yet it is clear that they
mix bosonic and fermionic variables as they should. Now is the time to start the machinery
of Lagrangian mechanics, where the action

S =

∫
dtL (5.15)

should be stationary under these supersymmetric variations. The Lagrangian L is a function
of φ = φ(t, θ) and will involve integration over the odd Grassmann variables θ1 and θ2. It
can be written as1

L = −1

2

∫
d2θ(−i)gµν(φ)D1φ

µD2φ
ν , (5.17)

where D1 and D2 are the recently introduced derivatives in (5.3). We can immediately
check that constructing L as in (5.17), makes its variation become a total time derivative.
Remember from the �rst equality of (5.9) that

δφ = εaD̄aφ. (5.18)

Then, since the metric gµν is a function of φ one gets

δgµν(φ) =
∂gµν
∂φλ

δφλ =
∂gµν
∂φλ

εaD̄aφ
λ = εa

∂gµν
∂φλ

D̄aφ
λ = εaD̄agµν(φ), (5.19)

by the chain rule. Then since {D1, D̄a} = {D2, D̄a} = 0 from (5.7) we have

δD1φ
µ = D1δφ

µ = D1εaD̄aφ
µ = εaD̄aD1φ

µ,
δD2φ

ν = D2δφ
ν = D2εaD̄aφ

ν = εaD̄aD2φ
ν .

(5.20)

Using these results in the variation of L in (5.17) we get

1In the generalisation of Lagrangian mechanics to quantum �eld theory, one introduces the Lagrangian
density L. In this language, the action also becomes an integral over space:

S =

∫
dtL =

∫
dt

∫
dx3L. (5.16)

This may help us to understand why there is integration over the superspace variables θ1 and θ2 in (5.17).
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δL =
i

2
δ

∫
d2θ gµν(φ)D1φ

µD2φ
ν

=
i

2

∫
d2θ [(δgµν(φ))D1φ

µD2φ
ν + gµν(φ)(δD1φ

µ)D2φ
ν + gµν(φ)D1φ

µ(δD2φ
ν)]

=
i

2

∫
d2θ

[
εaD̄agµν(φ)D1φ

µD2φ
ν + gµν(φ)(εaD̄aD1φ

µ)D2φ
ν + gµν(φ)D1φ

µ(εaD̄aD2φ
ν)
]

=
i

2

∫
d2θ εaD̄a (gµν(φ)D1φ

µD2φ
ν)

=
i

2

∫
d2θ εa

(
∂

∂θa
+ iθa

∂

∂t

)
(gµν(φ)D1φ

µD2φ
ν) ,

(5.21)

where we have used that D̄a is a linear operator. From the integration rules in (3.5), the
operator ∂

∂θa
in D̄a will not contribute to δL in (5.21), and δL is then a total time derivative

under the variations in (5.14). This will be completely obvious in section 5.2 where the
supercharges are computed.

5.1.2 Calculation of the Lagrangian

The �rst problem we encounter in (5.17) is the fact that gµν depends on φ, which in turn
depends on θ. We must somehow write gµν as a function only of the bosonic parameter q.
This can be done by considering the fermionic part in φ as a little deviation from q, and then
performing a Taylor expansion around q. Generally, a Taylor expansion contains an in�nite
number of terms. In this particular case it will only contain derivatives up to second order,
thanks to the Grassmann property of θ1 and θ2. In mathematical terms

gµν(φ) = gµν(qµ + iθaψ
µ
a − iθ1θ2F

µ)

= gµν(qµ + (iθaψ
µ
a − iθ1θ2F

µ))

= gµν(qµ)+(iθaψ
ρ
a− iθ1θ2F

ρ)
∂

∂qρ
gµν(qµ)

+
1

2
(iθaψ

ρ
a−iθ1θ2F

ρ)(iθbψ
σ
b −iθ1θ2F

σ)
∂

∂qρ
∂

∂qσ
gµν

= gµν(qµ) + (iθaψ
ρ
a − iθ1θ2F

ρ)gµν,ρ −
1

2
θaψ

ρ
aθbψ

σ
b gµν,ρσ,

(5.22)

and the θ dependence on gµν(φ) has become explicit.
Next issues in (5.17) are the factors D1φ

µ and D2φ
ν

D2φ
ν =

(
∂

∂θ2
− iθ2

∂

∂t

)
(qν + iθaψ

ν
a − iθ1θ2F

ν) = iψν2 + iθ1F
ν − iθ2q̇

ν + θ2θ1ψ̇
ν
1 , (5.23)

D1φ
µ =

(
∂

∂θ1
− iθ1

∂

∂t

)
(qµ + iθaψ

µ
a − iθ1θ2F

µ) = iψµ1 − iθ2F
µ − iθ1q̇

µ + θ1θ2ψ̇
µ
2 . (5.24)

Multiplying these factors together gives

D1φ
µD2φ

ν =(iψµ1 − iθ2F
µ − iθ1q̇

µ + θ1θ2ψ̇
µ
2 )(iψν2 + iθ1F

ν − iθ2q̇
ν + θ2θ1ψ̇

ν
1 )

=− ψµ1ψν2 + θ1ψ
µ
1F

ν − θ2ψ
µ
1 q̇
ν − iθ1θ2ψ

µ
1 ψ̇

ν
1 + θ2ψ

ν
2F

µ − θ1θ2F
µF ν

+ θ1q̇
µψν2 − θ1θ2q̇

µq̇ν + iθ1θ2ψ̇
µ
2ψ

ν
2 ,

(5.25)

where we have used the important fact that both θa and ψb are odd Grassmann numbers,
and hence anti-commute with each other.

The next step is to multiply gµν(φ)D1φ
µD2φ

ν in (5.22) and (5.25). We must as before
be careful with the ordering of the factors that are odd Grassmann numbers. Some terms
will disappear since they contain θaθa = 0, and we only get
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gµν(φ)D1φ
µD2φ

ν =− ψµ1ψν2gµν + θ1ψ
µ
1F

νgµν − θ2ψ
µ
1 q̇
νgµν − iθ1θ2ψ

µ
1 ψ̇

ν
1gµν + θ2ψ

ν
2F

µgµν

− θ1θ2F
µF νgµν + θ1q̇

µψν2gµν − θ1θ2q̇
µq̇νgµν + iθ1θ2ψ̇

µ
2ψ

ν
2gµν

− iθaψρaψ
µ
1ψ

ν
2gµν,ρ + iθ1θ2ψ

ρ
2ψ

µ
1F

νgµν,ρ + iθ1θ2ψ
ρ
1ψ

µ
1 q̇
νgµν,ρ

− iθ1θ2ψ
ρ
1ψ

ν
2F

µgµν,ρ + iθ1θ2ψ
ρ
2ψ

ν
2 q̇
µgµν,ρ + iθ1θ2F

ρψµ1ψ
ν
2gµν,ρ

− 1

2
θaθbψ

ρ
aψ

σ
b ψ

µ
1ψ

ν
2gµν,ρσ.

(5.26)

Now we are ready to perform the integral

L = −1

2

∫
d2θ(−i)gµν(φ)D1φ

µD2φ
ν . (5.27)

Due to the integration rules in (3.5) ∫
d2θ(−iθ1θ2) = 1,∫
d2θθa = 0,∫
d2θc = 0,

(5.28)

all terms in (5.26) that do not have two factors of θ:s will disappear when the integration
in (5.27) is performed. Having already written a factor of (−i) in (5.27), integration of the
terms in (5.26) with θ1θ2, means just that one removes θ1θ2 from that term. The last term
in (5.26) involves two terms, one with θ1θ2 and one with θ2θ1. After the integration they can
still be written as one term by use of εab. We get

L = −1

2

(
−iψµ1 ψ̇ν1gµν − FµF νgµν − q̇µq̇νgµν + iψ̇µ2ψ

ν
2gµν + iψρ2ψ

µ
1F

νgµν,ρ + iψρ1ψ
µ
1 q̇
νgµν,ρ

−iψρ1ψν2Fµgµν,ρ + iψρ2ψ
ν
2 q̇
µgµν,ρ + iF ρψµ1ψ

ν
2gµν,ρ −

1

2
εabψ

ρ
aψ

σ
b ψ

µ
1ψ

ν
2gµν,ρσ

)
.

(5.29)

Rewriting (5.29) would make it easier to handle. The fourth term can, by �rst changing the
order of the ψ:s and then interchanging the indices µ and ν, be written as

iψ̇µ2ψ
ν
2gµν = −iψν2 ψ̇

µ
2 gµν = −iψµ2 ψ̇ν2gνµ = −iψµ2 ψ̇ν2gµν , (5.30)

where in the last step the symmetry of the metric was used. The �rst and the fourth term
in the parenthesis of (5.29) combine into

−iψµ1 ψ̇ν1gµν − iψ
µ
2 ψ̇

ν
2gµν = −iψµa ψ̇νagµν . (5.31)

In the same way, the sixth and the eight terms in the parenthesis of (5.29) can be written as
one term

iψρ1ψ
µ
1 q̇
νgµν,ρ + iψρ2ψ

ν
2 q̇
µgµν,ρ = iψρaψ

ν
a q̇
µgµν,ρ. (5.32)

Further examining (5.29), there are three terms linear in F , which by changes of indices can
be grouped to one single term:

iψρ2ψ
µ
1F

νgµν,ρ − iψρ1ψν2Fµgµν,ρ + iF ρψµ1ψ
ν
2gµν,ρ

= −iψµ1ψ
ρ
2F

νgµν,ρ − iψρ1ψν2Fµgµν,ρ + iψµ1ψ
ν
2F

ρgµν,ρ

= −iψµ1ψν2F ρgµρ,ν − iψ
µ
1ψ

ν
2F

ρgρν,µ + iψµ1ψ
ν
2F

ρgµν,ρ

= −iψµ1ψν2F ρ(gµρ,ν + gρν,µ − gµν,ρ).

(5.33)

Remember from section 4.3 that the Christo�el symbol of the Levi-Civita connection is
de�ned in terms of three derivatives of the metric,

Γλµν =
1

2
gλσ(gσµ,ν + gσν,µ − gµν,σ). (5.34)
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so lowering the �rst index with the metric yields

Γρµν = gρλΓλµν

=
1

2
gρλg

λσ(gσµ,ν + gσν,µ − gµν,σ)

=
1

2
δσρ (gσµ,ν + gσν,µ − gµν,σ)

=
1

2
(gρµ,ν + gρν,µ − gµν,ρ).

(5.35)

The terms linear in F in (5.33) thus has a Christo�el symbol coe�cient and can simply be
written as

−2iψµ1ψ
ν
2F

ρΓρµν . (5.36)

Taking all of the above into account, and multiplying the factor − 1
2 into the parenthesis of

(5.29), one gets a nice expression for the Lagrangian

L =
1

2
q̇µq̇νgµν +

1

2
FµF νgµν +

i

2
ψµa ψ̇

ν
agµν −

i

2
ψρaψ

ν
a q̇
µgµν,ρ

+
1

4
εabψ

ρ
aψ

σ
b ψ

µ
1ψ

ν
2gµν,ρσ + iψµ1ψ

ν
2 ΓρµνF

ρ.

(5.37)

We immediately recognize the term 1
2 q̇
µq̇νgµν in (5.37). Then (5.37) is, by reference to (5.21)

just a supersymmetric extension of (5.1).
The auxiliary �eld F does not contribute to any degree of freedom, and now is the time

to eliminate it from L. To do this, we use one of Lagrange's equations of motion, which reads

∂L

∂F
=

d

dt

(
∂L

∂Ḟ

)
= 0, (5.38)

since L does not depend on Ḟ . We therefore di�erentiate L with respect to Fλ and use the
obtained equation to eliminate F,

0=
∂L

∂F
=

1

2

∂

∂Fλ
(FµF ν)gµν + iψµ1ψ

ν
2 Γρµν

∂F ρ

∂Fλ

=
1

2

∂Fµ

∂Fλ
F νgµν +

1

2
Fµ

∂F ν

∂Fλ
gµν + iψµ1ψ

ν
2 Γρµνδ

ρ
λ

=
1

2
δµλF

νgµν +
1

2
Fµδνλgµν + iψµ1ψ

ν
2 Γλµν

=
1

2
F νgλν +

1

2
Fµgµλ + iψµ1ψ

ν
2 Γλµν

=
1

2
Fµgλµ +

1

2
Fµgµλ + iψµ1ψ

ν
2 Γλµν

= Fµgλµ + iψµ1ψ
ν
2 Γλµν ,

(5.39)

which means that

Fµgλµ = −iψµ1ψν2 Γλµν , (5.40)

and

F γ = Fµδγµ = gγλFµgλµ = gγλ(−iψµ1ψν2 Γλµν) = −iψµ1ψν2 Γγµν . (5.41)

When inserting F from (5.41) in (5.37), we must not use the same dummy indices for di�erent
summations. The term quadratic in F becomes

1

2
FµF νgµν =

1

2
(−iψα1 ψ

β
2 Γµαβ)(−iψγ1ψε2Γνγε)gµν = −1

2
ψα1 ψ

β
2ψ

γ
1ψ

ε
2ΓµαβΓµγε. (5.42)

The term linear in F is
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iψµ1ψ
ν
2 Γρµν(−iψα1 ψ

β
2 Γραβ) = ψµ1ψ

ν
2ψ

α
1 ψ

β
2 ΓραβΓρµν . (5.43)

Thus, in total we have

L =
1

2
q̇µq̇νgµν +

i

2
ψµa ψ̇

ν
agµν −

i

2
ψρaψ

ν
a q̇
µgµν,ρ

− 1

2
ψα1 ψ

β
2ψ

γ
1ψ

ε
2ΓµαβΓµγε + ψµ1ψ

ν
2ψ

α
1 ψ

β
2 ΓραβΓρµν +

1

4
εabψ

ρ
aψ

σ
b ψ

µ
1ψ

ν
2gµν,ρσ.

(5.44)

The last three terms in (5.44) above have the common property that they all involve four

factors of ψ. Let us write them as a single term, with the ψ factors in order as ψα1 ψ
β
1ψ

γ
2ψ

ε
2.

The �rst of these terms becomes, after interchanging the ψ:s and then the indices

−1

2
ψα1 ψ

β
2ψ

γ
1ψ

ε
2ΓµαβΓµγε =

1

2
ψα1 ψ

γ
1ψ

β
2ψ

ε
2ΓµαβΓµγε =

1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2ΓµαγΓµβε, (5.45)

and the second

ψµ1ψ
ν
2ψ

α
1 ψ

β
2 ΓραβΓρµν = −ψµ1ψα1 ψν2ψ

β
2 ΓραβΓρµν = −ψα1 ψ

β
1ψ

γ
2ψ

ε
2ΓµβεΓµαγ . (5.46)

The third term may be split into two according to

1

4
εabψ

ρ
aψ

σ
b ψ

µ
1ψ

ν
2gµν,ρσ =

1

4
ψρ1ψ

σ
2ψ

µ
1ψ

ν
2gµν,ρσ −

1

4
ψρ2ψ

σ
1ψ

µ
1ψ

ν
2gµν,ρσ

= −1

4
ψρ1ψ

µ
1ψ

σ
2ψ

ν
2gµν,ρσ −

1

4
ψσ1ψ

µ
1ψ

ρ
2ψ

ν
2gµν,ρσ

= −1

4
ψα1 ψ

β
1ψ

γ
2ψ

ε
2(gβε,αγ + gβε,γα)

= −1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2gβε,αγ ,

(5.47)

where we in the last step made use of the commutativity of mixed second partial derivatives
of the metric, gβε,αγ = gβε,γα.

Collecting the results from (5.45), (5.46) and (5.47), the terms with four factors of ψ
become

1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2

(
ΓµαγΓµβε − 2ΓµβεΓµαγ − gβε,αγ

)
. (5.48)

Note that this expression is antisymmetric under change of α and β, and also under γ
and ε in the Γ-factors. Thus it is symmetric under interchange of both α with β and γ with
ε. If the reader is not convinced about this, follow the manipulation of the middle term in
(5.48)

1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2

(
−2ΓµβεΓµαγ

)
=

1

2
(−ψβ1ψα1 )(−ψε2ψ

γ
2 )
(
−2ΓµβεΓµαγ

)
=

1

2
ψβ1ψ

α
1 ψ

ε
2ψ

γ
2

(
−2ΓµβεΓµαγ

)
=

{
α↔ β
γ ↔ ε

}
=

1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2

(
−2ΓµαγΓµβε

)
. (5.49)

The Christo�el symbols in (5.48) add together, and (5.48) reads

1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2

(
−ΓµαγΓµβε − gβε,αγ

)
=

1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2 (ΓµαεΓµβγ + gβγ,αε) , (5.50)

where in the last step we used the antisymmetry under interchange of γ and ε. The total
Lagrangian is then

L =
1

2
q̇µq̇νgµν +

i

2
ψµa ψ̇

ν
agµν −

i

2
q̇µψρaψ

ν
agµν,ρ +

1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2 (ΓµβγΓµαε + gβγ,αε) . (5.51)
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5.1.3 The Lagrangian in Terms of the Riemann Tensor

One could be quite content with the short expression for L that appears in (5.51) in the end
of last section, but we want to express it in terms of the Riemann tensor. Let us de�ne the
time di�erentiation operator Dt through its action on a fermionic variable ψν

Dtψ
ν =

∂

∂t
ψν + Γνγλ

∂qγ

∂t
ψλ = ψ̇ν + q̇γΓνγλψ

λ. (5.52)

Then the Lagrangian of our system is

L =
1

2
gµν(q)(q̇µq̇ν + iψµaDtψ

ν
a) +

1

8
ψρaψ

σ
aψ

µ
b ψ

ν
bRρσµν . (5.53)

We will now show that (5.53) is equal to our old expression (5.51). First we notice that they
already have the term 1

2 q̇
µq̇νgµν in common. Next, we see that they both have two kinds of

terms, terms with two factors of fermionic variables ψ, and terms with four ψ factors. It is
very natural to treat and compare them separately.

The term 1
2gµνiψ

µ
aDtψ

ν
a in (5.53) can by use of the de�nition of Dt in (5.52) be written

as

i

2
gµνψ

µ
a (ψ̇νa + q̇γΓνγλψ

λ
a ) =

i

2
ψµa ψ̇

ν
agµν +

i

2
q̇γgµνΓνγλψ

µ
aψ

λ
a . (5.54)

The �rst of these terms is exactly what is in (5.51), so we are left with the second term. It is

i

2
q̇γψµaψ

λ
aΓµγλ =

i

2
q̇γψµaψ

λ
a

1

2
(gµγ,λ + gµλ,γ − gγλ,µ). (5.55)

The middle term in (5.55) is zero since it is symmetric in the metric and antisymmetric in
the ψ factors under interchange of µ and λ. Explicitly,

ψµaψ
λ
agµλ,γ = −ψλaψµagµλ,γ = {λ↔ µ} = −ψµaψλagλµ,γ = −ψµaψλagµλ,γ , (5.56)

which must be zero. The last term in (5.55) is just the same as the �rst except for sign, since
it is antisymmetric under interchange of µ and λ. Hence (5.55) simpli�es to

i

2
q̇γψµaψ

λ
agµγ,λ = − i

2
q̇γψλaψ

µ
agµγ,λ =

 γ → µ
λ→ ρ
µ→ ν

 = − i
2
q̇µψρaψ

ν
agνµ,ρ, (5.57)

which is the third term in (5.51) that we wanted to �nd. The parts in (5.53) and (5.51) with
two factors of ψ thus agree completely. What remains is the Riemann part with four factors
of ψ, 1

8ψ
ρ
aψ

σ
aψ

µ
b ψ

ν
bRρσµν . Writing it like this, one might ask if terms with a = b contribute.

They do not, due to the identity in (4.79)

Rρσµν +Rρνσµ +Rρµνσ = 0. (5.58)

Since

ψρψσψµψνRρσµν =

 σ → ν
ν → µ
µ→ σ

 = ψρψνψσψµRρνσµ = ψρψσψµψνRρνσµ, (5.59)

and

ψρψσψµψνRρσµν =

 σ → µ
µ→ ν
ν → σ

 = ψρψµψνψσRρµνσ = ψρψσψµψνRρµνσ, (5.60)

we have

3ψρψσψµψνRρσµν = ψρψσψµψν(Rρσµν +Rρνσµ +Rρµνσ) = 0 (5.61)

from (5.58). Thus ψρψσψµψνRρσµν = 0 and evidently
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1

8
ψρaψ

σ
aψ

µ
b ψ

ν
bRρσµν =

1

8
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2Rρσµν +

1

8
ψρ2ψ

σ
2ψ

µ
1ψ

ν
1Rρσµν =

=
1

8
(ψρ1ψ

σ
1ψ

µ
2ψ

ν
2 +ψµ1ψ

ν
1ψ

ρ
2ψ

σ
2 )Rρσµν =

 µ↔ ρ
ν ↔ σ
in last term

=
1

8
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2 (Rρσµν+Rµνρσ)

(5.62)
From the de�nition of the Riemann tensor, we have

Rασµν = ∂µΓανσ − ∂νΓαµσ + ΓαµγΓγνσ − ΓανγΓγµσ. (5.63)

Lowering the �rst index with the metric gαρ yields according to (4.76)

Rρσµν = −gρλ,µΓλνσ+gρλ,νΓλµσ+
1

2
(gρν,σµ−gνσ,ρµ−gρµ,σν+gµσ,ρν)+ΓρµγΓγνσ−ΓρνγΓγµσ.

(5.64)
Just by permuting indices (ρ↔ µ, σ ↔ ν) in (4.76) we �nd

Rµνρσ = −gµλ,ρΓλσν+gµλ,σΓλρν+
1

2
(gµσ,νρ−gσν,µρ−gµρ,νσ+gρν,µσ)+ΓµργΓγσν−ΓµσγΓγρν .

(5.65)
Then (5.62) becomes

1

8
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2 (Rρσµν +Rµνρσ)=

1

8
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2

(
−gρλ,µΓλνσ + gρλ,νΓλµσ − gµλ,ρΓλσν + gµλ,σΓλρν

+
1

2
(gρν,σµ − gνσ,ρµ − gρµ,σν + gµσ,ρν + gµσ,νρ − gσν,µρ − gµρ,νσ + gρν,µσ)

+ΓρµλΓλνσ − ΓρνλΓλµσ + ΓµρλΓλσν − ΓµσλΓλρν
)
.

(5.66)

Such a large expression must be handled in smaller parts. Let us begin with the part involving
second derivatives of the metric

1

8
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2

1

2
(gρν,σµ − gνσ,ρµ − gρµ,σν + gµσ,ρν + gµσ,νρ − gσν,µρ − gµρ,νσ + gρν,µσ)

=
1

8
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2 (gρν,µσ − gνσ,µρ − gµρ,νσ + gµσ,ρν). (5.67)

Continuing, using the fact that the above expression is antisymmetric under interchange of
ρ with σ and µ with ν in the metric part, gives

1

4
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2 (−gνσ,µρ + gµσ,ρν) =

1

2
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2gσµ,ρν . (5.68)

This antisymmetry will become even more useful when dealing with the rest of (5.66)

1

8
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2

(
−gρλ,µΓλνσ + gρλ,νΓλµσ − gµλ,ρΓλσν + gµλ,σΓλρν

+ΓρµλΓλνσ − ΓρνλΓλµσ + ΓµρλΓλσν − ΓµσλΓλρν
)

=
1

4
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2

(
−gρλ,µΓλνσ + gµλ,σΓλρν + ΓρµλΓλνσ − ΓµσλΓλρν

)
=

1

4
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2

(
gσλ,µΓλνρ + gµλ,σΓλρν − ΓσµλΓλνρ − ΓµσλΓλρν

)
=

1

4
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2 (gσλ,µ + gµλ,σ − Γσµλ − Γµσλ) Γλρν .

(5.69)

The expression in the parenthesis in (5.69) above hides twice a Christo�el symbol
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gσλ,µ + gµλ,σ − Γσµλ − Γµσλ

= gσλ,µ + gµλ,σ −
1

2
(gσµ,λ + gσλ,µ − gµλ,σ + gµσ,λ + gµλ,σ − gσλ,µ)

= gσλ,µ + gµλ,σ − gσµ,λ = 2Γλσµ.

(5.70)

Hence (5.69) becomes

1

2
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2 ΓλσµΓλρν , (5.71)

and when (5.68) and (5.71) are added together, (5.66) simply reads

1

2
ψρ1ψ

σ
1ψ

µ
2ψ

ν
2

(
gσµ,ρν + ΓλσµΓλρν

)
, (5.72)

or, after permuting indices (ρ→ α, σ → β, µ→ γ, ν → ε, λ→ µ)

1

2
ψα1 ψ

β
1ψ

γ
2ψ

ε
2 (gβγ,αε + ΓµβγΓµαε) , (5.73)

which is exactly the part with four fermionic factors that we had in (5.51). Then, part by
part we have showed the equivalence between (5.51) and (5.53), and the Lagrangian of the
system may clearly be taken as

L =
1

2
gµν(q)(q̇µq̇ν + iψµaDtψ

ν
a) +

1

8
Rρσµνψ

ρ
aψ

σ
aψ

µ
b ψ

ν
b . (5.74)

This result is also stated in Alvarez-Gaumés paper [3], although in a bit di�erent form.
Instead of ψ1 and ψ2 he uses ψ and ψ̄, which are complex conjugates of each other. While
comparing one also has to be careful with the order of the indices. Applying (4.79) yields
the necessary factor of 2 that makes the two Lagrangians exactly equal. A very similar
Lagrangian appears in [1], but there seems to be a di�erence in the ratio of the coe�cients of
the second and the third terms. Even if the coe�cients of the two terms are di�erent in the
texts, their ratio should be the same when written in comparable form. Also, in the original
paper by Witten, [2], the ratio seems to di�er compared to the factor in (5.74).

5.2 Calculation of the Supercharges Qa

In this section we will deduce the expression for the supercharges Qa. We use a similar
approach to the one used in section 3.2, where we had two expressions for δL, which we could
write as two total time derivatives. The di�erence between the two expressions contained
our conserved supercharges.

We are going to continue where section 5.1.1 ends. Let us restate some useful mathemat-
ical results before we begin. The Lagrangian is given by,

L =

∫
d2θ

i

2
gµν(φ)D1φ

µD2φ
ν︸ ︷︷ ︸

L

, (5.75)

where we, for simplicity have de�ned a part L. The expressions for D1 and D2 are,

D1 = ∂1 − iθ1∂t,

D2 = ∂2 − iθ2∂t.
(5.76)

For the moment, we leave the integral in (5.75) out in order to shorten our expressions. As
we saw in (5.21), we can write δL accordingly,

δL =

∫
d2θ δL

=

∫
d2θ εaD̃aL

=

∫
d2θ εa∂aL+ iεaθa

d

dt
L.

(5.77)
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As mentioned in section 5.1.1, the �rst part of the variation will give zero contribution in the
integration. In other words, since we take the derivative of θa, we would have needed at least
three factorns of θa, θaθbθc for the integration to give a nonzero contribution. This term can
therefore be ignored in the further calculation of δL. We continue by focusing entirely on
the second term iεaθa

d
dtL,

iεaθa
d

dt
L = iεaθa

d

dt

(
i

2
gµν(φ)D1φ

µD2φ
ν

)
. (5.78)

For simplicity the expression above is split up in parts. Let us start with the metric gµν(φ),
which can be rewritten as the Taylor expasion in (5.22),

gµν(φ) = gµν(qµ) + (iθaψ
λ
a − iθ1θ2F

λ)gµν,λ︸ ︷︷ ︸
A

+
1

2

(
−θaψλaθbψ

ρ
b

)
gµν,λρ︸ ︷︷ ︸

B

. (5.79)

In section 5.1.2 we calculated D1φµ and D2φν . We restate the result from (5.23) and (5.24),

D1φ
µ = iψµ1 − iθ2F

µ − iθ1q̇
µ + θ1θ2ψ̇

µ
2 , (5.80)

D2φ
ν = iψν2 + iθ1F

ν − iθ2q̇
ν + θ2θ1ψ̇

ν
1 , (5.81)

Let us now return to and calculate iεaθa
d
dt

(
i
2gµν(φ)D1φ

µD2φ
ν
)
by multiplying the separate

parts,

iεaθa
d

dt

(
i

2
gµν(φ)D1φ

µD2φ
ν

)
= iεaθa

d

dt

(
i

2
(A+B)D1φµD2φν

)
. (5.82)

We need to change index εaθa → εkθk to avoid summation where it is not supposed to be,
which yields the expression,

iεkθk
d

dt

(
i

2
(A+B)D1φµD2φν

)
=
i

2
εk
d

dt
[−iθkgµνψν1ψν2 − iθ1θkgµνψ

µ
1F

ν

− iθkθ2gµνψ
µ
1 q̇
ν + iθkθ2gµνF

µψν2

− iθ1θkgµν q̇
µψν2

+ i(−i)θkθaψλagµν,λψ
µ
1ψ

ν
2 ] .

(5.83)

Now we are ready to calculate δL by calculating the integral in (5.77). We apply the rules
for integration in (5.28),

δL =

∫
d2θ δL

=
i

2

d

dt
[ε2gµνψ

µ
1F

ν + ε1gµνψ
µ
1 q̇
ν − ε1gµνFµψν2

+ ε2gµν q̇
µψν2 + iεkεkaψ

λ
agµν,λψ

µ
1ψ

ν
2 ]

=
i

2

d

dt

(
εaεbagµνψbF

ν + εagµνψ
µ
a q̇
ν + iεaεabψ

λ
b gµν,λψ

µ
1ψ

ν
2

)
.

(5.84)

As we can see, the idea of a super�eld, helped us in a very convenient way, to write the
variation of the Lagrangian as a total time derivative. If we recall the technique we used
when deriving the supercharges on �at space; we also wrote the variation of the Lagrangian
in terms of partial derivatives. We will do the same thing now, in an exactly analogous way.
Note that we could have done this part without the super�eld, all we need is the Lagrangian
and the supervariations. The variation of L is

δL = δqγ
∂L

∂qγ
+ δq̇γ

∂L

∂q̇γ
+ δψσa

∂L

∂ψσa
+ δψ̇σa

∂L

∂ψ̇σa
+ δFα

∂L

∂Fα
+ δḞα

∂L

∂Ḟα
. (5.85)

As before, we can rewrite this by using Lagrange's equations, as

δL =
d

dt

(
δqγ

∂L

∂q̇γ
+ δψσa

∂L

∂ψ̇σa
+ δFα

∂L

∂Ḟα

)
. (5.86)
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We calculated an expression for the Lagrangian earlier, we restate it for clarity

L =
1

2
gµν
(
q̇µq̇ν + iψµaDtψ

ν
a

)
+

1

8
. . . (5.87)

The last part is not interesting for us in this calculation since it does not include any time
derivatives, hence, it will be zero in the variation of L. By implementation of the de�nition
of Dt in (5.52), we get

L =
1

2
gµν q̇

µq̇ν +
i

2
gµνψ

µ
a

(
ψ̇νa + q̇λΓνλαψ

α
a

)
+

1

8
. . . (5.88)

We immediately see that ∂L/∂Ḟα = 0. The variation of L then becomes

δL =
d

dt

(
δqγ
(
gµγ q̇

µ +
i

2
ψµagµνΓνγαψ

α
a

)
+ δψνa

(−i)
2

ψµagµν

)
(5.89)

The minus sign appears in the last expression because ψµ and ψ̇ν anticommute, and as usual,
the derivative is de�ned so that it acts on its immediate right. We have already derived the
variations δqγ and δψσ. It proved that they came out naturally, as a consequence of the
construction of the super�eld, in the calculations of the Lagrangian. We �nd them in (5.14),
and by putting these into our expression for δL we get

δL =
d

dt

(
iεbψ

γ
b gµγ q̇

µ − 1

2
εbψ

γ
b ψ

µ
aΓµγαψ

α
a +

i

2
εabεbF

νψµagµν +
i

2
εaψ

µ
agµν q̇

ν

)
. (5.90)

If we recall the variation of L we did earlier, (5.84), in which the variation was de�ned in
terms of a covariant derivative, we now have all we need to construct the supercharges. Both
of the two variations, (5.84) and (5.90), are written as total time derivatives. Hence, we can
construct conserved supercharges. We have that

δL− δL =
d

dt
(. . .) = 0 (5.91)

Whatever is left inside the parenthesis above is the conserved supercharges, (up to the con-
stants i and εa). They become,

iεaQa =

(
iεbψ

γ
b gµγ q̇

µ − 1

2
εbψ

γ
b ψ

µ
aΓµγαψ

α
a +

i

2
εabεbF

νψµagµν +
i

2
εaψ

µ
agµν q̇

ν

)
− i

2

(
εagµνψ

µ
a q̇
ν + εaεbaψ

µ
b gµνF

ν + iεaεabψ
λ
b ψ

µ
1ψ

ν
2gµν,λ

)
.

(5.92)

Since ψ commutes with both q and F , and q commutes with F , the ordering of these factors
in each term does not matter, thus, the only terms left are

iεaQa = iεbψ
γ
b gµγ q̇

µ − 1

2

(
εbψ

γ
b ψ

µ
aΓµγαψ

α
a︸ ︷︷ ︸

C

− εaεabψλb ψ
µ
1ψ

ν
2gµν,λ︸ ︷︷ ︸

D

)
. (5.93)

As a matter of fact, C and D will cancel out each other. We just have to expand C in all
its components, change some indices and use some anticommutation relations, and it will
become clear that they are equal. We start o� by using the explicit expression for Γµγα, C
then becomes

C = εbψ
γ
b ψ

µ
aψ

α
aΓµγα

= εbψ
γ
b ψ

µ
aψ

α
a

1

2
(gµγ,α + gµα,γ − gγα,µ).

(5.94)

The middle term, ψµaψ
α
a gµα,γ will always be zero, since gµα,γ is symmetric in µα, while ψµaψ

α
a

anticommutes. Note that the 1/2 comes from the de�nition of Γµγα and should not be
confused with the 1/2 outside of the paranthesis in (5.93). Also, if we let µ↔ α, we get that

−ψµaψαa gγα,µ = −ψαaψµagγµ,α = ψµaψ
α
a gγµ,α. (5.95)
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C then becomes,
C = εbψ

γ
b ψ

µ
aψ

α
a gµγ,α. (5.96)

Note that the terms involving ψγ1ψ
µ
1ψ

α
1 and ψγ2ψ

µ
2ψ

α
2 are zero, because of the antisymmetric

properties of Γµγα. If we make the summation in C, we get,

C = (ε1ψ
γ
1ψ

µ
2ψ

α
2 + ε2ψ

γ
2ψ

µ
1ψ

α
1 )gµγ,α

= (ε1ψ
α
2 ψ

γ
1ψ

µ
2 − ε2ψα1 ψ

µ
1ψ

γ
2 )gµγ,α

=
{
let µ↔ γ in the �rst term

}
= (ε1ψ

α
2 ψ

µ
1ψ

γ
2 − ε2ψα1 ψ

µ
1ψ

γ
2 )gµγ,α

= {α→ λ, γ → ν}
= εaεabψ

λ
b ψ

µ
1ψ

ν
2gµν,λ

= D.

(5.97)

In rewriting C to D, we used that we are allowed to interchange the variables α and γ since
gµγ,λ is symmetric in these two coordinates. So, with this result, we come the conclusion
that the supercharges can be written as,

iεaQa = iεaψ
γ
agµγ q̇

µ,

Qa = ψγagµγ q̇
µ.

(5.98)

These are the conserved supercharges of the system.

5.3 Poisson Bracket

Now we want to quantize the system, we go about this as we did when we had a �at manifold.
First writing the Lagrangian in the Hamiltonian formalism, thereby obtaining the expression
for the Poisson brackets which we can multiply by i to get the anti-commutators of quantum
mechanical operators. We can still write the Lagrangian as L = 2T − H, where we can
express 2T as

2T = q̇µ
∂L

∂q̇µ
+ ψ̇ma

∂L

∂ψ̇ma
. (5.99)

Here we take the partial derivative with respect to the curved indices in the �rst term but
�at in the second. This may seem strange but will in the end generate a simple expression
for the Poisson bracket. Therefore we have to transform the second term in the Lagrangian
with curved indices to �at indices. We use the vielbeins for the transformation. The vielbeins
themselves will have time derivatives because of their dependence of the coordinates qµ, so
when transforming ψ̇µ to �at indices it transforms as follows

ψ̇µ =
d

dt
(E µ

m ψm) =
∂E µ

m

∂qλ
q̇λψm + E µ

m ψ̇m. (5.100)

The Christo�el symbol transforms into its �at counterpart ωkmn

Γνµλ = E ν
k (∂µe

k
λ + ωkmµe

m
λ) = −ekλ(∂µE

ν
k − ωνσµE σ

k ). (5.101)

We can also via the vielbeins evaluate the expression gµνψ
µψ̇ν more closely which is easier

to handle in �at notation

gµνψ
µψ̇ν = emµe

n
νηmnE

µ
k ψkE ν

l ψ̇
l = δmk δ

m
l ψ

kψ̇l = ψmψ̇m = ψnψ̇n. (5.102)

In the equation above, the index m appears twice, and both times as superscripts. So far,
we have tried to be consistent, always writing summation indices as one subscript and one
superscript. To do so here, we would need to write out a Kronecker delta. For convenience
in the calculations to come, we skip this Kronecker delta and keep the notation with equal
superscripts.
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With these transformations we can now transform the second term of our Lagrangian
from curved to �at indices

gµνψ
µ
a (ψ̇νa + q̇λΓνλρψ

ρ
a) = gµνE

µ
m ψma (

d

dt
(E ν

n ψna ))

+ gµνψ
µ
a q̇
λ(ekρω

ν
σλE

σ
k − ekρ∂λE ν

k )ψρa

= gµνE
µ

m ψma ψ
n
a q̇

λ∂λE
ν

n − gµνE µ
m ψma ψ

n
a δ

k
nq̇
λ∂λE

ν
k

+ gµνE
µ

m E ν
n ψma ψ̇

n
a + gµνE

µ
m ψma q̇

λδknω
ν
σλE

σ
k ψna

= ekµe
l
νηklE

µ
m E ν

n ψma ψ̇
n
a + ekµe

l
νηklE

µ
m ψma q̇

λE σ
n ωνσλψ

n
a

= ηmnψ
m
a ψ̇

n
a + ηmlψ

m
a q̇

λelνE
σ
nω

ν
σλψ

n
a

= ψma (ψ̇ma + q̇λωmnλψ
n
a ).

(5.103)

Now we can calculate (5.99) using the Lagrangian with mixed curved and �at indices,

L =
1

2
gµν q̇

µq̇ν +
i

2
ψma (ψ̇ma + q̇λωmnλψ

n
a ) +

1

8
Rµνρσψ

µ
aψ

ν
aψ

ρ
bψ

σ
b , (5.104)

and �nd the expression

2T = q̇µ
∂L

∂q̇µ
+ ψ̇ma

∂L

∂ψ̇ma
= pµq̇

µ +
i

2
ψma ψ̇

m
a . (5.105)

The expression for pµ is given by

pµ = gµν q̇
ν +

i

2
ψma ωmnµψ

n
a . (5.106)

We proceed with the action

S =

∫
dt L =

∫
dt [2T −H] =

∫
dt

[
pµq̇

µ +
i

2
ψma ψ̇

m
a −H(qµ, pµ, ψ

m
a )

]
. (5.107)

Through the variation of the action we can �nd the Hamiltonian equations. Keeping in mind
that the ψma are odd Grassmann numbers we get

δS =

∫
dt

[
δ(pµq̇

µ +
i

2
ψma ψ̇

m
a )− δH(q, p, ψma )

]
=

∫
dt [δpµq̇

µ + pµδq̇
µ

+
i

2
δψma ψ̇

m
a +

i

2
ψma δψ̇

m
a −

∂H

∂qµ
δqµ − ∂H

∂pµ
δpµ − δψma

∂H

∂ψma

]
=

∫
dt

[(
q̇µ − ∂H

∂pµ

)
δpµ + pµ

d

dt
(δqµ) +

i

2
δψma ψ̇

m
a +

i

2
ψma

d

dt
(δψma )

− ∂H
∂qµ

δqµ − δψma
∂H

∂ψma

]
=

∫
dt

[(
q̇µ − ∂H

∂pµ

)
δpµ +

d

dt
(pµδq

µ)− ṗµδqµ

+
i

2
δψma ψ̇

m
a +

i

2

d

dt
(ψma δψ

m
a )− i

2
ψ̇ma δψ

m
a −

∂H

∂qµ
δqµ − δψma

∂H

∂ψma

]
= [pµδq

µ + ψma δψ
m
a ] +

∫
dt

[(
q̇µ − ∂H

∂pµ

)
δpµ −

(
ṗµ +

∂H

∂qµ

)
δqµ

+

(
−iψ̇ma +

∂H

∂ψma

)
δψma

]
= 0.

(5.108)

As in section 3.2.3 the �rst term in the last step vanishes because the variations are zero at
the endpoints. Therefore each parentheses in the integral above has to equal zero, thus we
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get the Hamiltonian equations of motion

q̇µ =
∂H

∂pµ
,

ṗµ = − ∂H
∂qµ

,

ψ̇ma = −i ∂H
∂ψma

.

(5.109)

Now we can take the time derivative of the action and use the Hamiltonian equations to
obtain an expression for the Poisson bracket

Ṡ =
dS

dt
=

∂S

∂pµ
ṗµ +

∂S

∂qµ
q̇µ +

∂S

∂ψma
ψ̇ma = − ∂S

∂pµ

∂H

∂qµ
+
∂S

∂qµ
∂H

∂pµ

− i ∂S
∂ψma

∂H

∂ψma
= S

(←−−
∂

∂qµ
∂

∂pµ
−
←−−
∂

∂pµ

∂

∂qµ
− i
←−−−
∂

∂ψma

∂

∂ψma

)
H.

(5.110)

The de�nition of the Poisson bracket is therefore

{A,B}P := A

(←−−
∂

∂qγ
∂

∂pγ
−
←−−
∂

∂pγ

∂

∂qγ
− i
←−−
∂

∂ψka

∂

∂ψka

)
B. (5.111)

Now there remains the task of computing all the relevant Poisson brackets before we can
quantize the system and �nd the commutators and anti-commutators. The �rst Poisson
bracket of interest is the qµ, qν bracket and is given by

{qµ, qν}P =
∂qµ

∂qγ
∂qν

∂pγ
− ∂qµ

∂pγ

∂qν

∂qγ
− i ∂q

µ

∂ψka

∂qν

∂ψka
. (5.112)

The generalized coordinates qµand qν do not depend on pµ or ψma so the derivatives with
respect to pγ or ψma will be zero, this yields

{qµ, qν}P = 0. (5.113)

In the same way we �nd that the Poisson bracket of ψµa and qµ is

{ψµa , qν}P =
∂ψµa
∂qγ

∂qν

∂pγ
− ∂ψµa
∂pγ

∂qν

∂qγ
− i∂ψ

µ
a

∂ψka

∂qν

∂ψka
= 0. (5.114)

Let us now study the Poisson bracket of ψµa and ψνb , where they do not depend on pγ . The
Poisson bracket is given by

{ψµa , ψνb }P =
∂ψµa
∂qγ

∂ψνb
∂pγ︸ ︷︷ ︸

=0

− ∂ψµa
∂pγ

∂ψνb
∂qγ︸ ︷︷ ︸

=0

−i∂ψ
µ
a

∂ψka

∂ψνb
∂ψka

= −i∂ψ
µ
a

∂ψka

∂ψνb
∂ψka

= −iδab
∂ψµa
∂ψka

∂ψνb
∂ψkb

= −iδab
∂(E µ

m ψma )

∂ψka

∂(E ν
n ψnb )

∂ψkb

= −iδabE µ
m δkmE ν

n δkn

= −iδabE µ
m E ν

n ηmn

= −iδabgµν

(5.115)

where we have used the relation δkmδkn = δmn = ηmn. Now we turn to the Poisson brackets
involving the supercharge and its conjugate. The supercharge is given as we saw in section
5.2 by

Qa = ψµagµν q̇
ν = ψµa (pµ −

i

2
ψma ωmnµψ

n
a ) = ψµaΠµ, (5.116)

where we have introduced the variable Πµ = pµ− i
2ψ

m
a ωmnµψ

n
a . It is then possible to calculate
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the Poisson bracket of Πµ and ψνa ,

{Πµ, ψ
ν
a}P = {pµ, ψνa}P −

i

2
{ψma ωmnµψna , ψνa}P

= {pµ, E ν
m ψma }P −

i

2
{ψma ωmnµψna , E ν

l ψ
l
a}P

= ψma {pµ, E ν
m }P −

i

2
{ψma ωmnµψna , E ν

l ψ
l
a}P

= −ψma
∂(pµ)

∂pγ

∂(E ν
m )

∂qγ
+

1

2

∂(ψma ωmnµψ
n
a )

∂ψka

∂(E ν
l ψ

l
a)

∂ψka
.

(5.117)

The a�ne spin connection ωmnµ is antisymmetric in the two �rst indices and commutes with
ψma . This gives

{Πµ, ψ
ν
a}P = −ψma E ν

m ,µ + ωknµψ
n
aE

ν
l

= ψma (−E ν
m ,µ + ωkmµE

ν
k )

(5.118)

we now use the relation ωabµ = eaν(∂µE
ν
b + ΓνµλE

λ
b ) given in [6]

= ψma (−E ν
m ,µ + ekρ(E

ρ
m ,µ + ΓρµλE

λ
m )E ν

k )

= ψma (−E ν
m ,µ + ekρE

ρ
m ,µE

ν
k + ekρΓ

ρ
µλE

λ
m E ν

k )

= ψma (−E ν
m ,µ + E k

m ,µE
ν
k + ΓkµλE

λ
m E ν

k )

= ψma (−E ν
m ,µ + E ν

m ,µ + ΓνµλE
λ

m )

= ψma ΓνµλE
λ

m

= Γνµλψ
λ
a .

(5.119)

We would �nally like to know the Poisson bracket of the variable Πµ with itself. For this we
�rst quote a de�nition of the Riemann tensor in the vielbein formalism from [6]

emσE
λ

n Rσλµν = ∂µω
m
nν − ∂νωmnµ + ωmiµω

i
nν − ωmiνωinµ . (5.120)

We will use this de�nition in the calculation of the bracket, this gives

{Πµ,Πν}P = {pµ −
i

2
ψma ωmnµψ

n
a , pν −

i

2
ψma ωmnνψ

n
a}P

= {pµ, pν}P −
i

2
{pµ, ψma ωmnνψna}P −

i

2
{ψma ωmnµψna , pν}P −

1

4
{ψma ωmnµψna , ψkaωklνψla}P

=
i

2
ψma

∂ (ωmnν )

∂qµ
ψna −

i

2
ψma

∂
(
ωmnµ

)
∂qν

ψna −
i

4

∂

∂ψia

(
ψma ωmnµψ

n
a

) ∂

∂ψia

(
ψkaωklνψ

l
a

)
=
i

2
ψma ψ

n
a

[
∂ (ωmnν )

∂qµ
−
∂
(
ωmnµ

)
∂qν

]
− iωimµψma ωinνψna .

(5.121)

The next few steps contain a subtle renaming of the dummy indices together with the use of
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the anti-commutation of the ψµa variables so pay attention here

=
i

2
ψma ψ

n
a

[
∂ (ωmnν )

∂qµ
−
∂
(
ωmnµ

)
∂qν

]
− i

2
ωimµψ

m
a ωinνψ

n
a −

i

2
ωikµψ

k
aωilνψ

l
a

=
i

2
ψma ψ

n
a

[
∂ (ωmnν )

∂qµ
−
∂
(
ωmnµ

)
∂qν

]
− i

2
ωimµψ

m
a ωinνψ

n
a −

i

2
ωilνψ

k
aωikµψ

l
a

=
i

2
ψma ψ

n
a

[
∂ (ωmnν )

∂qµ
−
∂
(
ωmnµ

)
∂qν

]
− i

2
ωimµψ

m
a ωinνψ

n
a +

i

2
ωimνψ

m
a ωinµψ

n
a

=
i

2
ψma ψ

n
a

[
∂ (ωmnν )

∂qµ
−
∂
(
ωmnµ

)
∂qν

]
+
i

2
ωmiµψ

m
a ωinνψ

n
a −

i

2
ωmiνψ

m
a ωinµψ

n
a

=
i

2
ψma ψ

n
a

[
∂ (ωmnν )

∂qµ
−
∂
(
ωmnµ

)
∂qν

+ ωmiµωinν − ωmiνωinµ

]

=
i

2
ψma ψ

n
a e
m
σE

λ
n Rσλµν

=
i

2
ψma ψ

n
aR

m
nµν .

(5.122)

5.4 Quantization of the Supersymmetric Sigma Model

Before we head o� to quantize the system we must remark that there is another symmetry
in our Lagrangian. Namely, the system is invariant under rotation of the fermionic variables
by a small real angle γ. In symbols

ψµ → e−iγψµ,

ψ̄µ → eiγψ̄µ,
(5.123)

where we have de�ned the complex fermionic variables

ψµ =
1√
2

(ψµ1 + iψµ2 ),

ψ̄µ =
1√
2

(ψµ1 − iψ
µ
2 ).

(5.124)

By Noether's theorem we get a corresponding conserved charge F (see [1]) de�ned as

F = gµνψ̄
µψν . (5.125)

We can now quantize the system by applying Dirac's quantization scheme using the Poisson
brackets we calculated before. This yields a set of commutators and anti-commutators of
what are now operators on a Hilbert space. In symbols:

[qµ,Πν ] = iδµν

{ψµ, ψ̄ν} = gµν

{Πµ, ψ̄
ν} = iΓνµρψ̄

ρ

{Πµ, ψ
ν} = iΓνµρψ

ρ

{Πµ,Πν} = −1

2
ψma ψ

n
aR

m
nµν .

(5.126)

All other (anti)- commutators vanish. The supercharges, which are now operators, are given
by

Q = ψ̄µΠµ,

Q̄ = Πµψ
µ.

(5.127)

Notice that we avoided the problem of an ambiguity in operator ordering by enforcing a
certain ordering. Why we picked this particular ordering will become clearer when we try
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designate a representation for the Hilbert space on which Q and Q̄ operate. This makes the
quantum mechanical Hamiltonian

{Q, Q̄} = 2H. (5.128)

This makes the quantum mechanical system manifestly supersymmetric in the way we de�ned
it in chapter 3. We still have to calculate the relations between the charges F and Q. We will
see that these relations are similar in structure to what we have seen in chapter 3. Before
we calculate the commutator of F and Q, we note that F commutes with Πµ. This is clear
from the de�nition of Πµ and pµ

Πµ = pµ −
i

2
ψma ωmnµψ

n
a

= q̇νgµν +
i

2
ψma ωmnµψ

n
a −

i

2
ψma ωmnµψ

n
a

= q̇νgµν .

(5.129)

It turns out that Πµ is a purely bosonic operator and then it commutes with the fermionic
operator F . We use this fact and �nd

[F,Q] = FQ−QF
= gµνψ̄

µ
(
ψνψ̄ρ

)
Πρ − ψ̄ρΠρF

= gµνψ̄
µ
(
gνρ − ψ̄ρψν

)
Πρ − ψ̄ρFΠρ

= δρµψ̄
µΠρ − gµνψ̄µψ̄ρψνΠρ − ψ̄ρgµνψ̄µψνΠρ

= ψ̄ρΠρ − gµνψ̄µψ̄ρψνΠρ + gµνψ̄
µψ̄ρψνΠρ

= Q.

(5.130)

A similar calculation gives
[F, Q̄] = −Q̄ (5.131)

This allows us to calculate the commutator between F and H as follows

[F,H] = FH −HF
= FQQ̄+ FQ̄Q−QQ̄F − Q̄QF
= FQQ̄+ FQ̄Q−Q([Q̄, F ] + FQ̄)− Q̄([Q,F ] + FQ)

= FQQ̄+ FQ̄Q−QQ̄−QFQ̄+ Q̄Q− Q̄FQ
= FQQ̄+ FQ̄Q−QQ̄− ([Q,F ] + FQ)Q̄+ Q̄Q− ([Q̄, F ] + FQ̄)Q

= FQQ̄+ FQ̄Q−QQ̄+QQ̄− FQQ̄+ Q̄Q− Q̄Q− FQ̄Q
= 0.

(5.132)

This means that F is also a conserved charge in the quantum realm, i.e. the F operator
will respect energy levels of states. Now the only thing left to do in order to complete the
quantization of the system is �nding a suitable representation for the supersymmetric Hilbert
space HQ we just built. We will argue that a suitable Hilbert space will be

H = Ω(M)⊗ C. (5.133)

This is the Hilbert space of di�erentials forms of the manifoldM , as we de�ned it in chapter 4,
tensored with the complex plane. (This is necessary to acquire a complex Hilbert space, since
the space of di�erential forms is a real one). We equip this Hilbert space with a Hermitian
inner product de�ned as

(ω1, ω2) =

∫
M

ω̄1 ∧ ?ω2, (5.134)

where ω1 and ω2 are both p−forms and ? is the Hodge duality operator. Like the simpler
system in chapter 3, the Hilbert space can be written as the tensor product of a bosonic and a
fermionic space but now the fermionic space has a higher dimensionality (it can accommodate
more fermions). The bosonic space is simply the space of integrable complex functions over
the manifold L(M,C), it is in�nite dimensional. In order to characterise the fermionic part
of HQ we go about as in the simpler, �at model and de�ne the state |0〉 as the vector that
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is annihilated by all the ψµ's. This allows us to build up a set of states by applying the ψ̄µ

operator to |0〉. We get the following set of states,

|0〉
ψ̄µ|0〉
ψ̄µψ̄ν |0〉

...
ψ̄1 . . . ψ̄n|0〉.

(5.135)

These states are also eigenstates of the operator F and they have eigenvalue p where p is
the amount of di�erent ψ̄µ operators applied. We will once again call the operator F the
fermion number operator as it counts the number of 'fermions' in a certain state. Note
that the dimensionality of the eigenspaces of F is

(
n
p

)
. This dimensionality coincides with

the composition by form-degree in the space of di�erential forms. This means that the
Hilbert space HQ has the same dimensionality as the complexi�ed (tensored with C space of
di�erential forms H. This is true because of the equivalence between the bosonic subspace
and the subspace of complexi�ed di�erential zero forms, which is just L(M,C). By the theory
of Hilbert spaces this means there exists an isomorphism Λ between the spaces HQ and H.
One way we can always go about constructing this isomorphism is by connecting the basis
elements of both spaces, i.e.

Λ(|0〉) = 1

Λ(ψ̄µ|0〉) = dxµ

Λ(ψ̄µψ̄ν |0〉) = dxµdxν

...

Λ(ψ̄1 . . . ψ̄n|0〉) = dx1 . . . dxn.

(5.136)

So as a Hilbert space we now regard HQ as represented by H. Of course this knowledge will
not do us much good until we also �nd representations for the various operators we de�ned
on HQ, the most important ones being ψµ, ψ̄µ, Q and Q̄. We will �nd these representations
by exploiting the properties of the function Λ∗ : Hom(HQ,HQ) → Hom(H,H) associated
with the function Λ. (Hom(HQ,HQ) is the Hilbert space of the transformations of HQ.)
This associated function has the de�ning property that for a random vector v ∈ HQ and a
random operator A ∈ Hom(HQ,HQ) we get

Λ(A(v)) = Λ∗(A)(Λ(v)). (5.137)

For the ψ̄µ operator working on a random basis element this yields the following equalities

Λ(ψ̄µ(ψ̄ν . . . ψ̄σ|0〉)) = Λ∗(ψ̄µ)Λ(ψ̄ν . . . ψ̄σ|0〉) = Λ∗(ψ̄µ)dxν . . . dxσ, (5.138)

but also,
Λ(ψ̄µ(ψ̄ν . . . ψ̄σ|0〉)) = Λ(ψ̄µψ̄ν . . . ψ̄σ|0〉) = dxµdxν . . . dxσ. (5.139)

This implies that the ψ̄µ operator must be equivalent to the operation of 'wedge multiplying'
with dxµ or

Λ∗(ψ̄µ) = dxµ ∧ . (5.140)

In order to obtain a representation for the ψµ operator we need to do a bit more work. Let
us begin by looking at what happens when ψµ acts on a random basis element of fermion
number p

ψµ
(
ψ̄νψ̄σ . . . ψ̄λ|0〉

)
= gµνψ̄σ . . . ψ̄λ|0〉 − ψ̄νψµψ̄σ . . . ψ̄λ|0〉
= gµνψ̄σ . . . ψ̄λ|0〉 − gµσψ̄ν . . . ψ̄λ|0〉+ ψ̄νψ̄σψµ . . . ψ̄λ|0〉
...

= gµνψ̄σ . . . ψ̄λ|0〉+ (−1)p−1gµσψ̄ν . . . ψ̄λ|0〉+ (−1)pψ̄νψ̄σψµ . . . ψ̄λ|0〉
= pgµνψ̄σ . . . ψ̄λ|0〉.

(5.141)
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Using the de�ning property of Λ∗ we learn that Λ∗(ψµ) must obey the following identity in
the space of di�erential forms

Λ∗(ψµ)(dxνdxσ . . . dxλ) = pgµνdxσ . . . dxλ. (5.142)

This is satis�ed if
Λ∗(ψµ) = gµν

(
i∂/∂xν

)
, (5.143)

where iV is the operation of contracting the di�erential form with the vector �eld V . (This
operation is known as the interior product.) Our next operator qµ is a purely bosonic variable,
i.e. it only a�ects the 'function part' of an element of HQ. This means the qµ operator and its
di�erential form counterpart are the exact same thing, only in di�erent notation. In symbols

qµ = xµ×, (5.144)

where xµ× is just the operation of multiplying the di�erential form by a factor of xµ. The
last important operator remaining is Πµ. Since Πµ = q̇νgµν , it is a purely bosonic operator.
This means we can �nd its representation in much the same way as that of the qµ operator.
We know from quantum mechanics that the q̇ν operator acts as a partial derivative operator,
which has a trivial correspondence in the space of di�erential forms. We get

Λ∗(Πµ) = Λ∗(gµν q̇
ν) = gµν

∂

∂xν
= ∇µ. (5.145)

If we combine these results we can �nd a correspondence for the Q operator through its
de�nition. This gives

Λ∗(Q) = Λ∗(ψ̄µΠµ) = dxµ ∧∇µ = dxµ ∧ ∂

∂xµ
= d. (5.146)

So Q corresponds to the exterior derivative, which was to be expected given their respective
e�ect on the fermion number of a state and the p−degree of a di�erential form (both increment
by one). We can do a similar exercise for Q̄, and �nd (see [1])

Λ∗(Q̄) = d†. (5.147)

This is very reasonable since the Λ∗ function preserves hermitian conjugation. We have now
characterised all the operators we need to construct the rest of the theory.

5.5 Q-cohomology and the Witten Index

Now that we have found a representation of our supersymmetric Hilbert space it is time to
return to a very important object we touched upon in earlier chapters, namely the Witten
index. As before it is de�ned as the operator Tr(−1)F . In our earlier treatment of the
Witten index we saw that it was an expression that calculates the di�erence between the
dimensionality of ground state subspaces with an even fermion number (the eigenvalue of the
F operator in that subspace) and the dimensionality of those with an odd fermion number.
In symbols this gave

Tr(−1)F = dimHB
∣∣
E=0
− dimHF

∣∣
E=0

. (5.148)

We now rewrites this expression as the sum

Tr(−1)F =

n∑
p=0

(−1)p dimHp
∣∣
E=0

. (5.149)

This is again true, because for any state with non-zero energy the Q operator induces an
isomorphism between states of di�erent fermion number but equal energy. The (−1)p in the
equation then ensures that all contributions due to non- zero energy states cancel each other
out leaving only the ground states where as before the Q-isomorphism breaks down.

There is another, more theoretically ful�lling, way to calculate this index. We can regard
the total subspaces composed by fermion degree as a a cochain complex of the Hilbert space,
generated by the Q operator. It can be graphically presented like

H0
Q−−−→ H1

Q−−−→ . . .
Q−−−→ Hn−1

Q−−−→ Hn. (5.150)
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For this cochain complex we can calculate the Q-cohomology groups. These are de�ned as

Hp(Q) =
Ker

(
Hp

Q−−−→ Hp+1

)
Im
(
Hp−1

Q−−−→ Hp
) . (5.151)

Note that Hp is also a vector space, which means we can talk about the dimension of Hp

without running into trouble. This means that Hp is the quotient group of the kernel of
Q : Hp → Hp+1 and the image of Q : Hp−1 → Hp. The fact that Q is a nilpotent operator
(Q2 = 0) ensures that this is well de�ned. Note that the de�nition of the Q-cohomology is
very similar to the de Rham cohomology we discussed in chapter 4, this will prove to be of
great importance later on. Because Q commutes with the Hamiltonian, and hence preserves
energy levels, we can decompose the Q-cohomology groups Hp by energy level. This gives

Hp(Q) =
⊕
i

Hp
i (Q), (5.152)

where Hp
i is de�ned as

Hp
i (Q) =

Ker
(
Hp
∣∣
E=i

Q−−−→ Hp+1

∣∣
E=i

)
Im
(
Hp−1

∣∣
E=i

Q−−−→ Hp
∣∣
E=i

) . (5.153)

Here i is an arbitrary element of the energy spectrum of the Hamiltonian. (The compactness
of the manifold M ensures that the spectrum is discrete.) Now, for all non-zero energy
levels, i.e. i > 0, we know that the Q operator is an isomorphism between two subspaces

with adjacent fermion numbers. This means that Ker
(
Hp
∣∣
E=i

Q−−−→ Hp+1

∣∣
E=i

)
must be

trivial (then so must Im
(
Hp−1

∣∣
E=i

Q−−−→ Hp
∣∣
E=i

)
) and hence we have that

dim (Hp(Q)) =
∑
i

dim (Hp
i (Q)) = dim (Hp

0 (Q)) . (5.154)

So the only contribution to the dimensionality of the Q- cohomology groups is due to the
ground states. Now if we look at the space of ground states (i = 0) we see that on this space
the Q operator is the zero operator. (By de�nition all ground states must be annihilated by
Q.) This means that

Ker
(
Hp
∣∣
E=0

Q−−−→ Hp+1

∣∣
E=0

)
= Hp

∣∣
E=0

Im
(
Hp−1

∣∣
E=i

Q−−−→ Hp
∣∣
E=i

)
= 0.

(5.155)

Hence we have
dim (Hp(Q)) = dim (Hp

0 (Q)) = dimHp
∣∣
E=0

. (5.156)

This means that we can compute the Witten index using the cohomology of the Q operator
through the formula

Tr(−1)F =

n∑
p=0

(−1)p dim (Hp) =

n∑
p=0

(−1)p dim
(
Hp
∣∣
E=0

)
=

n∑
p=0

(−1)p dim (Hp(Q)) . (5.157)

Now we go back the the representation of the Hilbert space of supersymmetric quantum
mechanics as the space of di�erential forms. Using the fact that we have identi�ed Q with
the exterior derivative d and Q̄ with its dual operation d† we can write the following corre-
spondence for the supersymmetric Hamiltonian

H =
1

2
{Q, Q̄} =

1

2
(QQ̄+ Q̄Q)↔ 1

2
(dd† + d†d) = ∆, (5.158)

where ∆ is the Laplace Beltrami operator we de�ned is chapter 4. This means that our
supersymmetric ground states correspond to the di�erential forms ω for which the equation

∆ω = 0 (5.159)
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holds. Hence we have a one-to-one correspondence between the subspace of supersymmetric
ground states and the subspace of harmonic di�erential forms H(M, g) where g is the metric
on M . But we saw in chapter 4 that the space of harmonic di�erential forms is the de Rham
cohomology. This means there exists a direct correspondence between the Q-cohomology
groups and the de Rham cohomology

Hp(Q) = Hp
DR, (5.160)

where Hp
DR is the p−th de Rham cohomology group. By this correspondence we can write

the Witten index in terms of the de Rham cohomology groups, yielding the following formula

Tr(−1)F =

n∑
p=0

(−1)p dim (Hp(Q)) =

n∑
p=0

(−1)p dim (Hp
DR) . (5.161)

But the term on the right hand side of this equation is none other than the Euler characteristic
for the manifold M , introduced in section 4.4.5, and further discussed in appendix A.3. This
is the intimate connection between supersymmetric quantum mechanics and topology that
we have been working towards all this time. So in essence we have the following fundamental
equation

Tr(−1)F = χ(M). (5.162)

This means that for a given manifold M we can compute the Euler characteristic by looking
at the ground states of the corresponding supersymmetric Hamiltonian instead of laboriously
calculating all the de Rham cohomology groups. Let us illustrate the power of this equation
by calculating the Euler characteristic of a two dimensional torus.

The Witten Index for a Simple Torus

We call the angle on the big circle θ and the angle on the small circle φ. The metric for a
torus of small radius a and big radius c is then given by

gµν :=

(
(c+ a cosφ)2 0

0 a2

)
. (5.163)

The only non-zero connections are

Γθθφ = Γθφθ =
−a sinφ

c+ a cosφ

Γφθθ = a−1 sinφ(c+ a cosφ).

(5.164)

Our goal is to �nd the ground states for the Hamiltonian associated with this manifold. A
state |α〉 is a ground state if it is annihilated by both Q and Q̄. Let us begin by characterising
the Q operator

Q = ψ̄µΠµ

= ψ̄µ
(
pµ −

i

2
ψma ωmnµψ

n
a

)
= ψ̄µpµ −

i

2
ψ̄µ
(
ψρae

m
ρe
m
ν

(
∂µE

ν
n + ΓνµλE

λ
n

)
enγψ

γ
a

)
= ψ̄θpθ + ψ̄φpφ −

i

2
ψ̄θ
(
ψρagρν

(
∂θE

ν
n + ΓνθλE

λ
n

)
enγψ

γ
a

)
− i

2
ψ̄φ
(
ψρagρν

(
∂φE

ν
n + ΓνφλE

λ
n

)
enγψ

γ
a

)
= − i

2
ψ̄θ
(
ψθagθθ

(
ΓθθφE

φ
φ

)
eφφψ

φ
a

)
− i

2
ψ̄θ
(
ψφagφφ

(
ΓφθθE

θ
θ

)
eθθψ

θ
a

)
− i

2
ψ̄φ
(
ψθagθθ

(
∂φE

θ
θ + ΓθφθE

θ
θ

)
eθθψ

θ
a

)
− i

2
ψ̄φ
(
ψφagφφ

(
∂φE

φ
φ + ΓφφφE

φ
φ

)
eφφψ

φ
a

)
+ ψ̄θpθ + ψ̄φpφ

= ψ̄θpθ + ψ̄φpφ.

(5.165)
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Through a similar calculation we also obtain

Q̄ = pθψ
θ + pφψ

φ. (5.166)

This means that the only states being annihilated by both Q and Q̄ are of the form

|α〉 = C|0〉,
|α〉 = Cψ̄θ|0〉,
|α〉 = Cψ̄φ|0〉 or

|α〉 = Cψ̄θψ̄φ|0〉,

(5.167)

where C is a normalization constant. This means that the dimensionality of the zero energy
subspaces Hp

∣∣
E=0

is given, for p going from 0 to 2, by

dimH0

∣∣
E=0

= 1

dimH1

∣∣
E=0

= 2

dimH2

∣∣
E=0

= 1.

(5.168)

We can now compute the Euler characteristic through the Witten index

χ(M) = Tr
(
−1F

)
=

n∑
p=0

(−1)p dim
(
Hp
∣∣
E=0

)
= 1− 2 + 1 = 0. (5.169)

So the the Euler index of a torus is zero, as we could have suspected from the fact that a
torus is the product of two circles.
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Chapter 6

Conclusions

The goal of this project was to investigate the formalism of supersymmetric quantum me-
chanics in general and its applications in mathematics in particular. It seems, that for a
good part, we have accomplished this goal. We have investigated quantum mechanical mod-
els, both in simple one-dimensional settings like R and S1, and in the more general setting
of a sigma model de�ned on a smooth, n-dimensional manifold of arbitrary curvature. At
the heart of the formalism we found a satisfying connection between the zero-energy states
of the system and a modi�ed partition function the Witten index. Later on we were able to
tie these zero-energy states to a mathematical group called the Q-cohomology. We realised
that the Q-cohomology was closely connected to the de Rham cohomology de�ned using the
theory of di�erential forms on the manifold. Using this connection, in combination with a
deep theorem connecting topology and di�erential geometry due to de Rham, we managed
to formulate a very elegant formula for the topological Euler characteristic in terms of the
quantum mechanical Witten index. This formula, though deceptively simple, summarises a
deep and intricate connection between the theory of supersymmetric quantum mechanics on
a manifold and the topological properties of that manifold.

Of course the connection between supersymmetric quantum mechanics and topology does
not stop here. For instance one could quantize the sigma model using the path integral for-
malism instead of, as we did, the operator formalism. This approach would eventually lead to
a characterisation of the Euler characteristic in terms of an integral over the manifold involv-
ing the Riemann curvature tensor. On the way to this characterisation one would encounter
the important physical theory of localisation, a principle where integrals over functions of
fermionic variables are completely determined by their value at certain 'critical points'. If one
were to continue on this path of convergence between supersymmetric quantum mechanics
and topology it would eventually lead to an elegant 'physics proof' of something called the
Atiyah- Singer index theorem, an important theorem concerning the solvability of certain
classes of di�erential equations in terms of the topology of the manifolds they are de�ned on.
Readers interested in exploring this in greater detail are referred to the paper 'Supersymme-
try and the Atiyah-Singer Index Theorem' [3] by Luis Alvarez-Gaumé.

Apart from the work on supersymmetric quantum mechanics we also managed to build up
and present new knowlegde in basic di�erential geometry and topology, branches of math-
ematics that are very important in modern physics but are only super�cially treated in a
bachelor in Physics.
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Appendix A

Complementary Material

A.1 Proof of the Commutator Identity

Here we present a proof for the identity

[p, f(x)] = −if ′(x),

where f(x) is an analytic function. We can prove this by expanding f into a power series of
x

f(x) =

∞∑
n=0

cnx
n.

We now prove that for every n ∈ N

[p, xn] = −inxn−1.

For n = 1 this is just our commutation relation (2.30). (For n = 0 it is trivial) We now assert
that the equation holds for n = k − 1. The equation for n = k then becomes

[p, xk] = [p, xk−1]x+ xk−1[p, x]

= −i(k − 1)xk−2x− ixk−1

= −i(k − 1 + 1)xk−1

= −ikxk−1.

So, by induction, the formula [p, xn] = −inxn−1 follows for every n ∈ N. We now use this
knowledge, together with the linearity of the derivative to get

[p, f(x)] =

[
p,

∞∑
n=0

cnx
n

]

=

∞∑
n=0

cn[p, xn]

=

∞∑
n=0

cn(−i)nxn−1

= −if ′(x).

This proves the relation.

A.2 Brief Introduction to Group Theory

A.2.1 Groups

A group is a set of elements, where the elements can be combined with each other according
to a speci�c composition law, symbolised by multiplication. This composition law can be
any operation for which the following group axioms are ful�lled
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• i.) ∀a, b ∈ G : ab ∈ G (the group is closed)

• ii.) ∀a, b, c ∈ G : (ab)c = a(bc) (associativity)

• iii.) ∃e ∈ G : ∀a ∈ G : ae = ea = a (existence of unit element)

• iv.) ∀a ∈ G, ∃a−1 ∈ G : aa−1 = a−1a = e (existence of inverse).

Example 1.) The positive rational numbers, with the composition law given simply by
ordinary multiplication, form a group. The product of two positive rational numbers is
always a positive rational number. Associativity is immediate, and the unit element is 1.
The inverse of each element is its reciprocal. 0 cannot be an element of this group since it
has no inverse.

Example 2.a.) Z. This is the group of integers with group �multiplication�, i.e. the
composition law, de�ned as addition.The sum of two integers is always a new integer, addition
of integers is associative, 0 is the unit element and −z is the inverse of z ∈ Z.

A.2.2 Subgroups

A subgroup H to a group G is itself a group, whose elements are members also of G.

Example 2.b.) Let B be the group of integers that are dividable by 3, that is
B = {. . . ,−6,−3, 0, 3, 6, . . .}. The composition law is still addition. Since an integer b which
is dividable by 3 can be written as b = 3a where a is a new integer, the sum of two such
integers b1 + b2 = 3a1 + 3a2 = 3(a1 + a2) is also dividable by 3.The unit element 0 is in the
group, and inverses −b exist in B for each b in B. Clearly B is a subgroup of Z.

A.2.3 Equivalence Relations and Equivalence Classes

An equivalence relation on a set S is a relation that connects elements in the set. Two
elements a, b ∈ S that are connected by this relation are said to be equivalent, written a ∼ b.
The relation must obey

• i.) Re�exivity: a ∼ a

• ii.) Symmetry: a ∼ b⇒ b ∼ a

• iii.) Transitivity: a ∼ b and b ∼ c⇒ a ∼ c.

An equivalence relation de�ned on S gives rise to a partition of the set into disjoint subsets,
so called equivalence classes, by the following procedure. Pick an element a in the set. Then
�nd and pick out all elements in S which are equivalent to a. This is the equivalence class
of the element a: (a) = {b|b ∼ a}. Now if there are still elements left in the remaining set,
choose a new element c from the set, and �nd all elements that are equivalent to c. If the
remaining set is still nonempty, continue the process. In the end we are left with a set of
equivalence classes, which by construction have no elements in common. See �gure A.1. The
concept of equivalence relations is one of the most powerful tools in all of mathematics.

A.2.4 Cosets

Let H = {h1, h2, . . . , hr} be a subgroup of G. Choose an arbitrary element g ∈ G and
construct the coset gH = g{h1, . . . , hr} = {gh1, . . . , gh3}. Generally a coset is not a group.

Now de�ne an equivalence relation for a, b ∈ G : a ∼ b if b ∈ aH. That is, a and b
are equivalent if there is an element h ∈ H for which b = ah. This is really an equivalence
relation, since it obeys the conditions in section A.2.3:

• i.) a ∼ a, for e ∈ H, and ae = a, so that a ∈ aH.

• ii.) If a ∼ b, then ∃h ∈ H : b = ah. Then ∃h−1 ∈ H : bh−1 = a, and b ∼ a. So
a ∼ b⇒ b ∼ a.

• iii.) If a ∼ b and b ∼ c, then ∃hi, hj ∈ H : b = ahi, c = bhj . By combining these one
gets c = bhj = (ahi)hj = a(hihj) = ah for some h ∈ H. Then a ∼ c.
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Figure A.1: The set S partioned into disjoint equivalence classes. If the elements of S (points)
are equivalent, they are united by a line. The elements in an equivalence class form a subset
of S.

Since the equivalence classes of this equivalence relation are cosets, we get a partition of
the group G into disjoint cosets. The representative g for a coset gH is by no means unique.

Example 2.c) Consider the group B de�ned in Ex 2.b as a subgroup of Z. Then a coset
in Z with respect to B can be written as z + B where z ∈ Z, since the composition law is
given by addition. This coset is the set of numbers dividable by 3 all added by an integer
z. It is easy to realise that, by choosing 3 appropriate elements in Z as representatives for 3
cosets, one can cover Z completely by these cosets. For example, take 0, 1 and 2. Then the
cosets

0 +B = {. . . ,−6,−3, 0, 3, 6, . . .},
1 +B = {. . . ,−5,−2, 1, 4, 7, . . .},
2 +B = {. . . ,−4,−1, 2, 5, 8, . . .}.

are all disjoint sets, and every integer in Z is a member of one of these sets. The di�erence
between two numbers in a coset is always dividable by 3, that is, they di�er only by an
element in B.

A.2.5 Quotient Groups

Consider the set of s cosets {gi1H, gi2H, . . . gisH} which cover the group G. By de�ning a
multiplication of such cosets, the set of cosets can be considered as a group, a quotient group.
The product of two such cosets is given by (giH)(gjH) = gigjH. We test for the group
axioms:

• i.) Since ∀gi, gj ∈ G : gigj ∈ G, it is clear that gigjH must be a coset.

• ii.) ∀gi, gj , gk ∈ G : (giH)[(gjH)(gkH)] = (giH)(gjgkH) = gi(gjgk)H = (gigj)(gkH) =
[(giH)(gjH)](gkH), and the group multiplication is associative.

• iii.) Let the unit element be E = eH = H. Then ∀g ∈ G : gHeH = geH = gH.

• iv.) As an inverse to gH, take g−1H. Then gHg−1H = gg−1H = eH = E.

A problem with the de�nition of the composition law is that the cosets can be represented
by di�erent g ∈ G. It can be shown, see [14], that the de�nition works properly if the subgroup
H is normal, that is if ∀g ∈ G : gH = Hg. So the set of cosets of a normal subgroup H is
really a group, conveniently denoted by G/H. Clearly,

G/H = {gi1H, gi2H, . . . gisH} (A.1)

has s elements.
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Example 2.d) Consider the three cosets in Ex 2.c as a quotient group

Z/B = {0 +B, 1 +B, 2 +B},

where the composition law is just addition of the cosets,

(zi +B) + (zj +B) = (zi + zj) +B.

Then (zi + zj) + B is again one of the three cosets, so the group is closed. The identity
element is 0 +B = B, since

(zi +B) + (0 +B) = (zi + 0) +B = zi +B.

We say that Z/B is the group of integers modulo 3. Each element of the group consists of
integers whose di�erences are dividable by 3.

A.3 The Euler Characteristic

The Euler characteristic is a topological invariant de�ned for a topological space. This means
that it is unchanged under homeomorphisms (continuous deformations) of that space. It is a
number, conventionally denoted by the Greek letter χ and intuitively it gives a rough measure
of the di�erence between the number of 'even dimensional parts' and 'odd dimensional parts'
of the space. Although it is de�ned for general topological spaces we will normally use it in the
context of smooth, boundary-less manifolds. Topological invariants are useful to determine
whether or not two topological spaces are topologically equivalent, because if two spaces have
a di�erent value of some topological invariant there can be no homeomorphism between the
two spaces. For instance a sphere and a torus have di�erent Euler characteristics (2 and 0
respectively, we will prove this later on) whereas a torus and a co�ee mug have the same
Euler number (there is no di�erence between them, topologically speaking). Originally the
characteristic was de�ned by the eponymous mathematician Leonhard Euler. His original
de�nition only encompassed polyhedra and it was de�ned as

χ = (NUMBER OF VERTICES)− (NUMBER OF EDGES) + (NUMBER OF FACES).

For instance the Euler characteristic of a cube would be 2 since it has 8 vertices, 12 edges
and 6 faces. In modern topology the Euler characteristic is de�ned in a more sophisticated
way, through a concept known as homology, which we will describe very brie�y. For a more
in depth discussion of homology we refer to (reference here)

A.3.1 Homology of a Smooth Manifold

In order to de�ne a version of the Euler characteristic we must �rst go through a process called
triangulation of the manifold. Intuitively this means we will try to build an 'approximation'
of the manifold using generalisations of basic triangles called n-simplexes. An n-simplex is
formally de�ned as a collection of vertices in n-dimensional a�ne space. A two-simplex,
which is just a triangle in this formalism looks like

σ2 = {(1, 0), (0, 1), (0, 0)}. (A.2)

Keep in mind that this is really a two dimensional object, so we are including the face of
the triangle. A zero-simplex would be a point, a one-simplex a line and so on. Now imagine
glueing simplexes of the same dimension together. If we do this in a nice enough way we
get something called a simplicial chain. (The de�nition of a simplicial complex is rather
technical, but it basically boils down to having no loose ends.) So a simplicial chain is a
set of simplexes, glued together in a proper manner. A set of simplicial chains of di�erent
dimension is called a simplicial complex. On this simplicial complex we can de�ne something
called a boundary operator ∂. This operator takes a simplicial chain of dimension n to
another chain of dimension n − 1. So a two-simplex would be taken to a triangle with the
face cut out of it. A very important property of this operator is that ∂2 = 0, namely a
boundary has no boundary of itself. We now focus our attention on two types of simplicial
chains. The �rst is de�ned as having no boundary, or

∂ω = 0. (A.3)
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Where ω is some simplicial chain. We call these particular chains n−cycles. And the second
set is de�ned as being the boundary of some other simplicial chain of higher dimension (+1).
We call these chains n-boundaries. It is possible to de�ne a group structure on these objects
and the group of n−cycles is called Zn whereas the group of n−boundaries is called Bn.
Because of the property ∂2 = 0 we know that

Bn ⊆ Zm. (A.4)

This allows us to de�ne the quotient group

Hn =
Zn

Bn
. (A.5)

This quotient group we call the n−th homology group of the simplicial complex. In a sense,
the rank of the n−th homology group measures the size of the n−dimensional part of the
simplicial complex. In this spirit we de�ne the Euler characteristic for a simplicial complex
of dimension k as

χ =

k∑
n=0

(−1)nrank(Hn). (A.6)

If necessary one could endow these homology groups with a vector space structure, then the
equation for the Euler index becomes

χ =

k∑
n=0

(−1)ndim(Hn). (A.7)

This way it can be connected to the de Rham cohomology, as done in chapter 4. Now if we
want to �nd the Euler characteristic of a manifold, we try to �nd a simplicial complex that is
homeomorphic to the manifold (we triangulate it) and then compute the homology groups.
Because the Euler characteristic is invariant under homeomorphisms, it carries over to the
manifold. Needless to say this is a rather laborious way of going about, and far more e�cient
ways have been found to calculate the Euler characteristic of a manifold, as we hope to show
in the body of this paper.
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Appendix B

Some Analytic Function Theory

B.1 The In�nite Product Representation of the sinh Func-

tion

We want to prove that

sinh z = z

∞∏
n=1

(
1 +

z2

π2n2

)
. (B.1)

Mainly we will follow the route outlined in [15]. Consider the function

C(z) = π cotπz =
π cosπz

sinπz

with simple poles at all integers z. It is analytic everywhere else. Especially, it is analytic on
the square γN in the complex plane with corners in

z1 = N + 1
2 − i(N + 1

2 ); z2 = N + 1
2 + i(N + 1

2 );
z3 = −(N + 1

2 ) + i(N + 1
2 ); z4 = −(N + 1

2 )− i(N + 1
2 );

where N is a large positive integer. It does not cross the real axis at integers. We may also
note that C(z) is bounded on γN . Write C(z) as

C(z) = iπ
eiπz + e−iπz

eiπz − e−iπz
= iπ

ei2πz + 1

ei2πz − 1
.

For example, the line from z1 to z2 may be parametrized by
z = N + 1

2 + it, tε
[
−(N + 1

2 ), N + 1
2

]
. On this line

|C(z)| = π

∣∣∣∣∣ei2π(N+ 1
2 +it) + 1

ei2π(N+ 1
2 +it) − 1

∣∣∣∣∣ = π

∣∣∣∣1(−1)e−2πt + 1

1(−1)e−2πt − 1

∣∣∣∣ = π

∣∣∣∣eπt + e−πt

eπt + e−πt

∣∣∣∣ = π |tanh(πt)| ≤ π ≤ 4.

On the line from z2 to z3, we have: z = t+ i(N + 1
2 ), tε

[
(N + 1

2 ),−(N + 1
2 )
]
. Here

|C(z)| = π

∣∣∣∣∣ei2π(t+i(N+ 1
2 ) + 1

ei2π(t+i(N+ 1
2 ) − 1

∣∣∣∣∣ = π
|e−2π(N+ 1

2 ) + 1|
|e−2π(N+ 1

2 ) − 1|
≤ π e−3π + 1

|e−3π − 1|
= π

e3π + 1

e3π − 1
≤ 4.

On the two other sides of the square, we �nd the same result, C(z) ≤ 4.
Now, look at the function

g(z) =
C(z)

z(z − w)
=

π cosπz

z(z − w) sinπz
,

where w is inside γN and not an integer. We see immediately that g has simple poles in
±1,±2,±3 . . ., a simple pole in w, and a pole of order 2 in 0. g(z) is analytic on γN . The
residue theorem gives for the poles zj to g(z) which are inside γN
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1

2πi

∮
γN

g(z)dz =
∑

{zj inside γN}

res(g, zj). (B.2)

First carry out the LHS∣∣∣∣ 1

2πi

∮
γN

g(z)dz

∣∣∣∣ ≤ 1

2π
{lenght of curve} · max

{z ε γN}
|g(z)|

≤ 1

2π
4(2N + 1) · 4

min |z(z − w)|
≤ 8

π

2N + 1

(N + 1
2 )(N + 1

2 − |w|)
→ 0 when N →∞.

We will �rst �nd the residues at k = ±1,±2,±3 . . . We write

g(z) =

πcosπz
z(z−w)

sinπz
=:

F (z)

G(z)
.

Since z = k are all simple zeros to G(z), and G′(k) 6= 0 we have

res(g(z), k) =
F (k)

G′(k)
=

π cosπk

k(k − w)π cosπk
=

1

k(k − w)
.

In a similar way we get the residue of g(z) in z = w by choosing G(z) = z − w, to �nd

res(g(z), w) =
π cotπw

w
.

The residue at the double pole z = 0 is probably most easily �nd by just reading o� the z−1

coe�cient of the Laurent expansion of g(z)

g(z) =
π cosπz

z(z − w) sinπz

=
π(1− π2z2

2 + . . .)

z(−w)(1− z/w)(πz − π3z3

6 + . . .)

=
π(1− π2z2

2 + ...)(1 + z
w + z2

w2 + ...)

(−w)πz2(1− (π
2z2

6 − ...))

=
(1− π2z2

2 + ...)(1 + z
w + ...)(1 + (π

2z2

6 − ...) + ...)

−wz2
.

The z coe�cient in the nominator is 1/w, so the z−1 coe�cient for g(z) is simply − 1
w2 . Then

(B.2) gives when N →∞

0 = − 1

w2
+
π cotπw

w
+

∞∑
k=−∞
k 6=0

1

k(k − w)
.

The last term in this expression becomes

∞∑
k=−∞
k 6=0

1

k(k − w)
=

−1∑
l=−∞

1

l(l − w)
+

∞∑
k=1

1

k(k − w)

=

∞∑
k=1

[
1

(−k)((−k)− w)
+

1

k(k − w)

]

=

∞∑
k=1

1

k

(
1

k + w
+

1

k − w

)

=

∞∑
k=1

2

k2 − w2
.

After this simpli�cation, we get
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π cotπw − 1

w
=

∞∑
k=1

2

w2 − k2
. (B.3)

Now integrate this equation from w = 0 to w = z. Here we need to use a branch for the
logarithmic function. Delete the non-positive real axis from the complex plane. Let us de�ne
w = Log z as the number for which ew = z and where Log z = ln |z|+ i arg z, arg z ε(−π, π).
Then, integrating the LHS and the RHS separately, we get

LHS =

∫ z

0

(
π cotπw − 1

w

)
dw

= [Log(sinπw)− Logw]
z
0

=

[
Log

sinπw

w
(+in2π)

]z
0

= Log
sinπz

z
− lim
|w|→0

Log
sinπw

πw
π

= Log

(
sinπz

z

)
− lnπ,

and

RHS =

∫ z

0

∞∑
k=1

2w

w2 − k2
dw

=

∞∑
k=1

∫ z

0

2w

w2 − k2
dw

=

∞∑
k=1

[
Log(w2 − k2)

]z
o

=

∞∑
k=1

(
Log(z2 − k2)− Log(−k2)

)
=

∞∑
k=1

(
Log

k2 − z2

k2
+ in2π

)
.

Then, eLHS = eRHS and we �nd

sinπz

z

1

π
= e

∑∞
k=1 Log

(
1− z2

k2

)
, sinπz = πz

∞∏
k=1

(
1− z2

k2

)
. (B.4)

Now we have found the in�nite product representation of the sine function. From the de�ni-
tion it is easy to �nd the corresponding product for sinh,

sinhπz =
eπz − e−πz

2
= i

e−i(iπz) − ei(iπz)

2i
= −i sin iπz = (−i)π(iz)

∞∏
k=1

(
1− (iz)2

k2

)
and (B.1) is �nally proven.

B.2 Computation of ζ(0)

One way of doing the analytic continuation of Riemann's ζ-function is by using the Γ-function.
We start by some preliminaries concerning this function.

B.2.1 The Γ-function

We may state three de�nitions of the Γ-function, that are all equal. First, we have the Euler
limit at in�nity
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Γ(z) = lim
n→∞

1 · 2 · 3 · . . . · n
z(z + 1)(z + 2) · . . . (z + n)

nz, z 6= 0,±1,±2, . . . (B.5)

Then, Γ(z + 1) becomes:

Γ(z + 1) = lim
n→∞

1 · 2 · 3 · . . . · n
(z + 1)(z + 2) · . . . (z + 1 + n)

nz+1 = lim
n→∞

nz

z + 1 + n
Γ(z) = zΓ(z).

We see that the Γ-function has the very important di�erence property

Γ(z + 1) = zΓ(z). (B.6)

Since

Γ(1) = lim
n→∞

1 · 2 · 3 · . . . · n
1 · 2 · 3 · . . . · n(1 + n)

n1 = 1,

by using (B.6), we have Γ(2) = Γ(1 + 1) = 1Γ(1) = 1, and Γ(3) = 2Γ(2) = 2. Continuing in
this way, we see that for all positive integers

Γ(n) = (n− 1)! (B.7)

Second, we have the de�nite integral form, also due to Euler.

Γ(z) =

∫ ∞
0

e−ttz−1dt, <(z) > 0. (B.8)

By just handling out a change of variable, t = x2, we get

Γ(z) =

∫ ∞
0

e−x
2

(x2)z−12x dx, Γ

(
1

2

)
= 2

∫ ∞
0

e−x
2

dx = 2

√
π

2
=
√
π. (B.9)

Now we want to show that these two de�nitions, (B.5) and (B.8) are equivalent. De�ne a
function F (z, n) as

F (z, n) =

∫ n

0

(
1− t

n

)n
tz−1 dt, <(z) > 0, n ∈ Z+.

The de�nition of e gives that e−t = limn→∞
(
1− t

n

)n
. Then we see that

lim
n→∞

F (z, n) ≡ F (z,∞) =

∫ ∞
0

e−ttz−1 dt = Γ(z),

the de�nite integral form of the Γ-function. Now carry out a change of variables, u = t
n .

F (z, n) =

∫ n

0

(
1− t

n

)n
tz−1 dt =

∫ 1

0

(1− u)nnz−1uz−1n du.

Finally, we do partial integration until we reach the �rst form (B.5) of the Γ function

nz
∫ 1

0

(1− u)nuz−1 du = nz

([
(1− u)n

uz

z

]1

0

+ n

∫ 1

o

(1− u)n−1u
z

z
du

)

= nz
n

z

∫ 1

0

(1− u)n−1uz du

= nz
n

z

([
(1− u)n−1 u

z+1

z + 1

]1

0

+
n− 1

z + 1

∫ 1

0

(1− u)n−2uz+1 du

)

= nz
n(n− 1)

z(z + 1)

∫ 1

0

(1− u)n−2uz+1 du

= . . . =
n(n− 1) · . . . · 1

z(z + 1) · . . . · (z + n− 1)
nz
∫ 1

0

uz+n−1 du

=
n(n− 1) · . . . · 1

z(z + 1) · . . . · (z + n− 1)
nz
[
uz+n

z + n

]1

0

=
n(n− 1) · . . . · 1

z(z + 1) · . . . · (z + n− 1)(z + n)
nz.
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Take the limit n→∞ and we get the Γ-function as (B.5).

The third de�nition of the Γ-function is an in�nite product, introduced by Weierstrass

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n . (B.10)

Here, γ is the famous Euler constant

γ = lim
n→∞

(
n∑

m=1

1

m
− lnn

)
= 0.5772156619 . . .

Now we show that this de�nition is equivalent to (B.5), and therefore also to (B.8). We had

Γ(z) = lim
n→∞

1 · 2 · 3 · . . . · n
z(z + 1)(z + 2) · . . . (z + n)

nz = lim
n→∞

1

z

n∏
m=1

m

m+ z
nz = lim

n→∞

1

z

n∏
m=1

1

1 + z
m

nz.

Just take the reciprocal of both sides of the equation

1

Γ(z)
= z lim

n→∞

n∏
m=1

(
1 +

z

m

)
n−z = z lim

n→∞
e(− lnn)z

n∏
m=1

(
1 +

z

m

)
.

Then note that

e(1+ 1
2 + 1

3 +...+ 1
n )z =

n∏
m=1

e
z
m .

Use this in the equation for 1
Γ(z) . By multiplying and dividing we don't change its value

1

Γ(z)
= z lim

n→∞
e(− lnn)z

n∏
m=1

(
1 +

z

m

) e(1+ 1
2 + 1

3 +...+ 1
n )z∏n

m=1 e
z
m

,

1

Γ(z)
= z lim

n→∞
e(1+ 1

2 + 1
3 +...+ 1

n−lnn)z lim
n→∞

n∏
m=1

(
1 +

z

m

)
e−

z
m = zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n ,

which is Weierstrass' de�nition of Γ. This gives

Γ(z) =

(
zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n

)−1

, Γ(−z) =

(
−ze−γz

∞∏
n=1

(
1− z

n

)
e
z
n

)−1

Γ(z)Γ(−z) =

(
−z2

∞∏
n=1

(
1− z2

n2

))−1

.

But we know from (B.6) that Γ(1− z) = −zΓ(−z).
We also know from the preceding section in the appendix that sinπz = πz

∏∞
n=1

(
1− z2

n2

)
.

This gives

Γ(z)
Γ(1− z)
−z

= − 1

z2

∞∏
n=1

(
1− z2

n2

)−1

= − 1

z2

πz

sinπz

and we have �nally established the important formula

Γ(z)Γ(1− z) =
π

sinπz
. (B.11)
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Figure B.1: The curve C

B.2.2 Analytic continuation of the Γ-function

Let C be the curve which goes arbitrarily close to and above the positive real axis from +∞
to 0, then circles around the origin and then goes back to +∞ arbitrarily close to and below
the positive real axis. See �gure B.1. Then consider the integral∫

C

dζ

ζ
(−ζ)se−ζ . (B.12)

The function f(ζ) = 1
ζ (−ζ)se−ζ is analytic along C. The exponential factor e−ζ makes the

function disappear at in�nity.
Make a change of variables so that −ζ = ρeiθ, where θ is measured counterclockwise from

the negative real axis. Then integrate the two parts of C (above and below the positive real
axis). We begin with the integration below the axis, where θ = π∫ ∞

0

dζ

ζ
(−ζ)se−ζ =

∫ ∞
0

−dρ eiπ

−ρeiπ
ρseiπseρe

iπ

= eiπs
∫ ∞

0

dρ

ρ
ρse−ρ.

Above the axis, θ = −π.∫ 0

∞

dζ

ζ
(−ζ)se−ζ =

∫ 0

∞

−dρ e−iπ

−ρe−iπ
ρse−iπseρe

−iπ
= −e−iπs

∫ ∞
0

dρ

ρ
ρse−ρ.

In total we get∫
C

dζ

ζ
(−ζ)se−ζ =

(
eiπs − e−iπs

) ∫ ∞
0

dρ

ρ
ρse−ρ = 2i sinπs Γ(s).

We have found an analytic continuation of the Γ-function

Γ(s) =
1

2i sinπs

∫
C

dζ

ζ
(−ζ)se−ζ , (B.13)

or even more elegant, using (B.11)

1

Γ(1− s)
=

1

2πi

∫
C

dζ

ζ
(−ζ)se−ζ . (B.14)

B.2.3 Analytic continuation of the ζ-function

Normally, we de�ne Riemann's ζ-function as

ζ(s) =

∞∑
n=1

1

ns
, s > 1.

We instead introduce a more general function of two parameters: ζ(s, a)

ζ(s, a) =

∞∑
n=0

1

(n+ a)s
. (B.15)
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We see that a = 1 leads us back to the original de�nition. By performing a simple change of
variables, we may be able to express this generalised ζ-function in terms of the Γ-function

Γ(s) =

∫ ∞
0

dρ

ρ
ρse−ρ = {ρ = x(n+ a)} = (n+ a)s

∫ ∞
0

dx

x
xse−(n+a)x.

Divide and multiply (B.15) with the expression above, so that

ζ(s, a)=

∞∑
n=0

1

(n+ a)s
=

1

Γ(s)

∞∑
n=0

∫ ∞
0

dx

x
xse−(n+a)x =

1

Γ(s)

∫ ∞
0

dx

x
xse−ax

( ∞∑
n=0

(e−x)n

)
,

and we simply get

ζ(s, a) =
1

Γ(s)

∫ ∞
0

dx

x
xs

e−ax

1− e−x
. (B.16)

Now consider the curve integral ∫
C

dξ

ξ
(−ξ)s e−aξ

1− e−ξ
, (B.17)

where C is the same curve (Figure B.1) as before. We see that the integrand is analytic
on C. Repeat the calculation procedure we did before, but with this new integral (B.17).
Perform the same change of variables, −ξ = ρeiθ and divide the integration into two parts.
Integration below the real axis gives∫ ∞

0

dξ

ξ
(−ξ)s e−aξ

1− e−ξ
= eiπs

∫ ∞
0

dρ

ρ
ρs

e−aρ

1− e−ρ
.

Above the real axis we get∫ 0

∞

dξ

ξ
(−ξ)s e−aξ

1− e−ξ
= −e−iπs

∫ ∞
0

dρ

ρ
ρs

e−aρ

1− e−ρ
.

In total the curve integral (B.17) becomes∫
C

dξ

ξ
(−ξ)s e−aξ

1− e−ξ
=
(
eiπs − e−iπs

) ∫ ∞
0

dρ

ρ
ρs

e−aρ

1− e−ρ
= 2i sinπs Γ(s)ζ(s, a),

where in the last step we have used (B.16), with the real variable ρ = x. Again using (B.11),
we can write the ζ-function as

ζ(s, a) =
1

Γ(s)

1

2i sinπs

∫
C

dξ

ξ
(−ξ)s e−aξ

1− e−ξ
=

Γ(1− s)
2πi

∫
C

dξ

ξ
(−ξ)s e−aξ

1− e−ξ
. (B.18)

This is our analytic continuation of Riemann-s ζ-function. We want to calculate ζ(0). To do
this, we may turn the curve C to a closed curve D, by connecting the two ends at in�nity.
We can do this since the integrand goes to zero when <(ξ)→∞, a > 0

ζ(s, a) =
Γ(1− s)

2πi

∮
D

dξ

ξ
(−ξ)s e−aξ

1− e−ξ
. (B.19)

The only residue of g(ξ) = (−ξ)s
ξ

e−aξ

1−e−ξ inside D will be at 0. Then the theorem of residues
gives for the integral ∮

D

dξ

ξ
(−ξ)s e−aξ

1− e−ξ
= 2πi res(g, 0). (B.20)

Expand g(ξ) about ξ = 0

g(ξ) =
(−ξ)s

ξ

e−aξ

1− e−ξ
=

(−ξ)s

ξ

1− aξ + a2ξ2

2 − . . .
ξ − ξ2

2 + ξ3

6 + . . .
= {s = 0} =

1

ξ2

1− aξ + a2ξ2

2 − . . .

1−
(
ξ
2 −

ξ2

6 + . . .
)

=
1

ξ2

(
1− aξ +

a2ξ2

2
− . . .

)(
1 +

ξ

2
− . . .

)
=

1 +
(
−a+ 1

2

)
ξ + . . .

ξ2
.

We easily read o� the ξ−1 coe�cient to be −a+ 1
2 = − 1

2 , since a = 1 in our case. Then we
use (B.19) and (B.20)

ζ(0) = ζ(0, 1) =
Γ(1− 0)

2πi
2πi res(g, 0) = 1 ·

(
−1

2

)
= −1

2
. (B.21)
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B.3 Computation of ζ ′(0)

We have in the preceding section found ζ(0). To be able to calculate ζ ′(0), we have to use a
heavier mathematical artillery. We begin with some preliminary calculations which at �rst
sight do not seem to have anything to do with Riemann's ζ function, but later will become
quite useful. Throughout the text, log z will be the natural logarithm with a suitable branch
for a complex number, whereas ln z will be used when z is a real number. Our main reference
is the excellent Modern Analysis [16], by Whittaker and Watson.

B.3.1 Preparatory Calculations

An integral for log z

We start by proving the following expression for the logarithm

log z =

∫ ∞
0

e−t − e−tz

t
dt, (B.22)

where <z > 0. The RHS becomes

RHS =

∫ ∞
0

e−t − e−tz

t
dt = lim

δ→0,ρ→∞

{∫ ρ

δ

e−t

t
dt−

∫ ρ

δ

e−tz

t
dt

}
.

Performing a change of variables in the second integral, u = tz, with <z > 0, gives

RHS = lim
δ→0,ρ→∞

{∫ ρ

δ

e−t

t
dt−

∫ ρz

δz

e−u

u
du

}
.

δ and ρ are two points on the positive real axis. Together with δz and ρz, these points
are corners of a quadrilateral γ, inside which the function e−t/t will be analytic. Then, by
Cauchy's theorem, the closed curve integral along γ will be zero,

0 =

∮
γ

e−t

t
dt =

∫ ρ

δ

e−t

t
dt+

∫ ρz

ρ

e−t

t
dt+

∫ δz

ρz

e−t

t
dt+

∫ δ

δz

e−t

t
dt,

and therefore ∫ ρ

δ

e−t

t
dt−

∫ ρz

δz

e−t

t
dt =

∫ δz

δ

e−t

t
dt−

∫ ρz

ρ

e−t

t
dt.

We use this result in the calculation above, so that

RHS = lim
δ→0,ρ→∞

{∫ δz

δ

e−t

t
dt−

∫ ρz

ρ

e−t

t
dt

}
.

As <(z) > 0, the last integral → 0 when ρ→∞. The �rst integral becomes

∫ δz

δ

e−t

t
dt =

∫ δz

δ

1 + e−t − 1

t
dt

=

∫ δz

δ

1

t
dt+

∫ δz

δ

e−t − 1

t
dt

= log δz − log δ −
∫ δz

δ

1− e−t

t
dt

= log z −
∫ δz

δ

et − 1

t
e−tdt.

Since et−1
t → 1 when t→ 0, the integral vanishes when δ → 0. Hence we arrive at the result

(B.22).
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The harmonic series and Euler's constant

Next, we will prove that the �rst n terms of the harmonic series can be written as

1 +
1

2
+

1

3
+ . . .+

1

n
=

∫ 1

0

1− (1− t)n

t
dt. (B.23)

The result follows directly if we note that

n−1∑
k=0

(1− t)k =
1− (1− t)n

1− (1− t)
=

1− (1− t)n

t
,

which is true when |1− t| < 0, as is the case in the integral. Then,

∫ 1

0

1− (1− t)n

t
dt =

∫ 1

0

n−1∑
k=0

(1− t)kdt =

n−1∑
k=0

[
− (1− t)k+1

k + 1

]1

0

=

n−1∑
k=0

1

k + 1
=

1

1
+

1

2
+ . . .+

1

n
.

In fact, Euler's constant γ can be written as

γ = lim
n→∞

{∫ 1

0

1−
(
1− t

n

)n
t

dt−
∫ n

1

(
1− t

n

)n
t

dt

}
. (B.24)

To see this, we write the integrals within {} brackets as

∫ 1

0

1−
(
1− t

n

)n
t

dt+

∫ n

1

1−
(
1− t

n

)n
t

dt−
∫ n

1

1

t
dt =

∫ n

0

1−
(
1− t

n

)n
t

dt− lnn

=

{
u =

t

n

}
=

∫ 1

0

1− (1− u)
n

u
du− lnn.

Using (B.23), the result (B.24) follows directly.

Euler's constant in terms of e

We will now rewrite (B.24) in another way. To do this, we need to recall the de�nition of the
exponential e,

e = lim
n→∞

(
1 +

1

n

)n
.

Taking both sides to the power of t, and performing a change of variables −nt→ t gives

e−t = lim
n→∞

(
1− t

n

)n
.

The careful reader might get nervous about this last operation on such a crucial de�nition,
and also wonder how fast the convergence is. We will show that it is in fact always true for
n = 1, 2, . . . that

0 ≤ e−t −
(

1− t

n

)n
≤ t2e−t

n
. (B.25)

From the series of ey and 1/(1− y),

ey = 1 + y +
y2

2
+ . . . ;

1

1− y
= 1 + y + y2 + . . . ,

it follows that 1 + y ≤ ey ≤ 1/(1− y), and letting y = t/n, we see that

1 +
t

n
≤ e tn ≤

(
1− t

n

)−1

;

(
1 +

t

n

)−n
≥ e−t ≥

(
1− t

n

)n
,
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and we notice immediately that e−t −
(
1− t

n

)n ≥ 0. Further, we have that

e−t −
(

1− t

n

)n
= e−t

(
1− et

(
1− t

n

)n)
= e−t

(
1−

(
e
t
n

(
1− t

n

))n)
= e−t

(
1−

(
1 +

t

n
+

t2

2n2
+ . . .

)n(
1− t

n

)n)
≤ e−t

(
1−

[(
1 +

t

n

)(
1− t

n

)]n)
= e−t

(
1−

(
1− t2

n2

)n)
.

If 0 ≤ a ≤ 1, we have the inequality (1−a)n ≥ 1−na. It is obviously true when n = 1. Now,
suppose it is true for n = p ≥ 1. Then (1− a)p ≥ 1− pa. Is it then true for n = p+ 1? The
RHS becomes 1− (p+ 1)a = 1− pa− a. The LHS becomes (1− a)p+1 = (1− a)(1− a)p ≥
(1− a)(1− pa) = 1− a− pa+ a2p ≥ 1− pa− a =RHS. From the principle of induction, it is
true that (1− a)n ≥ 1− na for all n ≥ 1. Setting a = t2/n2, we get(

1− t2

n2

)n
≥ 1− t2

n
; 1−

(
1− t2

n2

)n
≤ t2

n
,

and (B.25) follows. Then, we may instead write (B.24) as

γ =

∫ 1

0

1− e−t

t
dt−

∫ ∞
1

e−t

t
dt. (B.26)

Another way of writing this is

γ = lim
δ→0

(∫ 1

δ

dt

t
−
∫ ∞
δ

e−t

t
dt

)
.

Now perform a change of variables in the �rst integral, ∆ = 1− e−δ. We notice that∫ δ

∆

dt

t
= log

δ

∆
= ln

δ

1− e−δ
= ln

(
eδ

δ

eδ − 1

)
→ 0,

when δ → 0. We may therefore include this tiny part in the expression for γ, so that

γ = lim
δ→0

(∫ 1

∆

dt

t
−
∫ ∞
δ

e−t

t
dt

)
.

Perform another change of variables in the �rst integral, t = 1− e−u, u = − ln(1− t),

γ = lim
δ→0

∫ ∞
δ

e−t

1− e−t
dt−

∫ ∞
δ

e−t

t
dt =

∫ ∞
0

(
1

1− e−t
− 1

t

)
e−tdt. (B.27)

Derivatives of log Γ(z)

We conclude this section with a short calculation, starting from Weierstrass expression (B.10)
for the Γ function, and the logarithm of it,

Γ(z + 1) = e−γz
∞∏
n=1

e
z
n

1 + z
n

; log Γ(z + 1) = −γz +

∞∑
n=1

( z
n
− log

(
1 +

z

n

))
.

Now di�erentiate log Γ(z + 1),

d

dz
log Γ(z + 1) = −γ +

∞∑
n=1

(
1

n
− 1

1 + z
n

1

n

)
= −γ +

∞∑
n=1

z

n(z + n)
. (B.28)

Using the property (B.6), we have that
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log Γ(z + 1) = log z + log Γ(z);
d

dz
log Γ(z + 1) =

1

z
+

d

dz
log Γ(z),

and therefore

Γ′(z)

Γ(z)
=

d

dz
log Γ(z) = −γ − 1

z
+

∞∑
n=1

z

n(z + n)
. (B.29)

Di�erentiating (B.29) gives

d2

dz2
log Γ(z) =

1

z2
+

d

dz

∞∑
n=1

z

n(z + n)

=
1

z2
+

∞∑
n=1

d

dz

z

n(z + n)

=
1

z2
+

∞∑
n=1

1

n

1(z + n)− z · 1
(z + n)2

=
1

z2
+

∞∑
n=1

1

(z + n)2

=

∞∑
n=0

1

(z + n)2
.

(B.30)

B.3.2 Gauss' Expression for
Γ′(z)
Γ(z)

We will in this section try to �nd a formula for Γ′(z)
Γ(z) , applicable whenever <z > 0. Remember

the expression (B.29) for the logarithmic derivative of Γ(z),

Γ′(z)

Γ(z)
=

d

dz
log Γ(z) = −γ − 1

z
+

∞∑
n=1

z

n(z + n)
= −γ − 1

z
+ lim
n→∞

n∑
m=1

(
1

m
− 1

z +m

)
.

Note that 1
z+m =

∫∞
0
e−t(z+m)dt, m = 0, 1, 2, . . . , and <z > 0. Hence we have

Γ′(z)

Γ(z)
= −γ −

∫ ∞
0

e−tzdt+ lim
n→∞

∫ ∞
o

n∑
m=1

(
e−mt − e−(m+z)t

)
dt

= −γ + lim
n→∞

∫ ∞
0

−e−tz + e−t
1− e−tn

1− e−t
(1− e−zt)dt,

where we have used the formula for the geometric sum. We continue by writing the integrand
as a ratio

Γ′(z)

Γ(z)
= −γ + lim

n→∞

∫ ∞
0

−e−tz(1− e−t) + (e−t − e−(n+1)t)(1− e−zt)
1− e−t

dt

= −γ + lim
n→∞

∫ ∞
0

e−t − e−zt − e−(n+1)t + e−(n+z+1)t

1− e−t
dt.

Rewrite γ as an integral with (B.27), to get

Γ′(z)

Γ(z)
=

∫ ∞
0

e−t

t
− e−t

1− e−t
dt+ lim

n→∞

∫ ∞
0

e−t − e−zt − e−(n+1)t + e−(n+z+1)t

1− e−t
dt

=

∫ ∞
0

e−t

t
− e−zt

1− e−t
dt− lim

n→∞

∫ ∞
0

1− e−zt

1− e−t
e−(n+1)tdt.
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The second integral is in fact zero. First look at the case 0 < t ≤ 1. The factor
∣∣∣ 1−e−zt1−e−t

∣∣∣ has
a �nite limit when t→ 0, namely |z|, and is therefore bounded, so when n→∞, the part of
the integral from t = 0 to t = 1 goes to zero. Next, look at the case when t ≥ 1. Then, since
<z > 0, ∣∣∣∣1− e−zt1− e−t

∣∣∣∣ < 1 + |e−zt|
1− e−1

<
2

1− e−1
,

and when n → ∞ we get the integral from 1 to ∞ also equal to zero. Then we have the
interesting result named after Gauss,

d

dz
log Γ(z) =

Γ′(z)

Γ(z)
=

∫ ∞
0

e−t

t
− e−zt

1− e−t
dt. (B.31)

B.3.3 Binet's First Expression for log Γ(z)

By letting z → z + 1 in (B.31), we get

Γ′(z + 1)

Γ(z + 1)
=

∫ ∞
0

e−t

t
− e−(z+1)t

1− e−t
dt =

∫ ∞
0

e−t

t
− e−zt

et − 1
dt.

We remember from (B.22) that

log z =

∫ ∞
0

e−t − e−tz

t
dt;

∫ ∞
0

e−t

t
dt = log z +

∫ ∞
0

e−tz

t
dt.

Use this, together with adding and subtracting the identity
∫∞

0
1
2e
−tzdt = 1

2z in the expression

for Γ′(z+1)
Γ(z+1) , we �nd

d

dz
log Γ(z + 1) = log z +

∫ ∞
0

e−tz

t
− e−tz

et − 1
dt+

(
1

2z
−
∫ ∞

0

1

2
e−tzdt

)
=

1

2z
+ log z −

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−tzdt.

The integrand is continuous when t→ 0, and since <z > 0 it really converges uniformly. We
are therefore allowed to integrate with respect to z under the integral sign

∫ z

1

d

dz′
(log Γ(z′ + 1)) dz′ =

∫ z

1

(
1

2z′
+ log z′ −

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−tz

′
dt

)
dz′,

and

log Γ(z + 1)− log Γ(2) =
1

2
log z + [z′ log z′ − z′]z1 −

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)[
−e
−tz′

t

]z
1

dt

=
1

2
log z + z log z − z + 1 +

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−tz − e−t

t
dt.

Now, from (B.6), log Γ(z + 1) = log (zΓ(z)) = log z + log Γ(z), and

log Γ(z) =

(
z − 1

2

)
log z − z + 1

+

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−tz

t
dt−

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−t

t
dt.

(B.32)

We put our attention on the last integral, which we call I. Also de�ne an integral J ,

I =

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−t

t
dt; J =

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−

t
2

t
dt.

Using these de�nitions, we see that
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log Γ

(
1

2

)
=

(
1

2
− 1

2

)
ln

1

2
− 1

2
+ 1 + J − I =

1

2
+ J − I. (B.33)

Let us make a change of variables t→ t
2 in the expression for I. We get

I =

∫ ∞
0

(
1

2
− 2

t
+

1

et/2 − 1

)
e−t/2

t
dt.

The di�erence between J and I becomes

J − I =

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−

t
2

t
dt−

∫ ∞
0

(
1

2
− 2

t
+

1

et/2 − 1

)
e−t/2

t
dt

=

∫ ∞
0

(
1

t
+

(
1

et − 1
− 1

et/2 − 1

))
e−

t
2

t
dt

=

∫ ∞
0

(
1

t
+

(
1

et − 1
− et/2 + 1

(et/2 − 1)(et/2 + 1)

))
e−

t
2

t
dt

=

∫ ∞
0

(
1

t
− et/2

et − 1

)
e−t/2

t
dt

=

∫ ∞
0

(
e−t/2

t
− 1

et − 1

)
dt

t
.

Then J = (J − I) + I, so

J =

∫ ∞
0

(
e−t/2

t
− 1

et − 1
+

1

2
e−t − e−t

t
+

e−t

et − 1

)
dt

t
.

Since 1
2e
−t − 1

et−1 + e−t

et−1 = 1
2e
−t + e−t 1−et

et−1 = − 1
2e
−t, we get

J =

∫ ∞
0

(
e−t/2 − e−t

) dt
t2
−
∫ ∞

0

1

2

e−t

t
dt

=

[
−e
−t/2 − e−t

t

]∞
0

+

∫ ∞
0

− 1
2e
−t/2 + e−t

t
dt−

∫ ∞
0

1

2

e−t

t
dt

= lim
t→0

e−t/2 − e−t

t
+

1

2

∫ ∞
0

e−t − e−t/2

t
dt.

The integral is just ln 1
2 by (B.22). The limit is

lim
t→0

e−t/2 − e−t

t
= lim
t→0

e−t
et/2 − 1

2 · t2
= 1 · 1

2
=

1

2
,

so that J = 1
2 + 1

2 ln 1
2 . From (B.33), using the result Γ

(
1
2

)
=
√
π in (B.9), we have

I =
1

2
+ J − log Γ

(
1

2

)
=

1

2
+

1

2
+

1

2
ln

1

2
− ln

√
π = 1− 1

2
ln 2π.

Hence, (B.32) becomes

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
ln 2π +

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−tz

t
dt,

which is called Binet's �rst expression for log Γ(z). The factor
(

1
2 −

1
t + 1

et−1

)
1
t is continuous

as t→ 0, which may be shown in the study of Bernoulli polynomials. For large t it is clearly

bounded, and we may set
(

1
2 −

1
t + 1

et−1

)
1
t < K, where K is a constant independent of t.

From this, with z = x+ iy, we have

∣∣∣∣log Γ(z)−
(
z − 1

2

)
log z + z − 1

2
ln 2π

∣∣∣∣ < K

∫ ∞
0

e−txdt =
K

x
→ 0, x→∞.
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Therefore, we have the approximate formula for log Γ(z) when <z � 0,

log Γ(z) ≈
(
z − 1

2

)
log z − z +

1

2
ln 2π. (B.34)

B.3.4 Plana's Formula

Suppose that we have an analytic function φ(z), which is bounded whenever x1 ≤ <z ≤ x2,
where x1 and x2 are two integers. Then we will show that

1

2
φ(x1) + φ(x1 + 1) + φ(x1 + 2) + . . .+ φ(x2 − 1) +

1

2
φ(x2)

=

∫ x2

x1

φ(z)dz +
1

i

∫ ∞
0

φ(x2 + iy)− φ(x1 + iy)− φ(x2 − iy) + φ(x1 − iy)

e2πy − 1
dy, (B.35)

a relation that is called Plana's formula, and which we will use twice in the sections to
come. We prove it by adding the equations for two curve integrals. The �rst curve integral

is
∮
C1

φ(z)dz
e−i2πz−1 , where C1 is the rectangle with corners (given in order) x1, x2, x2 + i∞ and

x1 + i∞. The second is
∮
C2

φ(z)dz
ei2πz−1 , where C2 is the rectangle with corners (given in order)

x1, x2, x2 − i∞ and x1 − i∞. See �gure B.2.

Figure B.2: The closed contours C1 and C2.

Let z = x+ iy. The �rst integral becomes∮
C1

φ(z)dz

e−i2πz − 1

=

∫ x2

x1

φ(x)dx

e−i2πx − 1
+ i

∫ ∞
0

φ(x2 + iy)dy

e−i2π(x2+iy) − 1
+ lim
r→∞

∫ x1+ir

x2+ir

φ(z)dz

e−i2πz − 1
+ i

∫ 0

∞

φ(x1 + iy)dy

e−i2π(x1+iy) − 1
.

Using the fact that φ(z) is bounded whenever x1 ≤ <z ≤ x2, the integral involving r vanishes,
and also using the fact that x1 and x2 are integers, we get∮

C1

φ(z)dz

e−i2πz − 1
=

∫ x2

x1

φ(x)dx

e−i2πx − 1
+ i

∫ ∞
0

φ(x2 + iy)− φ(x1 + iy)

e2πy − 1
dy. (B.36)

The second integral becomes ∮
C2

φ(z)dz

ei2πz − 1

=

∫ x2

x1

φ(x)dx

ei2πx − 1
+ i

∫ −∞
0

φ(x2 + iy)dy

ei2π(x2+iy) − 1
+ lim
r→∞

∫ x1−ir

x2−ir

φ(z)dz

ei2πz − 1
+ i

∫ 0

−∞

φ(x1 + iy)dy

ei2π(x1+iy) − 1
.
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Here, the third integral on the RHS also vanishes as r → ∞. In the second and the fourth
integrals, we perform a change of variable y → −y, to get∮

C2

φ(z)dz

ei2πz − 1
=

∫ x2

x1

φ(x)dx

ei2πx − 1
+ i

∫ ∞
0

φ(x1 − iy)− φ(x2 − iy)

e2πy − 1
dy. (B.37)

We want to use the theorem of residues for the integrals over C1 and C2. The poles of
φ(z)

e∓i2πz−1 are simple (remember that φ(z) is analytic), they are just the integers, lying on the
real axis. See �gure B.2. The curves C1 and C2 crosses the integer poles from x1 to x2. How
do we treat poles which are not inside the contour, but instead on the boarder? Look at a
speci�c example with the curve C in �gure B.3.

Figure B.3: Example of a contour C that crosses a pole x0. One may include or exclude the
pole by taking di�erent paths around it.

We may avoid the pole in x0 by taking a trip around it along a semicircle, clockwise or
counterclockwise. The relevant term of the Laurent expansion around x0 is a−1

z−x0
. The

integration of this term along the semicircles becomes∫
a−1

z − x0
dz =

{
z − x0 = δeiθ,
dz = iδeiθdθ

}
=

{
a−1

∫ 0

π
i dθ = −a−1iπ, if clockwise

a−1

∫ 0

−π i dθ = a−1iπ, if counterclockwise.

}

If taking the semicircle clockwise, the pole is excluded. In the residue theorem,∮
C

f(z)dz = 2πi
∑

(residues inside C), (B.38)

a factor −a−1iπ will appear on the LHS, due to x0. It becomes +a−1iπ on the RHS. If
we instead take the semicircle counterclockwise, the pole is included. A term +a−1iπ will
appear on the LHS of (B.38) due to x0, and a term a−1i2π will appear on the RHS, since x0

is included. The net result is a term a−1iπ on the RHS of (B.38), which is the same result
as obtained in the clockwise semicircle case. Hence, it is very natural to interpret �a crossed
residue� as �half a residue�. In the same way, if there is a right-angled corner of the contour
at a residue, it will contribute with a fourth of the value that an included residue would give.

Having discussed crossed poles for a while, we now return to the proof of Plana's formula.

The residue for f(z) = φ(z)
e∓i2πz−1 at an (included) pole z0 ∈ Z, such that x1 ≤ z0 ≤ x2 is easy

to �nd. Let f(z) = φ(z)
e∓i2πz−1 ≡

F (z)
G(z) . We see that G′(z) 6= 0, so

resf(z)|z=z0 =
F (z0)

G′(z0)
=

φ(z0)

∓2πie∓i2πz0
= ∓φ(z0)

2πi
.

Using these residues, counting the poles x1 and x2 as quarter residues and the integers in
between as half residues, we complete (B.36)∫ x2

x1

φ(x)dx

e−i2πx − 1
+ i

∫ ∞
0

φ(x2 + iy)− φ(x1 + iy)

e2πy − 1
dy =

∮
C1

φ(z)dz

e−i2πz − 1

= 2πi

(
−1

4

φ(x1)

2πi
− 1

2

φ(x1 + 1)

2πi
− 1

2

φ(x1 + 2)

2πi
− . . .− 1

2

φ(x2 − 1)

2πi
− 1

4

φ(x2)

2πi

)
,

and by just shu�ing minus signs we �nd

−
∫ x2

x1

φ(x)dx

e−i2πx − 1
+

1

i

∫ ∞
0

φ(x2 + iy)− φ(x1 + iy)

e2πy − 1
dy

=
1

4
φ(x1) +

1

2
φ(x1 + 1) +

1

2
φ(x1 + 2) + . . .+

1

2
φ(x2 − 1) +

1

4
φ(x2). (B.39)
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Paying attention to the fact that C2 is negatively oriented, we complete (B.37) and get∫ x2

x1

φ(x)dx

ei2πx − 1
+ i

∫ ∞
0

φ(x1 − iy)− φ(x2 − iy)

e2πy − 1
dy =

∮
C2

φ(z)dz

ei2πz − 1

= −2πi

(
1

4

φ(x1)

2πi
+

1

2

φ(x1 + 1)

2πi
+

1

2

φ(x1 + 2)

2πi
+ . . .+

1

2

φ(x2 − 1)

2πi
+

1

4

φ(x2)

2πi

)
,

and by again just shu�ing minus signs we �nd

−
∫ x2

x1

φ(x)dx

ei2πx − 1
+

1

i

∫ ∞
0

φ(x1 − iy)− φ(x2 − iy)

e2πy − 1
dy

=
1

4
φ(x1) +

1

2
φ(x1 + 1) +

1

2
φ(x1 + 2) + . . .+

1

2
φ(x2 − 1) +

1

4
φ(x2). (B.40)

Next, add the equations (B.39) and (B.40) side by side

−
∫ x2

x1

φ(x)

(
1

e−i2πx − 1
+

1

ei2πx − 1

)
dx

+
1

i

∫ ∞
0

φ(x2 + iy)− φ(x1 + iy) + φ(x1 − iy)− φ(x2 − iy)

e2πy − 1
dy

=
1

2
φ(x1) + φ(x1 + 1) + φ(x1 + 2) + . . .+ φ(x2 − 1) +

1

2
φ(x2).

We �nd that 1
e−i2πx−1 + 1

ei2πx−1 = ei2πx−1+e−i2πx−1
(e−i2πx−1)(ei2πx−1) = −1, and by just writing z instead of

x, we receive the wanted result (B.35).

B.3.5 Binet's Second Expression for log Γ(z)

We will now use the result (B.30)

d2

dz2
log Γ(z) =

∞∑
n=0

1

(z + n)2
,

to �nd another expression for log Γ(z). Let 1
(z+ζ)2 be the function φ(ζ) in Plana's formula

(B.35), assuming that <z > 0. We see that

d2

dz2
log Γ(z) =

1

z2
+

1

(z + 1)2
+ . . . = φ(0) + φ(1) + φ(2) + . . .

Since <z > 0, φ(ζ) is analytic and bounded when <ζ ≥ 0, and we can apply Plana's theorem
where x1 = 0 and x2 → ∞. Since φ(ζ) → 0 when <ζ → ∞, the factor 1

2 in front of φ(∞)
does not matter, and we write

1

2
φ(0) + φ(1) + φ(2) + . . .

=

∫ ∞
0

1

(z + ξ)2
dξ + lim

x2→∞

1

i

∫ ∞
0

φ(x2 + it)− φ(0 + it)− φ(x2 − it) + φ(0− it)
e2πt − 1

dt. (B.41)

The two terms in the right integral which depend on x2 will disappear when x2 →∞. Now
add 1

2φ(0) = 1
2z2 to both sides of (B.41), and perform the integration over the real variable ξ

d2

dz2
log Γ(z) =

1

2z2
+

[
− 1

z + ξ

]∞
0

+
1

i

∫ ∞
0

(
1

(z − it)2
− 1

(z + it)2

)
1

e2πt − 1
dt

=
1

2z2
+

1

z
+

1

i

∫ ∞
0

(z + it)2 − (z − it)2

((z − it)(z + it))2

dt

e2πt − 1

=
1

2z2
+

1

z
+

∫ ∞
0

4tz

(z2 + t2)2(e2πt − 1)
dt.

(B.42)
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The integral converges uniformly. Hence, we may integrate under the integral sign in (B.42)
from 1 to z,[

d

dz′
log Γ(z′)

]z
1

=

[
− 1

2z′

]z
1

+ [log z′]
z
1 +

∫ ∞
0

−2t

[
1

z′2 + t2

]z
1

1

e2πt − 1
dt.

We �nd

d

dz
log Γ(z) = − 1

2z
+

1

2
+ log z +A− 2

∫ ∞
0

t dt

(z2 + t2)(e2πt − 1)
+ 2

∫ ∞
0

t dt

(1 + t2)(e2πt − 1)
.

The last integral is clearly convergent, and will be treated just as a constant. Then, collecting
all the constants into a constant C, we get

d

dz
log Γ(z) = − 1

2z
+ log z + C − 2

∫ ∞
0

t dt

(z2 + t2)(e2πt − 1)
. (B.43)

Integrate again from 1 to z. There is still no problem to integrate under the integral sign, so

[log Γ(z′)]
z
1 = −1

2
[log z′]

z
1 + [z′ log z′ − z′]z1 + [Cz′]

z
1 + 2

∫ ∞
0

[
arctan

t

z′

]z
1

dt

e2πt − 1
.

Continuing,

log Γ(z) = −1

2
log z+ z log z− z+ 1 +Cz−C +B+ 2

∫ ∞
0

arctan(t/z)

e2πt − 1
dt− 2

∫ ∞
0

arctan t

e2πt − 1
dt,

and again the last integral is convergent and has just a constant value. Collect all the di�erent
constants into one constant C ′ and �nd that

log Γ(z) =

(
z − 1

2

)
log z + (C − 1)z + C ′ + 2

∫ ∞
0

arctan(t/z)

e2πt − 1
dt. (B.44)

We now want to determine the constants C and C ′ in (B.44). Since arctan ξ =
∫ ξ

0
dt

1+t2 ≤∫ ξ
0
dt
1 = ξ, we know that∣∣∣∣log Γ(z)−

(
z − 1

2

)
log z − (C − 1)z − C ′

∣∣∣∣ < 2

z

∫ ∞
0

t

e2πt − 1
dt→ 0,

when <z →∞. Also, we found in (B.34) that for large <z∣∣∣∣log Γ(z)−
(
z − 1

2

)
log z + z − 1

2
ln 2π

∣∣∣∣→ 0.

Comparing these two results, (which only apply for large <z), we determine the constants C
and C ′ to be

C = 0; C ′ =
1

2
ln 2π.

Then, (B.44) becomes

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
ln 2π + 2

∫ ∞
0

arctan(t/z)

e2πt − 1
dt, (B.45)

which is Binet's second expression for log Γ(z).
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B.3.6 Hermite's Formula for ζ(s, a)

Having for long only dealt with the Γ function, we now turn our attention to Riemann's ζ
function. This becomes obvious immediately when we apply Plana's formula (B.35) to the
function φ(z) = 1

(a+z)s . We apparently have

1

2
φ(0) + φ(1) + φ(2) + . . . =

1

2

1

(a+ 0)s
+

1

(a+ 1)s
+

1

(a+ 2)s
+ . . . ,

so, using Plana's formula with x1 = 0 and x2 →∞,

ζ(s, a) =φ(0) + φ(1) + . . . =
1

2
φ(0) +

(
1

2
φ(0) + φ(1) + φ(2) + . . .

)
=

1

2as
+

∫ ∞
0

φ(z)dz + lim
x2→∞

1

i

∫ ∞
0

φ(x2 + iy)− φ(0 + iy)− φ(x2 − iy) + φ(0− iy)

e2πy − 1
dy

=
1

2as
+

∫ ∞
0

φ(z)dz − lim
x2→∞

1

i

∫ ∞
0

(
1

(a+ x2 − iy)s
− 1

(a+ x2 + iy)s

)
dy

e2πy − 1

+
1

i

∫ ∞
0

(
1

(a+ 0− iy)s
− 1

(a+ 0 + iy)s

)
dy

e2πy − 1
.

(B.46)

We have not yet motivated that it was possible to set x1 = 0 and let x2 → ∞ in Plana's
formula. We will do that now, by noting that the obtained integrals are convergent. Introduce

q(x, y) =
1

2i

(
1

(a+ x− iy)s
− 1

(a+ x+ iy)s

)
=

1

2i

(
(a+ x+ iy)s − (a+ x− iy)s

((a+ x)2 + y2)s

)
.

The two complex numbers z = (a+ x+ iy)s and z̄ = (a+ x− iy)s are each other's complex
conjugates. Their di�erence is z − z̄ = 2i=z. We write

a+ x+ iy =
√

(a+ x)2 + y2(cos θ + i sin θ),

where θ = arctan
(

y
a+x

)
, and by de Moivre's formula,

z = (a+ x+ iy)s =
(
(a+ x)2 + y2

) s
2 (cos sθ + i sin sθ).

Then

=z =
(
(a+ x)2 + y2

) s
2 sin sθ =

(
(a+ x)2 + y2

) s
2 sin

(
s arctan

y

a+ x

)
,

and

q(x, y) =
1

2i

2i
(
(a+ x)2 + y2

) s
2 sin

(
s arctan y

a+x

)
((a+ x)2 + y2)

s =
sin
(
s arctan y

a+x

)
((a+ x)2 + y2)

s
2
. (B.47)

It is always true that arctan
∣∣∣ y
a+x

∣∣∣ ≤ π
2 , and we have earlier found that arctan

∣∣∣ y
a+x

∣∣∣ ≤ ∣∣∣ y
a+x

∣∣∣.
Using the �rst inequality, writing σ for <s, we �nd

|q(x, y)| ≤ 1

((a+ x)2 + y2)
σ/2

(
(a+ x)2 + y2

)1/2
|y|

∣∣∣sin sπ
2

∣∣∣
≤ 1

((a+ x)2 + y2)
σ
2−

1
2

1

|y|
sinh

(π
2
|s|
)
. (B.48)

To con�rm the last inequality, study the function f(x) = sinhx− sinx. Di�erentiate, to get
f ′(x) = coshx − cosx, which is always a non-negative function. Since f(0) = 0, | sinhx| ≥
| sinx|.
From arctan

∣∣∣ y
a+x

∣∣∣ ≤ ∣∣∣ y
a+x

∣∣∣ it follows that
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|q(x, y)| ≤ 1

((a+ x)2 + y2)
σ/2

sinh

(
y|s|
a+ x

)
. (B.49)

Now look at the case y > a and σ > 0, and use (B.48) to see that the integral
∫∞
a

q(x,y)
e2πy−1dy

is convergent when x ≥ 0 and tends to zero when x→∞.

For the case y < a (and still σ > 0), we instead use (B.49) to see that the integral
∫ a

0
q(x,y)
e2πy−1dy

is convergent when x ≥ 0 and tends to zero when x→∞.

These results together give that
∫∞

0
q(x,y)
e2πy−1dy is convergent when x ≥ 0 and tends to zero

when x→∞.
The last two integrals in (B.46) involve exactly the integral

∫∞
0

q(x,y)
e2πy−1dy, when x → ∞

and when x = 0, respectively. The integral involving x2 → ∞ will disappear, so we are

left with 2
∫∞

0
q(0,y)
e2πy−1dy, which is convergent when σ > 0. The other integral in (B.46),∫∞

0
φ(z)dz =

∫∞
0

1
(a+x)s dx, is convergent if σ > 1.These convergences guarantee that we are

allowed to use Plana's formula in the interval from 0 to ∞. Using (B.46), (B.47) and what
we have discussed above, we can write

ζ(s, a) =
1

2as
+

∫ ∞
0

1

(a+ x)s
dx+ 2

∫ ∞
0

sin (s arctan(y/a))

(a2 + y2)s/2(e2πy − 1)
dy

=
1

2as
+

[
(a+ x)1−s

1− s

]∞
0

+ 2

∫ ∞
0

sin (s arctan(y/a))

(a2 + y2)s/2(e2πy − 1)
dy.

If still σ = <s > 1, we see that the integrated term → 0 when x→∞, and

ζ(s, a) =
1

2as
+
a1−s

s− 1
+ 2

∫ ∞
0

sin (s arctan(y/a))

(a2 + y2)s/2(e2πy − 1)
dy, (B.50)

which is Hermite's formula.
We have thus far assumed that σ = <s > 1. We want Hermite's formula to be valid when

s = 0. Then we need to do an analytic continuation of this function in the complex plane, as
we did with another function in the section where we computed ζ(0). We will not repeat the
process which we did there. We just note that the integrand in (B.50) is an analytic function
in the entire complex plane (both e2πy − 1 and sin s arctan y/a become zero when y = 0, so
the pole at y = 0 is �cancelled�.) We can therefore generalise (B.50) to be valid in the whole
complex plane, except for the point s = 1. Certainly, more mathematical theory is needed
to be completely sure of this. However, let us compute

ζ(0, a) =
1

2
− a+ 2

∫ ∞
0

sin(0)dy

(a2 + y2)0(e2πy − 1)
=

1

2
− a; ζ(0) = ζ(0, 1) = −1

2
,

which we already know. To obtain ζ ′(0), we di�erentiate (B.50) with respect to s,

d

ds
ζ(s, a) = −1

2
a−s ln a+

(−1a1−s ln a)(s− 1)− a1−s · 1
(s− 1)2

+2

∫ ∞
0

cos(s arctan y
a ) arctan y

a (a2 + y2)
s
2 − sin(s arctan y

a ) 1
2 (a2 + y2)

s
2 ln(a2 + y2)

(a2 + y2)s
dy

e2πy − 1
,

where the integral can be shown to be convergent for all values of s, and consequently we
were allowed to di�erentiate. Find the limit s→ 0 as

ζ ′(0, a) =

{
d

ds
ζ(s, a)

}
s=0

= lim
s→0

{
− ln a

2as
− a1−s ln a

s− 1
− a1−s

(s− 1)2

+2

∫ ∞
0

cos (s arctan y/a) arctan y/a− 1
2 sin (s arctan y/a) ln(a2 + y2)

(a2 + y2)
s/2

(e2πy − 1)
dy

}

= − ln a

2
+a ln a−a+ 2

∫ ∞
0

arctan y/a

e2πy − 1
dy =

(
a− 1

2

)
ln a−a+ 2

∫ ∞
0

arctan y/a

e2πy − 1
dy. (B.51)
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Now recall the result (B.45), where we let z = a and t = y, and �nd that

log Γ(a) =

(
a− 1

2

)
ln a− a+

1

2
ln 2π + 2

∫ ∞
0

arctan y/a

e2πy − 1
dy,

and so (
a− 1

2

)
ln a− a+ 2

∫ ∞
0

arctan y/a

e2πy − 1
dy = log Γ(a)− 1

2
ln 2π.

Using this in (B.51), we �nally arrive at

ζ ′(0, a) = log Γ(a)− 1

2
ln 2π; ζ ′(0) = ζ ′(0, 1) = −1

2
ln 2π.
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