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Abstract

This report presents the work done during a bachelor thesis project in supersymmetry quan-
tum mechanics with applications in mathematics. The project has, from calculation and
literature study, resulted in a text whose aim is to introduce the concept of supersymmetry
in a simple and pedagogical manner to third year physics students. Thus the text assumes
that the reader is familiar with concepts such as quantum mechanics, analytical mechanics,
linear algebra and has some knowledge of tensor calculus. Due to the target group, the
pedagogical aspect of the text is important, and compared to similar texts that treat this
subject a lot of effort has been done to show detailed calculations. The text is presented
in the main part of this report and consists of 6 chapters. Chapter 1 is an introduction to
supersymmetry and an overview of content of the following chapters. Chapter 2 and 3 cover
the theory of supersymmetry in flat space and in chapter 4 and 5 curvature is applied to the
theory. The last chapter is a concluding part where the mathematical results are discussed
and some ideas of further theories are briefly touched upon.



What is it indeed that gives us the feeling of elegance in a solution, in a
demonstration? It is the harmony of the diverse parts, their symmetry, their
happy balance; in a word it is all that introduces order, all that gives unity,
that permits us to see clearly and to comprehend at once both the ensemble
and the details.

Henri Poincaré
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About the Project

Background

After hearing the grandiose name supersymmetry thrown around in the world of physics, as a
student of physics one naturally gets curious. Thus in this report we finally get to investigate
the theory behind the alluring name! The building blocks of Nature, the elementary particles,
come in to distinct types: the fermions, which are the matter particles, and the bosons,
which carry forces between the matter particles. For instance, the electron is a fermion and
it interacts with other fermions via exchanges of photons, which carry the electromagnetic
force. The idea of supersymmetry is to unify these two classes of particles, by postulating that
they should all come in boson-fermion pairs with the same mass and charge. The ongoing
experiments at the LHC at CERN in Geneva are searching for evidence of supersymmetry
in Nature, but so far the predicted superpartners have not yet been found.

Nevertheless supersymmetry has proven to be a useful tool in many fields of study e.g. the
most important to us, the connection to a topological invariant (the Euler characteristic) of
the manifold one is working in. So in this report we will not focus on the possible phenomeno-
logical applications of supersymmetry, but rather study a certain supersymmetric version of
quantum mechanics, which turns out to have fascinating applications in mathematics. So
however we want to continue our studies in physics supersymmetric quantum mechanics will
be a good tool in our physical toolboxes.

Aim

The aim of our report was to transform the complicated texts on supersymmetric quantum
mechanics and bring them to a level suited for a physics student in his or her third year,
like ourselves. The specific parts within supersymmetry we wished to elucidate were the
methods which pave the way from supersymmetric quantum mechanics to solving differential
equations, via de Rham cohomology and the Atiyah-Singer index theorem. As a third year
student, we expect the reader to have some basic knowledge in linear algebra, analytical
mechanics and quantum mechanics. In more detail, what we wish to explain in a pedagogical
manner is:

1. Why the Witten index of a supersymmetric quantum mechanics is equal to the Euler
characteristic of the cohomology of the Q-operator (supercharge).

2. Why the Witten index of a supersymmetric sigma model on a curved Riemannian
manifold M computes the Euler characteristic of M. This is a stronger statement than
the one given in 1.

3. (A bonus if we have time to spare). Show that our results can be used in solving
differential equations, through a physical proof of the Atiyah-Singer index theorem.

An effective way of knowing if we have succeeded in our aim, namely to explain the theory
in a pedagogical manner, would be to test it on a third year physics student. If there are no
volunteers during spring, we will get our doom in the beginning of June from our opponents.

Problem Formulation

The aim was to explain aspects of supersymmetric quantum mechanics. This brought us to
the task of explicitly calculating and exposing all the steps commonly skipped in texts on
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supersymmetry and present them in a pedagogical manner. In the course of this, and to
be able to actually calculate the steps, we had to reach deeper into classical and quantum
mechanics, where we e.g needed to learn the path integral formalism. We had to compute
partition functions for different models and learn mathematics as {-function regularisation
and Poisson resummation. We also had to study the concepts behind the words in the goals
above, such as indices, manifolds, cohomology, Euler characteristic etc.

It was also necessary to keep our target audience in mind and figure out how to best
present and explain the material we produced.

Method

Our bachelor project is a theoretical and mathematical investigation into supersymmetry
together with a presentation. Our main sources have been:

e Mirror Symmetry; Vafa, Hori et al (Only ch 10 will be covered) [1].

e Gravitation, Gauge Theories and Differential Geometry; T. Eguchi, P.B. Gilkey, A.J.
Hanson (mainly ch 2-3) [6].

e Topology and Geometry for Physicists; C. Nash, S. Sen [8].
e Supersymmetric harmonic oscillator; Per Salomonson [4].

The learning process has included lectures with the supervisors on relevant topics for the
project. We have had weekly meetings with them, where we discussed and presented what
we have learnt from literature and our own calculations. These calculations form a vital
part of the project, as you can not really understand a subject until you have checked it for
yourself. We have also written typed texts about the subjects we cover, where we express
the theory in our own words. These texts have been made available to all of us via a Dropboz
account that we share. Partially they have been included in the final report. It has been
important for us to reach specific goals 1 and 2 together, meaning that everyone has more or
less worked through all of the parts of the final report.

Limitations

This project is limited to supersymmetric quantum mechanics and we will not encounter
quantum field theory in higher dimensions. Our research has been focused on supersymmetric
quantum mechanics in flat space and to some extent supersymmetric quantum mechanics with
non-trivial curvature.

Results

Our studies of the supersymmetric QM and its applications in mathematics have resulted in
a report, that hopefully is suited as an introduction to the field for physics students.

We start our report by establishing some results in analytical mechanics and how they
carry through to quantum mechanics. We also introduce the path integral technique, presum-
ably not known to the reader. We carry on by applying these techniques to a supersymmetric
system in flat one-dimensional space and find the Witten index. To proceed with more com-
plicated manifolds we have a chapter dedicated to introducing the necessary mathematical
techniques. After this we can find the Witten index of the supersymmetric theory, and its
connection to the Euler characteristic through the de Rham cohomology in a more interesting
manifold. We also have a number of appendices which concern some specific calculations and
proofs, omitted in the report to not disrupt the flow.

So far our work has not been read by a fellow student, but our aim to understand and
calculate missing steps of the literature on supersymmetry (especially Mirror Symmetry;
Vafa, Hori et al) for our part has been successful, since we were able to finish the paper
intended as our goal. So our paper reflects what we all have learned during the build up of
the report, since we were almost ignorant of the subject before starting. Our decision not to
split the work and let separate parts of the group handle different areas of the theory, has
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resulted in a good understanding of more or less the entire report, by each and every one of
the group. In addition to theory we have all learned mathematical techniques which will be
useful in our future study of physics.

Discussion and Conclusion

The character of this bachelor project, has been like a mix of doing research and taking a
course. Even though we have not done any actual research ourselves, the working methods
have shown many similarities to the methods used by a practising researcher. Unlike a regular
course, where the literature often slowly introduces the subject to the reader, starting off with
the most fundamental, basic knowledge, and gradually introducing new concepts, the texts
studied in this project has often left much unanswered. Big leaps from one equation to
another have been common, and the literature have often assumed a better prior knowledge
of the subject that we might have had. As a consequence, a lot of time has been spent on
filling out these missing steps in the literature, and include them in our own report. We
would also like to mention, that our main focus during this project has been the learning
process itself. One could argue that we should have spent more time actually writing on the
report, instead of doing calculations, but we feel that the subject was so comprehensive that
the time we spent on studying was necessary for the quality of the report.

Before we started this project, we discussed different approaches to it. Our report would
probably have contained more material, if we had chosen to divide the subject amongst each
other, letting everybody focus on their own part separately. However, we were convinced that
this would deeply affect our understanding of supersymmetry. We think that the broader
perspective, which is already lacking when you jump into a subject like this, is of big impor-
tance and would be hurt if you do not go through all the calculations yourself. Therefore, as
much as possible, everyone has done all the calculations, and we only split up the work of
explaining them in the final report.

In the beginning of the project we held a series of lectures to each other and our supervi-
sors. They were a good exercise in presentation, and they made us aware of the hard work
needed to really understand something good enough to be able to explain it to someone else.
But since all of us had already done the calculations that were presented each week, we felt
that the time with our supervisors could be spent more efficiently, and we stopped doing this
a couple of months into the project.

One of the true advantages of doing a project of this kind, is the opportunity to repeat
a lot of material covered in previous courses. Classical mechanics, quantum mechanics and
linear algebra are all subjects that we have improved our understanding of, all at the same
time as we have been learning something new. And it is not only supersymmetry itself
that was new to us. On our way to understand supersymmetry, we have learned about
differential geometry, tensors, manifolds and many other useful concepts, both in physics
and mathematics, that we believe will be useful in further studies at master level. This
makes us feel that this was a good end to our studies at bachelor level, and hopefully it will
leave us well prepared for whatever awaits us in the future.
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Chapter 1

Introduction

1.1 Introduction

Symmetry is a fascinating concept. The search for mathematical descriptions of the physi-
cal world has always revolved around finding patterns and invariants which bring order and
regularity to the universe. Some of these patterns express themselves as symmetries, i.e.
things that seem to be unchanged when one looks at them in a different manner. A prime
example of a symmetry would be the rotational invariance that a spherical object, like the
earth we all live on, possesses. If you were to take a spherical object in your hands and rotate
it around, every part of it would look identical to you, not a single point is different. This
makes describing a spherical object very simple. This simplification is true in general for
symmetries and it is the prime reason to incorporate symmetries when trying to construct a
description of the world around us, i.e. a physical theory. Now, in constructing such theories
the language used has since long been that of mathematics. This means we better have
a mathematical description of symmetry too. This particular role was eventually filled by
mathematical objects called groups. The groups that describe continuous symmetries, like
rotational invariance or translational symmetry, are called Lie groups, after the mathemati-
cian Sophus Lie who developed the theory in the end of the 19th century.

For a long time it was thought that all symmetries that a physical theory could possibly
have were known, but in the middle of the 20th century a new possible symmetry of nature
was conceived and described in a mathematical framework. Dubbed supersymmetry, it em-
bodied a radical new idea intimately linking the bosons, which in modern particle theory
are the carriers of the fundamental forces (such as the photon) and fermions, which are the
particles of matter (such as protons and neutrons). The idea was that a physical theory
should be invariant under a special type of transformation that interchanges every boson
with a fermionic particle, and every fermion with a bosonic particle, their respective super-
partner. The search for the superpartners and evidence for an actual physical manifestation
of supersymmetry as a theory, is an ongoing research project at CERN institute in Geneve.
Though, no such particles have yet been found, which have made physicist starting to ques-
tion whether or not the superpartners actually exists

Over the following years and decades theorists played around with incorporating supersym-
metry in other sub fields of physics such as quantum field theory and string theory. At some
point they also tried to work out how the older theory of quantum mechanics would look like
if it incorporated supersymmetry. This effort proved successful because even though there
seemed to be no direct connection between supersymmetry and physical particles in quan-
tum mechanics it did prove to be a fruitful ground for theoretical considerations. It spawned
numerous new methods that often were simpler and more elegant than earlier theories and
sometimes problems that were difficult to calculate even approximately suddenly allowed for
simple or even exact solutions using the ideas of supersymmetry. Theorists would also find a
deep connection between supersymmetric quantum mechanics and the seemingly completely
detached mathematical fields of differential geometry and topology. It is this connection,
and more precisely the connection between the Witten index (after Edward Witten) and a
topological invariant called the Euler characteristic that we will look into in this report. The



Witten index is a quantum mechanical operator that counts the relative amount of fermionic
and bosonic states a quantum mechanical system possesses. It is connected to a concept in
the seemingly detached field of topology called the Euler characteristic. This Euler character-
istic is a topologically invariant number. This means that it is unchanged under continuous
deformation of the topological space it is defined on. In our report this space will always be
a smooth Riemannian manifold. The Euler characteristic is a measure of the relative amount
of odd and even dimensional objects that 'make up’ the manifold. A topological invariant
can be very difficult to calculate using conventional techniques but it turns out that they
sometimes have a natural interpretation in physics, in the case of the Euler characteristic it is
the quantum mechanical Witten index. This means you can use physics to learn things about
purely mathematical objects. This connection is surprising in a sense. One would at first
not suspect that developing a physical theory would lead to discoveries in pure mathematics.
Finding such a connection gives a sense of deep significance. It is really the melting together
of two separate fields of scientific study, leading to fruitful cooperations and major advances
that benefit both those fields and human knowledge in general.

1.2 Reader’s Guide

In chapter 2 we begin by reviewing certain aspects of quantum theory and classical mechan-
ics. Some of the ideas and methods introduced here, like the Lagrangian and Hamiltonian
formalisms and the quantum mechanical operator formalism, will probably be known to the
reader. Others, such as the concept of path integral quantization, will be new. We work
the calculations involved through thorougly, with plenty of examples and explanations. In
chapter 3 we will, using the techniques from chapter 2, start to build our first supersymmetric
versions of quantum mechanical systems (called sigma models, for historical reasons). These
are relatively simple models, using simple target manifolds such as R and S! (the circle).
However, a lot of the concepts we encounter while working these systems, such as the Witten
Index and the supersymmetry charge operator ), carry over to a more advanced setting.
The most important fact we will bring with us from these systems is the connection between
the Witten index and the zero states of the Hamiltonian. We will again provide plenty of
explicit calculations and calculate the Witten index for some example systems in order to
gain a good understanding of the behaviour of this object under different circumstances. A
lot of the knowledge we gain here we will use when we start calculating more intricate sigma
models. These sigma models are defined on manifolds of arbitrary curvature, so in order
to successfully interpret systems like this we have to first introduce some new mathematical
machinery. This we will do in chapter 4. This chapter develops the mathematical theory
of differential manifolds. Differential manifolds are some of the most general mathemati-
cal objects that still possess enough structure to allow physics to develop on them. Topics
that will be introduced include manifolds, differential forms, the Riemann curvature tensor
and the de Rham cohomology. The de Rham cohomology is a very powerful mathematical
construct that will prove to be the bridge linking supersymmetric quantum mechanics on
a manifold and the topological properties of that manifold. We will provide a definition of
the Euler index in terms of the de Rham cohomology through de Rham’s theorem, which
links the topological and differential structures of a manifold. In chapter 5 it is finally time
to realise that connection. We construct a supersymmetric quantum mechanics on a com-
pact Riemannian manifold of arbitrary curvature. We start doing this by first building a
classical system using something called the superspace technique. Again we will carefully
work through every calculation and provide ample explanations at every point. Once we
have this classical system we can then proceed to quantum mechanics using the time-tested
Dirac quantization scheme. The resulting quantum mechanical Hilbert space will prove to
be intimately linked to the Hilbert space of the differential forms on our manifold. Using
this link we can find an expression for the de Rham cohomology in terms of a cohomology
generated by the supersymmetry charge ). The last step of our journey consists of linking
the Witten index to this @)-cohomology using its connection to the zero energy states of the
sigma model. This will provide us with a final equality between the topological Euler index
and the quantum mechanical Witten index.
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Chapter 2

Preliminaries on Quantum
Mechanics

In this chapter, we encounter conserved charges in classical mechanics, and partition functions
in quantum mechanics. A review of classical mechanics is necessary to make the leap to
quantum mechanics surmountable. There are different ways to describe quantum mechanics.
In section 2.2 we consider and compare operator formalism and path integral formalism in
two examples. In the last of these examples, we will for the first time encounter a sigma
model, a quantum mechanical system where the target space is by some means nontrivial.
Our main references are "Mirror Symmetry’ [1] and the book of Nakahara [7].

2.1 Classical Mechanics

In the 17th century, the Newtonian mechanics were developed as a method to describe the
motion of a system of particles. During the next century, an alternative method was devel-
oped, the analytical mechanics. In this view of physics, the concepts of energy and integrals
are more important, rather than the concept of force. For advanced problems, the analyti-
cal approach is superior. We will in this section have a short look at this approach, derive
Lagrange’s equations of motion, and investigate the Hamiltonian formalism of mechanics. In
the Hamiltonian formalism the Poisson bracket is introduced, which takes us from classical
mechanics to quantum mechanics. Lagrange’s equations are used to prove Noether’s theo-
rem, one of the most important theorems in physics. It relates a continuous symmetry to
a conserved quantity, e.g. translation invariance in time leads to conservation of energy. In
later chapters we will return to Noether’s theorem to see what conserved quantities the su-
persymmetry gives rise to. The section ends with the Hamiltonian formulation of mechanics.

2.1.1 Lagrangian Mechanics

Consider the motion of a mechanical system in N dimensions. Introduce n generalized coor-
dinates ¢ (t), v = 1,2,...,n to describe the system. Also introduce the generalised velocities

¢” which are defined as
d

=—(d"). 2.1
a (1) (2.1)

Let T(q,q) be the kinetic energy of the system and V(g) be the potential energy (notably
not depending on the generalised velocities). Then the Lagrangian of the system is defined
as

vV

q

L(q,q) =T(q,4) — V(q)- (2.2)

Now, look at the evolution of the system during the time interval [t1,t2], from one point
qg¥ = ¢”(t1) to another point g5 = ¢¥(t2). The system will take a definite path from ¢} to
g5. This is the actual path, ¢¥(t), t € [t1,t2]. Hypothetically, we could think of the system
taking another path from ¢¥ to ¢5. Let this path be written as ¢ (t) = ¢¥(t) + d¢” (t),where
dq” (t) is small so that in every moment the hypothetical path is a small deviation from the
real path. For some reason, ¢¥(t) is avoided in favour of ¢”(¢). This fact is very fundamental,
and often stated in terms of Hamilton’s variational principle:



"The motion of a mechanical system between two points qi and g5 is such that the time
integral of the Lagrangian between ¢ and g5 s stationary under infinitesimal variations of
the path.”

Due to this principle, it is natural to introduce a quantity S called the action, which is
the time integral of the Lagrangian mentioned above

ta
S = dt L(q,q). (2.3)
t1
Hence, we may express Hamilton’s variational principle in mathematical terms as 6.5 = 0.
There is no proof for Hamilton’s variational principle, except that no experiment has been
performed so far that contradicts it. We may use it to derive the equations of motion of the
system. In the following we use Einstein’s summation convention: this implies that whenever
an index (for example v) appears once as a superscript and once as a subscript in a single
term, it must be summed over. As a simple example we could for instance have

P =a'p1+@’p2+ -+ ¢"py. (2.4)

We will now introduce the aforementioned variation and demand that the action is stationary
0=05=0 [ d Lig.d) = [ atoLa.d) = [ de Lla+ 6.4+ 00) ~ Lia.d)

oL oL OLY oL d
= [ dt oq” 0" | = | dt — 6q” —(6q”
/ (aqvq+aq'vq> / 3 °7 * o a0

oL, d (8L _,\ d (0L ., (2:5)
= [t g +clt<aqv5q>_clt<aq'v>5q

oL d [dL L oL . 1"
_/dt (aqv _dt<8cj”)>6q * [aqvéq L'

Since the endpoints of the path are assumed to be fixed, we have dqf = d¢5 = 0 at the
endpoints. This means that the integrated term must be zero. Then we are left with the

integral, which must be zero for all possible §¢g¥. Then aaTL — % (E?TL) must be identically
zero for all v. We call the equations we get Lagrange’s equations of motion
oL d (0L
- — =0 =1,2,...,n. 2.6
o~ (5m) =0 v=12n (2:6)

2.1.2 Noether’s Theorem

Noether’s theorem, proved by the German mathematician Emmy Noether in 1915, states that
for every continuous symmetry of the motion, there exists a quantity conserved in time. A
continuous symmetry is an invariance of a system under a continuous transformation of the
coordinates in that system. For instance, a system that has rotational symmetry (a sphere
for example) is invariant under a continuous rotation of the coordinate system (a sphere looks
the same no matter from what angle you look at it). Because we are talking about continuous
symmetries it is enough to only work with infinitesimal coordinate transformations.

To prove Noether’s theorem we consider such an infinitesimal transformation of the co-
ordinates, characterised by: ¢ — ¢¥ = ¢ + §¢”, where §¢” = f”(q,¢). We again consider
dq” to be very small (infinitesimally small). We can now posit some function ¢(q, ¢) so that
we are able to write the variation of the Lagrangian under this coordinate transformation as
a total time derivative of this function

5L = (Ld d) ~ Llasd)) = G000, 2.7

For the rationale behind this we look at the variation of the action

d . g
5= [aror = [ at Goad) = g(ad)f =0 (2.8)



So our action is manifestly invariant if we write §L this way. We can also look at 6L in a
different manner by means of the total differential. This gives us

OL oL
0L = 9q RV
doL\ _, d (oL _,
< " drog >5q +dt<aqv‘sq) v
afon (2.9)
dat \ ag°?
d )
~ & ().

where we have used Lagrange’s equations. If we subtract (2.7) and (2.9) we get
d (0L . d . oL
dt(a (q,q)> - (9(a,4) = (

The quantity Q = 2% f¥(¢,4) — g(q,q) is then constant in time. We call Q the conserved
charge.

We have proved Noether’s theorem in classical mechanics. It generalizes to quantum field
theory, but the proof is much more advanced and we will not pursue it here. Let us compute
the conserved charges that follow from three symmetries.

(¢:9) — g(q,d)) =0. (2.10)

3(1

e Example 1

Consider a particle in R? acted on by a conservative force F = —VV. If the coordinates
are z*, 1 = 1,2, 3, then classically

L(z,%) = %mxle - V(x). (2.11)

If there is a symmetry under translation in time, ¢ — t+¢, where ¢ is some infinitesimally
small number then we get the variations of the coordinates as

dxt =a'(t+e)—a'(t) = CZ e=ei', f'(z,i)=ced". (2.12)
Note that € has the dimension of time. We calculate the variation of the Lagrangian
dL . .
0L=L(t+¢e)— L(t) = = =cl, g=ceL(z,i). (2.13)

This leads us to our conserved charge

Q= (w,4) =& <miia'ci - <;mxx - V)>
= E(T +V)=¢E,

Q:Ea

where E is the total energy of the system. Translation symmetry in time thus results
in conservation of energy.

(2.14)

e Example 2
Now study a particle whose motion is described by the coordinates ¢¥, v =1,2,...,n.
Suppose that L is invariant under translation of one of them, say ¢'. Then
0¥ =¢edy, fY=c¢ed], (2.15)
6L =L(¢" +6¢") — L(¢") =0, g=0. (2.16)

If L is invariant under translation of ¢', then L does not depend on ¢! and §L = 0.
The conserved charge becomes

8L

l/

L
eQ = -0= 8—_5 =emz1, Q= mi1. (2.17)
olii}

This result also follows directly from Lagrange’s equations of motion. We conclude that
translation symmetry in space results in conservation of momentum.



e Example 3

Suppose a particle moves in space R? under influence of a central force F = —VV (r).
We write most easily the Lagrangian in spherical coordinates
Lo o Lo 252, 2. 2,2
L= gmv” — Vr)= §m(7“ + 0% + r°sin* 0 ¢°) — V(r). (2.18)
We note that no ¢ appears in the Lagrangian. This means that we have translational
invariance in the ey4 direction. Let us look at the following coordinate transformation:

or=0, d0=0, Jp=ce. (2.19)

Since L does not depend on ¢
0L =L(¢+¢)— L(¢p) =0. (2.20)

Then we see that
_OL. a2, 2020

eQ = 8¢3§¢ 0=mr‘sin“f ¢e, @Q=mr°sin“f ¢ (2.21)
We may rewrite @ as Q@ = m(rsin@)(rsinf ), where rsin@ is the distance from the
z-axis and rsin@ ¢ is the speed around the same axis. Thus @ is the classical angular
momentum in the z direction. If L is invariant under translation in ¢, that is, if we

have isotropy in this thin ring of space defined by the azimuthal angle ¢, then it leads
to conservation of angular momentum in the direction around which ¢ circles.

We have seen some standard examples showing the connection between symmetry and con-
served charge. In the special case of supersymmetry, we will get conserved supercharges.
They will be an important topic from chapter 3 and onwards.

2.1.3 The Hamiltonian Formalism and Poisson Brackets

There is another way of looking at classical mechanics called the Hamiltonian formulation.
As we saw before the Lagrangian formalism leads to N second order differential equations for
a system with n degrees of freedom (generalized coordinates ¢”). The Hamiltonian formalism
will eventually lead to 2n first order differential equations. This can make certain systems
easier to solve and understand. The Hamiltonian formalism also leads to the notion of a
Poisson bracket, a mathematical object that serves as a gateway between classical mechanics
and quantum theory. We first define the generalised conjugate momentum to be

0L
Py = o7

If we take ¢ to be the standard coordinate x, then p is the standard momentum in the x
direction, hence the name. Now we define an object called the Hamiltonian to be

H(p,q,q) == p,q” — L(q,q)

where L is the Lagrangian of the system. The Hamiltonian is a function of both the gen-
eralised coordinates and the conjugate momenta. Now consider an infinitesimal variation
of H

oL oL
0H = q’/(spl/ +py6qy - 6(]’/ - - (j”
g oG
97 -V oL v ‘v
= q"6p, + pudq” — 3 —0q” — puoq
q
W L_, 2.22
=q"0py — 504 (2.22)
q
» d oL _ ,
=q"opy — %aqﬁq

= qy(spu - Pu(;qya



where we used Lagrange’s equations of motion. But on the other hand we also have

OH o0H

6H = —0q" + —6p". (2.23)
9q” p”

Equating (2.22) and (2.23) gives us a set of 2V linear differential equations, namely
., OH
q =
op”

o on (2.24)
P= o

These are called Hamilton’s equations of motion. Now consider a physical variable A which is
a function of p¥ and ¢”. If we look at the time dependence of A(p, q) we get some interesting
results
0A ., O0A .,
- 8p”p + 8q”q
_0AOH 0AOH (2.25)
dq” Opr Op” 0¥
=: {A, H}p.

d
Za
o (p.q)

We call this last object, defined this way, the Poisson bracket. It is a very important tool
for elucidating the correspondence between classical and quantum physics. As an example
we will calculate the Poisson bracket between the standard x coordinate and its standard
momentum. This gives

{z,p}p=7—7—-——7—=1 (2.26)

2.2 Two Ways to Approach Quantum Mechanics

The reader’s first encounter with quantum mechanics was probably through the concept of
operators. These correspond to classical quantities, e.g. —ihAV corresponds to the momentum
of a particle in three dimensions. This operator formalism was developed in the 1920’s.
Later, another way of approaching quantum mechanics using path integrals was introduced,
which generalizes the concept of action in classical mechanics to quantum mechanics. In
this section these two formalisms will be introduced, and then visualized by working through
two examples, the quantum harmonic oscillator, and the sigma model on a circle. In both
examples, we get the same partition function of the system, independently of which of the
two formalisms we use.

2.2.1 Operator Formalism

The principle of Hamiltonian quantization, also sometimes called the Dirac quantization
scheme, essentially consists of replacing all the physical variables with operators on a Hilbert
space (which might be infinite dimensional!). The calculational rules for these operators are
obtained by calculating all the Poisson brackets of the variables of the system and replacing
them with commutators or anti-commutators of the operator equivalents of these variables
times ¢h, where 7 is the imaginary unit and A is the reduced Planck constant or Dirac constant.
In symbols, for given variables A and B

{A, B}, —ih[A, B]. (2.27)
The commutator and anti-commutator between two operators A and B are defined as

[/17 B} .= AB — BA,
(2.28)

The hats on A and B serve to make it clear that they are now operators. Later we will drop
the hats when it cannot cause confusion. For clearer presentation we will from now on use
natural units, i.e. we set the Dirac constant equal to unity and we also set the mass m = 1.



Example: QM harmonic oscillator in operator formalism

Let us try the operator approach to calculate the partition function for the quantum me-
chanical version of the simple harmonic oscillator. We define the Hamiltonian for the QM

harmonic oscillator to be
P, 2.29
H=—+—. .
5t 3 (2.29)

Here z is the position operator and p is the corresponding momentum operator (in the
classical scheme this was &). Using the Dirac quantization scheme together with the Poisson
bracket in section 2.1.3 we obtain the following commutation rule

[z, p] = 1. (2.30)

Using this property we can rewrite the Hamiltonian in a form that will prove more tangible
down the road

p;+%2:%(p +2°+1-1)
= % (p2 +a22 41 + i[z,p])

. (2.31)

=3 (p + 2% + iap — sz—i—l)

%(p—&-z:c)( —ix)—i—%.

We now define two new operators

1 .

a= ﬁ(p —ix), (2.32)

al = i(p+ i), (2.33)
V2

These are called the lowering and raising operators, the reason for these names will become
apparent soon. We can now rewrite our Hamiltonian as

1
H=ad'a+ 3 (2.34)
The commutator between a and a' is

1 . . . .
[a,a'] = aa’ — ala = 5 ((p—iz)(p+iz) — (p+ix)(p —ix))
1
=3 (p* + 2* —izp + ipx — p* — 2° + ipr — izp)
= —i[z,p] = 1.

(2.35)

It is also of use to calculate the commutators between the raising and lowering operators and
the Hamiltonian

[H,a] = Ha — aH
f 1 t 1
=a'aa + je—aala—ca (2.36)

= [a',ala = —[a,a']a = —a,
and
[H,a'] = Ha' —a'H
=a'aal + ;aT —a'ala — %aT (2.37)
=afla,a’] =al.

Now we posit a set of eigenstates |¢) for H, so

Hly) = E). (2.38)



Here E is a real number that corresponds to the energy of the state |¢), which we know is
real because our Hamiltonian operator is Hermitian. We can now try and find out how the
lowering (or raising) operator affects such a state |¢)). We get
Haly) = ([H,a] + aH) [¢))
= (—a+aH)y) (2.39)
=a(H - 1)|¢) = (E —1)aly).
Now we see why it makes sense to call a the lowering operator, as it effectively lowers the

energy of a state by one unit of energy. A similar calculation for the raising operator gives

us
Ha'ly) = (E +1)al[4).

The raising operator can be used repeatedly to reach higher energy states without limit. But
the lowering operator cannot lower the energy in an infinite number of steps, since the energy
always must be positive. Why is that? We see in (2.34) that H and a'a only differ by a
constant. Thus, they have the same eigenfunctions, which is obviuos from

(afa+ 3)l) = Bl). (240

Let X be the eigenvalue of a'a. Then
i fat L 1
dlalg) =X, B=@IHY) = @l (aat )W) = (A+5). (@4
Since a' and a are complex conjugates of each other, we have that

(Wlatalp) = (aplap) = M|y) = (ap|ar)). (2.42)

But the norm of the Hilbert space, H, of our ¥ functions is positive, hence A is non-negative.
But then E = X + 1 is positive. Therefore, we can define a ground state |0), which is
annihilated by a, written

al0) = 0.
The ground state energy is then

1

l0)

H|0) = (a'a +
(2.43)

1
-0
510)
Using the raising operator, we can iteratively define the n-th energy state as
[n) = (a¥)"[0).
This gives us
H(a")"(0) = ((a")"H + [H, (a")"]) 0)

here we use [H, (a")"] = n(a®)™, that gives

= ((a")"H + n(a")")|0)

= (a")™(H +n)[0)

n 1
= (@)"(n+ 3)I0)

=(n+ %)|n)

(2.44)

Now the energy states |n) define a basis in which H is diagonal (it is an eigenbasis for
H). This means we can calculate the partition function, expressed as Z(f) = Tr exp(—8H),
with relative ease in this basis. Maybe the reader is familiar with the partition function from
statistical mechanics, where it simply was the sum of Boltzmann factors for all quantum
states. In fact, the partition function is a more general mathematical concept, which plays

10



an important role in quantum field theory. It is useful when computing probabilities and
expectation values etc. To conclude the section of the operator formalism we compute the
partition function for the QM harmonic oscillator

Z(B8) = Tr exp(—BH) = Zexp[—ﬁ(n + %)]

= exp(—f/2) Z exp[— (2.45)
=0

(=82 1
1 —exp(—3) 2sinh(3/2)

2.2.2 Path Integral Formalism

The action S(X) is a function of the coordinate X, which we will assume only depends on
time ¢, so that X = X (¢). If L(X) is the Lagrangian of the system, then in the non-relativistic
case with mass m =1 we get

S(X) = /dt L(X,X)= /dt T(X)-V(X) = /dt — (dd)t(> - V(X). (2.46)

We define the partition function for this system in the path integral formalism to be

X2
Z(Xg,to; X1, 1) := DX (t) e"SX®), (2.47)
X1
where, X7 = X (¢;) and X3 = X (¢2). The integration is over all possible paths that may be
taken from X; to X, that is, from time ¢; to t2. We do not know how to interpret DX yet,
but we state the definition like this and hope it will be fruitful.

The imaginary unit ¢ was not present in statistical mechanics. It is here now since X is a
variable in quantum mechanics with probability amplitude interpretation. We do not want
to integrate, i.e. to sum complex numbers with different phases like this, since it might make
the integral divergent. A way out of this would be to Euclideanize it. If we rotate the time
variable an angle I counterclockwise in the complex plane, we get a new imaginary time

2
coordinate 7. That is, ¢ — it =: 7. This rotation yields the identities

t = —iT,
g 1 dX
At~ —idr’

and then for the action we get

S(X (7)) = /—i dr (; <1Z>2 (?)2 - V(X)> _ z'/dT§ (Cg) FV(X). (2.49)

Now define the Euclidean action Sg as

Sg = /dT % (?7_()2 + V(X). (2.50)

We see that S(X) = iSg(X) and the Fuclidean partition function Zg becomes
X(72)

Zp = Zg(Xo, 103 X1, 1) = / DX (1) e~ 98X, (2.51)
X(Tl)

11



Example: QM harmonic oscillator in path integral formalism

We now turn to the specific example of the quantum harmonic oscillator. If the spring

constant is k = 1, we have V(X) = 2X? and (2.50) becomes

1 X\?
Sp = */dT ax + X2 (2.52)
2 dr

If V(X) is a positive semi-definite function of X (as is the case here), then Sg is a non-negative
number, and the convergence of (2.51) seems probable. So far, we have only considered
integration from X; to X5 where those are different points in a space. We could also carry
out the integration on a circle in time, with time of revolution 3. Then, X (7 + 3) = X (1),
since we come back to the same point. Using this, the action may be written in a nice way.

To find this new form we start by defining an operator © = f% + 1. Then we compute
d? d’X
XX =X|-——-5+1)X=-X—— +X2 2.
S} ( = + ) 72 + (2.53)
Using the fact that
d (. dX ax\* _d®Xx
— | X— | =|— X— 2.54
d’T( dT) (d’l’) * 72’ (2.54)
we can write )
X X
xox = (B -4 (x0X) | e (2.55)
dr dr dr

This enables us to express the action in a simple way

X(r+8) 2 X(7+8)
/ dr (dX> +X? = / ir xox + -4 (XdX>

X(r) dr X(7) dr dr
X (t+8) X T+8
- / dr XOX + [Xd] (2.56)
X(T) dT T
X(m+8)
:/ dr X0X,
X(7)
since X (7 + ) = X(r) and %X g = ax _- Thus we end up with the following expression
for the partition function
X(m+8) L,
Zp = / DX (r) e~ 3 ) dr X6X (2.57)
X(7)

To be able to calculate this complicated integral, a change of variables is useful. We find
orthonormal eigenfunctions f, to the operator ©

2
/dT S (T) fn(T) = bn,m, Ofn = Anfn, (—jTQ - 1) fo=Xfus  (2:58)

d?f (1)

dr?

+ A = 1) fu(r) =0 (2.59)
with solutions in two modes

fu(r) = Acos(m T) + Bsin(y/ A, — 1 7). (2.60)

We have the same boundary condition for f, as we had for X, that is: f,(7 + ) = fn(7).
This gives

fa(t+8)=Acos(v/ A\, —1 (74 8)) + Bsin(v/ A\, — 1 (74 5))
= Acos(v/An — 17+ VA — 18) + Bsin(yv/ A, — 17+ /A, — 10).

(2.61)

12



The condition is fulfilled whenever \/\,, — 15 = 27n, where n is a non-negative integer. The
eigenvalues become

A 1+<2m>2 (2.62)
= 7)o .

We have now found a basis of orthonormal eigenfunctions {f,} for our space. If we express
X as X =) ¢nfn, where the ¢, are real numbers reaching from —oo to oo, we get

/dT XOXx :/dT > emfm®) cnfn :/df Y cmfm Y cadntn

S Z Z A ConCn / dr fmfn = {fn are real} = Z Z AnCmCnOmn  (2.63)
= Z A,
And the partition function becomes

B) :/DX(T) o2 Xn Anch :/DX(T) [Te 5. (2.64)

We now have an integrand expressed in the variables ¢,. Then we need to express DX in
terms of ¢,, as well. We note that

> dec 1 1
de, e~ 3t = 2T / nop=dhach = L 2.65
/. Vi Ao ew

The factor /27 was shuffled to the LHS to make the RHS as simple as possible. We have a
product of n such integrands. Then it is very natural to interpret the path integral variable
as DX = H dc” . In such a case

DI T T S T

(2.66)

\/ det®

When n = 0 we have \,, = 1 and f = constant. For n=1,2,3, ..., f,, consists of two linearly
independent functions, sin z and cos . Thus we have two modes and the multiplicity of each
eigenvalue is 2. Thus, rather than multiplying A; A2z . .. we should multiply A2A3)2 ... Then

= o\ 1
(ZWT”) "1:[1<6> THlH(zm)‘z (2.67)

We are now left with the mathematical issue to calculate these products. The second one
is the easiest. As Euler showed in the 18th century, the elementary functions have infinite
product representations. For sinh z we have the product

2
sinhz = z H (1 + 7r2n2) (2.68)

n=1

R E | v

This identity can be shown in many ways. A proof using residue calculus is found in Ap-

pendix B.1. Then, by just changing variables in (2.68) to z = g, we arrive at the expression

oo

1 _ g

nl;[l 1+ (%)2 - 2sinh (g)

The other product, Hff:l (2”—”> is much more difficult. Here we must use the method of

(2.69)

B
¢ function regularisation. Instead of looking at the product, let us look at the corresponding

sum

13



Gs) = i (?) _25- (2.70)

n=1

If we now differentiate the sum with respect to s, we get

4;(s>:§1n<27;”‘><_2>(2?>28, c{(o>=§ln(2g”)2. (2.71)

Then we take the exponential of ¢{(0) and find a useful expression

o0 oS} —2
o) — o, In(252) 77 _ In(252)7" _ <27m) 279
e =e = e = . .
nl;[l I1( (2.72)

Our definition of (;(s) is very similar to the common Riemann ¢ function, which is simply
¢(s) =302, -, when s > 1. Expressed in this function, our ¢;(s) becomes

a0=(Z) k= (%) oo 1)

n=1

n=1

If we differentiate the first and last expressions above with respect to s we get

¢ (s) = In (?) - <2g> e+ (2;) o 2s) (2.74)

-2
0 -1 (%) c0+2'0. (2.75)
But what are ¢(0) and ¢’(0)? So far we have just used Riemann’s ¢ function for s > 1. For
example, by using Fourier series one proves that ((2) = %2. For s = 1 the function coincides
with the harmonic series, which is certainly divergent. But by doing an analytic continuation
in the complex plane, one can find that ((0) = —3 and ¢/(0) = —3 In(27). Proofs are found
in Appendices B.2 and B.3. With the equation above we simply get

2\ 2/ 1 1 = /2mn) 1
1(0) =In () (—>+2<—ln 27r> = —Ing, () —e A= 2,

(2.76)
Then (2.67), the partition function, becomes

_ 18 1
- B 2sinh (g) a 2 sinh (g)

We see that this is the same result for the partition function as we got in the operator formal-
ism, at least if the not Euclideanized partition function is the same thing as the Euclideanized
partition function. Why can we actually go from real time to complex time in (2.48)7 A
simple answer is that ¢t — it =: 7 is just an ordinary change of variables in the complex
plane, and integration in general is independent of the choice of parameter. A more involved
answer demands deeper insights in quantum field theory and path integrals. However, we
got the same result using both formalisms in the example, so in this case it worked.

Z5(B) (2.77)

2.2.3 Sigma Model on a Circle

We will now proceed by introducing a sigma model, and we do this by using a simple example
on a circle. The circle is an example of a nontrivial target space. In contrast to the real line
the circle is closed, which makes it an interesting target space. We use the same approach
here as we did for the harmonic oscillator above, i.e. first we calculate the partition function
using operator formalism and then we compare it to the partition function calculated using
path integral formalism. In later chapters, we will apply the sigma model to more complex
spaces.

14



Operator formalism

As mentioned above our target space is a circle Sk, with the circumference R. We set the
potential V(X) = 0. The coordinate X is periodic in R, i.e. X ~ X + R. The Hamiltonian
for our system is given by

2 2
P2 1 d AN\ 1d
i =73 _2( ’dX)( ZdX>_ 2dx? (2.78)

Let us calculate the eigenfunctions 1, using the Hamiltonian H given in (2.78)

Hp, = LG P z 2
¢n— nwn - —2()(2>7l)n— nT/Jn,TLE . (79)

Solving the above equation yields
Y = P (X) = Ae?V2EX, (2.80)
where A is a constant. For simplicity, we set A = 1. While X is a periodic variable, we have

¥ (0) = 1, (R), which gives us

Un(0) =1 = o, (R) = V2Pl
= e, (2.81)

From (2.81) we get the expression for the eigenvalues E,, accordingly

. . 272n?
ivV2E,R=12mn = E,= T (2.82)
Using (2.82) we can rewrite the expression for the eigenfunctions t,,,
n(X) = e XE, (2.83)

where we have expressed our variable in terms of the circumference R. This provides us with
the partition function

o0
Z(B) = Tre P = Z e P2mn? /R (2.84)
Path integral formalism
Now we calculate the partition function using path integral formalism. We start with the

expression

Z(B) = / DXe 92X (2.85)

where Sg(x) is the Euclidean action given by

S(X) = / (; (f;f)z + V(X)> dr. (2.86)

As for the operator formalism, V() = 0 which gives us the partition function
Z(8) = /DXe* JE () ar, (2.87)

Integration over all maps S/13 to Sk requires introducing the winding number m. To get a
picture of what the winding number is, let us imagine the situation in figure 2.1, where a
person stands in the middle of the red path representing the motion of the black particle. As
the particle follows the path around, the person in the middle follows it with his eyes. The
winding number m increases by one for every round the person has to take in his reference
frame (represented by the blue path) while keeping his eyes on the particle. In this case
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Start position End position

Figure 2.1: A visual representation of the winding number m, [17].

m = 2. All of these winding sectors will have to be considered. Thus, the path integral
becomes

Z / DX, e 5EXm) (2.88)

m=—0oQ

where X,,,(8) = X(0) + Rm is a variable that for every m represents a map. We can express
mtTR

X (1) as Xon (1) = 5= + Xo(7). Here, Xo(7) is a periodic function. Using the expression
for X,, we can rewrite the action accordingly

(22 - (2 ) -

1 (7 [m2R* 2mR d d ?
SE(Xm) = 5/0 T + TEXQ(T) + <d7_X0(T)> ‘| dT

m?R2 1 [P (d ?
- - 2x dr.
25 " 2/0 (dr O(T)> i
In the middle step, the integration of sz d = Xo(7) yields zero, because Xo(7) is a periodic

function (start point and end point are the same) Following the same procedure as in the
case of the harmonic oscillator we define

(2.90)

oy 1
/ drX? = 3 / drX0X, (2.91)

2 .
. The eigenfunctions f,, have eigenvalues A, = (2%%)”. We can now rewrite

where © = — dT 7

the partition functlon once more,

0 m2 R2
Z e_Tg/DXoeféznci/\n — /DXOHe PL . (292)

m=—0o0 m=—0o0

In the expression above DXy = [],, \d/%r, as in the example of the QM harmonic oscillator.

We now have two cases, n = 0 and n # 0, needed to be treated separately

Z(8) = /DXoe 200’\°/DX0H6 3¢ (2.93)

m=—0o0

n=0 n#0

For n = 0 we have \g = 0, so the part of the expression where n = 0 becomes [ DX,. From
this mode we get a normalization constant 1/4/3 accordingly

fa(t) = Acos(v/Ant) + Bsin(v/Ant) = fo(t) = Acos(0) + Bsin(0) = A, (2.94)
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2 2 _
1= [ £ ude = 4 /0 — A6 = o) =1/ (2.95)

We have to take the normalization constant under consideration when we set the limits in
the integration. The limits for the zero mode is thus [0, R/, and we get

e RVP dey R
/ DX, = / o _ BB (2.96)
0 0 vV 2T vV 2T
For n # 0 we do the substitution,
dc 1
2 _ 2 n
=2\, = ) 2.97

The above relations provide us with the expression for the part where n # 0

/w o V2T W H A \/det e (29%)

where det’ © is the determinant with all \,, except Ag. Multiplying both parts (n = 0 and
n # 0) provides us with

RyB 1  RVJB 1
V2r Vdet'® V21 det’ (— ddi).

2

(2.99)

The expression for the determinant is given by
d? 2mn )\ 2
det' (—— ) = — | =5 2.100
o (-5 1;[([3) 8, (2100

where the last step is done by ( function regularisation as in section 2.2.2. So we get the
path-integral

Z(B):% > o~ (2.101)

This does not look the same as (2.84), the partition function via the operator formalism, but
with the use of a technique called Poisson resummation we can write them in the same form,

. x 2 2 . x 2. 2,2 . .
in effect turn > e ™ /28 into 3 e P2 n/E° We start the Poisson resummation
m=—o0 n=—oo

with the identity

Z §(x + 27n) Z eim (2.102)

n=—oo m=—oo
We can see that this identity is correct by finding the Fourier series for the delta-function

oo

i d(x + 2mn) = Z Cme™". (2.103)

n—=—oo m=—0oo

The coefficients ¢,,, are found in the usual Fourier series manner

27
Cm = 2—/f( Ye M dy = % Z /5 T+ 21n)e” "M dy = % 1= % (2.104)
0 =m0
In the integration interval [0, 27| only one of the delta functions of the summation contributes,
when n = 0. If g(z) = ™" and n = 0, the delta-function picks out the value of g(0) =
e~¥m0 — 1, making the whole sum and integral equal to 1, proving the identity. Now we
multiply the identity by e~ 2" and integrate over
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n=—00__

oo 1 00 (oo}
Z /53:+27rn TR = - ; /W”f dz. (2.105)

Using the definite integral 1./T [ e2be—aa’ gy — \/gebg/“ on the right hand side, we get

the relation

Z o~ (—2mn)? Z e~ zam’ (2.106)

27ra

n=—oo m=—0oo

When we set a = % this yields

s _ B2n3n?
Yoot = Z i (2.107)

n=—oo ’I’I’L — 00

as we wanted. Now we clearly see that the partition function of the operator formalism (2.84)
and path integral formalism (2.101) again are equal!

If we want to change our target space to the real line, we can still use the sigma model
here developed but with a little trick. This is neat because there arises some problems when
doing a straightforward calculation on the real line. Consider an example of a system without
a potential, V(X) = 0. The action is then

/ —X2dt (2.108)

with the Hamiltonian given by H = 2p = 75 dX2 When p = k, the wave number, we have

the plane-wave solution W, = e**X. The energy for each eigenstate is

E) = —k*. (2.109)
The wave-functions Uy, still obey the orthogonality relation

/@;(X)qzk,dx =2m6(k — k') (2.110)

but are no longer square normalizable, because of their non-localized nature. And, due to
V(X) = 0, the spectrum becomes continuous so the partition function Z(3) = Tr e is no
longer well defined. The trick to overcome these difficulties is to use the sigma model on S},
but let R — oo, then by (2.101) we get the partition function

252 lim R

Z(ﬂ)=ngnoo\/F Yo et :Rj%g. (2.111)

m=—0o0
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Chapter 3

Supersymmetric Quantum
Mechanics - Part 1

Supersymmetric QM is a mathematical construct that connects every fermion to a bosonic su-
perpartner and every boson to a fermionic superpartner. It harbours conserved supercharges
@ which are the supersymmetric equivalents to the conserved charges we saw in Noether’s
theorem. By using the supercharges it is possible to map back and forth between fermionic
and bosonic states in Hilbert space,

Q|boson) = |fermion).

In this chapter we will begin to explore supersymmetric QM by applying the methods from
chapter 2. We start with an introduction of Grassmann numbers that will be used through-
out the rest of the paper. If already familiar with this algebra, the reader may skip section
3.1 without loosing any of the supersymmetry concepts. We proceed with the Lagrangian
formulation and apply supersymmetric transformations to find an expressions for the super-
charges. After quantization of the system we can use our supercharges to study the properties
of supersymmetry. We will come across the Witten index which gets us halfway to our goal
of connecting supersymmetric QM to topological invariants of the manifold we are working
in. We will end the chapter with two examples computing the Witten index for two different
systems. Our main references for this chapter are Mirror Symmetry’ [1] and ’Constraints on
Supersymmetry Breaking’ [2].

3.1 Grassmann numbers

To be able to study supersymmetric quantum mechanics we must use bosonic and fermionic
operators. Bosonic operators commute with each other but fermionic operators anti-commute
and to be able to do functional integration of fermionic fields, a new kind of numbers must
be introduced. These numbers are called Grassmann numbers and are different from real
and complex numbers.

Let 6;, 02 be two independent Grassmann numbers that are not composed out of different
Grassmann numbers, we call them basic Grassmann numbers. Basic Grassmann numbers
are odd and have the property that they anti-commute with each other.

{Oi,ej} = Qiej + 9]'91' =0

= 0,0; = —0,0;, (3:-1)
which makes the square of a basic Grassmann number zero,
6?2 =0
since it is the only way the condition 6;0; = —#,;0; can be fulfilled. Basic Grassmann numbers
commute with real and complex numbers. In symbols, let z € R, a€ C, and then
0;x = x0;, 0;a = ab;. (3.2)
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The differentiation of a basic Grassmann number is defined in the following way

00,

o
>

=a = a5ij

2(0:0,)
00,

= _9i7

whereas integration may be defined as

/d@ia:()

/d@l a@k = adik
/ do; 0,0, = —0;
/d@ieiej =0;.

We also have the double integrals defined as

/ d6,d0;(—i6;0,) = 1

/ d0,d6,(0,) = 0 (3.5)

The factor of ¢ in (3.5) is not necessary, but this is the definition we will use later on in
section 5.1.2 for convenience in calculations.

Let us now study a real Grassmann algebra, where we have an arbitrary number of real
numbers 71, 7s,...r, and an arbitrary number of basic Grassmann numbers 61, 0s,...0,,. A
Grassmann number is the arbitrary sum of an arbitrary product of real numbers and basic
Grassmann numbers. So a Grassmann number z, can be expressed as

z =2, + 24, (3.6)

where z, is a real number and z; a general Grassmann number (also called Grassmann
variable). The set of all Grassmann numbers is called a real Grassmann algebra. A general
Grassmann number can be expressed as a sum of even and odd Grassmann numbers

N
29 =Y 0105..0,. (3.7)
n=1

Where 6, is an odd Grassmann variable and 6165 is an even Grassmann variable since it
is composed of the basic Grassmann numbers 61, 0s...0,, which are odd. So any product of
an even number of basic Grassmann number will result in an even Grassmann variable and
any product of an odd number of basic Grassmann number will result in an odd Grassmann
variable. Odd Grassmann variables follow the same rules as the basic Grassmann number
since both have the properties of being odd. That is, odd Grassmann variables anti-commute
with each other but commute with real and complex numbers, and the square of such a
variable is zero. Even Grassmann numbers on the other hand commute with each other

0102, 0504] = 01050304 — 03040105 = 616020304 + 03610462

3.8
= 0102030, — 01030405 = 01020504 — 01020504 =0 (3:8)
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where 0165 and 6304 are two even Grassmann variables. The even Grassmann numbers does
also commute with real and complex numbers. Odd and even Grassmann variables commute
with each other

[01,0203] = 010505 — 050560, = 0. (3.9)
The square of an even Grassmann number does not have to be zero but it is possible
(01602)% = 01050105 = —0,020:0, = —0,6020, = 0 (3.10)

since 67 = 0 still holds. But if one for instance has the even Grassmann variable 06, + 030,
the square is non-zero

(9192 + 9394)2 = 01050105 + 01020304 + 03046105 + 03604030, = 26165030, (3.11)

So the squares of even Grassmann variables behave in different ways. The Grassmann number
z can always be written as the sum of an even and an odd part

Z = Ze + Zo, (3.12)

where z. is the even part and z, the odd part. They can then be expressed as

N/2
Ze = Zpr + Z 0105...05,,
n=1
s (3.13)
Zo = Z 9192...92”_1.
n=1

The even part z. is commutating and the odd part z, is anti-commutating. The fermionic
variables are described by odd Grassmann numbers and the bosonic variables are even Grass-
mann valued.

3.2 The Lagrangian and Supersymmetry Transformations

In this section we will first show that a given Lagrangian, for a general potential theory of
one variable, is supersymmetric by expressing it as a total time derivative. By then invoking
Neothers theorem we find the supercharges. We end the section by quantizing the system.

3.2.1 Supersymmetric Lagrangian

To show that a given Lagrangian is supersymmetric, we begin our journey with a Lagrangian
retrieved from Mirror Symmetry [1]

1. 1 i,-. =
L= 58— S(0(@) + L (0 — ) — W () (3.14)
where 1 is a complex fermionic parameter (with complex conjugate 1) and the superpartner
of . h(x) is the superpotential that enters in the bosonic and fermionic potential energy
terms. It is the symmetry between the bosonic and fermionic variables that creates the
supersymmetry and it will emerge through the following transformation of the parameters

5x:ez/7—€w, 5$:e1Z—€1/}
, d
0p = e(iz + W'(2)), 0 = e(il + ' (z)) (3.15)

5 = &(—iz + h'(z)), 5 = €(—id + %h’(x)).

Here € is a complex fermionic parameter and has the complex conjugate €. These transfor-
mations are specific to the Lagrangian and found through trial and error. We compute the
variation of the Lagrangian using the supersymmetric transformations,

5L = S0(0)? — 200H())? + S50 — ) — (" (2) )
= 5(2) — W (@O (@) + 5600 + 2080 — 2o~ Sdoy (319
— 8K (z)p — B (2)dtp — B (x)pdap.
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We know that dh'(x) = b’ (x)dx which gives
Sh" () = h"(w)oxp = 1" (z)(ev) — Ep)p = 0, (3.17)

since v is an odd Grassmann number and 2 = 0. This gives

5L = i(aZ — &) — B (z)h" (x)(eth — &) + %E(—i:’v + 1 (x)Y + z/;e(zx + ih "(z))

dt
— e ) — Libelid () — (@R~ W () — K )i+ ()
— i — i — BB (@)h (z) + ek (@)h (2) + %aﬁ: + %&bh’(a;)
1- . i-d, 1. i_.d,
- 5’(/)6.1‘ + éweﬁh () — 561#33 — iew%h (x)
4 %1;63'0 - %Jmh’(x) +iepih’ (z) — el () (z) — ieih” (x) — peh ()R (z)
. . ). ] d =  — —
= %e't/}dc - %a/m‘c + %Ei/}h’(x) + %Ew%h’(x) — %weh'(:r) - %ql)e:th/(x) + %61/}&5 — %Ewi.

(3.18)

Using the fact that /' (2(t)) = h'(2)4 we write the variation of the Lagrangian as a total
time derivative which shows that it is supersymmetric

OL = % < [ewd + ex + ieph’ (z) — i¢eh’(m)]> . (3.19)

3.2.2 Supercharges

If the variation of the Lagrangian 6L can be written as a total time derivative there exists
a conserved charge by Noether’s theorem, as we saw in chapter 2. We will now express the
total time derivative in two ways, subtract them and thereby find the supercharges. We have
already found one way (3.19) in the previous section using the supersymmetric transforma-
tions directly, and now we will find another through differentiation of the Lagrangian. We
get

oL oL oL oL =0L
oL = —690 + —6 + 5@/}— + 51/1— + 8= + Sp—=. (3.20)

oY N o o
When we differentiate functions of the odd Grassmann variables ¢ and v, we need to be very
careful with the partial derivatives. We have introduced the convention that 57— (1/}1 o) = 1o

and 81/;2 (¢12h3) = —1p1. Consider for example a function Hp := ). leferentlatlng this
gives 6Hp = §()) = (8) + dap. If we then naively write S Hp = BHF 8 + ey, and
then by using the differentiation convention we get 6Hp = 15 — w&//, which is not equal
to the dHp received by differentiating directly (a minus sign differs). If we instead write
0Hp = (51/) 6HF + oG E BHF we get the correct result. Therefore, the convention used for the
fermionic Varlables here and throughout the text, is

OF(w) 9
_, — (Vi) =¥, 3.21
where I’ is an arbitrary function of . Putting the variation to the right of the bosonic
variables is mainly to display the difference compared to the fermionic ones. One could
equally put them to the left.

Back to our calculation of §L, the Lagrangian equation of motion

oY

oL d OL
and the mathematical trick
aL d 8L d oL
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provide us with the second expression for the variation

oL oL
0L = T [85 —|—(5w—w —1—51#1/}] . (3.24)
Inserting the supersymmetric transformations
Z—L&x = i(ep — &p), 51/J% = f%e(ix' + 1 ()9, &Zai = f%E(fia'c + 1 (z))y (3.25)
we get ‘ .
5L = % <5c(a/3 — ) — %e(m + (@) — %g(—m + h’(:c))z/z) . (3.26)

Now we use the two expressions (3.19) and (3.26) of 6L to calculate the supercharges @ and
Q. As the two variations are equivalent they subtract to zero and we get

O:% %[aﬁfww@@ﬂwh’(w)—“EEh/(“’”)] _jt g o +5¢31L/}+5¢
d[ . ' 5t
_d _a e — )+ %e(zx +h' () + %E(—i:ﬁc + h’(x))¢]

_ 4 -a — deh + i) — lm'ez/_J + %a/?h’(x) + %:‘cgw + ;&ph’(x)}

dt | 2 (3.27)
= % [—det + dey + ieph' (x) + ieph/ ()]
% [€(d + ih/ (2))y + (= + i (2))V]
= % [—iey(—id + h'(z)) — iep(id + h'(z))]
= % [—ieQ — ieQ)] .
Now we have found the longed for conserved supercharges
Q = (id + h'(z)) (3.28)

Q = Y(—ii + K (v)).
3.2.3 Hamiltonian Quantization

So far, we have just considered the classical theory, where x has been a simple number,
and ¢ and ¢ have been odd Grassmann numbers. Now, we want to quantize the system
so that these variables become operators. To be able to quantize the system, we need the
correct commutators and anti-commutators. We find these by just multiplying their classical
analogue, the Poisson bracket, with ¢/.

Consider a specific example where the Lagrangian L is the difference between kinetic and
potential energy, L = T — V. The Hamiltonian H is the sum of kinetic and potential energy,
H=T+YV. Then H+ L = 2T. For one simple variable in one dimension, T = %j;p, and
p is the (generalised) momentum p = %. We get 2T = J;g—L in this simple case, as we saw

in section 2.1.3. But in the present discussion, we also have two other variables, 1 and ).
Thus, the Hamiltonian becomes

OL -0L oL

H=2T-1= w—w+¢fw+ 875—L
1 , 3 i " 7
_;W_Wﬂx_?x @) — S — ) + H @)y (3.29)
= i%+ (W (@) + W (@) Py
1 ' L, " /)
§z2+ 2(h( z))2 + Sh" (@) — ).
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We have chosen to rewrite the last term h”(x)y%) in H as two terms, using the anti-
commutativity of the odd Grassmann numbers. It will be obvious later why we do this.

We now turn to the Hamiltonian formulation of analytical mechanics. Instead of La-
grange’s equation of motion in configuration space, which are of second order, we get Hamil-
ton’s equations in phase space, which are differential equations of first order. As usual, we
start with the action S,

S:/dtL:/dt (ngiwaiJr %—H(x T, ¢)>
_ / it (m+ () — i) — (x,r,¢,w>> (3:30)
_ / it (pac+ () — ) — (x,p,w,@) .

In the last step we have written p instead of &, and the mass m = 1. Remembering the
correct order of variation and partial derivative for the odd Grassmann variables, we may
write the variation of the action

5S:/dt5L

= [ar |p)i+ pi + 5 (6310 + 580 — )~ dov)
oOH o0H oOH -0H
O 75 B waw az/‘;}
(. OH i —d id, - i
= [ (xap) 5p+pdt( 0) 4 L@0+ oS o)~ L L (66— Lisw
0H 8H -OH
— [a (&= 22 sp+ Lipow) - po 5 5 b
— [ |(#- ap) pt S (pow) — o+ L0+ 0 (o) — Lo
id i OH OH  -0H
5 (@) + 200y~ Lo~ Slao 50T - 5057
H H H
:/dt { iaap)ép(zﬂr%x>5z+(zw+aw)5w+< z/1+w) 74
. . end point
+ [0+ S50 - & (@0w)]
start point

(3.31)

with the integrated term equal to zero. The remaining integral shall be zero for all super-
symmetric variations. Then each term in the brackets must be identically zero. Thus we
obtain Hamilton’s equations of motion

OH OH . OH B OH

o’ P 50 V=5 7 Y=—ig " (3.32)
Now we are ready to find an expression for the Poisson bracket that we met in (2.25). By
using Hamilton’s equations in the following expression for the time derivative of the action
S = S(x,p, ¢, 1) we reach our goal

_ds _ s, +as 05, 0. 0SOH 9SO _ 0SOH _0S0H
T odt 5‘p 81/1 o Op Ox  Ox Op  OY Op O O

s Eg_ﬁz_i 90 00 \\ylsm 55

=\ ozop por \ovas Toavov T
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%
We define 8% as a partial differentiation to the factor on the left. Let us compute some

Poisson brackets, using the definition given in (3.33) above

{I7x}P = 0’ {pap}P = 0, {xap}P = 17 {1;[}37;[}}13 = 07 {7/_1,1[)}P = 0, {w,JJ}P = —1.

(3.34)
We now leave the classical physics behind and turn wholeheartedly to quantum mechanics.
We multiply the Poisson brackets with ik and get commutators [ , ] in the case of bosonic

variables (z and p), and anti-commutators { , } in the case of fermionic variables (¢ and ).
We skip the convention to write hat * over the variables which now have become operators.
When setting i = 1 we get

[z,2] =0;  [p,pl =0; [z,pl=1i; {,0}=0; {¢,9}=0; {¢,9}=1 (3.35)
Let us restate the Hamiltonian we defined before

H = 57 + S (0 (@) + 5K ()0 — ) (3.30)

Notice that the terms of H are operators on a Hilbert space from now on.

3.3 General Structure of the Hilbert Space and the Wit-
ten Index

The purpose of this section is to introduce the Witten index Tr(—1)¥. To reach this goal

we first have to study the structure of the Hilbert space. We will see how the Hilbert space

decomposes into fermionic and bosonic subspaces, and with this decomposition we will find
the Witten index.

3.3.1 Supersymmetric Hilbert Space

In this section we will investigate some of the properties which we can ascribe the Hilbert
space. We note the important identity following from the anti-commutator between x and p

p. f(x)] = —if'(2) (3.37)

where f is an arbitrary (albeit analytic) function of . The proof of this identity can be
found in appendix A.1.
We now introduce an operator F, defined as

F = . (3.38)

This operator is generally called the Fermion number operator, we will see later on why this
name is chosen. F' satisfies the following commutation relations

[F, 4] = ip? — g = —({), ¥} — )y
=9
[F, 9] = v — 9 = ({9, 9} — ¥)

This works because the square of a fermionic (odd Grassmann) variable is always zero. We
now define a state |0) as

(3.39)

¥[0) = 0. (3.40)

In order to assure ourselves that this definition makes sense let us see what v does to a
randomly chosen state |v). There are two options here

=0
vlo) (3.41)
blv) #0,
In the first case we can set |v) = |0), in the second case we can set 1|v) = |0) because
Y(¥lv)) = ¥|v) = Olv) = 0. (3.42)
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So 9|v) then satisfies our defining condition. We can think of ¢ and 1 as analogous to
the raising and lowering operators used in the treatment of the simple harmonic oscillator
(section 2.2.1). This means that we can use the 'raising’ operator v to build up a 'tower’ of
states from |0). But because ©?> = 0 the tower contains only two vectors, namely

|0),4]0). (3.43)
These vectors span a two-dimensional space. We impose a coordinate system by setting
0) := (1,00 and  ¢|0) := (0, 1)7. (3.44)

In this basis 1) and ¢ are represented by

1/):2(8 é) and w::<(1) 8). (3.45)

This is only one part of the total Hilbert space on which the full Hamiltonian operates. The
other part is spanned by the eigenvectors of the position operator (or the momentum operator:
same space, different representation). This space is the space of square normalizable complex
functions of a real variable (think wave functions). This space is denoted by L*(R,C) for
short. The full Hilbert space is then given by the tensor product of these two spaces

H = L*(R,C) ® Space(|0),|0)) (3.46)
or equivalently
H = L*(R,C)|0) & L*(R, C)w|0). (3.47)

We now call the first and second component of H the space of bosonic states and the space
of fermionic states, respectively. We write this as

HB = L*(R,C)|0)

HE = L2(R,C)e|0). (3.48)

Note that the operator F' is the zero operator in the bosonic space and the identity operator
in the fermionic space, which makes the choice of name apparent. We introduce an opera-
tor (—1)F that is the identity operator in the bosonic space and minus the identity in the
fermionic space. This induces a Zs-grading on the space H. A Z,-graded vector space is a
space that can be decomposed into a direct sum of subspaces indexed by the elements of Z,.
In our case p = 2 and the two subspaces are H? and H. We now use the charges @ and Q
we defined earlier. We repeat them for clarity

Q=1 (ip + h'(x)),
Q= (—ip+ 1 (2)).

Let us evaluate the commutator of Q with the Hamiltonian

(3.49)

[1,Q) = 37 + 5 (W (@) + 30" @) (v — vi), § ip+ K (@)
v
2

Y

:%@%ﬂ+§WﬁWﬂ+ [ ()%, ip

2 @), Gip + (@)
()] + 2 [ @) ip]) + Wy (i + 0 () +

()~ S0 @pp &

) !/ 2 / 1 7
]+§[h(z) ,h(x)]+§

(17 (@)dp, ) (ip + B ()]

IVIRSN

(ip + I/ (x)) Yoh” ()

ESH
[\
=
o

—

@) + b ()b’ ()

S
=

(4
2

CIRSSE CIRSNE G RSN

B ()R () + % (ih (2)p + iph”
B )

(W' (@)p® + [p, ' (2)lp + plp, ' (2)] —

_ (A N P
= —§(zh (x)p + iph (x))+§

=0

2)p°) + = (ih" (z)p + iph” (x))

(in" (z)p + iph” (x))

(3.50)
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This means that @ is a conserved quantity. Hence the notion we have of @) as a conserved
charge in classical mechanics carries over into the quantum realm. In a similar calculation

we find
[H,Q] = 0. (3.51)

We can also evaluate the commutator of Q with F
F.Q = FQ - QF ) )
= PYip(ip + h'(x)) — d(ip + b (2)) v
= ({vv} — o) ¥(ip + 1 (2)) — Yyib(ip + I (2))

= (1= b)itip + /(@) )
= (ip + 1 (z))
=Q.
Similarly we can find that - -
[F,Q] = —Q. (3.53)
Now rewrite (—1)F as
(-1)F =1-2F.

It is possible to do so since this new operator 1 — 2F does the same thing as (—1)7. When
F = 0 both operators equal 1, and when F' = 1 both operators are -1. It is then easier to see
that @ and (—1) anticommutes

Q(-1)" =Q(1 - 2F)
=Q—2Q(Y)
=Q —2Q + 2 (ip + I (z))pep
=Q—2Q+2(yv) (V(ip+ h(x))) (3.54)
=(1-242FQ
=(1-242F)Q
=—-(1-2F)Q=—-(-1"Q.

Note the subtle order of operations and the use of the anti-commutator of ¢» and v. Similarly
we can see that

Q(-1)" =-(-n"Q. (3.55)
This tells us that the charges @ and () map bosonic states onto fermionic states and vice
versa. Because 92 = ¢)? = 0 the charges are nilpotent and we get

{Q.Q}={Q.Q}=0.
We also know that
Q> =@M =o0. (3.56)
Now we compute the anti-commutator between @ and Q
{Q.Q}={W@p+ (), v (—ip+h (=)} _
= {tip, ¥ (—ip)} + {h/ (x), v}/ (2)} + i{p, v} ()} — i{Yh' (z), ¥p}

=p* + (W'(2))* +i(Pyp — i) [p, I ()] (3.57)
=p* 1 (2)? + 1 () (b — p)
= 2H,

this means we can write the Hamiltonian as,

H = Q'+ Q'Q). (3.58)

It is actually easier to calculate the commutators between H and @, Q, with the Hamiltonian
written in the form (3.58).
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We know that the operator (—1)F, that _denotes our Zp grading, obeys the relations:
Q(-1)F = —(=1)FQ and Q(—1)F = —(~1)FQ. Because of that we will call the supercharges
odd. The Hamiltonian however, is even for the following reason

1
H(-1)" = 5(QQ" + Q'Q)(-1)"
1
= (QQ' =) +Q'Q(-1)")

= %(_Q(_l)FQT —Q'(-DFQ) (3.59)
— L(-)7QQ + (-1 Q'Q)
= (-D)FH.

We denote the subspace of # on which (—1)f = 1, where F has to be an even number, by
the even (bosonic) subspace HP, and the subspace of H on which (—1)¥ = —1, with F' an
odd number, by the odd (fermionic) subspace HF'.

As alluded to earlier in this section the supercharges map one subspace to the other, i.e
when the charges act on one of the subspaces it takes it to the other subspace

Q. QN 1P - T

Q.Q":H" —H". (360)

We show this by using the basis vector for each subspace |0) and ¢|0) and let Q and Q' act
on them. Note that p and A/(z) have no impact on which space we are in and therefore we
do not need to take them into consideration

Q[0) o ¥|0) € HF (3.61)
and
Qu10) oc ¥|0) = ({¥, ¥} — ¥1) 0)
= 1]0) — F|0) (3.62)
=1/0) € H5.
This method of proving the mapping relations stated above, gives rise to some complications

when we consider how Q maps a bosonic state and how () maps a fermionic state. If we use
the same method as before we get

Q0) o 4]0) =0,
Qv[0) oc $*]0) = 0.
The zero vector is not a state, that we can define as either bosonic nor fermionic. To really

prove all the relations above we will consider a more general case, in which the fermion
number operator F' can take values F'=n, n =0,1,2... Then

(3.63)

Flipn) = nltn), (3.64)
bosonic if n is even
Un = { fermionic if n is odd. (3.65)

Now, let F' count on the state Q|¢,,) instead

FQ[Yn) = ([F, Q] + QF)|vn)
= (Q+ QF)|¢n) (3.66)
= (n+1)Q[Yn).

So F counts to n + 1 on the state Q|v¢y,). If n is even, n + 1 is obviously odd and vice versa,
i.e. we have made the transition from our original state to the other, by letting @) act on it.
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And by using the commutation relations once again, we come to the same conclusion about
the action of @ on a given state,

The Hamiltonian on the other hand will map a state on itself. It is easily seen when we
express the Hamiltonian as H = %(QQ —|—_QQ) Now Q or Q will first take you from your
original state to the other, but then @ or @ will take you back to the state you first started
in. One can say that the Hamiltonian preserves the decomposition of the Hilbert space:
H="HEaH".

The scalar product that defines the Hilbert space, implies that the norm of a vector is
positive

I Qla) [[= 0. (3.68)

Since Q|a) is complex taking the norm of it means that we multiply it with its complex
conjugate (/@

(a|QQla) > 0. (3.69)
In the same way we get that || Qla) ||> 0 and
(a|QQla) > 0. (3.70)

If we add these two expressions, we can draw the conclusion that the Hamiltonian H is a
positive operator,

(01QQla) + (aQQa) = (alQQ + QQla) = (al2H]a) = 0
| H = 2{QQ) >0 (3.71)

Now, assume there is a ground state with zero energy H|a) = 0. This means that
(a|H|a) = 0 and || Q|a) || + || Qla) ||= 0. As we said before, the norm is always positive,
and therefore

Hl|a) =0 < Qla) = Qla) = 0. (3.72)

A state that is annihilated by the supercharges is invariant under supersymmetry and we will
call such a state a supersymmetric state. What we just showed above is that the zero energy
ground state is in fact a supersymmetric state. It also implies the converse: a supersymmetric
state is a zero energy ground state. We will call such a state, not that surprisingly, a
supersymmetric ground state.

The Hilbert space can be decomposed in terms of eigenspaces of the Hamiltonian

H = 69”:1,2...7-[(71)7 such that H|7.[(") = E(n). (373)

We have already seen that @, Q and (—1)¥ all commute with the Hamiltonian. So, if we
operate on a state with one of these operators, the energy level does not change, they preserve
the energy levels

Q,Q, (71)F : H(n) — H(n). (3.74)

However, the decomposition of our Hilbert space does not stop here. We have earlier in this
section showed that we can split up each energy level into bosonic and fermionic subspaces, or
even and odd subspaces if you like (referring to the number counted by the fermion number
operator F),

Hiny = Hioy + Hiny- (3.75)
We repeat that the supercharges map one subspace to the other, but now with the new
subscript

t . B F . o F B

29



3.3.2 Witten Index

Now it is time for the Witten index, the future gateway to the Euler characteristic [2]. Let us
start by forming a new operator Q; := Q + Q. Since Q and Q' square to zero, this operator
connects to the Hamiltonian in the following way

Q? =2H. (3.77)

This newly formed operator commutes with the Hamiltonian and preserves each energy level.
It also maps the bosonic subspace to the fermionic subspace and vice versa. Let us look at
the inverse of @)1, such that QlQl_l = Ql_lQl = 1. We use that Q? at the nth energy level,
i.e. in the subspace H(,), squares to Q? = 2E,,. The inverse is then Ql_l = 2%1 This is
easily seen by

Qf _

Q7' =0Q7'Q, = T 1. (3.78)

As long as the energy F, > 0 the inverse exists, and as we can see the inverse will map the
two states back to their original state. So the operator ()1 defines an isomorphism between
the two subspaces ’Hﬁl) and ’H{;L)

My = HE. (3.79)

Thus, each excited energy level comes with a paired bosonic and fermionic state. Note that
we wrote each excited level, since we have no such restrictions on the zero energy state.
Hence the supersymmetric ground states do not have to be paired.

The Witten index Tr(—1)¥ states that the number of bosonic ground states minus the
number of fermionic ground states,

Tr(—1)" = {number of bosonic ground states} — {number of fermionic ground states},

is invariant. To see the logic in this statement we consider a continuous deformation of the
theory of energy states we have developed so far. Now the energy levels may split up into
several levels. We may have newly formed energy states but there must be the same number of
bosonic and fermionic states at each level, due to the isomorphism discussed above. A positive
energy state may be annihilated and a zero energy state may acquire positive energy, again
the positive energy state must come with both a bosonic and fermionic state. We represent
this in a more mathematical way as

Tr(—1)" = dimH () — dimH . (3.80)

Since the operator (—1)f" is —1 for a fermionic state and +1 for a bosonic state, when we
calculate the trace, all the excited energy states will be cancelled out. The only states that
survive is the supersymmetric ground states. One should not take (3.80) too literally, but
rather look at it as a useful definition. Since it is an infinite summation, over all states,
it is ill defined and not convergent. One can regularize Tr(—1)f" and get a commonly used

expression for the Witten index,
Tr(—1)Fe PH, (3.81)

This expression is not dependent of 3, since all non zero energy states cancels. It also gives
back the first expression in the case where § — 0.

3.4 Example: Ground States in the Supersymmetric Po-
tential Theory

To find the supersymmetric ground states of a supersymmetric potential theory, we start by
representing the supercharges in the two-dimensional ground state basis (|0}, 1|0))

- . / 0 0
Q= 1Y(ip+h(x)) = ( d/dz +h'(z) 0 )7

, (3.82)
Q=utip+na) = (5 ~UESHE)
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where p is the usual operator p = —i%. A supersymmetric ground state is a state annihilated

by the supercharges (Qi) = Qi = 0). If we write a state on the form ¥ = f;(x)[0)+ f2()1[0),
and operate on it with @ and @ we can find the differential equations that fi(z) and fo(x)
must fulfill to make ¥ a ground state

QU =0 = ((Z + h/(x)) fi(z) =0 (3.83)
QU =0 = (—(Zj + h/(x)> fa(z) =0 (3.84)

with the solutions
fi(x) = cre™ @) fox) = coeM @, (3.85)

We want these two solutions to be square normalizable which means we have to look at how
h(z) behaves when z — foo. We consider three different behaviours of h(z)

e Case 1: h(x) — oo at both 2 — +o0. Here e "®) is normalizable but ¢"®) is not. The
supersymmetric ground state is given by

U = f1(2)|0) = coe")0). (3.86)
This state belongs to H? with the supersymmetric index

Tr(-1)F = 1. (3.87)

e Case 2: h(z) — —oo at both 2 — +00. Here ¢"® is normalizable but e~"(*) is not.
We again have one supersymmetric ground state

U = fo()i)|0) = c2e @ 9[0). (3.88)
This of course belongs to H!" and the Witten index is

Tr(—1)F = —1. (3.89)

e Case 3: h(x) - —oo when © — —oo and h(xz) — oo when  — oo or the opposite when
the sign of h(z) is flipped. Here none of eM®) or () are normalizable, so in this case
we have no supersymmetric ground state, giving us the Witten index

Tr(-1)F =o0. (3.90)

3.5 Example: Ground States and Spectrum of the Super-
symmetric Harmonic Oscillator

We remember the Hamiltonian given in (3.36)

1 1 1 - _
H = 2p 4+ 5 (@) + 5h" (@)(§9 — ).
In the preceding example, the superpotential h(x) was quite general. Now we consider the

special case of the harmonic oscillator, with potential energy term V (x) = %wsz. Then, since

in the Hamiltonian above 1 (7/(2))* = V(z), we get (I'(z))? = w?z?, and h(z) = twa?. We
also find that h”(z) = w. Thus the Hamiltonian becomes

H= %p2 + %w%? - %w(w — ). (3.91)

Let us for simplicity assume that w > 0. Then h(z) — co when +a — oo, so following the

analysis of the preceding example in 3.4, we find the supersymmetric ground states to be
() = e737|0).

What is then the spectrum of the supersymmetric harmonic oscillator? Let us divide

the Hamiltonian H in (3.91) into two parts, one bosonic part Hp and one fermionic part
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Hp. Since they commute, they will act separately and we can treat their respective spectra
separately
L9 22 L - "
H=Hg+ Hp; HB:§(p —|—wx), HF=§w(1/11/)—7,/1d)). (3.92)
We found the bosonic spectrum for Hp in section 2.2.1. There we used a Hamiltonian for
which w = 1. When we include w in the calculations we get the result

1 3 5
2% %5

Wy

One can repeat the process of using raising and lowering operators for the fermionic part of
the harmonic oscillator, but we will find its spectrum in another way.

In the preceding chapters, we have used {|0)#;1|0)r} as the basis for the fermionic part
of the Hilbert space. We use our matrix representations (3.45) for 1 and ¢

w:(gg), w:(gé) (3.93)

Then the fermionic part of the Hamiltonian may be expressed as

== B8 1)(10)- (D)3 ]2 )

(3.94)
Now we want the eigenvalues of this operator
1 -1 0
v < 0 1 ) X = AX. (3.95)
For non-trivial x we have
-2 —A 0 w
2 - -4+
’ 0 3,_)\‘ 0, A :t2. (3.96)
Since —3 < 3 for w > 0, we take —% to be the fermionic ground state energy. We find the
fermionic spectrum to be f%w, %w.

The spectrum of the total Hamiltonian is the sum of the two spectra above. We add the
eigenvalues separately. We get one series of energies when the fermion number is zero
w o ow w3 w

5
- —_ —— —_ —_— _ PE— 2 .
5 + 573 + Qw, 5 + 2w, 0,w, 2w, 3w, (3.97)

We get another series of energies when the fermion number is one

w ww 3 w b
— =+ —w, =+ —w,...=w,2 .
5 + 5 +2w, 5 +2w, w, 2w, 3w, (3.98)

See figure 3.1. Note that there is no state for which F' = 1 where the energy is zero. For

Energi
: g ® Possible state for given F
5w .
Aw .
3w .
2w .
w °
» J F
0 1

Figure 3.1: Spectrum of the supersymmetric harmonic oscillator.

all higher states there is a pairing with two states, one bosonic and one fermionic for each
energy, but this pairing is broken for the ground state energy level.
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Having found the spectrum of the Hamiltonian, it is not difficult to compute the partition
function of the Witten index of the system. When calculating traces of operators, we must
know which Hilbert space we are in. If we treat the Hamiltonian as two different parts, we
must accordingly treat the Hilbert space as two different Hilbert spaces. Let L? = L?(R, C)
be the Hilbert space of the bosonic harmonic oscillator, and C2 = C|0) & C1|0) be the Hilbert
space of the fermionic oscillator. Then the total Hilbert space H is

H=L"®C?
=L*® (C|0) & Cy|0)) (3.99)
={L*(R,C)® C|0)} & {L*(R,C) ® C3|0)} .
We make the direct sum of two spaces which can be seen as the two columns in figure 3.1.

The spaces represented by these columns are tensor products of the bosonic space and the
two halves of the fermionic space. The partition function is

Z(B) = Try e PH

= Try, e PHp+Hr)

3.100
= Try (eiBHB -efBHF) ( )
= r.PI‘[/2 BiﬁHB . ch 676HF.

We calculate the traces separately, first for L?
Trp» e PHE = Z e Bnta)w = o—5w Z (e‘ﬁw)n
n=0 n=0
_By
__er 1 (3.101)
1 — e Bw €§w _ efgw
_ 1
= —
2sinh 5=
and then for C?
Tree e PHF = e P(=%) 4 eP% = 2cosh %ﬂ (3.102)
In total we get
1 Bw Bw
Z(f) = ———=— - 2cosh — = coth —. 3.103
) 2sinh 57“’ 2 2 ( )

We clearly see that the partition function depends only on [, the circumference in time of
the circle. The Witten index becomes

Tr(—1)F = Try ((—1)F e_BH) =Try ((—1)Fe_6HBe_BHF)
= Try (e P8 [(—1)F e PHF]) (3.104)
= ’I\I‘Lz eiﬁHB . ’TI’((? ((71)F675HF) .

We find
F_—BH 0,-8(-%) 1_—-BY o Pw
Tre ((—1)7 e PHr) = (=1)% 2) 4+ (=1)"e "2 = 2sinh -5 (3.105)
Then we get the Witten index
1 Bw
Tr(-1)F = ———— 2sinh— = 1. 3.106
=1) 2sinh 22 2 (3.106)

We note that this is the same result as predicted in the preceding study of ground states for
different spaces. Since h(z) — oo for both z — o0, we are in case 1, where Tr(—1)f = 1.
We also note that Tr(—1)f" does not depend on 3, as it must be if we want Tr(—1) to
count a number of physical states. One could also study figure 3.1, take the difference of the
fermionic and bosonic ground states and come to the same conclusion.
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Chapter 4

Basics of Riemannian Geometry
and Topology

In this chapter we will introduce a number of mathematical concepts and results that will
be needed when we start working on sigma models in curved manifolds. The major part of
the text will focus on elements of basic differential geometry beginning with the fundamental
concept of a manifold. A manifold can be looked upon as the formalisation of the intuitive
notion of a ’curved’ space, we can for instance describe the sphere and the torus as manifolds.
On these manifolds we can define vector space structures which will allow us to describe
notions such as length, area and curvature in a mathematically rigorous manner through the
concept of a differential form. These differential forms will give rise to a group structure
called the de Rham cohomology, which has ties to the topological structure of the manifold it
is defined on. Detailed calculations and examples will as usual be included throughout. We
must stress that the purpose of this chapter is solely to introduce the necessary mathematics,
so readers familiar with the theory of differential geometry may skip this chapter and move
on directly to the sigma models in chapter 5.

The text is not intended to be mathematically complete in all aspects, and only covers
what is needed for next chapter. For further reference, see for example [6] or [8], which will
be important for all the sections of the chapter.

4.1 Manifolds

In this section we will introduce the important concept of manifolds. We will concentrate on
Riemannian manifolds which are manifolds endowed with a metric. These manifolds will be
useful later on as we go from flat to curved space. Let us begin with a general definition of
a manifold.

Definition: A manifold M of dimension n is a topological space that around each point
p € M resembles the Fuclidian space R™. A Riemannian manifold is a manifold M equipped
with a Riemannian metric tensor g.

We introduce a set of neighbourhoods U; on M. The neighbourhoods are subspaces of
R™, and patching these subspaces together gives us M. For example, one can take M to be
the two-dimensional sphere in R3, which is patched together by the pieces U; to build up an
empty shell, i.e. it has a similar construction as a soccer ball. Between each U and R™ there
is a coordinate generating function ¢;,

¢;: M DOU; = R", (4.1)

which maps every point p in U to a point in R™,

o(p) = [mll,,xi, ce ac;ﬂ € R". (4.2)
Suppose we have an intersection between two subsections on M, U; with a function ¢; and U;
with a function ¢;, and we want to know how to relate ¢; and ¢;. Then we can define ¢, Las
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the inverse that maps back from R™ to M, which yields the expression for the transformation
from (bz to ¢j:

Gji = bj - b7 - (4.3)
Important is that the map above needs to be infinitely differentiable. In other words, the
map is C'*°, independent of the way we move in M.

Tangent Space and Cotangent Space

Two important spaces when working with manifolds are the tangent space T,(M) and the
cotangent space T, (M) in M. Let us start by introducing 7},(M ), which is the space spanned
by all the tangent vectors in a point p € M. The basis of T,(M) is given by {52}, and
it has the same dimension as M, (i = 1,2,...,n). One can make a comparison to classical
mechanics, where the velocity space corresponds exactly to the tangent space above.

With the basis for T),(M) given, we can define the dual space to T),(M) as the space with
the basis da7 which fulfills the inner product

0]
(o
x
The space with this sort of basis is called the cotangent space T} (M) in M, and it also has
a corresponding role in classical mechanics, namely the momentum space.

da?y = 67 (4.4)

Example: the n-sphere

In figure 4.1 we see an example of a simple manifold, a two-dimensional sphere in R?. This
is a special case of the n-sphere S™, where n = 2,

S" = {z e R™!: ||z|| = r}. (4.5)

In the case n = 0 we get a pair of points at the ends of a line segment, and in the case n =1
we get a circle.

Figure 4.1: Example of manifold: a two-dimesional sphere. [18]

Orientation of M

Using the two-dimensional sphere from the example above we can define orientability of a
manifold. The sphere, or the empty shell, has two sides, one inside and one outside. We can
orient the sides in R3 by assigning normal vectors to them, n = +e,, where e, is the unit
vector in the radial direction.

All surfaces are not orientable, though. A Mobius strip is the two dimensional manifold
obtained by taking a rectangle, twist it 180°, and then join its ends together, see figure 4.2.
Pick a point p with normal vector n. Now, follow the strip around until you come back to
p. On our way around the strip we have to pass the 180° twist, which will make our normal
vector switch direction to the opposite compared to before. Thus we have two normal vectors
in p, and we have a non-orientable surface.

If the manifold is a more complicated one than the two-dimensional M6bius strip, is there
any way to determine if it is orientable or not? Let us consider our manifold with two different
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bases {e1,es,...,e,} and {e],€),... e/}, of the n-dimensional vector space V. Between the
two bases we have a transformation matrix A,

e, = Ae;. (4.6)

By calculating the determinant of A we can decide whether the bases have the same orien-
tation or not. If det A > 0 the bases have the same orientation, and vice versa. In our case
of the Mobius strip we can take our bases to be

{8/178/2} = {el)_e2}) (4-7)

where the primed coordinates are the ones received after one cycle. The vector product of
the two pairs of bases yields the normal vectors +n.
Now, using the determinant method above, we see that our transformation matrix is given

by,
A= ((1) 01) . (4.8)

Then det A < 0, and our bases do not have the same orientation, just as we expected.

The set of all bases for V' can be divided into two groups, or equivalence classes, one
for spaces that transform with a matrix A with a positive determinant, and one where the
determinant is negative.

Figure 4.2: The Mdbius strip. [19]

4.2 Differential Forms

We define an object called the tangent bundle as

(M) = |J T,(M), (4.9)
peEM

and we can define the cotangent bundle in the same way. We can use this to define objects
called differential forms which are functions on the cotangent bundle (and its tensor products).
A differential p—form or just p—form is then defined as a tensor of rank p that is antisymmetric
under change of any pair of indices. To begin the study of differential forms the first thing
that we have to do is to define Cartan’s wedge product, also known as the exterior product

1
dr Ndy = - (dzr ® dy — dy ® dx). 4.10
2

We stress that these forms depend on the position in M. The wedge product is an anti-
symmetric tensor product of dr and dy which are differential line elements, 1—forms. The
wedge product is anti-commutative,

dr Ndy = —dy N\ dz, (4.11)

and it follows from the definition that the the wedge product of any pair of 1—forms is zero,
that is
dx Ndx = 0. (4.12)
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The wedge product is a way of constructing 2—forms out of 1—forms. The 2—form constructed
in this way has the property of a differential area element. If we change variables to 2'(z,y),
y'(z,y) the wedge product of da’ and dy’ is the given by
ox' 9y’ 0x' Oy’
da’' Ndy' = (828?1/ - %%) dx A dy = Jacobian(z’,y'; x, y)dx A dy. (4.13)
If we have a manifold M of dimension n, then 0—form are simply functions on M and there
will exist n + 1 different kinds of p—forms

0— forms f (@) functions

1—  forms a;(Z)dx* covariant vectors

2—  forms T (Z)dx" A dz? antisymmetric covariant tensors of rank 2

n— forms fir1, (B)dx™ A ... A dzi» antisymmetric covariant tensors of rank n,

(4.14)
where f;, ;. is a totally antisymmetric tensor. The algebra of differential forms is called
the exterior algebra and is denoted by A(V},), where V,, is a vector space of dimension n
and there will be n + 1 subspaces AP(V,,). Let AP(x) be the subspace spanned by the
anti-symmetric p—forms at a point x in V,,. Then this will be a vector space of dimension
(Z) = nl/pl(n — p)! Then C*°(AP) is the space of differentiable smooth p—forms, where the
p—forms are represented as

p— forms firoa, (B)dz™ A .. A da'. (4.15)

The antisymmetric tensor f;, ;,...(Z) will have p indices contracting with the wedge product
of p differentials. There will be n + 1 elements of C*°(A*) and they are explicitly given as

Ce(A) = ()} dim = 1
C>(AY) = {f(¥):dz*} dim =mn
C>(A?) = {f(@)ijdx’ A dz} dim =n(n —1)/2!
C>(A3) = {f(@)ijrdz’ A da? A dz*} dim =n(n —1)(n —2)/3!
(4.16)
C®(A" Y ={f(@)i,. 1, , N... Ndxin-1} dim =n
C>®(A™) = {f(@)i,..1,dx" A ... Adxin dim = 1.

From this it is possible to observe that the two vector spaces AP and A" P have the same
dimension. If p > n, then AP = 0 since when the p—forms are expressed in terms of local
coordinates as in (4.15) then at least one pair of differentials along dx''...dx" would have to
be equal and will then be annihilated.

The next thing that has to be introduced in the study of differential forms is the exterior
derivative denoted by d, which is an operator that takes p—forms into (p + 1)—forms and is
defined as

d: C®(A%) — C=(AY); d(f(x)) = aagldxl
drO¥N) 5 OO d(f(a)de’) = Dt p (4.17)
d: C®(A%) — C®(A3); d(fn(x)dz? A dz®) = %dﬂ Ad A da®

and so on. An important property of the exterior derivative is that when applied twice it
gives zero. That is, if for an arbitrary p-form w,, it follows that

ddw, = 0. (4.18)
Let a) be a p—form and 3, a g—form, then

ap A Bg = (=1)PBg N ay. (4.19)
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This shows that odd forms anti-commute and the wedge product of two 1—forms will always
be zero if they are identical. This is very similar to the property of the Grassmann algebra
where odd Grassmann numbers anti-commute and squares to zero. The exterior derivative
of o, A By is given by

d(ap A Bq) = dap A Bg + (=1)Pap A dfg (4.20)
so the exterior derivative anti-commutes with 1-forms.

From (4.16) it was observed that C°°(A¥) and C°°(A"~*) have the same number of
dimensions. Since the vector spaces have the same dimension there exists an isomorphism
between them. There must exist a duality between C>°(A*) and C*°(A"~*). We will therefore
introduce the duality transformation, also know as the Hodge dual operator or Hodge x. The
Hodge * is defined in flat Euclidean space as

*(dx A .. A dx'h) = dr'» 1 AL A dxte (4.21)

)' 6i17i2'~~ip;ip+17~~7;n

(n—p

where €;;;,... is the totally antisymmetric tensor in n-dimensions. The Hodge x operator thus
transforms p-forms into (n—p)—forms. The square of the Hodge dual on an arbitrary p—form
wp is given by

*xwy = (—1)PPlyy (4.22)

In the special case of p = n we get
dz™ A ... ANdztn = eih_“indxl Adx? A A da. (4.23)

Let us now study another concept using the Hodge dual called the inner product, defined
as

(ap, Bp) = /M ap A *xfp, (4.24)

where oy, and 3, are arbitrary p—forms. One property of the inner product that follows from
the identity oy, A %8, = Bp A %y, is that

(ap, Bp) = (Bps ap)- (4.25)

Another important application of the Hodge x operator on a manifold is to define the adjoint
d' of the exterior derivative d as

dl = (=1)"Pt s d s, (4.26)

It follows that
{ df = —xdx  for n even, all p

dt = (=1)? xdx for n odd, all p.

The adjoint d' works in the opposite way of the exterior derivative d, i.e. it transforms a
p—form into a (p — 1)—form. Just like d, the adjoint exterior derivative squares to zero, so
for a p—form w, it follows that
d'd'w, = 0. (4.27)
The exterior derivative and the adjoint exterior derivative are given as
d: C®(AP) — C™(APTh) (4.28)
dt: C®(AP) —s C®°(AP7Y). '

The Laplace Beltrami operator A on a manifold can now be described in terms of d and df
and is given as
A= (d+d")?=d*+dd" +d'd+ (d")? = dd" + d'd. (4.29)

It takes a p—form back into a p—form, that is
A C®(AP) — C(AP). (4.30)

If the p—form w, obeys Aw, = 0 it is harmonic, which happens if and only if dw, = 0 (closed)
and dfw, = 0 (co-closed). A p—form is called ezact if it can be written as

wp = dwp_1, (4.31)
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where w,_1 is a (p — 1)—form, and a p—form is said to be co-ezact if
wp =dlap, . (4.32)

Let us now look at Stokes’ theorem for differential forms which is a statement about the
integration of p—forms in manifolds. Stokes’ theorem says that the integral of a (p —1)—form
wp—1 over the boundary OM of some orientable manifold M is equal to the integral of the
exterior derivative d of wy,_; over the whole manifold M, that is

/ dwp,1 :/ Wp—1- (433)
M oM

For 0—forms, i.e. functions, we get the fundamental theorem of calculus

/ df (@) = 1(b) - f(a), (4.3)

where M is a line segment from a to b. For a 1—form we get

/ dA-dr)= 4 A-da, (4.35)
surface line

and for 3—forms we get the familiar Gauss’ law

/V-E d*z :/ dw :/ w= /E-dS. (4.36)
volume surface

4.3 Curvature

We will now combine the study of manifolds and differential geometry, to form the basic
structure of manifolds endowed with a metric. We will define some useful relations and
identities, that will come to use later on in the paper. We end this part with a discussion
about the important Riemann tensor, and how it relates to the curvature of the manifold.

4.3.1 Cartan Structure Equations and the Levi-Civita Connection

First we want to define two type of indices, Greek indices, like, «,y, 1, and Latin indices,
a,b, c... The Greek letters refer to curved space, or curved manifolds, while the Latin letters
refer to flat space. Note that this notation is somewhat different from the one used in the
book of Nakahara [7].

Given a Riemannian manifold M, we can ascribe it a metric tensor g,,(z), with local
coordinates z*. The invariant length is then written as

ds® = g, (z)dz" dz. 4.37
m

This is the distance between two infinitesimally nearby points z* and z* + dz*.

There is a connection between a curved metric and a flat metric. They are connected via
the so called vielbeins, also called solder forms, e,. In just a moment, we will see that they
transform the curved coordinate basis of the tangent space of a manifold to an orthonormal
basis of the tangent space. The flat metric is denoted by 7,,- The classic example of a flat
metric is the Euclidean space, where

Nab = Oabs ;b =1,2,3,4, (4.38)
or the Minkowski space, where
-1
Nab = 1 . (4.39)
1

The flat metric is connected to the curved metric through the vielbeins,

b
Guv = Nave” €7,

b

4.40
nab _ guyeaue . ( )
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We define an inverse of e,

E," = 1apg""e’,. (4.41)
By the relations in (4.40), it can easily be seen that E,* is indeed the inverse
E " e, = naw g’“’eb#ecu = Napn’® = 0¢. (4.42)
———
nbc

In the last step we used that 7,5, and 7% are each others inverses. The same thing is true for
g" and g,,. Though it is not a general property of a tensor that raised or lowered indices
creates an inverse, it is merely a property of the metric tensor. With the inverse of the
vielbeins we can define similar relations like in (4.40),

g/u/ = nabEauEbya

p v (4.43)
Nab = gqua Eb .

Thus, we can conclude that e?, and E,* can be used to interconvert Greek and Latin indices.
Now, we come to an important role of the vielbeins. As we stated before, they are in fact
the matrices that transforms the coordinate basis daz* of the dual tangent space T (M) to

an orthonormal basis of T, (M),
e = e da" (4.44)

Similarly, E_* is a transformation from the basis 9/dz* of the tangent space T, (M) to an
orthonormal basis,
E, = E "9/0z". (4.45)

We will now introduce a couple of equations, called Cartan’s structure equations. The
equations themselves are not used in the rest of the text, but the first of them define what is
called the affine spin connection w®,, which we will use later on. And once that equation is
defined, we are not far away from the famous Bianchi identities. Therefore, we will continue
until we have derived the Bianchi identities. One can see it as a good exercise in the rules
and structure of differential forms, that we introduced in the previous section. The first of
Cartan’s structure equations, that defines the affine spin connection w®, 1—form, is

e’ Aef. (4.46)

C

1
T = de® + w Aeb = iTab

T is called the torsion 2—form of the manifold. The second of Cartan’s equations defines
the curvature 2—form R, as

1 ,
R = dw" + w, ANw% = §R“bcde° Ael. (4.47)

If we take the exterior derivative of (4.46), we can find a connection between (4.46) and
(4.47),

dT* = d(de®) +d(w?, A e?)
-0 (4.48)

= dw® N e’ —w Adeb.
The connection is then given by
dT® +w AT = dw® A e® — w Adeb +w® A (de® + wb, A ef)
=dw Aeb +w AwS Aeb

4.49
= (dw® 4w AwS) Ael (4.49)

= Rab A eb.

The Bianchi identities are found by taking the exterior derivative of the curvature 2—form
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of the manifold (4.47), together with two wedge products of (4.47) itself,

dR% +w’. N R% — R, ANw% = dw®, ANw —w?, A dw

dRe,
+ W A dw®y + w®, Awy Awdy
w* AR (450)

a c a d c
—dw’, AN w —why Aw’, Aw

Re Awe,

=0.

From this condition, we can define a covariant derivative of a general differential form V¢
of degree p,
DV =dVY 4w AV — (=1)PVE Aw?,. (4.51)

The Bianchi identities (4.50) then read,
DR, = 0. (4.52)

All the equations we have looked at so far, can of course be expressed in terms of curved
coordinates. We simply multiply an expression with the vielbeins or their inverses, to make
the transition from flat to curved coordinates. We can even derive an expression for the
Riemann tensor from the curvature 2—form,
a 1 a c d __ 1 o v
R = 5R bea€S N et = iR dz? A dx”, (4.53)

a
buv
where the Riemann tensor then can be written as

R%,, = E,“¢"3R%, . (4.54)
However, this expression gives very little insight into the meaning of the Riemann tensor.
Therefore, we will soon leave what we can call the Cartan differential form approach to
Riemannian geometry and continue to a more conventional formulation of the Riemann
tensor. Before we do that however, we have to translate the torsion 2—form to curved

coordinates as well,

1 1
T = -T% e® Nef = =T dat Adx”
2 be 2 j224 (4-55)
%, =E,T",.

On our way to a meaningful formulation of the Riemann tensor, we first want to un-
derstand why we need a new kind of derivative, the covariant derivative, and introduce the
Christoffel symbol I‘AW of the Lewvi-Civita connection. We need a new derivative because the
usual derivative of an arbitrary tensor v, does not transform as a tensor

, o v H 2 bt
v, 0 ( Oz >6‘v# oz¥ Ox 0%z (4.56)

= v == v .
oxv  Oxv \ "oz oxV Oxv' OxW " oxr dxv’

We get an additional term. We want to avoid this with a derivative that transforms as a
tensor, therefore we have the covariant derivative (in a different form than (4.51))

D, (v,) = Opv, — FA#VU)\, (4.57)

for a covariant tensor, and
Dy(v”) == 9uv” + T 0, (4.58)

for a contravariant tensor. The Christoffel symbol takes care of the additional term from the
usual derivative we got in (4.56), it is also important to note that the Christoffel symbol is
not a tensor. If we want to differentiate higher ranked tensors we just add an extra Christoffel
symbol for each added index. Through the covariant derivative we can get an expression for
the Christoffel symbol in terms of the metric. Let the Levi-Civita connection be determined
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by two conditions, the covariant constancy of the metric tensor, and the absence of torsion.
In tensor notation, these conditions are written as

covariant constancy of the metric : Daguy = Oaguy — F’\wg,\,, - I"\al,g,v\ =0

1 (4.59)
no torsion : Tﬂa,@ = 5(1““%8 — F“ﬂa) =0.

From these relations we can derive an explicit expression for the Christoffel symbol. We will
see that the Christoffel symbol is written as,

. 1.
r aB = 59“ (0agup + 089va — Ovgas)- (4.60)

By using the conditions in (4.59) we can prove this to be correct,
1
Puaﬁ} = gguy(aaguﬂ + aﬁgua - augaﬁ)

1 A A A A A A
= EQW(F a9 T 089w T 1780900 T 090 — T0adrs = 10s900)
—— ——— —_—— N——

A B A B (4.61)
= %guy(zr‘)\aﬂg)\u)
=T*,56",
= F“aﬁ.

4.3.2 Riemann Tensor

Now that we have found a definition of the covariant derivative and seen how it is related to
the metric of the manifold through the Christoffel symbol, we can move on to find a more
intuitive form of the Riemann tensor. The Riemann tensor tells us everything we need to
know about the curvature of the manifold. We can see it as a measure of how much a vector
will differ from its original position when we have transported it around on the manifold.
For example, consider a two dimensional spherical surface. We put a vector at a point at the
equator. Then we transport the vector on a great circle to the 'north pole’ without twisting
its direction, then transporting it on a different great circle back to the equator and then we
go back to the starting point. Now the vector will not point in the same direction as when it
started, schematically shown in figure 4.3a. As a little test, think of the same procedure on
a flat surface. In this case the vector will of course come back in the same condition, hence
the surface is flat as in figure 4.3b. The Riemann tensor at a point on a manifold is written

(a) Vector displacement on spherical (b) Vector displacement on flat surface.
surface.

Figure 4.3: Vector displacements.

R%g,,va = [Dy, DyJvg = D,Dyvg — D, Dyvg, (4.62)

where D, and D, are covariant derivatives. We can intuitively understand why this is a
measure of the curvature, if we take the derivative in a little square on the manifold we
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measure the change of the vector and probe the manifold curvature. If the Riemann tensor is
non-zero anywhere on the manifold, the space is curved. Writing out the derivatives explicitly
we get

[Dy, Dyl vg = (DyDy — DyDy) vg = Dy (Ouvp — Fpuﬁvp) = Dy(0vvs — Ppu/j’vp)
= 0y (Opvs — FP/J,B,UP) -7, (Osvp — Fpaﬁ“p) -3 (Opvs — Fp;w”p)
= 0u(0vp = T* 50,) + 17, (05vp —T7, 50,) + 17,5000 —T7,5v,) (4.63)
= 01", 30p = OT" g0, + 17,617 v, = T7 517 0,
=R,

The last step is obtained by using the no torsion condition (4.59), I'”,, = I'",,. Omitting
the test vector vg, which we only inserted for clarity, the Riemann curvature tensor reads

Ry, = 0u1%, 5 — 0,17 5 +T7,,1°,  — 17,17, . (4.64)

¥
Buv

Now we want to know how the Riemann tensor behaves, if it is symmetric in its indices or
not. It is antisymmetric when interchanging its two last indices

Rpﬂw = 6”Fpuﬂ - GMFPV[B + 19,507, —T7,517 s = —Rpﬂw. (4.65)

To get the rest of the relations one will have to lower the first index. We do this with the
metric tensor ga,

Roopv = JapR s = Gap (0,00 + T, 17,0 =0T ,p =T, T7,,). (4.66)

What is 9,I'*,, in (4.66)? It is not completely trivial, since the Christoffel symbol involves
a product. In fact

« 1 ar
8MF voe — 8#5.9 (gm/,U + 9ko,w — gua,m)
1 1 (4.67)
= §(augom)(gfw,o + Grow — gua,m) + QQQK(QKV,UM + Gkovp — gua,w),

where the comma before an index u (,u) means partial derivative with respect to the index
p- What then is 0,g%%? g** is the inverse of g,». What then is the derivative of an inverse?
Generally, for a matrix M and its inverse M !, we have MM~! = 1. Differentiate this
equation, to get

0=01=(SM)M~'+M(M™1). (4.68)
Multiply this equation from left by M1,

0=M*Y (MM +M M) OM™"Y), and M *t'=-M*(EM)M™* (4.69)
In this specific case

09" = —go"y(égv,\)g)"‘7 (4.70)

and the corresponding partial derivative becomes

0ug™" = _gav(augvk)gkm = _gavgv/\’“g/\” (4.71)
The first term in (4.67) is then

1
(augom)i(gm/,o + Gkow — gua,n) = _ga’ygvk,ugkﬁrnum (4-72)

and all together
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1
gap(aﬂraya) = gap <_garyg'y)\,,ug>\m]-—‘m/a + igcm(gnu,a,u + gna,u,u - gua,nu))

K 1 K
= _6397)\,/19)\ Fnua + §5p (gnu,ay + 9ko,vp — gua,n#) (473)

1
= —gp)\’#l'o‘w + §(gpv,cw + Gpovp — Gvo,pu)-

The first two terms in (4.66) are therefore

(e} « 1
Gap (aur vo T MFVW) = _gpA,uFl);o + §(gﬂ”vau + Gpown — Gvopu) T Lppry 17 o (4.74)

The last two terms in (4.66) are just the same as the two first, except that p has taken the
place of v and vice versa. We therefore just interchange the two indices in (4.74) to get

(e} « 1
Yap (—(‘LF po — T WF'*M) = gpAﬂ/FA;w a 5(9/%01/ + Gpouv = Guopv) — FPVVF'YW' (4.75)

The total Riemann tensor is thus the sum of (4.74) and (4.75)

Rpouw = _gP/\’#FAW +9P/\’Vr/\u0 * %(gpl”fw = Gvoou = Yppov + Guo,pr) T oy T e =T oo I'7 40

(4.76)
Now to see if the Riemann tensor is symmetric in the two first indices we can test it in an
inertial frame where all Christoffel symbols are zero, and get

1
Ryopn = i(gpwm — Gvo,op — Gpp,ov + Guo,pv)- (4.77)

Because of the commutativity of the second derivatives, gpu,on = gpv,uo, We can see that
Rppuv = Ruvpp = —Rppuw- (4.78)

We know this result holds in every frame of reference because (4.77) is a tensor equation.
The Riemann tensor is therefore antisymmetric under interchange of its two first indices but
symmetric under interchange of the two first indices with the two last indices. We also get
the important cyclic identity

Rpauu + Rpuau + Rp;wa = 0. (479)

All these relations greatly reduces the work one has to do when calculating the curvature.

4.3.3 Riemann Tensor of the 2-sphere

To get more familiar with the Christoffel symbols and Riemann tensor we will calculate an
example. These calculations are rather straightforward although there are many lengthy
steps if you work with complicated manifolds in higher dimensions. One has to calculate all
the combinations of indices in the Christoffel symbols and Riemann tensor. Therefore we will
calculate the simple example of the Riemann tensor for the 2—sphere. We start by finding
the metric tensor for the sphere. Distances in spherical coordinates in 3 dimensions can be
written

ds* = dr? + r?df? + r* sin® 0dp? = nepdr®da®. (4.80)

This is our curved surface embedded in a three dimensional flat Euclidean space. We can get
our curved two-dimensional metric by setting »r = R a constant, thus our metric will be

R? 0
G = ( 0 R2sin’0 ) ‘ (4.81)
With the inverse .
g = ( f ? > . (4.82)
R2sin%20
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We proceed by calculating the Christoffel symbols. The no torsion condition (4.59) and the
fact that only goo is not constant leaves only three of the Christoffel symbols non-zero and
two of them are equal

1 1 )
Ty = 59" (Opg12 + Dpg12 — Bogaz) = 577 (—0p(R*sin® 0))

2 2R2

= —sinfcosf
1 1 (4.83)

2 _ L1 oo _ 2 ;2
' = ig (Oagaz + Opgar — Opg12) = 2R? SiHQQaG(R sin” 0)

cos

=" =T2,.
sin 0 2

Now we can calculate the Riemann tensor. Here we eliminate more work through the sym-
metry of the Riemann tensor R 5, = —Rgpus = —Rp,, and many combinations will end
up zero because of the small number of non-zero Christoffel symbols, but here is two of the
NON-Zeros

Ry = F122,0 - FlQl,Lp + T Dy + Ty T2, — Ty, = TypI %y,

5 6
= —cos® 0 + sin? 6 + sin 6 cos 9095
sin 6
= sin? 4, (4.84)
Rl = F121,¢> - F122,0 + Ty + T2, — T Dy, — T T2, '

cos
sin 6

= cos? 0 — sin? 6 — sin O cos O
= —sin?#.

Already the second one is superfluous to calculate because of the antisymmetry. Here R,
is a measure of how much a vector pointing in the §—direction will swing over and point
in the ¢—direction when parallel transported around a square on the surface. In effect the
Riemann tensor tells us how a vector transported around on the surface will differ from its
original direction when returned to the starting point, as mentioned earlier. In this case we
can also write the Riemann tensor on a more compact form (getting rid of the Christoffel
symbols)

1
Rpﬁ,u,l/ = ﬁ(ézgﬂlj - 6596#) (485)

Here we can, in addition, see the constant value 1/R? of the Gaussian curvature of the
2-sphere.

4.4 de Rham Cohomology

Two important mathematical constructs are homology and cohomology. Homology is a tool
in topology to distinguish manifolds with different topological structure. Cohomology is an
algebraic invariant, which distinguishes manifolds with different algebraic structure. The
main issue of this section will be de Rham cohomology, but we will also encounter homology,
since these concepts are closely related. In fact, considering homology and cohomology as
vector spaces, they can be shown to be dual to each other. This duality builds a bridge
between the topological properties of manifolds and their differentiable structure.

4.4.1 Definition of de Rham Cohomology

Let M be a manifold of dimension n and consider the differential forms in M. Differential
forms were discussed in section 4.2. We will denote a general p—form by w,. Recall also
the exterior derivative d from the same section, which operates on differential forms. The
following terminology that we occasionally met there is crucial for the definition of de Rham
cohomology:

wp is a closed form  if dw, =0,
wp is an ezact form  if w, = da,_; for some p — 1 form ap_;.
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Now introduce Z%, (M) as the set of all closed forms in M. In fact, Z7, 5(M) is not only a set,
but also a group with composition law given by addition of forms. For a brief introduction
to group theory, see Appendix A.2. It is evident that Z7, (M) is a group since it fulfills the
group axioms. The sum of two closed forms is always closed, d(w, + w;) = dwj, + dwj,, since
d is linear. Associativity is immediate. The unit element is just the form 0, (d0, = 0), and
the inverse of w,, is (—wp) € Z R (M), since w, + (—wp) = 0.

Also, construct the group BY,,(M) as the set of all exact forms in M. The composition
law is again given by addition, and it is easy to check that also BY, (M) is a group.

Remember from section 4.2 that the exterior derivative applied twice on any form always
give 0, d?w, = ddw, = 0. This means that every exact form is also closed, for if w, = da,_1 is
exact, then dw, = d?a,_1 = 0, and w, is also closed. This means that B, (M) is a subgroup
of Z n(M).

Next, consider the cosets of Z% (M) with respect to its subgroup B},p(M). A general
coset can be written wy,+ BY, (M). Let da,—1 be an element of B}, (M), so that any element
w,, of the coset can be written as w;, = w, +da,_1. That is, w;, ~ w, if they differ only by an
exact form. Thus, the group Z7 (M) of closed forms is partitioned into a set of equivalence
classes, where the elements in each equivalence class only differ by an exact form. From the

set of equivalence classes we construct the quotient group

Hp (M) = Z1 p(M)/ B (M) (4.86)

This quotient group HY, (M) is the de Rham cohomology of M. It consists of the set of
closed modulo exact forms. The unit element of H},,(M) is simply BY, (M), i.e. all exact
forms. All the exact forms are equivalent to 0 since they all differ from 0 by themselves,
i.e. they differ from 0 by exact forms. This is also clear from the fact that if BY, (M) is
"multiplied” (added) to any of the other cosets of HY, (M), this operation does not change
that coset. The elements in the coset will all still differ only by an exact form. A simpler
analogy to this abstract group is given as an example in Appendix A.2.

4.4.2 de Rham Cohomology and Harmonic Forms

In section 4.2 harmonic forms were briefly discussed. We noted that a form w,, is harmonic
if and only if it is both closed (dw, = 0) and coclosed (d'w, = 0). Let the set of harmonic
p-forms in M be denoted by Harm? (M, R).

Hodge decomposition theorem states that any form w, in a compact manifold M without
boundary can be decomposed into an exact form, a coexact form and a harmonic form ~,.
In symbols

wp = day—1 + dTﬂp—&-l + V- (4.87)

If now w), is closed so that dw, = 0, we have
0 = dday,—1 + dd'Bp1 + dyp.

Since 7, is harmonic, it is also closed. But then dd'B,4+1 = 0 and df,+1 = 0. And this in
turn implies that
wp = day_1 + Vp,

so that 7, only differs from w, by an exact form. But then w, and +, belong to the same
cohomology class. This means that it is always possible to choose a harmonic representative
for each cohomology class. If w, is harmonic, then dfda,_1 = 0, so da,_1 = 0 and w,, = 7,.
Hence the de Rham cohomology is isomorphic to the set of harmonic p-forms,

HY »(M,R) = Harm? (M, R), (4.88)

a fact that will be used in the end of chapter 5.

4.4.3 Closed Forms which are not exact

A question rises immediately from the definition of the de Rham cohomology. We know that
exact forms are always closed, but could there be closed forms which are not exact? Let us
consider a specific example which shows that it really is so.
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Take the punctured plane R? — {0} to be our manifold and consider the 1—form

Y
dx
.’132 + yQ + Z‘2 + y2

dy. (4.89)

w1 =

It is possible to choose w; as a form on R? — {0} since the origin is excluded!, thereby
avoiding division by 0. w; is really closed since

0 —y 0 x

e (Gt 92 1+ 1(2? +y?) — x(27)

dx Nd
(2% + )2 (22 + )2 Y o)
y? — 22
=0.
The functions ﬁ and %er? look like partial derivatives of the arctan function. Consider

the 0—form (function) ag(x,y) = arctan (%). Then

x

dag(z,y) = ((% (arctan (%)) dx + (% (arctan (%)) dy

1 y 11
- SRV ~d
1+§/;( = T E LW (4.91)
—y z
= d d
212 x+x2+y2 Y

which seems to be equal to wy. But the arctan function must be single-valued. It is defined as
the inverse of the tan function with angles in (—, 7). We have to delete the nonpositive real
axis to guarantee single-valuedness. So the function ag(z,y) is only defined on R? — R 2,
In this space wy = dag(z,y), but not in all of R? — {0}.

Is there any other O—form (function), fo(z,y) say, which works better? On R* —R(_, we
must have wy(z,y) = dfo(x,y) = dao(x,y), and d(fo(z,y) — ao(x,y)) = 0. This means that
%(f()(xvy) - ao(x,y)) = 07 and

o ol y) = pao(e,) = ol ) = a0l ) + (y),

where g(y) is an arbitrary function of y. Also, —a‘z(J‘()(/ch7 y) —ap(z,y)) =0 and
dao(z,y) | dao(z,y)
=
oy TIW oy

which means that g must be a constant. Then fo(z,y) = ao(z,y) + g which also only is
defined on R? — R(_), and so there are no functions on all of R? — {0} that fulfills w; = df.
Therefore, w; is closed but not exact in M.

) ) Lo
a*yfo(%y) = afyao(w,y) = g (y) =0,

4.4.4 Calculation of some de Rham Cohomologies

The de Rham cohomology HY (M) is special, since there are no (—1)—forms. That is, no
closed 0—form in M can be written as wy = da,—1. In other words, there are no exact forms
except zero. Then every 0—form can only be equivalent to itself, since the only exact form
by which two forms can differ is 0, and in that case the two forms are the same. Hence, the
cohomology group HY (M) is the set of equivalence classes consisting of individual elements
of Z%p, the closed forms. Then HY , = Z% . The 0—forms are the functions f in M, and
the closed 0—forms obey df = 0, so that f must be constant. From this

HY (M) = {space of constant functions}, (4.92)

IThe notation R? — {0} means all real (x,y) except (0,0).
2The notation R? — R(_) means all real (z,y) except those for which < 0 and y = 0.
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and

dim HY, (M) = number of connected pieces of the manifold. (4.93)

Recall from section 4.2 that there are no p—forms for p > n. This follows from the fact that
the wedge product is antisymmetric. Therefore

HY (M) =0, p>n. (4.94)

After these general remarks about all manifolds M, we will now look specifically at manifolds
which are contractible to a point. A sphere is contractible to a point, and also a circular
disk, but not a circular ring. For such contractible manifolds Poincaré’s lemma holds.

Poincaré’s lemma says that if M is contractible to a point, then all closed forms on M
are also exact. This means that B}, (M) coincides with Z%, ,(M). As stated before, BY,
is the unit element of H}, (M), and HY, (M) thus only exists of the unit element, that is
H?,p = 0. Another way of understanding this is to say that every closed form only differs
from 0 by an exact form, which is the closed form itself. Hence all forms are equivalent to
0, and they all belong to the same equivalence class. Poincaré’s lemma, is proved by actually
writing each form w, as an exact form, which is a bit technical, see [8].

Directly from Poincaré’s lemma we have for the space R™, which is contractible to a point

HYR(R") =0, 1<p<n. (4.95)
From the result about 0—forms in (4.92) and (4.93) above it is evident that

HYp(R™) =R, dimHYz(R") = 1. (4.96)

The content of Poincaré’s lemma is probably known to the reader in the case when
M = R3. If a 1—form (a vector) A is closed, i.e. if V x A = 0, then A is also exact, so that
a 0—form (a scalar function) ¢ exists with A = V¢. We only get into trouble if there are
singularities somewhere in the space. But as long as the space is contractible to a point, we
can always find a scalar potential to A if the curl of A vanishes. In the example of section
4.4.3, the closed forms were not exact, due to the fact that the punctured plane R? — {0} is
not contractible to a point.

We also state some cohomologies when M = S™, the n-sphere, which are also proven in

[8]:

HYLR(S™R) =R, p=n. (4.97)

The notation including R in HY,,(S™;R) will get its motivation later.
Just to see how the de Rham cohomology depends on the specific properties of the man-
ifold M, note the following results for p =n

e If M is a compact, connected, orientable manifold, then
HEp(M;R) =R. (4.98)
e If M is a compact, connected, non-orientable manifold, then
Hppr(M;R) =0. (4.99)
e If M is a non-compact, connected manifold then
HEp(M;R) =R. (4.100)
4.4.5 Duality between Homology and de Rham Cohomology

Homology

Homology is defined as a quotient group exactly as the de Rham cohomology, but differential
forms are exchanged by chains. A p—chain is a linear combination of submanifolds of dimen-
sion p in M. For more details on chains, see Appendix A.3. Also, the exterior derivative d
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is replaced by the boundary operator 0. Acting with 0 on a chain means taking its oriented
boundary.

A p—chain ¢, which is closed by 0 so that dc, = 0 is called a cycle.

A p—chain ¢, that can be written as a boundary of a (p + 1)—chain, ¢, = 9b,41 is simply
called a boundary.

Let Z,(M) = {c, in M|0c, = 0}, i.e. the set of p—cycles in M.
Let B,(M) = {c, in M|c, = Oby11}, the set of p—boundaries in M.

These two sets can be considered as groups in the same way as Z%,, and BY, . Then, due to
the fact that 9> = 0 (a boundary does not have a boundary), all boundaries are cycles and
B,(M) is a subgroup of Z,(M). The homology of the manifold is then defined as

Hy(M) = Z,(M)/By(M), (4.101)

in complete analogy with the definition of de Rham cohomology. It consists of the equivalence
classes of Z, whose elements only differ by a boundary. In other words, H,(M) is the set
of cycles modulo boundaries. Figure 4.4 shows three cycles a,b and ¢ on a torus. a and b
belong to the same equivalence class since they only differ by a boundary, the boundary of
the gray strip. a and ¢ do not belong to the same equivalence class, since they do not differ
by a boundary.

The R in the notation H,(M;R) means that the linear combination of submanifolds of
M which build a cycle has real coefficients. If one for example has complex coeffients, the
homology is written H,(M;C).

Figure 4.4: The 1—cycles a and b are equivalent since they bound a twodimensional strip. a
and ¢ are not equivalent.

de Rham’s theorem

From the similar definitions of the homology and the de Rham cohomology, one might guess
that there is some relation between them. To show their duality, one starts with Stokes’
theorem for differential (n — 1)—forms in a manifold M

/ dwp_1 = / Wn—1, (4102)
M oM

which was introduced in section 4.2. Instead of integrating over the whole manifold, one can
integrate over a cycle ¢ in M. This defines the inner product m(cp,wp) of a cycle ¢, € Z, and
a closed form w, € Z7

7 (cpwp) = / Wy (4.103)

P
The inner product is a real number and is sometimes referred to as the period. Now recall
that the elements in HY,, and H, are equivalence classes. The form w), is a representative
of its equivalence class in HY,, and the cycle ¢, is a representative of its equivalence class in
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H,,. Is the period independent of the choice of representatives? Take another representative
wy, ~ wp. By Stokes’ theorem

/w;:/ wp—i—dap,l:/ wp—i—/ da,_1 z/ wp—i—/ ap,lz/ Wps (4.104)
Cp cp cp cp Cp Ocyp Cp

since dc, = 0. Also try another cycle ¢}, ~ ¢,

/wp:/ wp:/wp—i-/ wp:/wp+/ dwp:/wp7 (4.105)
C;) Cp+0bp+1 Cp Bbp+1 Cp bp+1 C

P

since dw, = 0. Hence, one can choose arbitrary representatives and still get the same period.
Then the inner product 7 defines a map

7 Hy(M;R) @ Hp, o (M;R) — R.

In 1931 de Rham proved [13] that the homology H,(M;R) and the de Rham cohomology
HY, , are dual with respect to w. The theorem is called de Rham’s theorem, and applies to a
compact manifold M with no boundary. We will now regard the homology and the de Rham

cohomology as vector spaces. Let {c¢;},i = 1,2,...,r =dim H, be a basis of p-cycles for
H,(M;R). Then

e i.) one can always find a closed p—form w for any set of real numbers v;,i =1,2,...,r
so that

Vi:ﬂ'(ci,w):/w, i=1,...,7.
(&2

0

Also,

e ii.) if all the v; are zero for a p—form w,

O:ﬂ'(ci,w):/w, 1=1,...,m
C.

i

then w is exact.

If w is exact it belongs to the same equivalence class as 0, and as a vector it is 0. Thus, what ii.)
says is that if w is a basis element (which of course is not zero) of HY, (M;R), then the column
vector 7(¢;,w) must be nonzero. Apply this to all basis vectors {w;},j =1,2,...,s =dimH?,
of HY, n(M;R). Then, from the s column vectors v; = (¢;,w;),7 =1,...,7 we may construct
the period matriz

1 w1 1 wy ... fCl Ws
s w1 s wy ... ch Wsg

, (4.106)

mij = w(ci,w;) =

fcr W1 fcr w2 ... fcr Wg
for which we know that all columns are nonzero.

Consider a linear combination with real coeflicients z;, j = 1,...,s of the s column
vectors in the matrix. Then

o W oy Ws fq 1w + ...+ Tews
T | o +ootag | o =| : ; (4.107)
. Wi o Ws fCT LWy + ... F Tews
by linearity of integration. Choosing real coeflicients x;, 7 = 1,...,s reflects the fact that

we deal with H?(M,R). For the cohomology H?(M,C) we would instead have used complex
coefficients. The resulting form xjwy + ... zsws is a closed p—form by i.). Then set (4.107)
equal to zero. Applying ii.), the form zjw; + ... zsws must then be equal to 0. But since
{w;j},j=1,...,sis a basis for H},,, all 2j,j = 1,...,s are zero. Thus, the column vectors
in (4.107) are all linearly independent. The only way in which s vectors can be linearly
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independent in R" and still span R" is if s = r. r linearly independent column vectors in
R" yield an invertible matrix. We have thus found that the period matrix m;; in (4.106) is
invertible, and by definition HP,,(M;R) is dual to Hy,(M,R). Often, the cohomology HP
(not de Rham) is defined as the dual of the homology H,. Then, what we have shown is that
the de Rham cohomology is equal to that cohomology. Let us therefore drop the subscript
DR of HY, .

Duality of H, and H? means that they are naturally isomorphic,

HP(M;R) = H,(M,R), (4.108)

and having the same numbers of elements we can define the p:th Betti number of M as

by(M) = dimH,(M;R) = dimH?(M,R). (4.109)
Then the Euler characteristic of M, further discussed in Appendix A.3,

X(M) = (=1)"b,(M), (4.110)
p=0

can be found from the de Rham cohomology instead of homology. Another way of expressing
this is to say that the topological Euler characteristic of homology is equal to the analytic
Euler characteristic of de Rham cohomology. As a bridge-builder, de Rham’s theorem is
clearly one of the most important theorems used in this paper.

Complexes

Now, let C,, be the set of chains in M which are infinitely differentiable, and let {2 denote
the set of p—forms in M. Then the action of 0 and d respectively, on these series of spaces,
so called complezes, can be illustrated as

Bp— ) ) Op+2

e, & C, & o T

dp— d d d,

p—1 prl P Qp p+1 Qerl p+2 o (4111)

)

where the duality of H? and H), is reflected in the fact that 0 and d operate in different
directions. Duality also guarantees that there are as many C' spaces as () spaces.

Regarding 0, as an operator 0, : C;, = Cp—1, it is evident that the homology of M also
may be written as

H,(M,R) = Ker 8,/Im 0,1, (4.112)

where Ker 0, is the kernel of J, and Im Jp41 is the image of 0p4+1. Equivalently, since dp11
is the operator d,11 : QP — QP! the cohomology is

HP(M;R) =Ker dpt1/Im dp. (4.113)
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Chapter 5

Supersymmetric Quantum
Mechanics - Part 11: Sigma Models

In chapter 3 we analysed the supersymmetric quantum mechanics in flat space. To really see
the connection between the physics of supersymmetric quantum mechanics and the mathe-
matics introduced in chapter 4, we have to repeat the calculations we did for a flat metric,
but now on a compact manifold with curvature. That is, we will find the Lagrangian, whose
variation in terms of supersymmetric variations of its coordinates can be written as a total
time derivative. Hence there are conserved supercharges whose commutator essentially gives
the Hamiltonian of the system. These supercharges will then guide us from the physics of
supersymmetric quantum mechanics to the mathematics of de Rham cohomology.

5.1 The Supersymmetric Lagrangian on a curved Mani-
fold

We consider a particle moving in a compact Riemannian manifold M of dimension n. Since
the manifold is supposed to be curved, the metric depends on the position ¢, u=1,2,...n
in the manifold, g,, = ¢u.(¢). The position vector ¢" of the particle gives the bosonic
part of the theory. In the supersymmetric quantum mechanics, there must also be fermions.
They will in the classical theory be represented by two variables ¢] and ¥4, which are odd
Grassmann numbers.

5.1.1 The Superspace Technique

Due to the fact that the manifold is curved, the Lagrangian L now involves the Riemann
tensor. To be able to write the variation of the Lagrangian §L as a total time derivative,
we must differentiate the Riemann tensor. The Riemann tensor involves several Christoffel
symbols of the Levi-Civita connection, which all involve derivatives of the metric. We will
end up with a huge expression for 6L with derivatives of the metric up to order three. To
bring such a monstrous expression into a nice time derivative will become a painstaking task.
Instead, we turn to another method, the superspace technique. 1t is used in supersymmetry
to solve specific problems. It provides us with a way to find what we want, a Lagrangian
that is manifestly supersymmetric and supercharges whose commutator is the Hamiltonian.
For a particle moving in M the Lagrangian would just be

1 2 1 Ty
L= §v = §gqu’ q~. (5.1)

The supersymmetric extension of this Lagrangian must also involve a fermionic part. Using
the superspace technique, we have to do two important transformations. In addition to time,
the system also evolves in two new coordinates 61 and 65, which are odd Grassmann numbers.
Second, the position coordinate ¢* is substituted by a field, a superfield ¢*. In short

t — t,91,92

Gl) = G, 0) = g (1) + 0. (L) — 6,05 FH (1), (5.2)
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In the expression for the superfield above, a = 1,2. Note that a is not a tensor index, just
a summation index. F' is an auxiliary field that can be eliminated from the Lagrangian by
using Lagrange’s equations of motion, which we also will do in next section. The superspace
technique also involves the introduction of two kinds of differentiation operators

Dy = gg = iafy = 0o — 140y, (5.3)
Dy i= 35— +i0a ;= 0a + 001, '
which are each other’s complex conjugates. To get acquainted with the algebra of these
operators we investigate their commutation properties. First, it is clear that {9, 0} = dap
since by using the Grassmann property of 6

0 0 ) 00, 0 0

{aa,ab} - <89(19b + 91;879(1 - 89@ - abéiea + ebaiea - 5ab7 (54)

where still @ = 1,2; b=1,2. The anti-commutator of D, and D is then easily computed as

{Da; Db} = Dan + DbDa
= (D + 10a0,)(By + 0,0,) + (B + i040,) (D + i020,)

= {04, 0} + i{0a, 0010, + 10y, 00 }0s — {04, 0,10, (5.5)
= 0+ i0qpdy + 16pa0y — 0
= 20040

In the same way one can show that

(Da, Dy} = —{Dy, Dy} = —2ib0). (5.6)
We will later need {D,, Dy}. Actually it is zero,

{Daa Db} = Dan + DbDa
= (0a — 1040:)(0p + 10,0;) + (O + 10,0;) (00 — 1040;)
= {04, Op} + {04, 0p}0r — i{0p, 04} + {04, 05}0:0;
=0.

(5.7)

What are the supersymmetric variations of g, ¥ and F'? They can be found by performing
a variation of the superfield, ¢ — ¢ = ¢ + d¢. From its definition in equation (5.2),
O (t,0) = " (t) + i0p1} (t) — 10102 F*(t), and the variation becomes

S = 5q" + 0,00 — i610,0 F*. (5.8)

The variation of ¢ can also be written as a D, derivative acting on ¢. Let ¢, be a small odd
Grassmann number and write

_ H .
5" = £aDad” = £4(0u + 1040,) 0" = £q 0" | i€qfa . (5.9)

00,

For clarity, compute % and ¢* separately. First,

0, 9 ) )
= t) + i0p)l (t) — 10102 FH (t
S = g (") + B0 — i610.F (1)
= i0apyy — i€apfp F" (5.10)
= QP — i ",
where e, is the Levi-Civita tensor in two dimensions, €13 = 1,697 = —1,617 = €99 = 0.
Hence, remembering that e, is an odd Grassmann number,
DM
Ea (,;;a :iang — ’i€a€ab9bFﬂ
=il + 10peqean F" (5.11)

=igq ¥t + i0uepepa M
= ig, Yl — i0ucpean .
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It is evident from (5.2) that ¢* = ¢ 4 i0y)l — 6105 F*, and

i€a0ad" = i€a0a(q" + iOptL — 10102 F7)
= i2a0aG" — 40,0001 (5.12)

— —i0acad" — 0102200Vl

Adding the results from (5.11) and (5.12), (5.9) becomes

5P = igg Pt — i0aepear F* — i0acai” — 0102802l

iy u o o » ” (513)
(lfawa)+10a( €aq EbfabF) 19192( Zgagab¢b)'

Having written d¢* in this form, it is easy to read off the supersymmetric transformations of
q, ¥ and F, comparing (5.8) and (5.13). The result is

ogh = iea¥l,
oYl = —eqd" —evearFt, (5.14)
OFF = —igqaeaptll.

We have not shown that they yield a supersymmetric Lagrangian, yet it is clear that they
mix bosonic and fermionic variables as they should. Now is the time to start the machinery
of Lagrangian mechanics, where the action

S = /dtL (5.15)

should be stationary under these supersymmetric variations. The Lagrangian L is a function
of ¢ = ¢(t,0) and will involve integration over the odd Grassmann variables 61 and 65. It
can be written as!

1

L= [ #6(-0g.(0)D10" Das", (.17)

where D; and Ds are the recently introduced derivatives in (5.3). We can immediately
check that constructing L as in (5.17), makes its variation become a total time derivative.
Remember from the first equality of (5.9) that

8¢ = eq Dy (5.18)
Then, since the metric g,, is a function of ¢ one gets
aguu A agp,u * A aguu B A B
5gﬂu(¢) = 8@5)‘ 5¢) = 8¢)>‘ €aDad” = €4 8¢)\ D,¢p" = EaDag#V(¢)7 (519)
by the chain rule. Then since {D1, Dy} = {D2, D,} = 0 from (5.7) we have
5D1¢# = D1(5¢H = leal:)agbﬂ = 6(11:)(1D1¢‘u7 (5 20)
5D2¢V = D26¢V = D25aDa¢V = 5aDaD2¢V~ -

Using these results in the variation of L in (5.17) we get

Tn the generalisation of Lagrangian mechanics to quantum field theory, one introduces the Lagrangian
density £. In this language, the action also becomes an integral over space:

S = /dtL: /dt/d:p?’ﬁ. (5.16)

This may help us to understand why there is integration over the superspace variables 61 and 62 in (5.17).
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i
oL = 5(S/cl?e 9w (¢)D1¢* Dag”

- %/CF@ (094 (6)) D1¢" Da¢” + g (9)(6D1¢") Dad” + g, (¢) D1 (0D29")]

i
2

_ % / 420 20Dy (g (6) D16" Do)
_ 7
=3

/ 020 20 Dagn ($) D16 Dod” + gy (8)(€a DaDr ") D + g () D16 (20 DuD”)]

0 0
/dZQ Ea (89a + 'Leaat> (guu(¢)D1¢#D2¢y)a
(5.21)

where we have used that D, is a linear operator. From the integration rules in (3.5), the
operator 6%0 in D, will not contribute to §L in (5.21), and &L is then a total time derivative
under the variations in (5.14). This will be completely obvious in section 5.2 where the
supercharges are computed.

5.1.2 Calculation of the Lagrangian

The first problem we encounter in (5.17) is the fact that g,, depends on ¢, which in turn
depends on 6. We must somehow write g,,,, as a function only of the bosonic parameter g.
This can be done by considering the fermionic part in ¢ as a little deviation from ¢, and then
performing a Taylor expansion around q. Generally, a Taylor expansion contains an infinite
number of terms. In this particular case it will only contain derivatives up to second order,
thanks to the Grassmann property of 6, and 5. In mathematical terms

G (9) = Gy (¢" + 10,01 — i0102F*)
= guy(q“ + (29,11/1(’; — 29102F“))

. , 0
= 9w (q") + (10,95 — @9192Fp)87qp9uu(qu) (5.22)

1,. ) e o 0 0
+ 5(29awg_29192Fp)(10b1/}b —29192F )aiqpaiqaguy
, . 1 -
= Guv(¢") + (i0a0f — 1610:F") gy, — §6a¢59bwb uv,pos

and the 6 dependence on g, (¢) has become explicit.
Next issues in (5.17) are the factors Dy ¢* and Dog”

0 0 .
DQ(Z)V = < — 292> (q” + i@awg — ielegFU) = ’ng + 10, FY — iﬁgq" + 9291¢¥, (523)

0, ot
D¢ = (369 - ¢91§t> (q" + 0,00 — 1010, F") = inp! — i0y F* — i0y ¢ + 010504 . (5.24)
1

Multiplying these factors together gives

Dy¢*Dog” =(ihh — i02 F* — if1¢" + 010508 ) (i) + iy F¥ — 3" + 0201")
= — s + O FY — 0o — 6102014 + 205 F — 616, FFF” (525
+ 016" P — 01054 ¢" + 10102048,
where we have used the important fact that both 6, and v are odd Grassmann numbers,
and hence anti-commute with each other.
The next step is to multiply g,.,(¢)D1¢*De¢” in (5.22) and (5.25). We must as before

be careful with the ordering of the factors that are odd Grassmann numbers. Some terms
will disappear since they contain 6,6, = 0, and we only get
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9w () D10 D2¢” = — YAy g + 01U FY gy — 0204 ¢ g — 10102040 gy + 02905 g0,
— 0102 F" F” g, + 014"V G — 01024" ¢ Gy + 10102050 9,00
— 0 YEVY VS G p + 10102050V F gy p + 101020701 ¢ gpunr o
— 101029V F* g o + 101020505 ¢ G p + 10102 FP UL 05 g

1 o v
D) 9a9b¢g¢b 7/#1/12 Ypv,po -

(5.26)
Now we are ready to perform the integral
L= [ @O(-i)g(@) D107 Dagr" (5.27)
Due to the integration rules in (3.5)
[ d?6(—if162) =1,
[ d*66, =0, (5.28)

J d*6c =0,

all terms in (5.26) that do not have two factors of §:s will disappear when the integration
in (5.27) is performed. Having already written a factor of (—i) in (5.27), integration of the
terms in (5.26) with 61602, means just that one removes 61605 from that term. The last term
in (5.26) involves two terms, one with 61605 and one with 6260;. After the integration they can
still be written as one term by use of £,,. We get

L= _§ (_“wl%bll/guu - FMFVg[LV - quqyguu + “/nggguu + ngwlfFVguu,p + l¢fwiLquuV,p

) ., . . ) v 1 . v
=1y F gy p 4 10505 4" guu,p + iF P05 g p — Efab@/’gwb (R gzwﬁpff> .
(5.29)

Rewriting (5.29) would make it easier to handle. The fourth term can, by first changing the
order of the v:s and then interchanging the indices 1 and v, be written as

ilbgi//gg,w = —id)Si/)SLQW = —i%‘%”guu = —Wé‘%gum (5-30)
where in the last step the symmetry of the metric was used. The first and the fourth term
in the parenthesis of (5.29) combine into

— i Gy — WS G = — L Gy (5.31)
In the same way, the sixth and the eight terms in the parenthesis of (5.29) can be written as
one term

iwfw{bqug;w,p + i"/’nguqug;w,p = i?ﬁg%d“gw,p (5'32)

Further examining (5.29), there are three terms linear in F'; which by changes of indices can
be grouped to one single term:

iwgz/’lfF”guv,p - i¢f¢2”F“9uV7p + inwa/)zyguv7p

= — W YEF" g p — TS F G p + VS F G
= — i VS FPgup o — O VS FP o+ 0 0 FP G
= —i¢T¢5Fp(gup,v + Govu — guv,p)~

(5.33)

Remember from section 4.3 that the Christoffel symbol of the Levi-Civita connection is
defined in terms of three derivatives of the metric,

1 o
r)\uu = ig)\ (ga',u,u + Jov,u — g,uy,o)- (534)
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so lowering the first index with the metric yields

_ A
puv = 9paI7

1
= 59;))\9/\0(90”,1/ + Gov,u — guy,a)

(5.35)

1
505 Gomar & Govs = G

1
= §(gpu7v + Gpvu — Guv,p)-
The terms linear in F' in (5.33) thus has a Christoffel symbol coefficient and can simply be
written as
20 T (5.36)

Taking all of the above into account, and multiplying the factor —% into the parenthesis of
(5.29), one gets a nice expression for the Lagrangian

1. . 1 i i )
L= iq“q”guu + QF"F”QW + iwf:wzgw - ngqu“gw,p

1 (5.37)

+ Zgabﬂfg?/’gq/)ﬁblz’gm«po + P Y5 Ty I

We immediately recognize the term 3" g,,, in (5.37). Then (5.37) is, by reference to (5.21)
just a supersymmetric extension of (5.1).

The auxiliary field F' does not contribute to any degree of freedom, and now is the time

to eliminate it from L. To do this, we use one of Lagrange’s equations of motion, which reads

oL d (0L

—=—(—=]=0, (5.38)
OF dt \ 9F

since L does not depend on F. We therefore differentiate L with respect to F* and use the

obtained equation to eliminate F,

oL 1 0 , o OFF
=oF ~ggpn ) T o Gy

10F" 1 _ OF . y
= FYgu + S F* + iy Y3 Ty 05

29 2t g Im
1 v 1 L SV - v
= §5§F gm/ + iFl 5)\guz/ + “pf’(/}QF)\NV

v

(5.39)

1 1 by
= §Fug>\u + §Fﬂgu/\ + Wﬁ w2FAuV
1 " 1 " o
= §F I + §F Gux + “/)1 ¢2 Fx\uu
= F'ugku + iqﬁ?wgr)\uw

which means that
Flgxe = =iy 5T, (5.40)
and

FY = F1o) = g Frga, = N =i 05 Do) =~ 93T7,,,. (5.41)

When inserting F' from (5.41) in (5.37), we must not use the same dummy indices for different
summations. The term quadratic in ' becomes

1 v 1 e - v 1 o
§F#F Juv = 5(_Z¢1 ¢§F”QB)(—W?¢§F ’ya)gul/ = _§¢1 w§¢¥¢§rﬂaﬁruve- (5.42)

The term linear in F' is
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AYET s (—i0SYST? ) = PP YST? T (5.43)

Thus, in total we have

1.,. ) . ) .
L= 7qﬂqyg/u/ + 7"#”1/}”9/11/ - *W)ung;wp

2 (5.44)
fwl PEPTUST T e + VY VSVSUST? (T + eabwwbwwzgum

The last three terms in (5.44) above have the common property that they all involve four
factors of ¢. Let us write them as a single term, with the ¢ factors in order as ¢! ] 5.
The first of these terms becomes, after interchanging the v:s and then the indices

1 1 1
— STV VST e = SUTUTUSUSTY e = SUTUTURUST o Thge, (5:45)

and the second

PIPEPSYST? T = — W PSYSYET? T = =80 Y3 YSTY 4 T s (5.46)

The third term may be split into two according to

Zfabwgwb T/)f?/’ggw,po = wa% sz/’ggw,po - 1%7% wagg;mm

1 o v 1 o v
- 71%)1#/1%#2 % Guv,pc — 7'(?1 W%’% Guv,po
4 4
1 (5.47)
= _Zw? f¢g¢§ (g,Be,oc'y + gﬁa,'ya)

1 « £
= _51[)1 111151113%955,@7,

where we in the last step made use of the commutativity of mixed second partial derivatives
of the metric, gge,ay = 98e,va-

Collecting the results from (5.45), (5.46) and (5.47), the terms with four factors of v
become

1 [e3
51/’1 1/’{31/)31/’; (F#awruﬁs - 2F#BEFHO¢'Y - gﬁs,a’v) : (5.48)

Note that this expression is antisymmetric under change of o and S, and also under ~
and ¢ in the I'-factors. Thus it is symmetric under interchange of both o with 5 and ~ with
e. If the reader is not convinced about this, follow the manipulation of the middle term in
(5.48)

1 1
SURETUTYS (205 Dar ) = 5 (—07u0)(—0593) (—20% 5. Ty )

a+<p
v e

1
= SUPursvd (—20 5T ) = { } = SRS (T D) (5.49)

The Christoffel symbols in (5.48) add together, and (5.48) reads

1 a ]' e}
SUTUVUIUE (<%0, Dupe = Gpe.an) = U U305 (Mo Tupy + 9pr0e) . (5:50)

where in the last step we used the antisymmetry under interchange of v and . The total
Lagrangian is then

1.,., 7 » T, v 1,
L= Eq#q Juv + 51/’57%9#1/ - 561“1#5%%:4/3 + 5151 ¢ ¢2 (0 ( Byl Poe t gB%aa) . (5.51)
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5.1.3 The Lagrangian in Terms of the Riemann Tensor

One could be quite content with the short expression for L that appears in (5.51) in the end
of last section, but we want to express it in terms of the Riemann tensor. Let us define the
time differentiation operator D, through its action on a fermionic variable ¥

v 0 v v aqﬂ{ v . v
D" =z 4" +T Mﬁw ="+ T 0N (5.52)
Then the Lagrangian of our system is
1 TN v 1 o v
L = 59 (@)(@"¢" + iy Do) + qhgdquy Vi Roopn- (5.53)

We will now show that (5.53) is equal to our old expression (5.51). First we notice that they
already have the term %q"‘q"gw in common. Next, we see that they both have two kinds of
terms, terms with two factors of fermionic variables v, and terms with four v factors. It is
very natural to treat and compare them separately.

The term £g,,i4 Dy in (5.53) can by use of the definition of D, in (5.52) be written
as

i e i i .
SV (0] + TV \00) = Ui g + 507 g T U0 (5.54)

The first of these terms is exactly what is in (5.51), so we are left with the second term. It is

T, 7. 1
§q7¢g¢2F#wA = iqvwgibéi(gumk + 9urey = Gyan)- (5.55)
The middle term in (5.55) is zero since it is symmetric in the metric and antisymmetric in
the ¢ factors under interchange of p and A. Explicitly,
wgl/’égukw = *7/’27/159#%77 ={Aept= *Tﬁgqpt/z\gkuﬁ = *wﬁwﬁgum, (5.56)

which must be zero. The last term in (5.55) is just the same as the first except for sign, since
it is antisymmetric under interchange of p and A. Hence (5.55) simplifies to

. . N = .

[P 7. " [ v

iq'wal wg\gle\ = _§q7¢2¢fzgu%>\ = A—=p = _gquwgwagw,m (5.57)
L= v

which is the third term in (5.51) that we wanted to find. The parts in (5.53) and (5.51) with
two factors of ¢ thus agree completely. What remains is the Riemann part with four factors
of 9, %wg@bgq/)gwl’;Rng. Writing it like this, one might ask if terms with a = b contribute.
They do not, due to the identity in (4.79)

Rpauu + Rpuau + Rp;wo = 0. (558)
Since
g —V
W’iﬁUWLWRpUW = vV— = 1/)[)7#”1/}01/)“1%@0“ = wpwglpuwpruou, (559)
=0
and
o=l
Q/JPWTWL?#VRMW = n—v = ’(/}pwuwngRp,uua = 1/Jp¢01/}”¢”Rp;wa, (560)
V—0
we have
3PPYTYRYY Ry = VPP PP (Rpopw + Rpvop + Rppve) = 0 (5.61)

from (5.58). Thus Y7 " R,yp = 0 and evidently
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1 [ea 14 1 o v 1 o v
éwgwa djl/ﬁ/’b popv = g¢f¢1 ¢g¢2 pouv T §¢5¢2 w:lfwl popv =

1 o 1% v g M H p 1 o v
= é (wi)¢1 wng +¢?¢1 77[}57/}2 )Rpo;w = V<o = §¢f¢1 77[157/)2 (Rpouu+Rqu0)
in last term
(5.62)
From the definition of the Riemann tensor, we have
R, =0, 1%, =0, , + 1%, T, - TI7,,. (5.63)
Lowering the first index with the metric g,, yields according to (4.76)
1
A by
Rpopv = =9oaul”vo +9oa 1”10 + i(gﬂww —Gvo,ou—Yppov + Guo,ov) +LpurI'g Lo 7o
(5.64)
Just by permuting indices (p <> u, o <> v) in (4.76) we find
A A 1 Y v
Ryvpe = =9urpl " or +9ur0l ov T 9 (Gpowp = Jovup = Gupwo + Ipvo) + Lpy 17 5y = Lpgn T v
(5.65)

Then (5.62) becomes

1 1
gwfqi/}f SQZJQV(RPUMV + RHVPU) = gqﬁf'l/)f Swg (7gp)\vl‘r)\l/0' + gp)wVF)\/LU - gu%PF)\au + g,LL)\,JF)\py

+§(9m«0u = Gvo,op — Gpp,ov + Guo,pv + Guo,wp — Jovup — Jupwe T pv,uo)

+FPM/\F)\V<T - FPVXF)\MU + FM/))\F)\UU - FMU/\FApV) .
(5.66)

Such a large expression must be handled in smaller parts. Let us begin with the part involving
second derivatives of the metric

1 1
§¢f¢f¢5¢5§(gpu,w — Gvo,opn = Gppov + Guo,pv + Guowp = Jovup = Gupve + Gov,uo)

1 (e v
= g"/}fwl "l}ng (gpl/,/w — Guo,up — Gupvo T g;w,pu)- (5-67)

Continuing, using the fact that the above expression is antisymmetric under interchange of
p with ¢ and p with v in the metric part, gives

1 o v 1 (e v
wawl ¢5¢2 (_gua,up + guo,pu) = §wf¢1 WJ% Gop,pv- (5'68)

This antisymmetry will become even more useful when dealing with the rest of (5.66)

1 NN
gwfwl 12¢2 (_gpNMF)\ua + gp)\,VF)\ua - gu)\,PFAoV + gu/\,UF)\pu
+FPIJ«/\F)\V0' - FPV)\F)\;AU + FNP)\F)\JV - FI»WAFApV)

1 o 174
= wa& ¢57/12 (*gpk,ur/\ua + guA,oFApu + FPMF)\W - FHU)\F/\pl/) (5.69)
1 o 174
= 711){71#1 7/157112 (gO’A”uFAup + g}l)\,a'FApV - Fﬂu)\r)\l/p - F,UUAFA;W)
4
1 (e 174
= wa¢1 V505 (goxu + uro — Topn = Tpuon) F)\pu'

The expression in the parenthesis in (5.69) above hides twice a Christoffel symbol
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Gox,u + Jur,o — Fo',u,)\ - Fuo’)\

1
= Gorxu T Guro — §(QUH,A + 9oxu — Gur,o T Guox + Guro — go/\,,u) (570)

=Goxpu t Guroc — Gou,x = 2F>\ap,-
Hence (5.69) becomes

1 o L v
§¢fw1 wIQ wQ F)\O’MF)\py7 (571)
and when (5.68) and (5.71) are added together, (5.66) simply reads

1 o v
51%)1/)1 51/)2 (ga,u,pu + Fz\our)\py) , (5.72)

or, after permuting indices (p = a,0 = B, u = v, v = €, A = u)

1 « 1>
§¢1 wlﬁwgz% (98v,0e + TppyI0e) s (5.73)

which is exactly the part with four fermionic factors that we had in (5.51). Then, part by
part we have showed the equivalence between (5.51) and (5.53), and the Lagrangian of the
system may clearly be taken as

1 T . L v 1 o v
L= 59u (a)(¢"d" + ig D) + g Rpou b Yy Py - (5.74)

This result is also stated in Alvarez-Gaumés paper [3], although in a bit different form.
Instead of 1; and 1, he uses 1 and 1), which are complex conjugates of each other. While
comparing one also has to be careful with the order of the indices. Applying (4.79) yields
the necessary factor of 2 that makes the two Lagrangians exactly equal. A very similar
Lagrangian appears in [1], but there seems to be a difference in the ratio of the coeflicients of
the second and the third terms. Even if the coefficients of the two terms are different in the
texts, their ratio should be the same when written in comparable form. Also, in the original
paper by Witten, [2], the ratio seems to differ compared to the factor in (5.74).

5.2 Calculation of the Supercharges (),

In this section we will deduce the expression for the supercharges Q,. We use a similar
approach to the one used in section 3.2, where we had two expressions for § L, which we could
write as two total time derivatives. The difference between the two expressions contained
our conserved supercharges.

We are going to continue where section 5.1.1 ends. Let us restate some useful mathemat-
ical results before we begin. The Lagrangian is given by,

L= [ @030, (0)D16" Do (5.75)

L
where we, for simplicity have defined a part £. The expressions for D; and D5 are,

Dy =0y — 610,

5.76
DQ = 82 — i@gat. ( )

For the moment, we leave the integral in (5.75) out in order to shorten our expressions. As
we saw in (5.21), we can write 0L accordingly,

5L=/d29 5L

= / d?0 e€,Do L (5.77)

d
= [ d%0 €,0, €00 —L.
/ €40, L + i€ dtﬁ
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As mentioned in section 5.1.1, the first part of the variation will give zero contribution in the
integration. In other words, since we take the derivative of 6,, we would have needed at least
three factorns of 6,, 6,0,6. for the integration to give a nonzero contribution. This term can
therefore be ignored in the further calculation of L. We continue by focusing entirely on
the second term iea9a%£,

dt

For simplicity the expression above is split up in parts. Let us start with the metric g,,, (¢),
which can be rewritten as the Taylor expasion in (5.22),

d d /i
o2 L = icaba s (;gﬂu(qS)quﬁ”ngﬁ”) . (5.78)

. . 1
9 (9) = gu (") + (s — 61027 ) g+ 5 (—0aba007) G- (5.79)
A

B
In section 5.1.2 we calculated D;¢,, and D2¢,. We restate the result from (5.23) and (5.24),

Dyt = it — i3 F* — iy g + 01000, (5.80)

Dyg” = ithl + i F” — i024" + 020,97, (5.81)

Let us now return to and calculate ie,0, % (£g,,(¢)D1¢" D2¢”) by multiplying the separate

parts,
)

d d (1
ieﬁai <2gw(¢)D1¢”D2¢”) = ieaﬁa% (;(A + B)D1¢HD2¢V> . (5.82)

We need to change index €,0, — €0 to avoid summation where it is not supposed to be,
which yields the expression,

. d Z Z d . vV . e niZ

7f€k9k$ (2(A + B)DldjuDZd)l/) - iek% [_Zekg/ﬂ/wl ¢2 - Zalekguuwll r
- i0k02guuw§tqy + iokGZQMVF“¢5 (583)
- i919k9uuq'“¢5

+i(—1)0k0aty G AL VY ]

Now we are ready to calculate 0L by calculating the integral in (5.77). We apply the rules
for integration in (5.28),

0L = /d29 oL

id v v v
5% [GQQ;WQpllLF + elgpulﬁ?q - elguuFﬂ¢2

+ €294 V5 + ikakaQ/’éguvykwiLw; ]

(5.84)

id
yai
As we can see, the idea of a superfield, helped us in a very convenient way, to write the
variation of the Lagrangian as a total time derivative. If we recall the technique we used
when deriving the supercharges on flat space; we also wrote the variation of the Lagrangian
in terms of partial derivatives. We will do the same thing now, in an exactly analogous way.
Note that we could have done this part without the superfield, all we need is the Lagrangian
and the supervariations. The variation of L is

€a€bagul/1/)bFV + €a9uu¢5€}” + i€a€abwg\guu,)\'¢)§tw5) .

oL oL oL . 0L oL .., OL
0L =0q"— + 04" — + o3 e —— + F° OF% ——. 5.85
Cop 00 5 T Vg e + %awng ore O s (5.85)
As before, we can rewrite this by using Lagrange’s equations, as
d oL oL oL
0L =—|0¢" = + 0] — + IF*—— ). 5.86
(o0 5+ v vor ) (5.56)
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We calculated an expression for the Lagrangian earlier, we restate it for clarity

1 i 1
L= §g/w (q#qu + ZwZLDtZDZ) + 3 (5.87)
The last part is not interesting for us in this calculation since it does not include any time
derivatives, hence, it will be zero in the variation of L. By implementation of the definition
of Dy in (5.52), we get

1 U { W . v a 1
L= 5@ + 59l (2 + T8 ) + 5. (5.89)
We immediately see that L/OF* = 0. The variation of L then becomes
d . i v « v (_’L)
0L = % 6(]7 (gN’YqH + §¢59HV1—‘ 'yawa> + 5wa ?wtgglﬂf (589)

The minus sign appears in the last expression because 9" and w"’ anticommute, and as usual,
the derivative is defined so that it acts on its immediate right. We have already derived the
variations d¢” and d¢?. It proved that they came out naturally, as a consequence of the
construction of the superfield, in the calculations of the Lagrangian. We find them in (5.14),
and by putting these into our expression for L we get

1

d /. 1
0L = — (lﬁbT/}z?g;wq“ - 561)’(/};’(/)51—‘”7&’1/}3 + 9

1 .
== eaves F YVl g + Qeawgg,wq”> . (5.90)
If we recall the variation of L we did earlier, (5.84), in which the variation was defined in
terms of a covariant derivative, we now have all we need to construct the supercharges. Both
of the two variations, (5.84) and (5.90), are written as total time derivatives. Hence, we can
construct conserved supercharges. We have that

d
0L—6L=—(...)=0 5.91
S (5.91)
Whatever is left inside the parenthesis above is the conserved supercharges, (up to the con-

stants ¢ and €,). They become,

i

. . . 1 o
t€qQa = <'L€b¢zgu"/q# - §€b¢21/lgfwa% + 9

7 .
EabebFngguu + Qangguuqu)

. (5.92)
(3 Y v . v
- 5 <€aguuwgq + eaeba'(/)gguVF + Zéaéabi/)??#/f% guu,/\) .

Since 1 commutes with both ¢ and F, and ¢ commutes with F', the ordering of these factors
in each term does not matter, thus, the only terms left are

. . : 1 « v
t€aQq = lﬁbﬁguw“ - 5 ( GbW%ﬁé‘Fwa% - Eaeabwl;\d)ith Guv, 2 ) . (5-93)
C D

As a matter of fact, C' and D will cancel out each other. We just have to expand C in all
its components, change some indices and use some anticommutation relations, and it will
become clear that they are equal. We start off by using the explicit expression for I'yq, C
then becomes
C = e YT uva
1 (5.94)
= Ebw2w5¢2’5(gw,a + Guasy = Graun)-

The middle term, Y445 gua, Will always be zero, since g,q,y is symmetric in por, while ¥y
anticommutes. Note that the 1/2 comes from the definition of I',,, and should not be
confused with the 1/2 outside of the paranthesis in (5.93). Also, if we let p <> «, we get that

—PhVa Gyau = =V Vb Gypa = VhVa Gypa- (5.95)
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C then becomes,
C= Ebwgwgwggwy,a~ (596)

Note that the terms involving ]y} and ] ¥4 s are zero, because of the antisymmetric
properties of I',,. If we make the summation in C, we get,

C= (elw?wl;wg + 62¢;¢f¢?)guw,a
= (1591 — @UT P )Gy
= {let 1 4> v in the first term}

= (611#31/}?@&; - 62"/}(11 ?w;)guv,a (597)
={a—=>\v—>v}

= eafabdjli\w??/}gg#l/,)\
=D.

In rewriting C to D, we used that we are allowed to interchange the variables « and -y since
Guv,x 1s symmetric in these two coordinates. So, with this result, we come the conclusion
that the supercharges can be written as,

1€.Qa = ianggw q‘u7

Qo = ¢Zgwq'“~ (5-98)

These are the conserved supercharges of the system.

5.3 Poisson Bracket

Now we want to quantize the system, we go about this as we did when we had a flat manifold.
First writing the Lagrangian in the Hamiltonian formalism, thereby obtaining the expression
for the Poisson brackets which we can multiply by 7 to get the anti-commutators of quantum
mechanical operators. We can still write the Lagrangian as L = 27T — H, where we can

express 27T as
oL

o
Here we take the partial derivative with respect to the curved indices in the first term but
flat in the second. This may seem strange but will in the end generate a simple expression
for the Poisson bracket. Therefore we have to transform the second term in the Lagrangian
with curved indices to flat indices. We use the vielbeins for the transformation. The vielbeins
themselves will have time derivatives because of their dependence of the coordinates ¢, so
when transforming ¥* to flat indices it transforms as follows

oL .
2T = ¢ 07

37 (5.99)

: d OE, "
b= —(F HKym) =™

=% PP+ B (5.100)

The Christoffel symbol transforms into its flat counterpart w*, .
FVW\ = Eky(auekA + kauemx) = *ekx(auEkV - WVWEkU)- (5.101)

We can also via the vielbeins evaluate the expression gwwi‘qb" more closely which is easier
to handle in flat notation

G = €™ € N By WP B = SRS R = ™ = (5.102)

In the equation above, the index m appears twice, and both times as superscripts. So far,
we have tried to be consistent, always writing summation indices as one subscript and one
superscript. To do so here, we would need to write out a Kronecker delta. For convenience
in the calculations to come, we skip this Kronecker delta and keep the notation with equal
superscripts.
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With these transformations we can now transform the second term of our Lagrangian
from curved to flat indices

. d
G (L + T 08) = G By 0 (5 (B, 00)

+ gl (€F W o BT — € ,ONE" )0,
= G B VTV ONE,” — gun B 0T 0 65 ONEy”
+ G B By U505+ g B 000" 0 BT
= ekpelunklEm“Eny¢;n¢Z + ekuelynklEm“%nfiAEnowua,\1/’3
= N s+ Nty g el B, w1
=P (W + P W)
(5.103)

Now we can calculate (5.99) using the Lagrangian with mixed curved and flat indices,

1 U ] my/. im . n 1 v o
L= ig,wq“q + §¢a (V" + q>‘w7ﬂ7l)\¢a) + gRuupU¢g¢a¢£¢ba (5.104)

and find the expression

. OL im oL . i m,jm
2T = quw + ’(/}a a?l)im :pﬂqu + §¢a dja . (5105)

The expression for p,, is given by

137 i m n
Pu = uvq + §¢a Wmnuwa. (5106)

We proceed with the action

s=[ar= [atpr-m- [a [puq“ o H(q“,pﬂ,w;”ﬂ . (5107)

Through the variation of the action we can find the Hamiltonian equations. Keeping in mind
that the ¢]* are odd Grassmann numbers we get

48 = /dt [5(puq” + 5% va ) — 0H(q,p, ), )] = /dt [0puG" + puog”

i . i . OH OH OH
75 m,/m - m5 m_ié‘ M_i& _ m
+2 wa ¢a + 21/}0, wa aqﬂ q apu p,U« a a¢£n:|

OH d 1 . i d
_ o all i - m,;m Zom m
/dt |:(q 8])“) 5p,u +p# dt (6q ) + 251% {ll)a + 21/}(1 dt (51!}(1 )

L maH]

Cog T
. OH d . (5.108)
- wo_ 277 il By _ B
/dt [(q 3}?#) 5pu + dt (pMCSq ) pM(Sq
) . id 7. OH OH
Locomoim S ymsymy Y im s m ©wo_ m
FSOUDUT 5 TN - ST - S0~ U o

OH OH
— Iz mg,m B B W
[Pudq + "oy + /dt [(q 3pu> pu (pu + aqu> oq

(i )]

=0.

As in section 3.2.3 the first term in the last step vanishes because the variations are zero at
the endpoints. Therefore each parentheses in the integral above has to equal zero, thus we
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get the Hamiltonian equations of motion

oH
T
q apua
. oOH
Dy = 767q“7 (5.109)
. 0H
=

Now we can take the time derivative of the action and use the Hamiltonian equations to
obtain an expression for the Poisson bracket

G_dS_0S . 0S ., 0S .. _0S0H 0 oH
Todt 8pﬂp” ﬁq“q opm Op, Og#  Og* Op,,
— 11
oson (T o To oo o110
Yogmovy 7\ 0gt Opy  Op dgr vy vy

The definition of the Poisson bracket is therefore
90 90 o o )

4By =4 (aqap " opy o0 o0k 0Uk (511

Now there remains the task of computing all the relevant Poisson brackets before we can
quantize the system and find the commutators and anti-commutators. The first Poisson
bracket of interest is the ¢*, ¢” bracket and is given by

dg" 0q”  0q" 0q” . 0q" Oq”
pogry, = 2400 oamoq 04 99 112
{e"d"kr 9q7 0p,  Opy 0 OUE OUE (112)

The generalized coordinates ¢*and ¢” do not depend on p, or ¥ so the derivatives with
respect to p, or ¢ will be zero, this yields

{¢",¢"}p =0. (5.113)
In the same way we find that the Poisson bracket of 1/ and ¢* is

(o gy QUEDT_OUE DL ov O

o Opy  Op, O ' Opk vk

= 0. (5.114)

Let us now study the Poisson bracket of ¢# and 1), where they do not depend on p,. The
Poisson bracket is given by

v oYl oYy Ol Oy oY Yy OE Y
{ol optp = 20— =+ —> —i =i
9q" dpy  Opy 97 OPk oYk oYk Ak

=0 =0

Oy Oy
"oyl ovf
= —id B, 1oFmE, v okn
= —id B, ME, ™"

= _i(Sabng

O(E,,"py") O(E,"y)

= —i0 OUF e (5.115)

= _Z.(Sab

where we have used the relation §*™§*" = §™" = ™" Now we turn to the Poisson brackets

involving the supercharge and its conjugate. The supercharge is given as we saw in section
5.2 by

v i m n
Qll = wtl;g;u/q = wg(pﬂ - §wa wmnuwa) = wZLHN’ (5116)

where we have introduced the variable II,, = p,,— gw;%mwwg. It is then possible to calculate
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the Poisson bracket of II, and 1},

v v i v
{Huﬂ/h}P = {pld«’wa}P - Q{wglwmnu 37¢a}P
v, m im n v
= {pu’ Em 77Z)a }P - i{wa wmnuwa’El 1/}51}13

v i m n v
:’(/}(T{pl“Em }P_g{wa wmnu a’El djtlz}P

) 0(B") | 100wy t) OB )
py O 2 Ok ok

(5.117)

=~y

The affine spin connection wyy,y,, is antisymmetric in the two first indices and commutes with
' This gives

{H/MwZ}P = _thEmy,u + wknunglV

om y y (5.118)
- dja (_Em Sk +wkm,uEk )

we now use the relation w®,, = €%, (9, E,” + ", E,*) given in [6]

%/%T(—Emy,# + ekp(Emp,,u + Fpu)\Em)\)EkV)

- wcrzn(fEmy,p‘ + ekamp”uEkV + ekapuAEm)\Eky)
va'(

7Emy,u + Emk,p,EkV + Fk,u)\Em)\EkV)

) ) o (5.119)
= Y (_Em ,,u+Em ,,u+F ;L)\Em )

= ’@[J;n]'—w,u)\EmA
= Fyqué\-

We would finally like to know the Poisson bracket of the variable II,, with itself. For this we
first quote a definition of the Riemann tensor in the vielbein formalism from [6]
engnAR”AW = 0w, — O™, —|—wmwwi —w™ Wt (5.120)

nv ww* np

We will use this definition in the calculation of the bracket, this gives

{H;MHV}P = {pu - 7wa wmnuwa’pl/ - §wa wmnuwa}P

2
1 ) 1
= {p/_tapV}P - i{puaqulwmnuq/}g}P - i{w?wmnpwgapu}f" - Z{qzbtrznwmn,u Z?djswklywclz}f‘)
_ i m a(wmm/) n i ma(wmnﬂ) n { 8 m n 8 k l
- iwa Tquwa - 5'(/)(1 Tqywa - Zaw}l (wa wmnuwa) aw}l (wawkluwa)
_ Z m,/n a(wmnu) 6 (wmnu) - m n
- 2'(/Ja '(/Ja aqu - aqy - Zo‘}imuwa winz/wa'
(5.121)

The next few steps contain a subtle renaming of the dummy indices together with the use of
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the anti-commutation of the ¥ variables so pay attention here

= §¢Zn¢g aqﬂ aqy = - §wimpwgn’winl/wg - iwiku gwilywtlz
i —a (wmnu) a (wmn ) ] i i
= 51%”1/)2 8(]“ 6(]1’ E - §wimpw?winuw2 - iwilu swikp,wzlz
i m,/n -a (wmnu) 9 (wmnp) ] i m n i m n
- 57/)11 ’l/}a 8(]“ 8(]” - gwimywa winuwa + 7wimuwa win,u,wa
i m,n -a (wmnu) a (wmn#) ] i m n i m n (5122)
- 57/%1 1/%1 aq“ aq,, + iwmiuwa winu¢a - iwmiu,l/}a win,ud)a
_ i m,|n -a(wmnu) a(wmn#)
- 57/}(1 1,[1(1 aq“ - aq,} + wmi/twiny - wmiuwinu
i m,n m o
= 51/}& 77[1&6 aEn)\R Apv
i m,
= §walwaLRmnuu'

5.4 Quantization of the Supersymmetric Sigma Model

Before we head off to quantize the system we must remark that there is another symmetry
in our Lagrangian. Namely, the system is invariant under rotation of the fermionic variables
by a small real angle 7. In symbols

(I

¥ s o (5.123)
where we have defined the complex fermionic variables
U= (i),
V2 (5.124)

o= %wﬁ i,

By Noether’s theorem we get a corresponding conserved charge F' (see [1]) defined as
F = g p"yp”. (5.125)

We can now quantize the system by applying Dirac’s quantization scheme using the Poisson
brackets we calculated before. This yields a set of commutators and anti-commutators of
what are now operators on a Hilbert space. In symbols:

[q",11,] = 16},
w9y ="
{IL,, ¥} =il 0P (5.126)

(I, "} = il 0"
1 m, ) n pm
{HuaHV} = 757/)11 waR nuv*

All other (anti)- commutators vanish. The supercharges, which are now operators, are given
by
Q = &#H;“
Q = HM/J“-

Notice that we avoided the problem of an ambiguity in operator ordering by enforcing a
certain ordering. Why we picked this particular ordering will become clearer when we try

(5.127)
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designate a representation for the Hilbert space on which @ and Q operate. This makes the
quantum mechanical Hamiltonian

{Q,Q} =2H. (5.128)

This makes the quantum mechanical system manifestly supersymmetric in the way we defined
it in chapter 3. We still have to calculate the relations between the charges F' and . We will
see that these relations are similar in structure to what we have seen in chapter 3. Before
we calculate the commutator of F' and (), we note that /' commutes with II,,. This is clear
from the definition of II,, and p,,

i
HM =DPup — iqp;nwmn,uwg

= G G U U — S U (5:129)

= qyguu~

It turns out that II, is a purely bosonic operator and then it commutes with the fermionic
operator F'. We use this fact and find

[F.Ql=FQ - QF
= g,uudju (1/1”15’3) Hp - &pHpF
= g,ut//lzH (gup - ’(/—}pwy) Hp - ’(/_JPFHP

_ T - _ (5.130)
= 5Z¢“Hp - guuwuqﬁpdjynp - l/fpg;wﬂf“wyﬂp
= &pHp - guu'(/;#'(/;pwunp + gm/i#@l’wl’ﬂp
= Q.
A similar calculation gives
[F,Q]=-Q (5.131)

This allows us to calculate the commutator between F' and H as follows
[F,H =FH—-HF

= FQQ + FQQ — QQF — QQF
= FQQ+FQQ - Q([Q, F]+ FQ) — Q([Q, F| + FQ)
=FQQ+ FQQ - QQ — QFQ + QQ — QFQ (5.132)
=FQQ+FQQ-QQ —([Q,F]+ FQ)Q +QQ — ([Q, F] + FQ)Q
=FQQ+ FQQ - QQ +QQ — FQQ + QQ — QQ — FQQ
=0.

This means that F' is also a conserved charge in the quantum realm, i.e. the F operator
will respect energy levels of states. Now the only thing left to do in order to complete the
quantization of the system is finding a suitable representation for the supersymmetric Hilbert
space Hqg we just built. We will argue that a suitable Hilbert space will be

H = Q(M) ® C. (5.133)

This is the Hilbert space of differentials forms of the manifold M, as we defined it in chapter 4,
tensored with the complex plane. (This is necessary to acquire a complex Hilbert space, since
the space of differential forms is a real one). We equip this Hilbert space with a Hermitian
inner product defined as

(wl,ng) :/ w1 N\ *wa, (5134)
M

where w; and ws are both p—forms and « is the Hodge duality operator. Like the simpler
system in chapter 3, the Hilbert space can be written as the tensor product of a bosonic and a
fermionic space but now the fermionic space has a higher dimensionality (it can accommodate
more fermions). The bosonic space is simply the space of integrable complex functions over
the manifold L(M,C), it is infinite dimensional. In order to characterise the fermionic part
of Hg we go about as in the simpler, flat model and define the state |0) as the vector that
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is annihilated by all the 1#’s. This allows us to build up a set of states by applying the 1)*
operator to |0). We get the following set of states,

10)
Y*0)
Pryr10) (5.135)

Dm0,

These states are also eigenstates of the operator F' and they have eigenvalue p where p is
the amount of different 1/* operators applied. We will once again call the operator F' the
fermion number operator as it counts the number of ’fermions’ in a certain state. Note
that the dimensionality of the eigenspaces of F' is (”) This dimensionality coincides with
the composition by form-degree in the space of dif?ferential forms. This means that the
Hilbert space H¢ has the same dimensionality as the complexified (tensored with C space of
differential forms #H. This is true because of the equivalence between the bosonic subspace
and the subspace of complexified differential zero forms, which is just L(M, C). By the theory
of Hilbert spaces this means there exists an isomorphism A between the spaces Hg and H.
One way we can always go about constructing this isomorphism is by connecting the basis
elements of both spaces, i.e.

A(j0)) =1
A(PH)0)) = da*
A(WH9¥|0)) = dxtdz” (5.136)

A(pt .. 9"0)) = dat ... da™.

So as a Hilbert space we now regard Hg as represented by H. Of course this knowledge will
not do us much good until we also find representations for the various operators we defined
on Hg, the most important ones being *, ", Q and Q. We will find these representations
by exploiting the properties of the function A* : Hom(Hg,Hg) — Hom(H,H) associated
with the function A. (Hom(Hg,Hg) is the Hilbert space of the transformations of Hg.)
This associated function has the defining property that for a random vector v € Hg and a
random operator A € Hom(Hqg, Hg) we get

A(A(w)) = A*(A)(A(v)). (5.137)
For the ¢* operator working on a random basis element this yields the following equalities
AW .. 07(0))) = A @AWY ... 9710)) = A*(5#)da” ... da*, (5.138)

but also, o - o -
A (Y .. Y7)|0))) = AP Y ... 7|0)) = datdx” ... dx°. (5.139)

This implies that the ¢* operator must be equivalent to the operation of ’wedge multiplying’
with dx* or -
A (pH) = dat N (5.140)

In order to obtain a representation for the i operator we need to do a bit more work. Let
us begin by looking at what happens when " acts on a random basis element of fermion
number p

W (Y7 N0)) = g TN 0) = YT A 0)
= g7 MN0) — gh Y 0) + YTy L 20)

= g"Y7 L A0) + ()P g M)+ (1P 2 0)

= pg"’ 7 ... P 0).
(5.141)
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Using the defining property of A* we learn that A*(¢*) must obey the following identity in
the space of differential forms

A (PP (da¥dz . .. dz) = pghda’ ... da. (5.142)

This is satisfied if

A* (") = g™ (ioj0av ) » (5.143)
where iy is the operation of contracting the differential form with the vector field V. (This
operation is known as the interior product.) Our next operator ¢* is a purely bosonic variable,
i.e. it only affects the 'function part’ of an element of Hg. This means the ¢* operator and its
differential form counterpart are the exact same thing, only in different notation. In symbols

" = z¥x, (5.144)

where x# x is just the operation of multiplying the differential form by a factor of x*. The
last important operator remaining is II,,. Since II,, = ¢”g,., it is a purely bosonic operator.
This means we can find its representation in much the same way as that of the ¢g* operator.
We know from quantum mechanics that the ¢” operator acts as a partial derivative operator,
which has a trivial correspondence in the space of differential forms. We get

* " . 0
A (Hu) =A (g;wq ) ZQW@ = V#.

If we combine these results we can find a correspondence for the ) operator through its
definition. This gives

(5.145)

- 0
A (Q) = A" (M) = da? AV, = daP A Tl d. (5.146)
Ty,
So @ corresponds to the exterior derivative, which was to be expected given their respective
effect on the fermion number of a state and the p—degree of a differential form (both increment
by one). We can do a similar exercise for @, and find (see [1])

A (Q) =d. (5.147)

This is very reasonable since the A* function preserves hermitian conjugation. We have now
characterised all the operators we need to construct the rest of the theory.

5.5 Q-cohomology and the Witten Index

Now that we have found a representation of our supersymmetric Hilbert space it is time to
return to a very important object we touched upon in earlier chapters, namely the Witten
index. As before it is defined as the operator Tr(—1)¥". In our earlier treatment of the
Witten index we saw that it was an expression that calculates the difference between the
dimensionality of ground state subspaces with an even fermion number (the eigenvalue of the
F operator in that subspace) and the dimensionality of those with an odd fermion number.
In symbols this gave

Tr(—1)" = dimHp|,_, — dimHp|,_. (5.148)

We now rewrites this expression as the sum

Tr(—1)" =) ()P dimH,|,_,- (5.149)
p=0

This is again true, because for any state with non-zero energy the @) operator induces an
isomorphism between states of different fermion number but equal energy. The (—1)? in the
equation then ensures that all contributions due to non- zero energy states cancel each other
out leaving only the ground states where as before the @-isomorphism breaks down.

There is another, more theoretically fulfilling, way to calculate this index. We can regard
the total subspaces composed by fermion degree as a a cochain complex of the Hilbert space,
generated by the Q operator. It can be graphically presented like

Q Q Q

o H, Mooy —2 H,. (5.150)
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For this cochain complex we can calculate the Q-cohomology groups. These are defined as

Ker (’Hp <, Hp-H)

HP(Q) = (5.151)

Im (Hp_1 2, 'Hp> .

Note that HP is also a vector space, which means we can talk about the dimension of H?
without running into trouble. This means that HP is the quotient group of the kernel of
Q : Hp = Hpi1 and the image of @ : H,—1 — H,. The fact that @ is a nilpotent operator
(Q? = 0) ensures that this is well defined. Note that the definition of the Q-cohomology is
very similar to the de Rham cohomology we discussed in chapter 4, this will prove to be of
great importance later on. Because Q commutes with the Hamiltonian, and hence preserves
energy levels, we can decompose the Q-cohomology groups HP by energy level. This gives

- @Hf(@), (5.152)

where HY is defined as

Ker(’H |E &VHPHIE )

HP(Q) = (5.153)

Here i is an arbitrary element of the energy spectrum of the Hamiltonian. (The compactness
of the manifold M ensures that the spectrum is discrete.) Now, for all non-zero energy
levels, i.e. ¢ > 0, we know that the () operator is an isomorphism between two subspaces

with adjacent fermion numbers. This means that Ker (Hp| i 2, Hpt1] E:i) must be

trivial (then so must Im ( p—1 |E ; AN HP{EZi)) and hence we have that
dim (HP(Q Zdlm (HP(Q)) = dim (H2(Q)) . (5.154)

So the only contribution to the dimensionality of the Q- cohomology groups is due to the
ground states. Now if we look at the space of ground states (¢ = 0) we see that on this space
the Q operator is the zero operator. (By definition all ground states must be annihilated by
@.) This means that

Ker (HP’E:O & Hp+1 |E:0) = ’HP}E:O

(5.155)
Q
o (M| p_y =2 Hyl ) = 0.
Hence we have
dim (H?(Q)) = dim (HJ(Q)) = dim H,| ,_, . (5.156)

This means that we can compute the Witten index using the cohomology of the Q operator
through the formula

n n n

Tr(—1)" =) (1P dim (H,) = Y (1P dim (Hp|,_,) = D _ (1) dim (H?(Q)) . (5.157)

p=0 p=0 p=0

Now we go back the the representation of the Hilbert space of supersymmetric quantum
mechanics as the space of differential forms. Using the fact that we have identified @ with
the exterior derivative d and Q with its dual operation df we can write the following corre-
spondence for the supersymmetric Hamiltonian

= %{Q Q= %(QQ +QQ) « %(dd* +dd) = A, (5.158)

where A is the Laplace Beltrami operator we defined is chapter 4. This means that our
supersymmetric ground states correspond to the differential forms w for which the equation

Aw =0 (5.159)
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holds. Hence we have a one-to-one correspondence between the subspace of supersymmetric
ground states and the subspace of harmonic differential forms H(M, g) where g is the metric
on M. But we saw in chapter 4 that the space of harmonic differential forms is the de Rham
cohomology. This means there exists a direct correspondence between the (J-cohomology
groups and the de Rham cohomology

HP(Q) = Hpp, (5.160)

where HY, is the p—th de Rham cohomology group. By this correspondence we can write
the Witten index in terms of the de Rham cohomology groups, yielding the following formula

n n

Tr(—1)" =) (1P dim (H?(Q)) = Y _(~1)" dim (H} ). (5.161)
p=0 p=0

But the term on the right hand side of this equation is none other than the Euler characteristic
for the manifold M, introduced in section 4.4.5, and further discussed in appendix A.3. This
is the intimate connection between supersymmetric quantum mechanics and topology that
we have been working towards all this time. So in essence we have the following fundamental
equation

Tr(—1)F = x(M). (5.162)

This means that for a given manifold M we can compute the Euler characteristic by looking
at the ground states of the corresponding supersymmetric Hamiltonian instead of laboriously
calculating all the de Rham cohomology groups. Let us illustrate the power of this equation
by calculating the Euler characteristic of a two dimensional torus.

The Witten Index for a Simple Torus

We call the angle on the big circle § and the angle on the small circle ¢. The metric for a
torus of small radius a and big radius c is then given by

_((c+acosp)* 0
g;uj T ( 0 a2 . (5163)
The only non-zero connections are
6 _po _ @ sin ¢
% ctacosg (5.164)

1%, = a sing(c + acos ).

Our goal is to find the ground states for the Hamiltonian associated with this manifold. A
state |«) is a ground state if it is annihilated by both @ and Q. Let us begin by characterising
the Q) operator

Q =y,
— 0 (b - iw;”wmww:)
= P o (B, (O, 4 T B ) )
51/) (wagpu (00E,” +T"o\E, ) " 47
— 0 (V08,0 (00B,Y + T 0B, ) €"07)
= 20" (000 (1700, ) €402 — 20" (02900 (T%00B") )
— 200 (W00 (0B T 40 By") ) — 20 (60,5 (9B, +T%,,5,%) 02
+4 g + %Py
= 4"pg + 7py.-

= 'pg +Ppy —

(5.165)
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Through a similar calculation we also obtain

Q = pot? + pei®. (5.166)

This means that the only states being annihilated by both @ and @Q are of the form

lo) = C|0),

la) = C¥°)0), (5.167)
|a) = C7p?|0) or .
) = CP9?)0),

where C' is a normalization constant. This means that the dimensionality of the zero energy
subspaces Hp’EZO is given, for p going from 0 to 2, by

dim Ho| ,_, =1
dim My |,_, =2 (5.168)
dim Ha|,_o = 1.

We can now compute the Euler characteristic through the Witten index

x(M) =Tr (1) = Zn:(—l)p dim (Hp|,_,) =1—-2+1=0. (5.169)

p=0

So the the Euler index of a torus is zero, as we could have suspected from the fact that a
torus is the product of two circles.
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Chapter 6

Conclusions

The goal of this project was to investigate the formalism of supersymmetric quantum me-
chanics in general and its applications in mathematics in particular. It seems, that for a
good part, we have accomplished this goal. We have investigated quantum mechanical mod-
els, both in simple one-dimensional settings like R and S, and in the more general setting
of a sigma model defined on a smooth, n-dimensional manifold of arbitrary curvature. At
the heart of the formalism we found a satisfying connection between the zero-energy states
of the system and a modified partition function the Witten index. Later on we were able to
tie these zero-energy states to a mathematical group called the Q-cohomology. We realised
that the Q-cohomology was closely connected to the de Rham cohomology defined using the
theory of differential forms on the manifold. Using this connection, in combination with a
deep theorem connecting topology and differential geometry due to de Rham, we managed
to formulate a very elegant formula for the topological Euler characteristic in terms of the
quantum mechanical Witten index. This formula, though deceptively simple, summarises a
deep and intricate connection between the theory of supersymmetric quantum mechanics on
a manifold and the topological properties of that manifold.

Of course the connection between supersymmetric quantum mechanics and topology does
not stop here. For instance one could quantize the sigma model using the path integral for-
malism instead of, as we did, the operator formalism. This approach would eventually lead to
a characterisation of the Euler characteristic in terms of an integral over the manifold involv-
ing the Riemann curvature tensor. On the way to this characterisation one would encounter
the important physical theory of localisation, a principle where integrals over functions of
fermionic variables are completely determined by their value at certain ’critical points’. If one
were to continue on this path of convergence between supersymmetric quantum mechanics
and topology it would eventually lead to an elegant ’physics proof’ of something called the
Atiyah- Singer index theorem, an important theorem concerning the solvability of certain
classes of differential equations in terms of the topology of the manifolds they are defined on.
Readers interested in exploring this in greater detail are referred to the paper 'Supersymme-
try and the Atiyah-Singer Index Theorem’ [3] by Luis Alvarez-Gaumé.

Apart from the work on supersymmetric quantum mechanics we also managed to build up
and present new knowlegde in basic differential geometry and topology, branches of math-
ematics that are very important in modern physics but are only superficially treated in a
bachelor in Physics.
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Appendix A

Complementary Material

A.1 Proof of the Commutator Identity
Here we present a proof for the identity

p, f(x)] = —if'(x),

where f(z) is an analytic function. We can prove this by expanding f into a power series of
x

(oo}
f(z) = Z cpa”.
n=0
We now prove that for every n € N
[p, 2"] = —inaz" "t

For n = 1 this is just our commutation relation (2.30). (For n = 0 it is trivial) We now assert
that the equation holds for n = k — 1. The equation for n = k then becomes

p.a*] = [p,a* Mz + 2" [p, 2]
= —i(k — 1)a* 2z —izk!
= —i(k—141)z"1

= —ika* 1.

So, by induction, the formula [p, 2"] = —inz™~! follows for every n € N. We now use this
knowledge, together with the linearity of the derivative to get

p. f(2)] = [p, 3 ]

n=0

= Z Cn [pv wn]
n=0

= i Cn(—i)na™ !
n=0
= —if'(z).

This proves the relation.

A.2 Brief Introduction to Group Theory

A.2.1 Groups

A group is a set of elements, where the elements can be combined with each other according
to a specific composition law, symbolised by multiplication. This composition law can be
any operation for which the following group azioms are fulfilled
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ei)Va,beG:abe G (the group is closed)
e ii.) Va,b,c € G : (ab)c = a(bc) (associativity)
e iii.) ec G:VaceG:ae=ca=a (existence of unit element)

eiv)VaeG, Jal €eG:aa" =ala=e (existence of inverse).

Ezample 1.) The positive rational numbers, with the composition law given simply by
ordinary multiplication, form a group. The product of two positive rational numbers is
always a positive rational number. Associativity is immediate, and the unit element is 1.
The inverse of each element is its reciprocal. 0 cannot be an element of this group since it
has no inverse.

Ezample 2.a.) Z. This is the group of integers with group “multiplication”, i.e. the
composition law, defined as addition.The sum of two integers is always a new integer, addition
of integers is associative, 0 is the unit element and —z is the inverse of z € Z.

A.2.2 Subgroups
A subgroup H to a group G is itself a group, whose elements are members also of G.

Ezample 2.b.) Let B be the group of integers that are dividable by 3, that is
B={...,—6,-3,0,3,6,...}. The composition law is still addition. Since an integer b which
is dividable by 3 can be written as b = 3a where a is a new integer, the sum of two such
integers by + be = 3a1 + 3as = 3(a; + ag) is also dividable by 3.The unit element 0 is in the
group, and inverses —b exist in B for each b in B. Clearly B is a subgroup of Z.

A.2.3 Equivalence Relations and Equivalence Classes

An equivalence relation on a set S is a relation that connects elements in the set. Two
elements a,b € S that are connected by this relation are said to be equivalent, written a ~ b.
The relation must obey

e i.) Reflexivity: a~a
e ii.) Symmetry: a~b=b~a
e iii.) Transitivity: a ~band b ~c=a ~ c.

An equivalence relation defined on S gives rise to a partition of the set into disjoint subsets,
so called equivalence classes, by the following procedure. Pick an element a in the set. Then
find and pick out all elements in S which are equivalent to a. This is the equivalence class
of the element a: (a) = {b|b ~ a}. Now if there are still elements left in the remaining set,
choose a new element ¢ from the set, and find all elements that are equivalent to c. If the
remaining set is still nonempty, continue the process. In the end we are left with a set of
equivalence classes, which by construction have no elements in common. See figure A.1. The
concept of equivalence relations is one of the most powerful tools in all of mathematics.

A.2.4 Cosets

Let H = {hy, ha,...,h.} be a subgroup of G. Choose an arbitrary element g € G and
construct the coset gH = g{hy,...,h} = {gh1,...,ghs}. Generally a coset is not a group.

Now define an equivalence relation for a,b € G : a ~ b if b € aH. That is, a and b
are equivalent if there is an element h € H for which b = ah. This is really an equivalence
relation, since it obeys the conditions in section A.2.3:

e i) a~a,foreec H, and ae = a, so that a € aH.

e ii.) Ifa ~ b, then 3h € H : b = ah. Then 3h™' € H : bh™! = a, and b ~ a. So
a~b=b~a.

e iii.) If a ~ b and b ~ ¢, then 3h;,h; € H : b = ah;,c = bh;j. By combining these one
gets ¢ = bh; = (ah;)h; = a(h;h;) = ah for some h € H. Then a ~ c.
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2 Equivalence
An equivalence class d

Figure A.1: The set S partioned into disjoint equivalence classes. If the elements of S (points)
are equivalent, they are united by a line. The elements in an equivalence class form a subset

of S.

Since the equivalence classes of this equivalence relation are cosets, we get a partition of
the group G into disjoint cosets. The representative g for a coset gH is by no means unique.

Ezample 2.c¢) Consider the group B defined in Ex 2.b as a subgroup of Z. Then a coset
in Z with respect to B can be written as z + B where z € Z, since the composition law is
given by addition. This coset is the set of numbers dividable by 3 all added by an integer
z. It is easy to realise that, by choosing 3 appropriate elements in Z as representatives for 3
cosets, one can cover Z completely by these cosets. For example, take 0, 1 and 2. Then the
cosets

0+B=1{..,—6,-3,0,3,6,...},
1+B={..,-5-2,1,4,7,...},
24 B=1{...,-4,-1,2,58,...}.

are all disjoint sets, and every integer in Z is a member of one of these sets. The difference
between two numbers in a coset is always dividable by 3, that is, they differ only by an
element in B.

A.2.5 Quotient Groups

Consider the set of s cosets {g;, H,gi, H,...g;,H} which cover the group G. By defining a
multiplication of such cosets, the set of cosets can be considered as a group, a quotient group.
The product of two such cosets is given by (¢;H)(g;H) = gigjH. We test for the group
axioms:

e i.) Since Vg;,9; € G : gig; € G, it is clear that g;g; H must be a coset.

* ii.) Vgi,g;,9x € G : (9:H)[(g; H)(9rH)] = (9:H) (9595 H) = 9i(g;95)H = (9i9;)(grH]) =
[(9:H)(g;H)](gxH), and the group multiplication is associative.

e iii.) Let the unit element be E =eH = H. Then Vg € G : gHeH = geH = gH.
e iv.) As an inverse to gH, take g~ 'H. Then gHg 'H = g9 'H = ¢H = E.

A problem with the definition of the composition law is that the cosets can be represented
by different g € G. Tt can be shown, see [14], that the definition works properly if the subgroup
H is normal, that is if Vg € G : gH = Hg. So the set of cosets of a normal subgroup H is
really a group, conveniently denoted by G/H. Clearly,

has s elements.
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Ezample 2.d) Consider the three cosets in Ex 2.c as a quotient group
7Z/B={0+ B,1+ B,2+ B},

where the composition law is just addition of the cosets,

(zi + B) + (2 + B) = (2 + 2;) + B.

Then (z; + z;) + B is again one of the three cosets, so the group is closed. The identity
element is 0 + B = B, since

We say that Z/B is the group of integers modulo 3. Each element of the group consists of
integers whose differences are dividable by 3.

A.3 The Euler Characteristic

The Euler characteristic is a topological invariant defined for a topological space. This means
that it is unchanged under homeomorphisms (continuous deformations) of that space. It is a
number, conventionally denoted by the Greek letter x and intuitively it gives a rough measure
of the difference between the number of ’even dimensional parts’ and ’odd dimensional parts’
of the space. Although it is defined for general topological spaces we will normally use it in the
context of smooth, boundary-less manifolds. Topological invariants are useful to determine
whether or not two topological spaces are topologically equivalent, because if two spaces have
a different value of some topological invariant there can be no homeomorphism between the
two spaces. For instance a sphere and a torus have different Euler characteristics (2 and 0
respectively, we will prove this later on) whereas a torus and a coffee mug have the same
Euler number (there is no difference between them, topologically speaking). Originally the
characteristic was defined by the eponymous mathematician Leonhard Euler. His original
definition only encompassed polyhedra and it was defined as

x = (NUMBER OF VERTICES) — (NUMBER OF EDGES) + (NUMBER OF FACES).

For instance the Euler characteristic of a cube would be 2 since it has 8 vertices, 12 edges
and 6 faces. In modern topology the Euler characteristic is defined in a more sophisticated
way, through a concept known as homology, which we will describe very briefly. For a more
in depth discussion of homology we refer to (reference here)

A.3.1 Homology of a Smooth Manifold

In order to define a version of the Euler characteristic we must first go through a process called
triangulation of the manifold. Intuitively this means we will try to build an ’approximation’
of the manifold using generalisations of basic triangles called n-simplexes. An n-simplex is
formally defined as a collection of vertices in n-dimensional affine space. A two-simplex,
which is just a triangle in this formalism looks like

o5 = {(1,0), (0, 1), (0,0)}. (A.2)

Keep in mind that this is really a two dimensional object, so we are including the face of
the triangle. A zero-simplex would be a point, a one-simplex a line and so on. Now imagine
glueing simplexes of the same dimension together. If we do this in a nice enough way we
get something called a simplicial chain. (The definition of a simplicial complex is rather
technical, but it basically boils down to having no loose ends.) So a simplicial chain is a
set of simplexes, glued together in a proper manner. A set of simplicial chains of different
dimension is called a simplicial complex. On this simplicial complex we can define something
called a boundary operator 0. This operator takes a simplicial chain of dimension n to
another chain of dimension n — 1. So a two-simplex would be taken to a triangle with the
face cut out of it. A very important property of this operator is that 8 = 0, namely a
boundary has no boundary of itself. We now focus our attention on two types of simplicial
chains. The first is defined as having no boundary, or

dw = 0. (A.3)
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Where w is some simplicial chain. We call these particular chains n—cycles. And the second
set is defined as being the boundary of some other simplicial chain of higher dimension (+1).
We call these chains n-boundaries. It is possible to define a group structure on these objects
and the group of n—cycles is called Z™ whereas the group of n—boundaries is called B™.
Because of the property 92 = 0 we know that

B*CZm. (A.4)

This allows us to define the quotient group

Z’n

H' = 2.
Bn

(A.5)
This quotient group we call the n—th homology group of the simplicial complex. In a sense,
the rank of the n—th homology group measures the size of the n—dimensional part of the
simplicial complex. In this spirit we define the Euler characteristic for a simplicial complex
of dimension k as

k
X = (~1)"rank(H"). (A-6)
n=0

If necessary one could endow these homology groups with a vector space structure, then the
equation for the Euler index becomes

k

X =Y _(=1)"dim(H"). (A7)

n=0

This way it can be connected to the de Rham cohomology, as done in chapter 4. Now if we
want to find the Euler characteristic of a manifold, we try to find a simplicial complex that is
homeomorphic to the manifold (we triangulate it) and then compute the homology groups.
Because the Euler characteristic is invariant under homeomorphisms, it carries over to the
manifold. Needless to say this is a rather laborious way of going about, and far more efficient
ways have been found to calculate the Euler characteristic of a manifold, as we hope to show
in the body of this paper.
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Appendix B

Some Analytic Function Theory

B.1 The Infinite Product Representation of the sinh Func-
tion
We want to prove that

inhz = 1+ —= . B.1
sinh z an;[l ( + 71_2”2) (B.1)

Mainly we will follow the route outlined in [15]. Consider the function

TCOSTZ

C(z) =mcotmz = —
sinmz

with simple poles at all integers z. It is analytic everywhere else. Especially, it is analytic on
the square vy in the complex plane with corners in

z=N+1—i(N+1) zo=N+14+i(N+3);
z3=—(N+3)+i(N+3); za=—(N+31)—i(N+3);
where N is a large positive integer. It does not cross the real axis at integers. We may also
note that C(z) is bounded on ~vy. Write C(z) as
eiﬂ'z +e—i7rz ei27rz +1

Clz)=irs—"% — —in

eiﬂ'z _ e—iﬂz e1'27rz -1 .

For example, the line from z; to 2o may be parametrized by
z=N+ 3 +it, te[-(N + 3), N + 3]. On this line

ei27r(N+%+it) +1 et 4 ot

e7rt + efm‘/

IC(z)| == =7 = = m [tanh(7t)| < 7 < 4.

1(=1)e 2" +1
1(=1)e~27t —1

ei2m(N+3+it) _

On the line from 23 to z3, we have: z =t +i(N + %), te [(N + 3),—(N + 1)]. Here

6i27r(t+i(N+%)_|_1 _7T|672W(N+%)+1‘ - 67371'_'_1 _TreBTr_'_l -y
S e —q| T Vet —1] Tetr—1 7 7

1C(2)] =

™
e2m(tHi(N+3) _ 1

On the two other sides of the square, we find the same result, C'(z) < 4.
Now, look at the function

C(z) T COS T2

9(z) = =

2(z—w)  2(z—w)sinwz’

where w is inside vy and not an integer. We see immediately that g has simple poles in
+1,42,43..., a simple pole in w, and a pole of order 2 in 0. g(z) is analytic on vy. The
residue theorem gives for the poles z; to g(z) which are inside yx
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21

]{ g(z)dz = Z res(g, z;).

{z; inside YN}

1
< — {lenght of curve} - max |g(z)]
{z e yn}

1
— d
omi f{N 9(2)dz) <

1
< —4(2N +1) -
27 @N+1) min |z(z — w)|

First carry out the LHS

8 2N +1
<= T +1 — 0 when N — oc.

We will first find the residues at k£ = +1, £2, 43 ... We write
o) _ F(2)
" G(2)

9(2) = sinmz

Since z = k are all simple zeros to G(z), and G'(k) # 0 we have
1

F(k) 7 cos k
1es(9(2): k) = Gy T k= wymcosth Rk —w)’
In a similar way we get the residue of g(z) in z = w by choosing G(z) = z — w, to find
_ meotTw

res(g(2),w) =~

The residue at the double pole z = 0 is probably most easily find by just reading off the z

coefficient of the Laurent expansion of g(z)

9(2) = z(ziczs):fnwz
w1l — T +...)
2(— )(1fz/w)(m -)
-T2 )1+ 2 w2+ )
(fw)m2(1 — (% —.)
1-"Z 4 D0+ 2 4.0+ (B2 - )+ )

coefficient for g(z) is simply — 5. Then

The z coefficient in the nominator is 1/w, so the z

(B.2) gives when N — oo

k#o
The last term in this expression becomes
o) 1 [e%e}
1 1 1
2 kh—w) 2 —w +k§k(k—w)
k#0
-l ]
2| R((—R) —w) Kk —w)
_ i 1/ 1 1
- — k\k+w k—w
=2
- Z k2 _ w2
k=1

After this simplification, we get
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P (B.3)
meotTw — — = &5 - .
wo w? — k2

Now integrate this equation from w = 0 to w = z. Here we need to use a branch for the
logarithmic function. Delete the non-positive real axis from the complex plane. Let us define
w = Log z as the number for which e” = z and where Log z = In |z|+iarg z, argz e(—m, 7).
Then, integrating the LHS and the RHS separately, we get

LHS = / <7rcot W — 1) dw
0 w

= [Log(sin 7w) — Logw];

= [Logsm v (+in27r)}
w

z

0
£ _ lim Log

4 |w]—0 W

and

_ k2
k=1
=P 2w
= dw
= Z [Log(w? — k?)]
k=1
= Z (Log(2* — k*) — Log(—k?))
k=1
> k2 52
= Z (Log 2 + zn27r)
k=1
Then, eS8 = RUS and we find
sinmz 1 ZicilLOg(l*z%) . = 22
g = S = 1-—=]. B4
- =¢ , sinmz ﬂ'zkli[l 12 (B.4)

Now we have found the infinite product representation of the sine function. From the defini-
tion it is easy to find the corresponding product for sinh,

Tz _ Tz —i(imz) _ pi(inz) O - \2
sinhmz = & 26 =4S 5 ¢ = —isininz = (—i)7n(iz) kli[l (1 - (zkzz)

and (B.1) is finally proven.

B.2 Computation of ((0)

One way of doing the analytic continuation of Riemann’s (-function is by using the I'-function.
We start by some preliminaries concerning this function.

B.2.1 The I'-function

We may state three definitions of the I'-function, that are all equal. First, we have the Euler
limit at infinity
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1-2-3-...-n
T'(z) = li # 0,£1,£2,... B.5
(2) nl—>n<§oz(z+l)(z+2)~...(z+n)n’ 27 0,£1,%2, (B-5)

Then, I'(z 4+ 1) becomes:

1-2-3-...-
I'(z+1) = lim 5 " n*t = lim Lf(z) = 2I(2).
n—oo (z4+1)(z+2)-...(z+1+n) n—soo z+14n
We see that the I-function has the very important difference property
I(z+1) = 2I'(2). (B.6)
Since 1.9.3
I'(1) = lim B ALSLALLE— )

n—o01-2-3-...-n(l+n)
by using (B.6), we have I'(2) =T'(1 + 1) = 1I'(1) = 1, and I'(3) = 2I'(2) = 2. Continuing in
this way, we see that for all positive integers

I'(n) = (n—1)! (B.7)
Second, we have the definite integral form, also due to Euler.
I'(z) z/ e 't*7ldt,  R(z) > 0. (B.8)
0

By just handling out a change of variable, t = z2, we get

I(z) = /OOC e (22 2z de, T (;) = 2/000 e dy = 2@ = V. (B.9)

Now we want to show that these two definitions, (B.5) and (B.8) are equivalent. Define a
function F(z,n) as

n

F(z,n) :/ (1 - t) t>=tdt, R(z)>0,neZ".
0

t

The definition of e gives that e~ = lim,,_,o (1 — %)n Then we see that

lim F(z,n) = F(z,00) = / e tF T dt =T(2),
n—oo 0

the definite integral form of the I'-function. Now carry out a change of variables, u = %

n t n 1
F(z,n) = / <1 - > >~ dt = / (1 —u)"n*"*u*"'n du.
0 n 0

Finally, we do partial integration until we reach the first form (B.5) of the I" function

n® /01(1 —w)"u* "t du =n? ({(1 u)”u:]; Jrn/ol(l fu)"*lu?z du)

n

1
nzf/ (1 —w)""*u* du
0

z

z+1 1 -1 1
nzﬂ |:(1 _ u)n—l u:| n n / (1 _ u)n—2u2+1 du
z z+1], =z+1J

_ 1
= nzin(n D / (1 —w)"2u*™ du
z2(z+1) Jo

L nn—1)-...-1 Y S
_'”_z(z—i—l)'...'(z—ﬁ—n—l)n /0 " du

nn—1)-...-1 {um];

:z(z+1)-...~(z+n71)n z+n
nn—1)-...-1 "
2z+1)-...-(z+n—-1)(z+n)

z
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Take the limit n — oo and we get the I'-function as (B.5).

The third definition of the I'-function is an infinite product, introduced by Weierstrass

I‘(lz) = ze? ﬁ (1 + %) e n. (B.10)

n=1

Here, ~ is the famous Euler constant

n
. 1
v = nh_>rr010 ( E o In n) = 0.5772156619 ...

m=1

Now we show that this definition is equivalent to (B.5), and therefore also to (B.8). We had

PG) = i 1-2:3-...-n c_ 113[ moo 111[ o
= lim = l1im - = 1im - .
7= 5 z(z+1)(z+2)-...(z+n)n n—oo z 4 " "

Just take the reciprocal of both sides of the equation
1 - z . z
— ; -z __ : (—Inn)z
02) —znhm mI:I1 (1+m>n —znhm e | I (1+—m>.

m=1

Then note that

(I3 +3+.+%) ﬁm

Use this in the equation for ﬁ By multiplying and dividing we don’t change its value

] n (I+3+5+.+%)=
=z lim e(-1n™)= H (1 + i) e’n—i’
I'(z) n—o0 ftes! m Hm:l em
1 — 2 lim e(I+3+5+oti-lnn)z 5, ﬁ ( ) m = zeV? ﬁ (1 + i) e n
P(z) n— 00 n— 00 ] ] n ’
m= n=

which is Weierstrass’ definition of I'. This gives

00 -1 OO -1
o (M) ) e (BT

n=1

But we know from (B.6) that T'(1 — z) = —2T'(—=z).
We also know from the preceding section in the appendix that sinmz = 72 [[72; (1 — i) .
This gives

I'(1-2z) 15 -1 1 7z
F(Z)iz 2H< ) T Zsinme

and we have finally established the important formula

D)1 —2) =

(B.11)

sinmz
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Figure B.1: The curve C

B.2.2 Analytic continuation of the I'-function

Let C' be the curve which goes arbitrarily close to and above the positive real axis from +oo
to 0, then circles around the origin and then goes back to +oo arbitrarily close to and below
the positive real axis. See figure B.1. Then consider the integral

/ %(—g)se*. (B.12)
C

The function f(¢) = %(—C)Se_C is analytic along C. The exponential factor e~¢ makes the
function disappear at infinity.

Make a change of variables so that —C = pe®, where # is measured counterclockwise from
the negative real axis. Then integrate the two parts of C' (above and below the positive real
axis). We begin with the integration below the axis, where § = 7

oo o0 ; ) 00
g(_c)se,g _ / —dp e'r psemsepem _ ems/ @psefp.
0 0

o ¢ —pe'm P
Above the axis, § = —.
0 0 —1 oo
d —d v . —inm ; d
74(—()‘96_( _ / P (i pse—mrsepe — _eims / ipse—p.
[eS) C oo TP 0 P

In total we get

/C%(ic)sefg _ (eiws _ efiws) /000 %pSefp = 2isin7ms F(S)

We have found an analytic continuation of the I'-function

1 d¢ _
INs)= ——— | 2=2(=()%¢ B.1
() 2isinms Jo ¢ e, (B.13)
or even more elegant, using (B.11)
1 1 d¢ s ¢
—=— = (=) . B.14
(1 —s) QWi/c*C( e (B.14)

B.2.3 Analytic continuation of the (-function

Normally, we define Riemann’s (-function as

oo

1
¢(s) = vl s> 1.
n=1

We instead introduce a more general function of two parameters: ((s,a)

((s,a) =) ﬁ (B.15)

n=0
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We see that a = 1 leads us back to the original definition. By performing a simple change of
variables, we may be able to express this generalised (-function in terms of the I'-function

d oo d
F(S) = / pp‘;@_p = {p = x(n + (L)} — (n + CL)S/ xxse—(n+a)x
o P 0o

Divide and multiply (B.15) with the expression above, so that

> 1 dx 1 > dx =
_ _ 75 —(nta)r _ @b s —ax —x\n
C0:)=3 (g = § ) / w ] e <n§_0:<e ) )
and we simply get
1 > dx e ax
= —xf . B.16
o) = 17 [ T (B.16)
Now consider the curve integral
d¢ e~ %
Dy — B.17
| S0 (B.17)

where C' is the same curve (Figure B.1) as before. We see that the integrand is analytic
on C. Repeat the calculation procedure we did before, but with this new integral (B.17).
Perform the same change of variables, —¢ = pe'® and divide the integration into two parts.
Integration below the real axis gives

> dé‘ s e—a§ IS > dp s e
/ (_5) ¢ =e / p .
o & l—e o p l—er

Above the real axis we get
0 - oo _
df s € o —1i7s dp s € P
ey )
In total the curve integral (B.17) becomes
d —a& ) ) > q —ap
/C g(_g)s 16_ — = (e — ') /0 ?ppsle_? = 2isinms I'(s)((s,a),

where in the last step we have used (B.16), with the real variable p = x. Again using (B.11),
we can write the (-function as

1 1 d¢ s, e % T(-s) [ de e ¢
¢(s,a) = ['(s) 2isinms /C z(ig) l—e € 2w /C ¢ (=8 1—e ¢ (B-18)

This is our analytic continuation of Riemann-s {-function. We want to calculate ¢(0). To do
this, we may turn the curve C to a closed curve D, by connecting the two ends at infinity.
We can do this since the integrand goes to zero when R(£) — oo, a > 0

I'(1—s) d¢ e
= —" . B.1
o) = 5= § BT (B.19)
The only residue of g(§) = % 16__:,2 inside D will be at 0. Then the theorem of residues

gives for the integral

d —at
%D f(_g)s 16_ — = 2mi res(g, 0). (B.20)

Expand ¢(&) about £ =0

(=& e (g l-at+5E ... 11—af+ 955~
9(&) = ¢ ={s=0} =5 ;
€ l-e® & €48, £ (%_EGJF )
1 a?g? 3 1+ (—a+3)é+...
(e (15 ) e
We easily read off the ¢! coefficient to be —a + % —%, since a = 1 in our case. Then we
use (B.19) and (B.20)
B T1-0), . 3 1\ 1
¢(0) =¢(0,1) = 57 27i res(g,0) =1 - (—2) =-3 (B.21)
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B.3 Computation of {’(0)

We have in the preceding section found ¢(0). To be able to calculate ¢’(0), we have to use a
heavier mathematical artillery. We begin with some preliminary calculations which at first
sight do not seem to have anything to do with Riemann’s ¢ function, but later will become
quite useful. Throughout the text, log z will be the natural logarithm with a suitable branch
for a complex number, whereas In z will be used when z is a real number. Our main reference
is the excellent Modern Analysis [16], by Whittaker and Watson.

B.3.1 Preparatory Calculations
An integral for log z

We start by proving the following expression for the logarithm

o -t _ -tz
log 2 :/ S (B.22)
O t

where 2z > 0. The RHS becomes

0 ,—t _ ,—tz p o=t p o=tz
RHS:/ £ "¢ gt= lim /e—dt—/ C _art.
0 t §—0,p—00 s t 5 t

Performing a change of variables in the second integral, u = tz, with £z > 0, gives

14 e—t Pz e~ U
RHS = lim {/ —dt —/ du}.
0—0,p— 00 5 t 52 u

0 and p are two points on the positive real axis. Together with §z and pz, these points
are corners of a quadrilateral +, inside which the function e/t will be analytic. Then, by
Cauchy’s theorem, the closed curve integral along ~ will be zero,

—t p —t pz —t 0z —t 6 —t
O:]{e—dt:/ de/ e—dtJr/ Catv [ S,
Tt s 1 Lt e 1 s

and therefore
p _—t pz _—t 8z _—t pz _—t
/ e—dt—/ e—dt:/ e—dt—/ .
s U 52 U s 1 PR

We use this result in the calculation above, so that

oz et Pz o—t
RHS = lim / 7dt—/ —dt y.
6—0,p—00 5 t p t
As R(z) > 0, the last integral — 0 when p — co. The first integral becomes
oz ,—t 0z —t
1 -1
/ - / Ite =1,
s 5 t
6z 6z ,—t
1 —1
- / Sdt+ / < dt
st 5 t

oz —t
1—
zlogéz—logé—/ © _at
s t
6z _t
-1
=logz — / ¢ e tdt.
5 t
Since etT_l — 1 when ¢t — 0, the integral vanishes when § — 0. Hence we arrive at the result
(B.22).
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The harmonic series and Euler’s constant

Next, we will prove that the first n terms of the harmonic series can be written as

11 1 N G L
44+ +=-= [ ———at. B.23
totgto o /0 ; ( )

The result follows directly if we note that

S(l—t)k— 1—(1—t)" 1—(1—t)"

s 1—(1—¢) t

which is true when |1 —¢| < 0, as is the case in the integral. Then,

1 n 1n—1 n—1 k+171 n—1
1—(1—1t) / 3 (1—1) 1 11 1
——dt = 1—-t)%dt = —_—| = — =t =4+ —.
/0 i OZ( St =3 | = . drricitatty

k=0 k=0

In fact, Euler’s constant « can be written as

1 1— _t\" n _t\"
v = lim {/ Mdt—/ (ln)dt}. (B_24)
n—o00 0 t 1 t

To see this, we write the integrals within {} brackets as

11— _t\" nq _ _t\" n nq _ _t\"
/(1n)dt+/ 1(1n)dt_/ ldt:/ 1-0-%)
0 t 1 t 1t 0 t

Using (B.23), the result (B.24) follows directly.

Euler’s constant in terms of e

We will now rewrite (B.24) in another way. To do this, we need to recall the definition of the

exponential e,
1 n
e= lim (1 + > .
n—00 n

Taking both sides to the power of ¢, and performing a change of variables —nt — t gives

t n
e~t = lim (1 — ) .
n—o0 n

The careful reader might get nervous about this last operation on such a crucial definition,
and also wonder how fast the convergence is. We will show that it is in fact always true for
n=1,2,... that

t n t2 —t
oge—t—<1—> < (B.25)

n oon
From the series of ¥ and 1/(1 — y),

y? 1 2
eY=14+y+=—+...; —=1+y+y“+...,
2 1—y

it follows that 1+ y < e¥ < 1/(1 —y), and letting y = t/n, we see that
t £\ " t\"
1—|—§en§<1—) ; (1+> zet2<1—) ,
n n n n
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and we notice immediately that e~ — (1 — %)n > 0. Further, we have that

If 0 < a < 1, we have the inequality (1 —a)™ > 1—na. It is obviously true when n = 1. Now,
suppose it is true for n = p > 1. Then (1 — a)? > 1 — pa. Is it then true for n = p + 1?7 The
RHS becomes 1 — (p+ 1)a = 1 — pa — a. The LHS becomes (1 — a)P™ = (1 —a)(1 — a)? >
(1—a)(1—pa) =1—a—pa+a’*p>1-pa—a=RHS. From the principle of induction, it is
true that (1 —a)” > 1 — na for all n > 1. Setting a = t2/n?, we get

2\" 12 2\" 2
1-—) >1-=—; 1-(1-=) <—,
n? n n? n

and (B.25) follows. Then, we may instead write (B.24) as

1 —t o0 _—t
1_
7:/ ¢ dt—/ € _at. (B.26)
0 t 1t

Another way of writing this is

1 oo —t
fy:lim(/dt—/ edt).
6—0 5 t 5 t

Now perform a change of variables in the first integral, A = 1 — e~?. We notice that

s
dt 4] ] s O
AtlogAlnl_e_(sln(e = 1>%0,

when § — 0. We may therefore include this tiny part in the expression for 7, so that

1 o _—t
'yzlim(/dt—/ edt).
d—0 A t 5 t

Perform another change of variables in the first integral, t =1 — e, u = —In(1 —¢),

o0 —t oo —t [e’e) 1 1
~v = lim ¢ dt—/ € at :/ — ) e tat. (B.27)
§—0 5 1-— e_t 5 t 0 1-— e_t t

Derivatives of logI'(z)

We conclude this section with a short calculation, starting from Weierstrass expression (B.10)
for the I' function, and the logarithm of it,

e TT € 7 N 2
F(z+1):67n1;[11+§, logF(erl)’szr;(nlog(lJrn)).

Now differentiate logT'(z + 1),

d = /1 1 1 = z
—loeT 1) = — - - — )=~ —_. B.2
dz ogl'(z+1) Py—i_r;(n 1+Zn) v+;n(z+n) (B.28)

Using the property (B.6), we have that
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d 1 d
logT'(z + 1) =log z + log I'(2); e logT'(z+1) = 2 + e logT'(2),

and therefore

= ~logl(2) = —~ — = B.29
I'(z) d 0gT'(2) T — n(z+n) ( )
Differentiating (B.29) gives
2 1 d & z
L logl(z) = — + =
42 8 (2) z2+dz7;n(z+n)
1 = d z
22 * Z dzn(z+n)
n=1
1 K 1l(z4n)—z-1
z2 ngl n  (z+n)? (B-30)
IR
22 < (2 +mn)?
_y !
- 2
n=0 (Z + ’I’L)

I (2)

B.3.2 Gauss’ Expression for )

We will in this section try to find a formula for 1;,((;)) , applicable whenever 2z > 0. Remember
the expression (B.29) for the logarithmic derivative of I'(z),

I'(z) d J— 2 1 /1 1
— —1 F _ —y — — _ = — — — 1. _ .
I'(z) dz ogT'(2) z +ﬂ; n(z +n) 7 Z*,lEEOT; <m z+m>
Note that ﬁ =7 e tEtmdt m =0,1,2,..., and Rz > 0. Hence we have

I"(z) _ e ooeftzdt+ lim - Z ((mt _ 67(m+z)t> dt
F(Z) 0 o Jo m=1

= —v+ lim —e % 4e

n—oo Jq 1—e

1— —tn
_tiet(l _ e_Zt)dt,

where we have used the formula for the geometric sum. We continue by writing the integrand
as a ratio

I'(z) i ) _e—tz(l _ e—t) + (e—t _ e—(n-i—l)t)(l _ e_zt)dt
- - 1im
F(Z) v n—oo /g 1— e—t
. 0 o=t _ gmat _ g=(nt1)t | o—(ntz+1)t
= = + nli)II;o . 1= e_t dt.

Rewrite v as an integral with (B.27), to get

Id 0o -t —t 0 —t _ ,—zt _ ,—(nt+1)t —(n+z+1)t
(2) _ / e e dt+ lim e e e +e it
['(z) 0

t 1—et n—oo J 1—et

oo —t —zt e o] —zt
e [ LT ey,
o t 1—e-t n—oo [o 1—e?
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The second integral is in fact zero. First look at the case 0 < ¢ < 1. The factor ‘ ll_feiz:

‘ has

a finite limit when ¢ — 0, namely |z|, and is therefore bounded, so when n — oo, the part of
the integral from ¢ = 0 to ¢ = 1 goes to zero. Next, look at the case when ¢t > 1. Then, since
Rz >0,

1+ |e==t] 2
<

1—e#
1—e! 1—e v’

1—et
and when n — oo we get the integral from 1 to oo also equal to zero. Then we have the
interesting result named after Gauss,

d I(z) o et et
L ogT(z) = [ . B.31
dz ogT(2) /0 t 1—et dt (B.31)

B.3.3 Binet’s First Expression for logI'(z)
By letting z — z 4+ 1 in (B.31), we get

/ oo —t —(z+1)t oo —t —zt
M:/ L,eidt:/ et e
F(Z + 1) 0 t 1-— e_t 0

We remember from (B.22) that

0 -t _ -tz oo —t oo —tz
log z = / Ldt; / e—dt =logz + / ¢ dt.
0 t o t o t

Use this, together with adding and subtracting the identity fooo %e*“’dt = i in the expression

for 1;,((;111)), we find

d o etz etz 1 1
—logT(z+1) =1 - dt+ | — — —e "dt
7 108 (z+1) ogz—i—/o ; - +<2z /o 5¢ )

1
1 ©r1 11
== tlogz— . =gt
9, 1087 /0 (2 t+et1)e

The integrand is continuous when ¢ — 0, and since Rz > 0 it really converges uniformly. We
are therefore allowed to integrate with respect to z under the integral sign

2 d 71 /11 1 /
71 F ! 1 d/: Fr— 1 r_ _ 7t2dt d/
/1 dz’(Og (2" +1))dz /1 (2z/+ogz /o <2 t+et—1>e > 2,

and

1 N 2 D B e 7]
logT'(z 4+ 1) —log'(2) = ilogz—i—[z log 2z’ — 2] — i—g—i-etil — dt
o _

1 /11 1 —tz _ gt
,logz—kzlogz—z—l-l—&-/ (_t+ )6 e
0

2

Now, from (B.6), logT'(z + 1) = log (2I'(2)) = log z + logI'(z), and

1
logT'(z) = (z— 2) logz—2+1

+/°° 111 e-“dt_/“’ L S R
o \2 t et—=1) t — Jo \2 t e—-1) t

We put our attention on the last integral, which we call I. Also define an integral J,

© /1 1 1 et /1 1 1 e
I= S ——dt; J= S dt.
/0 <2 t+et—1> t /0 <2 t+et—1> t

Using these definitions, we see that

(B.32)

92



1 1 1 1 1 1

Let us make a change of variables ¢t — % in the expression for I. We get

/1 2 1 e~t/2
I= S, [ —
/0 (2 t +et/2—1) t

The difference between J and I becomes

* /11 1 e~s * /1 2 1 e~ t/2
J—1= S dt — e [
/0 (2 t+et—1> t /0 <2 t+et/21> t
:/00 1+ 1 et’? 41 idt
0 et —1  (et/2 —1)(et/24+1) t

t
1 6t/2 eft/Z
t > t

: 1 _—t_ 1 e _
Since e o+ =

J:/m<gﬁ%ﬁ4)@_/mlizﬁ
0 t? o 2t

—t/2 _ —t]® oo _1,-t/2 +et 00 | ot
= . +/ 2—dt7/ fe—dt
t 0 0 t 0 2t

eft/Q _ eft 1 oo eft _ eft/Q
—lim— " 4= / S )
t—0 t 2 0 t

The integral is just In 3 by (B.22). The limit is

emt/2 _ et et’2 1 1 1
lim——— = lime™? - . ,
t—0 t t—0 2.+ 2 2

so that J = 3 + 3 In . From (B.33), using the result I' () = /7 in (B.9), we have

1 1 1 1 1. 1 1
I==+4J-logl (=) =-4-+-In-—Inya=1--In2nm.
2+J og <2> 5 T3 t3zing n+/m 5 In2m

Hence, (B.32) becomes

1 1 /71 1 1 etz

1)1
et—1 )t
as t — 0, which may be shown in the study of Bernoulli polynomials. For large ¢ it is clearly
1

et—1

is continuous

which is called Binet’s first expression for logI'(z). The factor (% -1+

bounded, and we may set (% -1+ ) 1 < K, where K is a constant independent of ¢.

From this, with z = x + iy, we have

1 1 > K
logT'(z) — <z—2) logz—|—z—§1n2ﬂ' <K/ eftxdt=;—>0, T — 00.
0
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Therefore, we have the approximate formula for logI'(z) when Rz > 0,
1 1
logT'(z) = z— = )logz— 2+ = 5 In 27. (B.34)

B.3.4 Plana’s Formula

Suppose that we have an analytic function ¢(z), which is bounded whenever z; < Rz < x5,
where x1 and x5 are two integers. Then we will show that

2001 + 61 + 1) + 0@ +2) + ...+ 9z — 1) + 30(a2)

dy, (B.35)

[ L [ ¢(xa +iy) — dp(x1 +iy) — ¢(w2 — iy) + d(w1 — iy)
- ¢(Z)d2 + - 27y
1 Jo es™y —1
a relation that is called Plana’s formula, and which we will use twice in the sections to
come. We prove it by adding the equations for two curve integrals. The first curve integral
is fc = Lzﬂ)le, where C is the rectangle with corners (given in order) x1,z2, 2 + ic0 and

z1 + t00. The second is fc qu(fz Zl, where (5 is the rectangle with corners (given in order)

1, %2, Lo — 100 and x1 — i00. See figure B.2.

C1

W1 xp Rez

C2

Figure B.2: The closed contours C; and Cs.

Let z = x 4 iy. The first integral becomes

e—i2m(z2tiy) — 1  rSoo

2 p(x)dx [ o(xe +iy)dy . Tyt o(2)dz [0 o(x1 +iy)dy
= /:v e—i27r3: -1 +Z/0 + lim e—i27rz -1 +e o €7i27r(x1+iy) _ 1

1 To+ir

Using the fact that ¢(z) is bounded whenever 27 < Rz < x4, the integral involving r vanishes,
and also using the fact that x; and x5 are integers, we get

T2 .
j{ qbgz)dz _ / 2 < (wa + zy2 (a1 +1y) dy. (B.36)
016727‘—‘271 - 67.71'17 e2ry 1
The second integral becomes
¢(z)dz
Cs 61'27'rz -1
T2 —o0 . X1 —ir 0 .
qb(x)da: ny d(x2 +iy)dy + lim qb(z)dz L ¢(m1 + ;y)dy .
o ei2mr _ ] 0 ei2m(z2+iy) _ ] r=00 Joo in ei2mz _ 1 o ei2m(z1+iy) — ]

94



Here, the third integral on the RHS also vanishes as r — co. In the second and the fourth
integrals, we perform a change of variable y — —y, to get

o(x)dz _ [* / Ole —iy) — o —iy)

12TZ - 2m
c, € 1 e™y —1

6127”7 - (B.37)
T

We want to use the theorem of residues for the integrals over C; and C5. The poles of
% are simple (remember that ¢(z) is analytic), they are just the integers, lying on the
real axis. See figure B.2. The curves C and C5 crosses the integer poles from z; to z3. How
do we treat poles which are not inside the contour, but instead on the boarder? Look at a

specific example with the curve C in figure B.3.

e

X0

Figure B.3: Example of a contour C that crosses a pole 3. One may include or exclude the
pole by taking different paths around it.

We may avoid the pole in xy by taking a trip around it along a semicircle, clockwise or

counterclockwise. The relevant term of the Laurent expansion around zq is Z“:;O. The
integration of this term along the semicircles becomes

/ a-1 . _ [ z—m0= se, ) aox f i df = —a_yim, if clockwise
z—xo | dz=1idedo R f i df = a_yim, if counterclockwise.

If taking the semicircle clockwise, the pole is excluded. In the residue theorem,

7{ f(z)dz = 2mi Z(residues inside C), (B.38)
c

a factor —a_pim will appear on the LHS, due to zy. It becomes +a_1im on the RHS. If
we instead take the semicircle counterclockwise, the pole is included. A term +a_qi7m will
appear on the LHS of (B.38) due to xg, and a term a_1i27 will appear on the RHS, since xg
is included. The net result is a term a_yim on the RHS of (B.38), which is the same result
as obtained in the clockwise semicircle case. Hence, it is very natural to interpret ”a crossed
residue” as “half a residue”. In the same way, if there is a right-angled corner of the contour
at a residue, it will contribute with a fourth of the value that an included residue would give.

Having discussed crossed poles for a while, we now return to the proof of Plana’s formula.

The residue for f(z) = e¥£(:z) 7 at an (included) pole zy € Z, such that x; < zp < x5 is easy
to find. Let f(2) = 42— = 54. We see that G'(2) # 0, 50
_ F(20) _ ?(20) _ $(20)
resf(2)|z:z0 - G/(ZO) - :F27T’L.€¥i27r20 = F o .

Using these residues, counting the poles x; and zo as quarter residues and the integers in
between as half residues, we complete (B.36)

/m > ¢(x2 + 1y) ¢(m1+z‘y)d :7{ p(2)dz

z € 12” — e2my — 1 Y o, e~i2mE — 1
o 1oE@) 1é@tl) 1g@@i+2)  1é@a—1) 14(za)

a 4 2mi 2 2mi 2 2mi 2 2mi 4 2mi )7

and by just shuffling minus signs we find

[ * Bz +iy) — $las +iy)
o e z27r9: _ 1 627ry -1 Y

= i(b(:m) + %(b(:h +1)+ %qi?(xl +2)4+...+ %(ZS(ZEZ -1+ i(b(lé) (B.39)
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Paying attention to the fact that Cs is negatively oriented, we complete (B.37) and get

/“ / Sl —iy) — ¢z —y) ¢(2)dz
- 6227'([1? _ ewa 1 Cy 612772 —1
(1o(x1)  1Pp(x1+1)  1o(xy +2) Lo(xa —1)  1¢(x2)
— omi (= - - 4o -
7” <4 omi 2 2mi 2 2m T3 2w 4 2m )

and by again just shuffling minus signs we find

o b1 — iy) — Oz — i
o 6127rr _ / = Z€y27ry _ (1 2 Zy) dy
= 10(o0) + 56+ 1)+ 30001 +2) 4 56 — 1)+ 79(w2). (B.40)

Next, add the equations (B.39) and (B.40) side by side

2 1 1
- LGN Rl K
z1

1 /00 Owe +iy) — dlor +iy) + dlar —iy) — dlaz —iy) ;.

e2my — 1

= 300) + 61 + 1) + (1 +2) o+ (s — 1)+ 30(z2).

eI27E | po—i2me

We find that —mi— + oz = (w1 = — L, and by just writing 2 instead of

x, we receive the wanted result (B.35).

B.3.5 Binet’s Second Expression for logI'(z)
We will now use the result (B.30)

d? >
logT'(z
dzog Z (z+n)?

to find another expression for logI'(z). Let 7oz C)2 be the function ¢(¢) in Plana’s formula
(B.35), assuming that Rz > 0. We see that

L 108T() = 5+ — = 6(0) + 0(1) + 6(2) +
a2 8 2 (2412
Since Rz > 0, ¢(() is analytic and bounded when R( > 0, and we can apply Plana’s theorem
where 1 = 0 and 25 — co. Since ¢(¢) — 0 when R( — oo, the factor % in front of ¢(oc0)
does not matter, and we write

26(0) +6(1) +6(2) +
y— P(xa +it) — (0 +it) — d(w — it) + ¢(0 — it)
a /0 Grep® T, im 5 / ] dt. (B.41)

The two terms in the right integral which depend on z5 will disappear when x5 — co. Now
add £¢(0) = 515 to both sides of (B.41), and perform the integration over the real variable ¢

1 N o 4] 1 /°° 1 1 1 i@t
222 z+ f 0 (z—it)2  (z+1it)? ) 2 —1

111 °°(z+zt)2—(z—it)2 dt B4
. / (B.42)
1

—— logI'(z) =

dz

222 i (z—it)(z +it))2 et —1
1 n /°° 4tz &t
0 (Z2 + t2)2(627rt _ 1) :

—+
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The integral converges uniformly. Hence, we may integrate under the integral sign in (B.42)
from 1 to z,

d z 1 z o0 1 z 1
—logT(¢)| = |-— log 2']% —2t dt.
le/ ogT'(z )]1 { 22/]1‘*'[0952}1 "‘/0 |:Z/2+t2:|162ﬂ't_1

t dt n 2/00 t dt
22 + t2)(€27rt _ 1) o (1 + t2)(e27rt _ 1) '

The last integral is clearly convergent, and will be treated just as a constant. Then, collecting
all the constants into a constant C, we get

d 1 1 >
—logl'(z) = —— + = +1 A-—2
7, log (2) 2z+ 2+ ogz+ /0 (

ilogI‘(z)z—i—l-logz—i-C—Q/ t dt (B.43)
2z 0 (

dz 22 +2)(e2mt — 1)’

Integrate again from 1 to z. There is still no problem to integrate under the integral sign, so

; 1 B R . oo t1*  dt
log'(2")]] = -5 log2']] + [¢'log 2" — 2] + [CZ']] + 2/ [arctan ,} T
0 2| e 1

Continuing,

627'ri§ —1 ?

1
logT'(z) = —ilogz—i—zlogz—z—i—1—|—C’z—C’—|—B+2/

o arc;oan(t/z) dt—2/oc arctant
0 e2rt _ 1 0

and again the last integral is convergent and has just a constant value. Collect all the different
constants into one constant C’ and find that

1 o tan(t
logT'(z) = (z - 2) logz+ (C—1)z+C" + 2/ %n(/lz)dt. (B.44)
0 et =
We now want to determine the constants C' and C’ in (B.44). Since arctan{ = 05 litt? <
OE % = £, we know that

logT(2) — <z - ;) logz — (C' — 1)z — C'

2 [ t

when Rz — co. Also, we found in (B.34) that for large Rz

— 0.

1 1
logT'(z) — (z— 2) logz+ 2z — §1n27r

Comparing these two results, (which only apply for large Rz), we determine the constants C
and C' to be

1
C=0; C’:§1n27r.

Then, (B.44) becomes

°° arctan(t/z)

St (B.45)

1 1
logT'(z) = 2z— = logz—z+71n27r+2/
2 2 )

which is Binet’s second expression for logI'(z).
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B.3.6 Hermite’s Formula for ((s,a)

Having for long only dealt with the I' function, we now turn our attention to Riemann’s ¢
function. This becomes obvious immediately when we apply Plana’s formula (B.35) to the

function ¢(z) = (ajz)d. We apparently have
1 1 1 1 1
~4(0 1 N 4. ==
2¢()+¢()+¢()+ 2(a+0)5+(a+1)5+(a+2)5+

so, using Plana’s formula with z; = 0 and x5 — oo,

«a@mm+¢uw.u1wm+(2wn+mn+wm+n)

2 2
1 > .1 p(w2 +iy) — ¢(0 + iy) — dz2 — iy) + #(0 —iy)
_20,5 —|—/O ¢(Z)d2 + zil—r}loo ;/0 ezﬂ'y 1

1 o0 o1 1 1 dy
-+ é(2)dz — zhinoo f,/ — vl
2 iJo (a+ z2 —iy) (a+x3+iy)s ) e 1
1 1

2a 0
+i/°° 1 dy
iJo \(a+0—iy)* (a+0+iy)s) e*™v -1

dy

(B.46)

We have not yet motivated that it was possible to set 1 = 0 and let £ — oo in Plana’s
formula. We will do that now, by noting that the obtained integrals are convergent. Introduce

1 ( 1 1 ) 1 ((a+x+iy)s—(a+x—iy)s>.

Q(x,y)zz (a+x_zy)s_(a+x+zy)5 :% ((a+x)2+y2)s

The two complex numbers z = (a + x + iy)® and zZ = (a + « — iy)® are each other’s complex
conjugates. Their difference is z — z = 2iJz. We write

a+z+iy=+/(a+x)?+y?(cosh + isinh),

where 6 = arctan (a%ﬁ), and by de Moivre’s formula,

s

z=(a+z+iy)® = ((a+)>+y*)* (cos sf + isin sf).

Then
Sz = ((a+2)* +y*) 2 sinsfd = ((a+ 2)* + y*)? sin (s arctan _Z|/_ ) ,
a+w
and
1 2i((a+z)? +9?) % sin (s arctan ﬁ) sin (s arctan a_%z)
q(z,y) = SRIIT: = . (B.47)
2i ((a+z)* +y?) ((a+z)2+y?)2
It is always true that arctan a%}‘ < 7, and we have earlier found that arctan ‘ ﬁ% < ﬁ .
Using the first inequality, writing o for Rs, we find
1 ((a+x)2+y2)1/2 o
lg(z,y)| < 73 ‘smsf
((a+z)2+y?) [l 2
1
< ____ ginh (—\s\). (B.48)
((a+o)2+y2) 572 Ml A2

To confirm the last inequality, study the function f(x) = sinhz — sin . Differentiate, to get
f'(z) = coshz — cosz, which is always a non-negative function. Since f(0) = 0, |sinhz| >
| sin z|.

y

P it follows that

From arctan ‘ £
a-t+x

<
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lq(z,y)| < ! sinh( ylsl ) (B.49)

((a+x)24+y2)7?  Natw

Now look at the case y > a and ¢ > 0, and use (B.48) to see that the integral [ ;12,& y)l dy
is convergent when = > 0 and tends to zero when z — oco.
For the case y < a (and still ¢ > 0), we instead use (B.49) to see that the integral [; zfy y)l dy
is convergent when x > 0 and tends to zero when z — oo.

These results together give that fooo e%(fy’ﬁ)l dy is convergent when > 0 and tends to zero
when x — oo.

The last two integrals in (B.46) involve exactly the integral [ %(,fi;y)l dy, when  — oo
and when x = 0, respectively. The integral involving xo — oo will disappear, so we are
left with 2 [ e%(fy’{’l dy, which is convergent when o > 0. The other integral in (B.46),
fooo d(2)dz = fooo ﬁdz, is convergent if o > 1.These convergences guarantee that we are

allowed to use Plana’s formula in the interval from 0 to co. Using (B.46), (B.47) and what
we have discussed above, we can write

1 < 1 °°  sin(sarctan(y/a))
C(s,a)——g—%—/o mdm—%—?/() (

2a° a2+ y2)s/2(e27ry _ ]_)

1 N [(aJr:r)lT:o +2/OOO : sin (sarctan(y/a))

2a® 1—s a? +y2)s/2(e?™y — 1)

If still 0 = Ns > 1, we see that the integrated term — 0 when x — oo, and

. ql—s . /00 sin(s arctan(y/a))
¥ — o (a®+y?)2(ermv —1)

((s,a) = dy, (B.50)
which is Hermite’s formula.

We have thus far assumed that 0 = Rs > 1. We want Hermite’s formula to be valid when
s = 0. Then we need to do an analytic continuation of this function in the complex plane, as
we did with another function in the section where we computed ¢(0). We will not repeat the
process which we did there. We just note that the integrand in (B.50) is an analytic function
in the entire complex plane (both €™ — 1 and sin s arctan y/a become zero when y = 0, so
the pole at y = 0 is "cancelled”.) We can therefore generalise (B.50) to be valid in the whole
complex plane, except for the point s = 1. Certainly, more mathematical theory is needed
to be completely sure of this. However, let us compute

in(0)d 1 1
e =@ (0 =C0) =,

1 oo
¢(0,a) = f—a+2/
2 o (
which we already know. To obtain ¢’(0), we differentiate (B.50) with respect to s,

(—la'~*Ina)(s —1) —al=* -1
(s—1)2

d 1
—_ — _Za7%]
sC(s,a) 2a na -+

+2/°O cos(sarctan ¥) arctan £(a? + y*)2 — sin(sarctan £)1(a? + y?)% In(a® + y*) dy
0 (a2+y2)s e2ry _ 1’

where the integral can be shown to be convergent for all values of s, and consequently we
were allowed to differentiate. Find the limit s — 0 as

{ Ina a' *lna al=s

.0 = { o) oot

s=0

+2 /°° cos (sarctany/a) arctany/a — 3 sin (sarctany/a) In(a® + y?) J
Y
0 (a2 +y2)""* (e — 1)

Ina  arctany/a ° arctany/a
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Now recall the result (B.45), where we let z = a and ¢ = y, and find that

1 1 s t
logI'(a) = <a—2) lna—a+§ln27r+2/o %n_y{ady,

and so

1 > arct 1
<a 2) lnafa+2/0 ab:2J+Il_ygac@:logl“(a) — §1n27r.

Using this in (B.51), we finally arrive at

¢'(0,a) =1logT(a) — %ln27r; ¢'(0)=¢'(0,1) = —% In 27,
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