CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET Fysiska institutionen, 1996

Low Temperature Physics: Calculations of Heat Leaks

The purpose of this exercise is to give you a feeling of the magnitudes of the heat leaks of a cryostat and to estimate which parameters that are the most important ones to consider in the design of low temperature apparatus. Hence, we will estimate the main contributions of the heat transport into the (simplified) cryostat which is specified below.

Inner part: polished Cu $\mathcal{E} = \emptyset \odot \mathbb{Z}$ surface 500 cm² volume 800 cm³

Outer part: tarnished brass $\mathcal{L} = \mathfrak{O} \cdot 6$ Support: stainless steel tube with diameter $\emptyset = 2.0 \text{ cm}$ thickness t=0.3 mm length (77 to 4.2 K) l=6.0 cm

Pressure (He gas) in vacuum space: p=10⁻⁵ mmHg

Electrical leads: 8 Cu wires, $\emptyset = 0.1 \text{ mm}$ 4 constantan, $\emptyset = 0.2 \text{ mm}$

Total length of cryostat, about 50 cm

Rough scale of figure: 1:10

What are the different contributions to the heat transport into the inner part? You should find at least 6 ones. Estimate these heat leaks with the aid of the specifications above and the tables that are enclosed.

Investigate if the Joule heating in connecting leads and a Ge thermometer attached to the inner space will give any problems. (Try different values of the measuring current.) The thermometer has a resistance of about 1 kO in the temperature range in question.

thermometer has a resistance of about 1 $k\Omega$ in the temperature range in question.

In order to get a feeling of the effectiveness of the liquid nitrogen cooled shield, you should make the same calculations for an outer space temperature of 295 K, inner one 4.2 K.

Would the heat leaks change drastically if the outer container were at 4.2 K and the inner one at 1.2 K? (This would correspond to the case of a pumped ⁴He bath surrounded by an unpumped one.) Any other issues to be considered in this case?

Starting from the calculated values (which can be presented in the form of a table to get an overview) we will discuss possible improvements of the cryostat construction (the elements of which are rather antiquated, but is treated for pedagogic reasons).

The experimental figures suggest that for a metal surface in the

TABLE XII

Accommodation coefficient for helium gas

Metal	
Platinum	0-49 (90° K, 153° K); 0-38 (34°-264° C)
Bright platinum	0-44 (50°-150° C)
Blackened platinum	0-91 (50°-130° C)
Closn fresh tungsten	0-025 (79° K); 0-046 (195° K); 0-057 (22° C)
Gas-filled tungsten	- 0-19 to 0-82
Gas-free nickel	0-048 (90° K); 0-060 (195° K); 0-071 (273° K)
Nickel (gas layer adsorbed)	0-413 (90° K); 0-423 (195° K); 0-360 (273° K)
Glass	0-67 (12° K); 0-33 (77° K); 0-34 (273° K)

usual condition encountered in a cryostat, exposed to helium gas at low pressure, a value

 $a \leq 0.5$

should provide a useful upper limit for calculating heat transfer.

TABLE XIII

Mean values of thermal conductivity expressed in W/cm degK

	λ $T_{2} = 300^{\circ} \text{ K}$ $T_{1} = 77^{\circ} \text{ K}$	λ $T_{2} = 300^{\circ} \text{ K}$ $T_{1} = 20^{\circ} \text{ K}$	λ $T_{1} = 300^{\circ} \text{ K}$ $T_{1} = 4^{\circ} \text{ K}$	$\lambda T_3 = 77^{\circ} \text{ K}$ $T_1 = 20^{\circ} \text{ K}$	$\lambda T_{2} = 77^{\circ} K T_{1} = 4^{\circ} K$	$\lambda T_1 = 20^{\circ} \text{ K}$ $T_1 = 4^{\circ} \text{ K}$	$\lambda T_{2} = 4^{\circ} K T_{1} = 2^{\circ} K$
Pyrex glass Stainless steel +	0-0032 0-123	0-0071 0-109	0-0068 0-103	0-0028 0-055	0.0025	0-0012 0-009,	0-0007 0-0022
Inconol (ca. 72 Ni, 14-17 Cr. 6-10 Fe, 0-1 C) hard-drawn	0-125	0-111	0-106	0-061	0-051	0-012	0-003
Monel (c. 66 Ni, 2 Fe, 2 Mn, 30 Cu) annoaled	0-207	0-192	0-183	0-133	0-113	0-040	0-007
Gorman silver (47 Cu. 41 Zn. 9 Ni. 2 Pb) as received	0-20	0-19	0-18	0-14	0-12	0-039	0-005
Constantan (60 Cu, 40 Ni) wire as re- ecived Brass (30 Zn, 70 Cu) as received	0-22 0-81	0-21 0-70	0-20 0-67	0-16 0-31	0-14 0-26	0-04 0-078	0-006 0-015
Coppor (phosphorus deoxidized) as	1-91	1-71	1.63	0-95	080	0-25	0-07
Copper (electrolytic tough pitch) as	4-1	5-4	5-7	8-7	(9-8)	10	4

† These figures for stainless steel are calculated from thermal conductivity data which are representative of the behaviour of types 303, 304, 347, and therefore an appropriate composition could be 18% Cr. 9% Ni, traces of Mn, Nb, Si, Ti totalling 2-30 with romaindor Fe.

TABLE XV

Experimental values of emissivity

	*				
Material	Fulk, Reprolds, and Park (1955), 300' K radiction on 75' K surfice	Meddame (1954), rcont lempera- lure	Ramanathan (1952). 142m radiation on 2° S surface	Blackman, Ecerton, and Truter (1945), 293* K radiation on 90° K surjus	Ziegler and Cheung (1957). 1737 E ratiation on 77° E surface
Al, clean polished	foil 0.02	0.04	0-011†	0-055	0-043:
Al, p'ate	0.03				-
Al, highly oxidiz		0-31			
Brass, clean 1-01-	hed 0.029	0.03	0-018†	0-046	0-10;
Brass, highly ox:		9-9			
Cu, clean polisne		0.02	0.0062-0.013†	0-01^ -0-035	
Cu, highly oxidiz		0-4	-		
Cr. plate	0.03	0-03	-	0-065	\$150-0
Au, foil	0-010-0 023	0.02-0.03		0-0:26	
Au, plate	0.026				
Monei		0.2	-		0-11:
NL polished		0.012	44004078		
P.h. plate	0.028				
Ar, plate	0-008	0-02-0-03		0-0230-036	
Stainless steel	0-043	0.014			
Sn, clean foil	0.013	0-0-0	0-013†	0-033	
Soft solder	0.03				0-047\$
GLISS		0.8		0-87	A 14
Wood's metal					0-16

† These surfaces were electro-polished (Ramanathan). These surfaces were electro-polished (Ramanathan). These surfaces were better fulfilly tolshed for heavily oxidized, but as encountered in normal practice (*Research, Research Construct a than right of old or Apperon traves on a* low emissivity strates ruled to tents with to 0 d or 0 d. He also found that varifaces such as **GEC** adhesive No. Tobl and takente for the take an emissivity $e \simeq 0.575$ summary, butten tape (Sellotupe) had an emissivity of about 0 bs.

Latent heat of vaporization and boiling-point at standard atmospheric pressure of some common gases

Gas	C0,†	0,	A	N ₁	No	н,	4He
Latent heat (cal/gm).	137	51-0	37·9	47-8	20-8	106-8	5·2
Litent heat (cal/cm ³).	223	53-1	53·5	38-0	25	7-56	0·65
Boiling-point (° K)	194-6	90-1	87·4	77-3	27-2	20-4	4·2

THERMAL CONDUCTIVITIES OF GASES AT ATMOSPHERIC PRESSURE

Summary of heat leaks into a cryostat

February 28, 2007

Radiation

For two plane parallel surfaces with emissivities ε_1 and ε_2 ,

$$\dot{Q} = \sigma A \varepsilon_{eff} \left(T_1^4 - T_2^4 \right)$$

where

$$\varepsilon_{eff} = \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2 - \varepsilon_1 \varepsilon_2}$$

Heat conduction through gas

For low pressures such that the mean free path is larger than the separation, the molecules will go from one side to the the other without colliding with each other. The conduction through the gas will proportional to the pressure (i.e. the number of molcules).

$$\dot{Q} = \operatorname{const} \cdot a_0 \cdot P_{mm} \left(T_1 - T_2 \right) \quad \left[\frac{W}{\mathrm{cm}^2} \right]$$

where const = 0.028 for He, P_{mm} is the pressure in units of mmHg and

$$a_0 = \frac{a_1 a_2}{a_1 + (A_1/A_2)(1 - a_1)a_2}$$

 a_1 and a_2 are the accommodation coefficients for the two surfaces and A_1 and A_2 are the corresponding areas.

Heat conduction through support and leads

The heat conduction can be calulated by using Fourier's law, $\dot{Q} = -\lambda \nabla T$. We consider a volume with cross-sectional area A and temperature dependence only in the x-direction.

$$\dot{Q} = -A\lambda(T)\frac{\partial T}{\partial x} = -\frac{A}{l}\int_{T_1}^{T_2}\lambda(T)dt = \frac{A}{l}\bar{\lambda}\left(T_1 - T_2\right)$$

 $\overline{\lambda}$ is the mean value of the thermal conductivity between the two temperatures

$$\bar{\lambda} = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \lambda(T) dt$$

and is tabulated for different materials and temperatures.

Experiment

Joule heating

 $\dot{Q} = RI^2$

Summary

Туре	77 to 4.2K	295 to 4.2 K	4.2 to 1.2K
1. Radiation from warm to cold vessel	2	430	0.000018
2. Radiation in pumping tube	0.075^a - 130^b	0.075 - 130	0.075 - 130
3. Conduction through pumping (SS) tube	100	190^{c}	0.2
4. Conduction through leads	38	31^d	0.63
5. Conduction through vaccum space	3.4	13.5	0.14
6. Conduction through gas in pump tube	9.5	23^e	0
7. Joule heating in thermometer	1^f	1	1
Total heat [mW]	154 - 284	689 - 819	2 - 130
He boil off [l/h]	0.21 - 0.38	0.92 - 1.09	-

 a Blackened tube b Total reflection

cl = 30 cmdl = 36 cmel = 30 cmfI = 1 mA

Table 1: Contributions of heat leaks in units of mW.

Calculations of heat leaks

$$Q = TA E_{eq} (T_{1}^{u} - T_{2}^{u})$$

 $\sigma = 5.67.10^{-12} W/cm^{2}k^{u}$
 $E_{eq} = \frac{E_{1}E_{2}}{E_{1} + E_{2} - E_{1}E_{2}}$

i) From brass to
$$(4 \ cans)$$

 $Eelf = \frac{0.02 \cdot 0.6}{0.02 + 0.6 - 0.01 \cdot 0.6} = 4 \ 0.012$

$$A = SOO cm^{k}$$

$$a) 77 - 4.2 k$$

$$\dot{q} = J \cdot A \cdot E_{eq} (77^{4} - 4.2 k^{4}) = 2mW$$

b)
$$295 - 3424$$

 $\dot{Q} = 043W$

$$d = 18 \text{ kW}$$

2) Through tube
a) Perfect reflection
A = T 1² cm² Black body E=1

$$\dot{Q} = 5A 295'' = 0.13W$$

b) Blackened lube
 $\dot{Q} = 5A 295'' = 75\mu W$

c) Radiation trap at 774

$$q = \sigma A 77^4 = 0.6 \text{ mW} (Black bools)$$

 $q = \sigma A 77^4 = 30 \text{ mW} (Polished SS)$

B Through solids

$$\hat{Q} = \frac{A}{L} \cdot \bar{\chi} \cdot \Delta T$$

3) Stainless steel tube
 $\bar{\chi} = 0.045 \text{ W/cm/k}$ $77 \rightarrow 4.4$
 $\bar{\chi} = 0.003 \text{ W/cm/k}$ $300 \rightarrow 4.4$
 $\bar{\chi} = 0.0022 \text{ W/cm/k}$ $4 \rightarrow 2.4$

$$A = RT \cdot 0.03 \text{ cm}^{2}$$

$$I = 6 \text{ cm}^{2}$$

a)
$$77 - 4.24$$

 $\dot{q} = \frac{A}{l} \cdot 0045 (77 - 4.2) = 0.10 \text{ W}$

b)
$$295 \rightarrow 4n4$$

 $\dot{q} = \frac{A}{l} \cdot 0103 (295 - 42) = 0.94 W$
 $0.19W (l=30m)$

c)
$$42 = 1.2 \text{ k}$$

 $\dot{q} = \frac{1}{2} \cdot 0.022 \cdot (42 - 12) = 0.2 \text{ mW}$

C Through gas
3/4 5) Vaccum space

$$p = 10^{5}$$
 fore
 $\hat{G} + couple. a_{0}$ from $(T_{1} - T_{2})$ W/cm²
where couple = 0.028 for He and
 $a_{0} = -\frac{a_{1}a_{0}}{a_{1} + (\frac{A_{1}}{A_{2}})(1 - a_{1})a_{2}}$
 $A_{1} = A_{1}, a_{1} = a_{2} = 0.5$ (VPPU (mit))
 $a_{0} = \frac{1}{3}$
a) $\mp \mp \Rightarrow 4.24$
 $\hat{Q} < 0.028 + \frac{1}{3} + 10^{5} (\mp 7 + 4.2)$ 500 = 3.4mW
b) $2.95 \Rightarrow 4.24$
 $\hat{Q} = 13.5 \text{ mW}$
c) $4.2 \Rightarrow 1.24$
 $\hat{Q} = 0.14 \text{ mW}$
c) $4.2 \Rightarrow 1.24$
 $\hat{Q} = 0.14 \text{ mW}$
c) $4.2 \Rightarrow 1.24$
 $\hat{Q} = -0.14 \text{ mW}$
c) $A_{2} = \frac{4}{2} \cdot \overline{\chi} (T_{1} - T_{2})$
 $A_{1} = -\overline{\chi}^{-1}, l = 6$ cm

From graph

$$\overline{\lambda} = 25.15^{5} W/cm K$$
 $77 \rightarrow 4.100 + 1$

b)
$$295 \rightarrow 4.2k$$

 $\hat{Q} = \frac{\pi}{6} \cdot 75.15^{5} (295 - 42) = 0.11W$
 $23mW (l = 30cm)^{-1}$

D Experiment
F) Joule heating
The moment Ika

$$\dot{Q} = RT^2 = \begin{cases} 0.1W & T = 10mA \\ 1mW & T = 1mA \end{cases}$$

ź

		77 -> 42K	295-3424	42->124
Ч/	A.I	2 total relloc	0.000018	
4/4	2	0.075-130 Blachenedtube	021-2500	0.075-130
	B.3	150	$190(\lambda=30cm)$	0.2
	4	38	31(l=36)	0.63
	C 5	3.4	13.5	0.14
	6	9.5	23	\bigcirc
)	07	l	(
	Total	154-284mW	689-819 mW	2(-132/mW
	Boiloq	0.21-0.38 M	0.92-1.09 1/4	waters