
Windows NT® Server
Server Operating System

Using and Developing Applications
Compatibility Scripts with
Windows NT® Server 4.0,
Terminal Server Edition

White Paper

Abstract

Microsoft® Windows NT® Server 4.0, Terminal Server Edition, is a new technology that gives the
Windows NT Server operating system the capability to serve 32-bit Windows® operating system-
based applications to terminals and terminal emulators running on personal computer and other
computer desktops. The Terminal Server environment is, by definition, a thin client architecture
where all application processing occurs centrally on the server. Because Terminal Server terminal
emulator clients will be available for many different desktop platforms (Macintosh, UNIX, and
others), Terminal Server provides access to 32-bit Windows-based applications from virtually any
desktop, and provides a bridging technology for organizations that are transitioning to a pure 32-
bit desktop environment.

This paper provides guidelines for using and developing Applications Compatibility Scripts for the
Terminal Server environment. This is a highly technical document and a thorough understanding
of Windows NT Server 4.0 and Windows NT Server 4.0, Terminal Server Edition will be important
for understanding the information in this document. For a more information about
Windows NTServer 4.0, Terminal Server Edition see
http:\\www.microsoft.com\ntserver\terminalserver

®

© 1998 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, the BackOffice logo, , , , Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Other product or company names mentioned herein may be the trademarks of their
respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

0698

INTRODUCTION .. 1
Terminal Server Extends the Multi-user Capabilities of Windows NT Server 1

APPLICATION COMPATIBILITY ... 3
Why Do Application Compatibility Issues Exist? 3

Problem Areas, Compatibility Issues and How They are Resolved 3

REGISTRY SETTINGS... 4
Per User Data in HKEY_LOCAL_MACHINE: 4
Application fails to create HKEY_CURRENT_USER settings on install: 5

FILES ... 6
Incorrect Pathname for per-user data: 6
Files Missing when normal user logs in: 7
Applications accessing same cached files: 8
Icons for applications do not show up in the start menu: 8

OBJECTS...10
Maintaining the name of the System Global objects: 10

COMPATIBILITY FLAGS ...12

HOW TO SET UP USERS UTILIZING LOGON SCRIPTS14

APPLICATION CONFIGURATION SCRIPTS..............................15

TOOLS FOR ADDITIONAL AUTOMATION FOR SCRIPTS IN
TERMINAL SERVER ..16
Program Tools 16
1. ACREGL.exe 16
2. ACSR.exe 17
3. ACINIUPD.exe 18
4. CACLS.exe 18
5. FINDSTR.exe 19
6. REGINI.exe 20

CONCLUSION..24

FOR MORE INFORMATION ...25

APPENDIX A: USRLOGON.CMD..26

APPENDIX B: MSWORD97.CMD..28

APPENDIX C: FLOW CHART OF USRLOGON.CMD...................31

CONTENTS

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Microsoft® Windows NT® Server 4.0, Terminal Server Edition, is a new technology
that gives the Windows NT Server operating system the capability to serve 32-bit
Windows® operating system-based applications to terminals and terminal emulators
running on personal computer and other computer desktops. The Terminal Server
environment is, by definition, a thin client, 100 percent server-centric architecture.
Because Terminal Server terminal em ulator clients will be available for many
different desktop platforms (Macintosh, UNIX, and others), Terminal Server
provides access to 32-bit Windows-based applications from virtually any desktop.
Terminal Server allows you to roll out 32-bit Windows-based applications to a
heterogeneous set of desktops while transitioning to a pure 32-bit desktop
environment.

Unlike the traditional client/server environment, an application runs only on the
server in the Terminal Server environment. The Terminal Server client performs no
local processing of applications. The Terminal Server operating system transmits
only the application presentation— the Graphical User Interface, or GUI— down to
the client. Each user logs on and perceives only his or her session, which is
transparently managed by the server operating system and is independent from any
other client session.

From an application usage perspective, one of the biggest benefits of Terminal
Server is that the majority of existing 16- or 32-bit application programs run "as is"—
no programming changes are required to run them on a Terminal Server. This does
not, however, mean that all existing applic ations run equally well under Terminal
Server. As with the addition of any new operating system technology, understanding
how to design applications that take advantage of these new capabilities is
important. It’s also important to understand how this new service can magnify the
negative results of bad programming habits, and to point out specific areas to watch
for.

Note that following these guidelines does not limit or compromise an appl ication's
ability to function in the traditional client/server Windows NT environment— Terminal
Server-optimized applications work well in both enviro nments.

Terminal Server Extends the Multi-user Capabilities of
Windows NT Server
In addition to providing a means to serve Windows-based applications to te rminals
and other thin client devices, Terminal Server extends the current multi-user
capacity of Windows NT Server. Of course, Windows NT Server is inherently multi-
user-capable in the following ways:

• User profiles stored on the server can be used to allow numerous users to see
many desktops and run various applications when they log on.

• A sophisticated security system controls the capabilities and access rights of
both local and remote client users.

• Operating system interfaces allow concurrent users to safely access common

INTRODUCTION

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 2

files and databases stored on file servers throughout a distributed network.

The Terminal Server technology goes beyond the client/server multi-user services
listed above. With Terminal Server, users share hardware and sof tware resources
commonly found on a local Windows or Windows NT-based client. These resources
include use of a central CPU, memory, and storage, as well as operating system
resources such as the registry and other data structures.

This document is divided into several sections.

♦ The first section provides in-depth information about why application
compatibility issues exist and where the main issues are and possible solutions
for those issues.

♦ The second section examines the Applications Compatibility Flags, and how
they are used to negate some applications issues.

♦ The third section shows how to set-up a user logon script and explains the
purpose of a user script..

♦ The fourth section explains , the Application Compatibility Script itself and
describes how to fix issues discussed in this paper..

♦ Appendix A contains a printed version of an example User.cmd file (script) that
can be used as a starting point for designing your own compatibility scripts.

♦ Appendix B contains a printed version of the Microsoft Word97 script with
explanations of what each section does. Again, this can be used as a starting
point for developing your own scripts.

♦ Appendix C has a flow chart showing the process that occurs when the
userlogon.cmd script executes and what occurs. This is to provide a visual
representation of what is occurring.

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Why Do Application Compatibility Issues Exist?

Ideally, applications would install and run on Terminal Server without requiring any
special configuration. Unfortunately, this isn’t always the case. Many applications,
particularly older applications, were not designed to allow operation by multiple
users. These applications make assumptions about the operating environment that
are not valid in a multi-user operating system.

As a result, these applications must be tuned before they run properly on NTS/TSE.
In the future, application compatibility will become less of an issue because
applications will designed by the developers to correctly handle multiple users.

Problem Areas, Compatibility Issues and How They are Resolved
There are a few classes of issues that might need resolution and therefore an
Application Compatibility Script. The following sections describe for each area what
the issues are and how to resolve them.

APPLICATION
COMPATIBILITY

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 4

Applications keep configuration information in a system database called the registry.
The two most important sections of the registry are called
HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER.

Information that pertains to the entire system should be stored in
HKEY_LOCAL_MACHINE. An application might store the following information in
this section:

♦ The components of an application that were installed.

♦ The path used to load application components.

♦ In certain circumstances, the path to a shared database. For example, a Point
of Sale application where all users reference the same database could put that
path in HKEY_LOCAL_MACHINE.

Applications store user specific information in the HKEY_CURRENT_USER section.
This section is part of the user profile. When a user logs on, his profile is loaded
into the system’s registry and it becomes HKEY_CURRENT_USER. When the user
logs off, any changes to HKEY_CURRENT_USER are written back to his user
profile. Applications might store the following types of information in
HKEY_CURRENT_USER:

♦ Paths to custom dictionaries, mailboxes, configuration files, and temporary
directories. Per-user paths are particularly important for multi-user operation.

♦ Settings which are per-user preferences. For instance, some users might want
to enable background spell checking while others may want to disable it.

Per User Data in HKEY_LOCAL_MACHINE:
An application may put per-user data into HKEY_LOCAL_MACHINE instead of
HKEY_CURRENT_USER. For example, an application may store the path to a
mailbox in HKEY_LOCAL_MACHINE. This would cause all users to share the
same mailbox, which probably isn’t the desired result. The application should use
HKEY_CURRENT_USER for per-user paths.

Resolution:

The most common problem deals with paths. By mapping each user’s home
directory to a drive letter, a common path can be specified which still maps to
individual files for each user. This technique will be discussed in more detail in the
Setting up Users sections on p. 14.

Other types of HKEY_LOCAL_MACHINE issues typically can’t be corrected. For
example, if the application stores color preferences in HKEY_LOCAL_MACHINE,
then users won’t be able to specify custom color preferences.

HKEY_CURRENT_USER information setup for single user only:

REGISTRY SETTINGS

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Resolution:

Terminal Server handles this situation by providing an install mode. You enter
install mode by issuing the command “change user /install” at a cmd prompt or by
selecting “All users begin with common application settings” from the Add/Remove
Programs wizard. Once you have entered install mode, you can install the
application. Each registry setting that is written to HKEY_CURRENT_USER will be
mirrored into a special location within HKEY_LOCAL_MACHINE. When your
installation is complete, the “change user /execute” command takes you out of
install mode. If you’re using the Add/Remove Programs wizard, you are
automatically taken out of install mode after you click the finish button. Terminal
Server propagates the mirrored information in HKEY_LOCAL_MACHINE to each
user’s HKEY_CURRENT_USER when the information is needed. The location of
the mirrored registry entries are:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Ter
minalServer\Install.

Application fails to create HKEY_CURRENT_USER settings on install:

An application may not create HKEY_CURRENT_USER registry settings during
installation. Instead, it might wait until the first time a user runs the program. If the
person who installs the application does not run it while install mode is still active,
the HKEY_CURRENT_USER settings won’t get copied to
HKEY_LOCAL_MACHINE and the automatic propagation won’t occur.

The first time each user runs the application, their HKEY_CURRENT_USER will be
loaded with the default settings. Depending on the application, this may or may not
be appropriate. If the default settings aren’t sufficient, then they would need to be
corrected for each user individually.

Resolution:

Before leaving install mode, the administrator can run the application. If the
administrator has already left install mode but hasn’t run the application, just re-
enter install mode with “change user /install” and run the application. If the
administrator has already run the application while in execute mode, create another
administrator account. Log on with this new account, change to install mode, and
run the application. In all cases, use “change user /execute” to leave install mode
after running the application.

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 6

The files and directories an application uses can also cause problems. Primarily,
the issue is with applications that use public locations for per-user files. Here are
the issues:

Incorrect Pathname for per-user data:
An application may use the same pathname for a file that contains per-user data. In
the best case, if one user updates this file, it affects all other users. More severe
problems include preventing multiple users from running the application
simultaneously and corruption of the file, which could cause the application to fail for
all users.

It’s important to note that most files don’t contain per-user data and are safe to
share. Some files could be classified either way, depending on the system
administrator’s preference. For instance, document template files could be made
read-only and safely shared. Or, users could have their own set of template files
that they can update as desired.

Resolution:

This is perhaps the most difficult configuration issue to resolve. The solution is to
update the pathnames of per-user files so these files reside in each user’s home
directory. There are three issues. First, you may not immediately know there is a
problem. Second, it is difficult to detect which files need to be made per-user.
Third, it isn’t always obvious where to change the pathname.

When you find that a problem exists, you often become aware of the conflicting file
too. If you have difficulty finding the shared file, you can turn file auditing on. It is
most helpful to audit successful writes to files.

♦ After finding the name of the offending file, you must determine where that path
is stored. . Applications can store the pathname of per-user files in a
configuration file or it can be hard coded within the application. The pathname
can also be stored in HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USERS.

The first step is to use regedt32 to search HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USERS for the file in question. Typically, applications store
their values in the “Software” sub-tree. If you don’t find anything, you might also
want to check the product documentation. Sometimes the default path is hard-
coded in the program, but registry settings can be added to override the default.

The second step is to check the Options or Preferences dialog in the application. It
may provide a way for you to change the path. If so, you should then determine if
the settings are stored in a configuration file. File auditing can tell you if any files
get updated after you make the change in the program. The idea is to determine
the configuration file so it can be propagated to other users. The technique for this
can vary since the configuration file may contain other information that is specific to
each user.

FILES

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

A third method is to contact the application vendor. They may be able to identify a
method of updating the pathname in question.

Once you have found the location of the path that needs to be changed, what
should you change it to? If the path is stored in HKEY_LOCAL_MACHINE, a special
technique is used.

When a user logs on, a script (UsrLogon.cmd) will be run that maps
a drive letter to their home directory using the “subst” command.
For example, Z:\ will map to \\server\users\fredf for Fred Flounder
and to \\server\users\barneyb for Barney Baitfish.

With this technique, you can specify what appears to be a shared path, such as
Z:\mail\mailbox.dat. Yet, the drive mapping causes each user to get a unique copy
of the file in their home directory.

Some per-user files are automatically generated by the application. A mailbox
would be an example of this type of file. Other per-user files, such as document
templates, must be provided for the user. That is, you must copy the standard files
into the user’s home directory. If you specified the path as a subdirectory of the
user’s home directory, you may need to create the subdirectory too.

Per-user tasks like this can be performed in a script that is run during logon. The
script can check the user’s home directory to determine if the files or directories in
question already exist. If not, it can copy them from a “master” copy. Using a script
allows you update current users with a new application as well as automatically set
up new users you may add later.

Files Missing when normal user logs in:
When a user runs the application, it can’t find certain files that are located in or
below %systemroot%. However, if an administrator runs the application, it finds the
files.

Resolution:

Applications that use the GetWindowsDirectory() function to determine
%systemroot% benefit from an automatic remapping. For users, the function
returns the “windows” subdirectory of their home directory. Administrators, on the
other hand, get the actual %systemroot% directory.

Normally, this is useful. It automatically converts a shared file into a per-user file.
However, if the shared file is expected to exist, then it won’t be found under the
user’s home directory. This can be corrected by using a logon script to copy the file
if it doesn’t already exist.

As an alternative, an application compatibility flag exists that can disable this
automatic remapping. This is appropriate if the files under %systemroot% are only
being used for read access. For more information about these flags, refer to the
Application Compatibility Flags section of this Paper (p.12), …

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 8

Inaccessible files due to file security:
Some applications store files in public directories such as %systemroot%. By
default, some public directories have read-only permission for non-administrative
users. This prevents accidental modification of common files. However, if an
application attempts to write a file into one of these shared directories, then it fails.

This type of problem frequently manifests as an application that works fine for an
administrative user, but fails for non-administrative users. To help track down this
type of problem, you can use file auditing to log writes that fail.

Resolution:

There are three ways to correct this situation. First, note that Terminal Server
automatically maps %systemroot% to the user’s home directory as mentioned
above.

Second, you can treat this issue just like the previous issue. That is, you find the
pathname that needs to be updated and you change it to reference data in the
user’s home directory.

Finally, you can add extra permission to a public directory or to individual files within
a public directory. Be very careful if you add permission to the entire directory,
because other programs may then be able to alter the behavior for the entire
system. The decision to make public directories read-only was based on the theory
that it is better for an application to fail than for the entire system to fail.

Applications accessing same cached files:
Some applications use temporary or cache directories to store information that
relates to the current user. The application may not create a separate directory for
each user. This causes the application to store temporary data for multiple users in
a single location. If the application isn’t intelligent about handling this data, one user
can delete data which is still needed by another user.

Resolution:

The best solution is to update the path as discussed in issue 1. Keep in mind that
the application may not automatically create the directory on an as-needed basis.
Therefore, your logon script should check the user’s home directory, and create the
sub-directory if it doesn’t already exist.

Icons for applications do not show up in the start menu:
During installation, some applications add their Start menu shortcuts to the menu of
the user performing the install instead of to the All Users Start menu. Then, other
users don’t have the program on their start menu.

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Resolution:

If you use “change user /install” or “All users begin with common application
settings” from the Add/Remove Programs wizard, Terminal Server addresses this
issue for you. When you enter install mode, the state of the Current User start
menu is captured.

When you finish installing the application and return to execute mode, the Current
User start menu is compared to the saved state. Any additions or changes are
moved from the Current User start menu to the All Users start menu. Additionally,
each shortcut that is moved has read access added for group Everyone.

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 10

Microsoft Windows applications can create objects (such as Events, Devices,
Semaphores, and Sections) which are used to communicate with other applications.
Each object has a name which is globally visible on the system. This can create a
problem similar to shared files. That is, two instances of an application might both
reference the same object name. They want separate objects but instead end up
sharing a single object. This can cause erratic or incorrect behavior.

To solve this problem, Terminal Server appends a colon and the logon ID to each
object that gets created. Thus, if an application runs under logon ID 4, it creates
object foo as “foo:4”. Under logon ID 7, the same application would create “foo:7”.
This prevents object collision between several running copies of an application.
Objects that are renamed are known as user global objects.

The console is treated differently. If an application that is running on the console
creates an object, nothing gets appended to the name. Using the above example,
object foo would actually be named “foo”. Objects that do not get renamed are
known as system global objects. In addition to programs explicitly run on the
console, service programs also run in the context of the console logon.

 Maintaining the name of the System Global objects:
Certain classes of applications require the system global objects. For example,
Enterprise backup and defragmentation utilities often run a service on each system
in the network. An administration program can then be run on one machine in the
network. The administration program communicates with the service running on
each machine.

The service will create system global objects. The administrator program, on the
other hand, most likely runs on a client instead of the console. When it creates an
object with the same name, the object gets renamed. As a result, the service and
the administrator program actually use different objects, even though they intended
to share a single object.

If an application works correctly when run from the console and it fails when run
from a client logon, this problem may be present.

Resolution:

Keep the administrator program’s objects from being renamed. By default, all
objects are user global. There are several methods of telling Terminal Server that
an object should be system global.

The easiest method involves registering the DLL or executable that creates the
object. By default, every object created by a DLL or EXE is user global. That
default can be changed with the command “register filename /system” which marks
the file as one which creates system global objects. After this change, any object
created by this DLL/EXE will not be renamed.

OBJECTS

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Finally, if the application is being developed in-house, the best method is for the
software developer to append “\\SYSTEM” to system global object names when
they is created in the application. This informs Terminal Server that the object is
system global and should not be renamed.

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 12

These values are set under HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Windows NT\CurrentVersion\Terminal Server\Compatibility\
Applications\appname, where appname is the name of the application's executable
file. For example, if the executable file name for an application is WINWORD.EXE,
the key would be WINWORD.

DOS application 0x00000001

OS/2 application 0x00000002

16-bit application for Windows 0x00000004

32-bit application for Windows 0x00000008

16 or 32-bit application for Windows 0x0000000c

As discussed above, these values set the version to which you want the registry
settings to apply.

Return username instead of computername 0x00000010

Some apps use the computername as a unique identifier. In Terminal Server every
user will have the same computername. So, this setting will tell the system to return
the username to an application rather than the computername.

Return Terminal Server build number 0x00000020

Normally, the Windows NT build number is returned. Some applications will be
aware of Terminal Server and will need to know which version of Terminal Server is
running. An example is HOTFIX, which is set to a value of 0x28 (Return TS build
number plus 32-bit application). Terminal Server will have hotfixes separate from
Windows NT.

Disable Registry mapping for this application 0x00000100

Normally, registry settings are captured and cached during installation and then
written to each user's registry when the user runs the application. This is not always
appropriate and applications can simply get global settings from the cache area
without the settings being written to the user's registry. An example is REGEDT32,
which has a flag value of 0x108 (Disable registry mapping and 32-bit application).

Instruct application to create System Global Objects 0x00000200

Normally, named objects are decorated with the Session ID. Setting this value tells

COMPATIBILITY FLAGS

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Multi-User Object Manager not to decorate objects created by this application. An
example is SNASRV, the executable for SNA Server. All its objects need to be
registered as system globals (non-decorated) so the flag value is set to 0x200.

Return systemroot, not user's WINDOWS directory 0x00000400

This is the most commonly used application flag aside from the version flags.
Normally, in Execute mode applications are told that the user's Windows directory in
the user's home directory is the systemroot. This will cause some applications to
fail because they need to find something in the real systemroot. An example is
CINMANIA, the executable for Cinemania.

Limit the reported physical memory (GlobalMemoryStatus) 0x00000800

Some applications fail if they are told that the default 32 megabytes (MB) of physical
memory is available. Setting a value of 0x800 causes the system to report a
smaller amount of available physical memory. An example is MSACCESS, which
has a flag value of 0x80c (limit reported memory and 32-bit app).

Log object creation to file 0x00001000

When troubleshooting application problems concerning objects, it may be useful to
create a log file of created named objects. Creation of semaphores, mutexes,
events and sections will be recorded. You must also set a system environment
variable called CITRIX_COMPAT_LOGPATH to a valid directory, and the log file
will be written there. This value is not set for any application by default. A further
example is located in the APPENDIX.

Don't put app to sleep on unsuccessful keyboard polling (WIN16 only)

0x20000000

Some 16-bit apps (and many DOS apps) rely on keyboard polling to discover
keyboard activity. This continual keyboard check can greatly impact CPU
utilization. Normally, the system limits this polling. However, some apps will fail if
they are limited. None of the default applications use this setting.

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 14

For optimum application compatibility, when users log in they should run a script
that maps their home directory to a drive letter. Additionally, the script should
perform any other application specific tasks that are necessary, determined with the
information above about users needed interaction with the application.

There are several methods of running a script when a user logs on. First, the script
can be put into the user’s Startup folder. This allows a unique script for each user,
but requires a bit more effort on the part of the system administrator.

Second, the script can be placed in the All Users Startup folder. With this method, a
single script is used for the entire system. It is the easiest method, but it somewhat
less flexible.

Finally, the administrator can enter a Logon script name into each user’s profile with
User Manager for Domains. With this method, you can enter a different script name
for each user. For example, you may have a user.cmd script for normal users and
admin.cmd for administrators. Logon scripts need to be put into
%systemroot%\system32\Repl\Import\Scripts.

Note: User Manager for Domains also lets you map a user’s home directory to a
drive letter for network home directories (i.e,, Connect Z: as
\\server\users\username). Don’t be misled. The drive letter is only mapped to the
server name and share point. The drive letter does not reference directories
beyond the share point.

At a minimum, the script must do the following:

♦ Set RootDrive=Z:

♦ Subst %RootDrive% /d

♦ Subst %RootDrive% %HomeDrive%%HomePath%

Additionally, the script may invoke application configuration scripts by appending
“Call scriptname” to the minimal script listed above. Terminal Server includes
application scripts for many popular applications. You may need custom application
scripts for other applications you run. Application configuration scripts will be
described in more detail in the following section.

NOTE: A sample logon script is included in %systemroot%\compat\user.cmd. Also,
check Appendix A for a printed version of this script and discussion of what each
point does.

HOW TO SET UP USERS
UTILIZING LOGON
SCRIPTS

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Application tuning tasks must occur at two different times: when the application is
installed and when a user logs into the system.

When the application is installed, the administrator may need to do several things:

♦ Update any paths which might cause problems.

♦ Register DLLs and Executables as System Global.

♦ Change Compatibility Flags.

Many of these tasks can be automated using installation scripts. As mentioned,
Terminal Server already includes scripts for various products. You may need to
update the scripts before running them, because they make assumptions about
your environment. For example, Microsoft Office 97 assumes you installed the
application into its default directory \Program Files\Microsoft Office. If your
installation uses a different path, you will need to change the scripts. Note that the
application compatibility user logon scripts are matched to the installation scripts. If
you change information in the installation script, you will often need to make a
corresponding change in the user logon script. Any changes that may be needed
will be clearly indicated at the top of the script.

When running an installation script, you should be in install mode. If the system
isn’t currently in install mode (you can use “change user /query” to determine this),
use the “change user /install” command to enter install mode. Run the appropriate
script. When the script completes, use “change user /execute” to return to execute
mode.

The install scripts which are included with Terminal Server may be found in
the %systemroot%\Application Compatibility Scripts\install directory.

Each time a user logs on, in addition to mapping the user’s home directory to a
drive letter, the logon script may need to perform application specific tasks.
Examples of these tasks include:

♦ Creating sub-directories in the user’s home directory.

♦ Copying files from a “master” location to the user’s home directory.

♦ Setting permissions on particular files.

The user logon scripts which are included with Terminal Server may be found
in the %systemroot%\Application Compatibility Scripts\logon directory.

APPLICATION
CONFIGURATION
SCRIPTS

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 16

The Application Scripts use one final component to assist in optimizing previously
written applications for operation in a Terminal Server environment. That
component is a series of small programs/executables that are called from within the
application compatibility script to retrieve certain values from the registry, change
permissions on a set of files.

Some of these tools are designed specifically for Terminal Server, while others were
originally part of the resource kit and you may already be familiar with them.
Regardless, a full explanation of each .exe with syntax descriptions is provided in
the following section. These files are all located in the %systemroot%/applications
compatibility scripts directory

You can find good examples of how these programs are used in appendix b, which
also includes all of the other application compatibility scripts that Microsoft provides
when the Terminal Server product is installed.

Program Tools

1. ACREGL.exe

What is the purpose of this utility?
This tool looks up the desired key and value in the registry. It
outputs the result as a SET statement to the indicated filename.
Options allow some massaging of the value before it is written to
the file.

Syntax: Acregl Filename EnvVarName Key Value
Options

NOTE: Key must start with HKLM or HKCU. Often the key will be
in quotes because it will contain embedded spaces.

Detailed information on command line options:

Value may be blank ("") to look up the default value for a key. The
acregl tool only supports values that return a string type. REG_SZ
is ideal. REG_MULTI_SZ would only contain the first item in the
list. REG_EXPAND_SZ should work but it won't explicitly get
expanded.

The options parameter can be blank ("") or it can be one of the
two following choices:

"STRIPCHARxn" will search from right to left. It strips the
rightmost n instances of the character x. The count may be omitted

TOOLS FOR ADDITIONAL
AUTOMATION FOR
SCRIPTS IN TERMINAL
SERVER

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

for a single character, but it is still recommended. Otherwise you
need to be careful; a backslash will be treated as an escape
character for the quote which follows.

Example:

"STRIPCHAR\3" changes
C:\WINNT40\Profiles\All Users\Start Menu to

C:\WINNT40

"STRIPPATH" removes the path from the value.

Example:

"STRIPPATH" changes
C:\WINNT40\Profiles\All Users\Start Menu to Start
Menu

Full Example:
ACREGL MyKey.Cmd INSTLOC
"HKLM\Software\Microsoft\Office\8.0\Common\InstallRoot" "" ""

(This command creates the file MyKey.Cmd with the
contents)

SET INSTLOC=C:\Program Files\Microsoft Office

An application compatibility script can then use "CALL
MyKey.Cmd" to retrieve the value of the registry key.

ACREGL returns an errorlevel of 1 for failure or 0 for success.

2. ACSR.exe

What is the purpose of this utility?
This command performs simple text replacement. It reads from
the Input file and writes to the Output file. Each occurrence of the
search string is changed to the replace string. Any of the
parameters can contain environment variables if desired.

Syntax: Acsr Search Replace InputFile OutputFile

Example:

ACSR "#ROOTDRIVE#" "%RootDrive%"
Template\Office97.key Office97.key

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 18

This example changes the text #ROOTDRIVE# to the value
of the RootDrive environment variable. It reads the
Office97.key from the template subdirectory and writes to
an Office97.key file in the current directory.

ACSR returns an errorlevel of 1 for failure or 0 for success.

3. ACINIUPD.exe

What is the purpose of this utility?
The aciniupd tool is used to update .ini files. It has several modes and options.

Syntax: Aciniupd [/e | /k] [/u] [/v] ini_file section key new_value

Detailed information on command line options:

/e option is used to update the value for a given key and section. For
example, the following will update the value of the USER-DOT-PATH
key in the Microsoft Word section of WinWord6.ini:

Aciniupd /e "Winword6.ini" "Microsoft Word"
USER-DOT-PATH "%RootDrive%\OFFICE43\WINWORD"

/k option updates a key name with the new key name in the specified
section. In the following example, the key WZTABLE.MDA in the
Libraries section of MsAcc20.Ini is changed. Note, that this option
changes the left side of the KEY=VALUE statement while the /e option
changes the right side.

Aciniupd /k "Msacc20.ini" Libraries "WZTABLE.MDA"
"%RootDrive%\OFFICE43\ACCESS\WZTABLE.MDA"

/u option updates the .INI file in the user's windows directory instead of
the system directory. This is accomplished by changing the system
mode to execute if currently in install mode. The mode returns to its
original state when the tool completes.

/v option is for verbose mode. In verbose mode, error and status
messages are displayed as appropriate. By default, the tool operates
silently.

ACINIUPD returns an errorlevel of 1 for failure or 0 for success.

4. CACLS.exe
What is the purpose of this utility?
Cacls.exe is used to display or modify access control lists (ACLs) of files.

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Syntax:
CACLS filename [/T][/E][/C][/G user:perm][/R user [...]][/P user:perm [...]] [/D user [...]]

Example:
Cacls %systemroot%\system32\MsForms.Twd /E /P EveryOne:F

This example replaces the permissions on the msforms.twd file to full
control for the group Everyone.

Detailed information on command line options:

Filename option displays ACLs for the specific file.

/T option changes ACLs of specified files in the current directory and all
subdirectories.

/E option edits ACL instead of replacing it.

/C option continues on access denied errors.

/G user:perm option grants specified user access rights.
Perm can be: R Read

C Change (write)
F Full control

/R user option revokes specified user's access rights (only valid with
/E).

/P user:perm option replaces specified user's access rights.
Perm can be: N None

R Read
C Change (write)
F Full control

/D user option denies specified user access.

Wildcards can be used to specify more that one file in a command. You can
specify more than one user in a command.

5. FINDSTR.exe

What is the purpose of this utility?
Searches for strings in files using literal text or regular expressions. For more
detail, see findstr in online help.
Syntax: findstr [/b] [/e] [/l] [/c:string] [/r] [/s] [/i] [/x] [/v] [/n] [/m] [/o] [/g:file] [/f:file]
strings files

Detailed information on command line options:

/b Matches pattern if at the beginning of a line.
/e Matches pattern if at the end of a line.
/l Uses search strings literally.
/c Uses specified text as a literal search string.

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 20

/r Uses search strings as regular expressions. This switch is not
required; findstr will interpret all metacharacters as regular expressions
unless the /l switch is used.
/s Searches for matching files in the current directory and all
subdirectories.

/I Specifies that the search is not to be case-sensitive.
/x Prints lines that match exactly.
/v Prints only lines that do not contain a match.
/n Prints the line number before each line that matches.
/m Prints only the filename if a file contains a match.
/o Prints seek offset before each matching line.
/g Gets search strings from the specified file.
/f Reads file list from the specified file.
Strings Text to be searched for.
Files Files to be searched.

NOTE: Use spaces to separate multiple search strings unless the argument is
prefixed with /e.

Examples:
• findstr "hello there" x.y

searches for "hello" or "there" in file x.y.

• findstr /c:"hello there" x.y'
searches for "hello there" in file x.y.

6. REGINI.exe

What is the purpose of this utility
Regini.exe reads in .key files and updates the registry based on the values in
the .key files.

Syntax: REGINI [-h hivefile hiveroot | -w Win95 Directory | -m
\\machinename]
[-i n] [-o outputWidth]
[-b] textFiles...

Example:
Regini msword97.key

Portion of the msword97.key:
HKEY_CURRENT_USER\Software\Microsoft\Office\8.0

Common
FileNew
LocalTemplates
= DELETE
SharedTemplates
= DELETE

The first part of the msword97 key deletes the default values inserted
into the registry by the installation.

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

HKEY_CURRENT_USER\Software\Microsoft\Office\8.0
Common
FileNew
LocalTemplates
= "W:\Office97\Templates"
SharedTemplates
= "C:\Program Files\MS Office\Templates"

The second part of the msword97 key creates new values to be
inserted into the registry, showing specific user information.

Detailed information on command line options:

-h specifies a specify local hive to manipulate.
-w specifies the paths to a Windows 95 system.dat and user.dat files
-m specifies a remote Windows NT-based machine whose registry is to be
manipulated
-i n specifies the display indentation multiple. Default is 4
-o outputWidth specifies how wide the output is to be. By default the
outputWidth is set to the width of the console window if standard output has not
been redirected to a file. In the latter case, an outputWidth of 240 is used.

-b specifies that REGINI should be backward compatible with older versions of
REGINI that did not strictly enforce line continuations and quoted strings
Specifically, REG_BINARY, REG_RESOURCE_LIST and
REG_RESOURCE_REQUIREMENTS_LIST data types did not need line
continuations after the first number that gave the size of the data. It just kept
looking on following lines until it found enough data values to equal the data
length or hit invalid input. Quoted strings were only allowed in
REG_MULTI_SZ. They could not be specified around key or value names, or
around values for REG_SZ or REG_EXPAND_SZ Finally, the old REGINI did
not support the semicolon as an end of line comment character.

textFiles is one or more ANSI or Unicode text files with registry data.
The easiest way to understand the format of the input textFile is to use
the REGDMP command with no arguments to dump the current
contents of your NT Registry to standard out. Redirect standard out to
a file and this file is acceptable as input to REGINI.

Some general rules are:
• Semicolon character is an end-of-line comment character, provided it is the

first non-blank character on a line

• Backslash character is a line continuation character. All characters from the
backslash up to but not including the first non-blank character of the next
line are ignored. If there is more than one space before the line
continuation character, it is replaced by a single space.

• Indentation is used to indicate the tree structure of registry keys The
REGDMP program uses indentation in multiples of 4. You may use hard
tab characters for indentation, but embedded hard tab characters are
converted to a single space regardless of their position

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 22

• For key names, leading and trailing space characters are ignored and not
included in the key name, unless the key name is surrounded by quotes.
Imbedded spaces are part of a key name.

• Key names can be followed by an Access Control List (ACL) which is a
series of decimal numbers, separated by spaces, bracketed by a square
brackets (e.g. [8 4 17]). The valid numbers and their meanings are:

1 - Administrators Full Access
2 - Administrators Read Access
3 - Administrators Read and Write Access
4 - Administrators Read, Write and Delete Access
5 - Creator Full Access
6 - Creator Read and Write Access
7 - World Full Access
8 - World Read Access
9 - World Read and Write Access
10 - World Read, Write and Delete Access
11 - Power Users Full Access
12 - Power Users Read and Write Access
13 - Power Users Read, Write and Delete Access
14 - System Operators Full Access
15 - System Operators Read and Write Access
16 - System Operators Read, Write and Delete Access
17 - System Full Access
18 - System Read and Write Access
19 - System Read Access
20 - Administrators Read, Write and Execute Access
21 - Interactive User Full Access
22 - Interactive User Read and Write Access
23 - Interactive User Read, Write and Delete Access

• If there is an equal sign on the same line as a left square bracket then the
equal sign takes precedence, and the line is treated as a registry value. If
the text between the square brackets is the string DELETE with no spaces,
then REGINI will delete the key and any values and keys under it.

• For registry values, the syntax is:

value Name = type data

• Leading spaces, spaces on either side of the equal sign and spaces
between the type keyword and data are ignored, unless the value name is
surrounded by quotes.

• The value name may be left off or be specified by an at-sign character
which is the same thing, namely the empty value name. So the following
two lines are identical:

= type data
@ = type data

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

• This syntax means that you can't create a value with leading or trailing
spaces, an equal sign or an at-sign in the value name, unless you put the
name in quotes.

• Valid value types and format of data that follows are:

REG_SZ text
REG_EXPAND_SZ text
REG_MULTI_SZ "string1" "string2" ...
REG_DATE mm/dd/yyyy HH:MM DayOfWeek
REG_DWORD numberDWORD
REG_BINARY numberOfBytes numberDWORD(s)...
REG_NONE (same format as REG_BINARY)
REG_RESOURCE_LIST (same format as REG_BINARY)
REG_RESOURCE_REQUIREMENTS (same format as REG_BINARY)
REG_RESOURCE_REQUIREMENTS_LIST (same format as
REG_BINARY)
REG_FULL_RESOURCE_DESCRIPTOR (same format as
REG_BINARY)
REG_MULTISZ_FILE fileName
REG_BINARYFILE fileName

• If no value type is specified, default is REG_SZ

• For REG_SZ and REG_EXPAND_SZ, if you want leading or trailing spaces
in the value text, surround the text with quotes. The value text can contain
any number of imbedded quotes, and REGINI will ignore them, as it only
looks at the first and last character for quote characters.

• For REG_BINARY, the value data consists of one or more numbers The
default base for numbers is decimal. Hexadecimal may be specified by
using 0x prefix. The first number is the number of data bytes, excluding the
first number. After the first number must come enough numbers to fill the
value. Each number represents one DWORD or 4 bytes. So if the first
number was 0x5 you would need two more numbers after that to fill the 5
bytes. The high order 3 bytes of the second DWORD would be ignored.

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 24

The amount of work it will take to bring an application in line with the Terminal
Server guidelines varies from one application to another. If an application was
designed to operate in a multi-user network environment, chances are it will take
very little tweaking to turn it into an application that is optimized for Windows NT
Server 4.0, Terminal Server Edition.. This is what Application Compatibility scripts
are designed for.

This document has presented a variety of guidelines and suggestions for using and
developing applications compatibility scripts for the Terminal Server environment.
All of these guidelines and suggestions should be taken into consideration when
you develop 32-bit applications; however, the three main points you should
remember about the Terminal Server environment are:
• Registry Settings - Applications keep configuration information in a system

database called the registry. The two most important sections of the registry
are called HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER. Being
aware of the differences between these two locations and the impact they have
on the application is critical to optimal performance

• Files - The files and directories an application uses can also cause problems.
Primarily, the issue is with applications that use public locations for per-user
files. It is important to be able to find the files that are inaccessible for whatever
reason and make them available to the application/user.

• Object - Windows applications can create objects (such as Events, Devices,
Semaphores, and Sections) which are used to communicate with other
applications. Each object has a name which is globally visible on the system.
This can create a problem similar to shared files. Take this into account

By taking these points into consideration, System Administrators, developers, etc.
can make the most of their a pplications in the Terminal Server enviro nment.

CONCLUSION

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Please refer to http://www.microsoft.com/win32dev under Guidelines for add itional
information on porting 16-bit applications to the 32-bit Windows environment. For
the latest information on Windows NT Server and Terminal Server Edition, version
4.0, check out our World Wide Web site at
http://www.microsoft.com/ntserver/terminalserver.

FOR MORE
INFORMATION

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 26

USRLOGON.CMD

@Echo Off

Rem

Rem This is for those scripts that don't need the RootDrive.

Rem

If Not Exist "%SystemRoot%\System32\Usrlogn1.cmd" Goto cont0

CD /d "%SystemRoot%\Application Compatibility Scripts\Logon"

Call "%SystemRoot%\System32\Usrlogn1.cmd"

:cont0

Rem

Rem Determine the user's home directory drive letter. If this isn't set, exit.

Rem

Cd /d %SystemRoot%\"Application Compatibility Scripts"

Call RootDrv.Cmd

If "A%RootDrive%A" == "AA" End.Cmd

Rem

Rem Map the User's Home Directory to a Drive Letter

Rem

Net Use %RootDrive% /D >NUL: 2>&1

Subst %RootDrive% /d >NUL: 2>&1

Subst %RootDrive% %HomeDrive%%HomePath%

Rem

Rem Invoke each Application Script. Application Scripts are automatically

APPENDIX A:
USRLOGON.CMD

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

Rem added to UsrLogn2.Cmd when the Installation script is run.

Rem

If Not Exist %SystemRoot%\System32\UsrLogn2.Cmd Goto Cont1

CD Logon

Call %SystemRoot%\System32\UsrLogn2.Cmd

:Cont1

ROOTDRV.CMD

If Exist "%SystemRoot%\Application Compatibility Scripts\RootDrv2.Cmd" Call
"%SystemRoot%\Application Compatibility Scripts\RootDrv2.Cmd"

USRLOGN1.CMD AND USRLOGN2.CMD

These two scripts do not exist until at least one compatibility script is run. These
files contain only CALL statements for various user logon scripts.

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 28

@Echo Off

Rem

Rem Verify that %RootDrive% has been configured and set it for this script.

Rem

Call "%SystemRoot%\Application Compatibility Scripts\ChkRoot.Cmd"

If "%_CHKROOT%" == "FAIL" Goto Done

Rem
###

..\ACRegL %Temp%\O97.Cmd O97INST "HKLM\Software\Microsoft\Office\8.0"
"BinDirPath" "STRIPCHAR\1"

If Not ErrorLevel 1 Goto Cont0

Echo.

Echo Unable to retrieve Word 97 installation location from the registry.

Echo Verify that Word 97 has already been installed and run this script

Echo again.

Echo.

Pause

Goto Done

:Cont0

Call %Temp%\O97.Cmd

Del %Temp%\O97.Cmd >Nul: 2>&1

Rem
###

Rem

Rem Allow read access for everybody on a system DLL that is

Rem updated by Office 97.

Rem

APPENDIX B:
MSWORD97.CMD

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

If Exist %SystemRoot%\System32\OleAut32.Dll cacls
%SystemRoot%\System32\OleAut32.Dll /E /T /G EveryOne:R >NUL: 2>&1

Rem
##

Rem

Rem Remove Find Fast from the Startup menu for all users. Find Fast

Rem is resource intensive and will impact system performance.

Rem

If Exist "%systemroot%\Profiles\All Users\Start Menu\Programs\Startup\Microsoft
Find Fast.lnk" Del "%systemroot%\Profiles\All Users\Start
Menu\Programs\Startup\Microsoft Find Fast.lnk" >Nul: 2>&1

Rem
###

Rem

Rem Change Registry Keys to make paths point to user specific directories.

Rem

Rem If not currently in Install Mode, change to Install Mode.

Set __OrigMode=Install

ChgUsr /query > Nul:

if Not ErrorLevel 101 Goto Begin

Set __OrigMode=Exec

Change User /Install > Nul:

:Begin

..\acsr "#ROOTDRIVE#" "%RootDrive%" Template\MsWord97.Key MsWord97.Tmp

..\acsr "#INSTDIR#" "%O97INST%" MsWord97.Tmp MsWord97.Key

Del MsWord97.Tmp >Nul: 2>&1

Application Compatibility Scripts for Windows NT Server, Terminal Server Edition 30

regini MsWord97.key > Nul:

Rem If original mode was execute, change back to Execute Mode.

If "%__OrigMode%" == "Exec" Change User /Execute > Nul:

Set __OrigMode=

Rem
###

Rem

Rem Update Wrd97Usr.Cmd to reflect actual installation directory and

Rem add it to the UsrLogn2.Cmd script

Rem

..\acsr "#INSTDIR#" "%O97INST%" ..\Logon\Template\Wrd97Usr.Cmd

..\Logon\Wrd97Usr.Cmd

FindStr /I Wrd97Usr %SystemRoot%\System32\UsrLogn2.Cmd >Nul: 2>&1

If Not ErrorLevel 1 Goto Skip1

Echo Call Wrd97Usr.Cmd >> %SystemRoot%\System32\UsrLogn2.Cmd

:Skip1

Echo.

Echo To insure proper operation of MS Word 97, users who are

Echo currently logged on must log off and log on again before

Echo running any application.

Echo.

Echo Microsoft Word 97 Multi-user Application Tuning Complete

Pause

:Done

Applications Compatibility Scripts for Windows NT Server, Terminal

Server Edition

APPENDIX C: FLOW
CHART OF
USRLOGON.CMD

