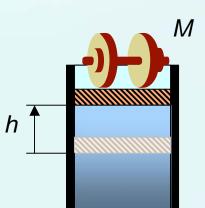
Cooling principles

& gas liquefaction

Content

- Elementary thermodynamics
- Cryogases
- Industrial usage of cooled gases
- Thermometry (1-500K)
- Practical refrigerators (domestic and industrial)
- Peltier cooler


General ways of cooling

Remove the most active molecules

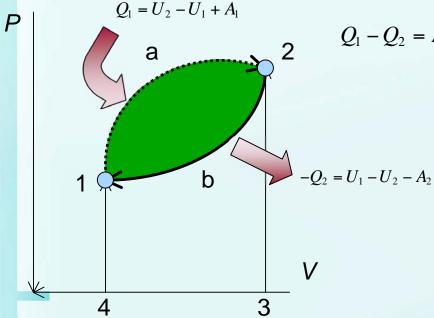
Let the gas expand and make a job

First law of thermodynamics:

$$Q = \left(U_2 - U_1\right) + A_{12}$$

heat

change of internal energy


work done by the system

For infinitely small or elementary quasi-static process:

$$\frac{\delta Q = dU + \delta A}{\text{inexact differential}}$$

Second law of thermodynamics:

"There is no process that, operating in a cycle, produces no other effect than the subtraction of a positive amount of heat from a reservoir and the production of an equal amount of work." (Kelvin-Planck statement; source: Wikipedia)

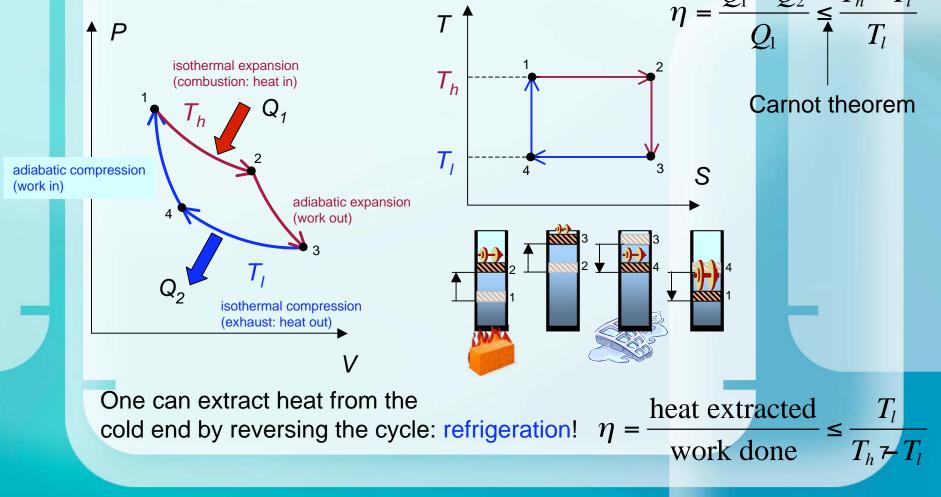
$$-Q_2 = A_1 - A_2$$

For a heat engine:
Efficiency =
$$\frac{\text{work exctracted}}{\text{heat input}}$$

$$\eta = \frac{A_1 - A_2}{Q_1} = \frac{Q_1 - Q_2}{Q_1}$$
$$Q_2 \rightarrow 0: \quad \eta \rightarrow 100\%$$

2nd law: impossible

Third law of thermodynamics:

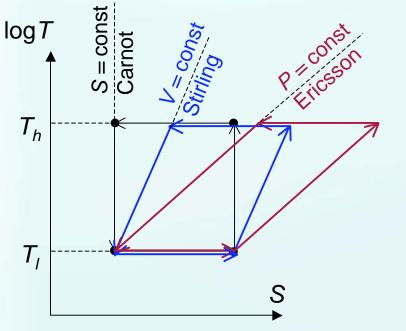

As temperature approaches absolute zero, the entropy of a system approaches a constant.

Allen Ginsberg summarized the three laws of thermodynamics in the following way:

First law: "You can't win." Second law: "You can't break even." Third law: "You can't quit."

source: Wikipedia

The most efficient **Carnot cycle** consists of four *reversible* processes \rightarrow the cycle as a whole is also *reversible*.



Cryo-cooling

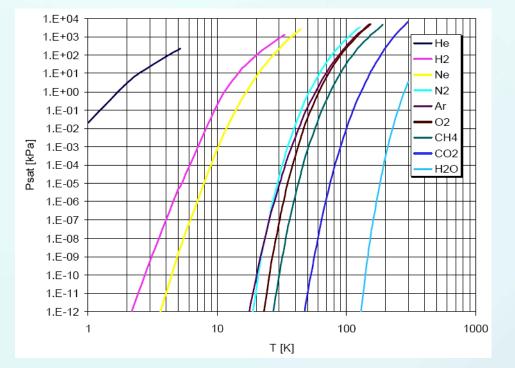
Other cycles

Carnot: isothermal-isentropic Stirling: isothermal-isochoric Ericsson: isothermal-isobaric

10

$$\frac{dT}{T} = \frac{dS}{C_P} \text{ (isobaric)}$$
$$\frac{dT}{T} = -\frac{dS}{C_V} \text{ (isochoric)}$$

The areas (work) of all cycles is the same: efficiency should be close to the ideal one


Cryo-gases

• Characteristic temperatures (K)

Gas	Triple point	Boiling point	Critical point	
Не	2.2 (λ)	4.2	5.2	
H ₂	13.8	20.4	33.2	
Ne	24.6	27.1	44.4	
N ₂	63.1	77.3	126.2	
Ar	83.8	87.3	150.9	
O ₂	54.4	90.2	154.6	
CH ₄	90.7	111.6	190.5	90% of NG
CH ₃ CH ₂ CH ₃		231.1		

Cryogases

Vapor pressures of cryogases

One can further lower T by pumping cryoliquids

Cooling metals

• It is quite costly...

AMOUNT OF CRYOGENIC FLUID REQUIRED TO COOL METALS

FLUID		HE ⁴			H ₂			N ₂			
Initial Te	mp. of Metal	3	00 K	77	κ	300) K	77	κ	30	0 K
		σ	liters per Ib.	σ	liters per lb.	σ	liters per lb.	σ	liters per lb.	σ	liters per Ibs.
Using the latent heat of vapour- ization only	Aluminium Stainless Steel Copper	8.3 4.2 3.9	30.2 15.1 14.1	0.4 0.18 0.27	1.45 0.65 0.98	0.38 0.2 0.17	2.42 1.28 1.08	0.018 0.0085 0.012	0.12 0.05 0.08	0.81 0.43 0.37	0.46 0.24 0.21
Using the enthalpy of the gas.	Aluminium Stainless Steel Copper	0.2 0.1 0.1	0.73 0.36 0.36	0.028 0.013 0.02	0.1 0.05 0.07	0.075 0.037 0.037	0.48 0.24 0.24	0.0097 0.0045 0.0065	0.06 0.03 0.04	0.51 0.27 0.23	0.29 0.15 0.13

The data given above is the specific liquid requirement σ , (the weight of fluid required to cool the same weight of metal to the fluid boiling point). The volume of liquid (liters) required to cool 1 lb. of metal to the fluid boiling point is also given.

Reference <u>dvances in Cryogenic Engineering</u>, Editor; K. [immerhaus Section J-6 by R. B. Jacobs, P 529-535, 1963 Plenum Press

THE ENERGY REQUIRED FOR THE LIQUEFACTION OF SEVERAL GASES USING THE IDEAL, THERMODYNAMICALLY REVERSIBLE PROCESS, $-W = \Delta t - T \Delta S$

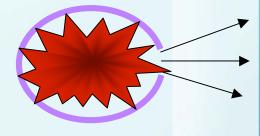
	Energy required for liquefaction starting with gas at 25°C (298.15 K) 1 atm			
Gas	Joules per mole	Kilowatt- hours per kg	Kilowatt- hours per lb	
Air	20,900	0.20	0.091	
Nitrogen	21,400	0.21	0.096	
Oxygen	20,300	0.18	0.080	
Hydrogen	23,800	3.30	1.50	
Helium	27,200	1.89	0.86	
Reference: Cryogenic Engineering, Russell B. Scott, P 1959, D. Van Nostrand Company Inc.				

1 L of LHe: from 50 to 120 SEK 1 L of LN2: about \$2

Usage of cryo gases

• Liquid Natural Gas (LNG)

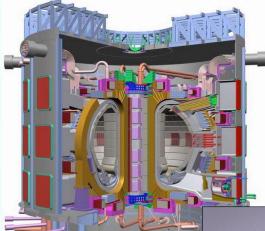
Import of LNG (~110 Mt in total 2002): Japan: 54 Mton; South Korea: 17.7 Mton; Taiwan: 5.3 Mtons. (totally 70% of the world's LNG demand)


Usage of cryo gases

Liquid H₂ and O₂

 $LH_2/LO_2 = 100/600$ (t) SpaceShuttle $LH_2/LO_2 = 25/130$ (t) Ariane 5 Konstantin Tsiolkovsky's rocket equation (1903):

$$\Delta v = v_e \ln\left(\frac{m_0}{m_1}\right)$$



 $v_e^{\max} = \sqrt{\frac{2}{\mu}C_P T}$

(ideal gas, exaust into vacuum)

Usage of cryo gases

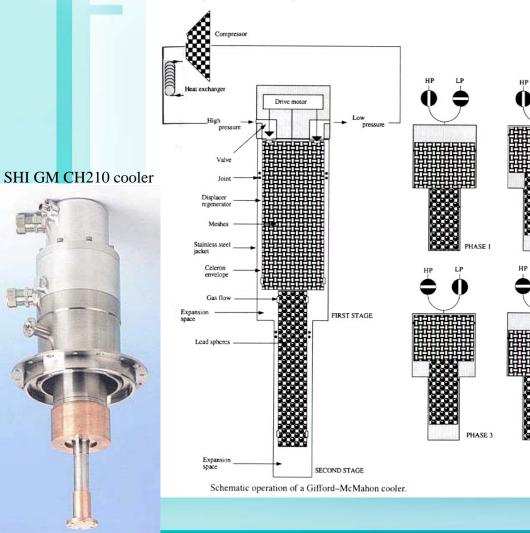
• Cooling of superconducting devices

http://www.virtual-formac.com/

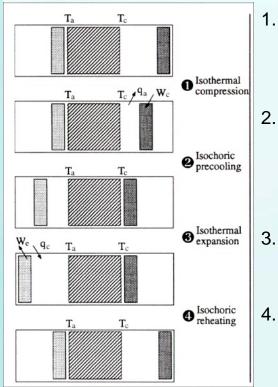


© Copyright CERN

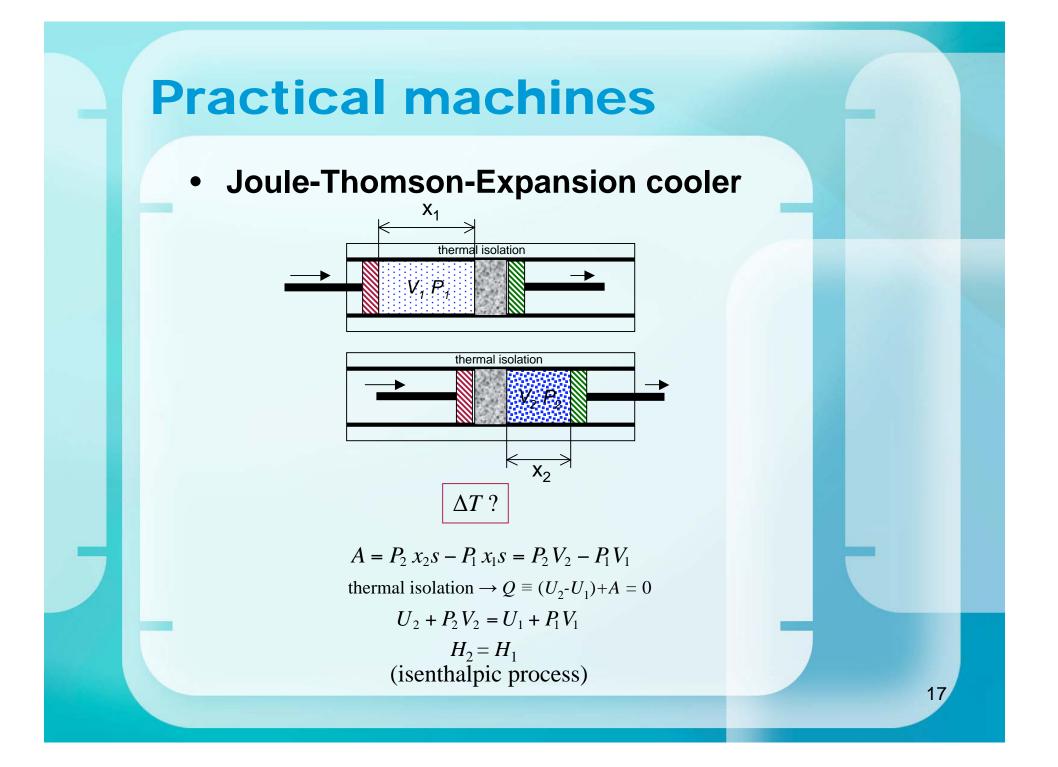
The future Large Hadron Collider (LHC) will use around 1600 superconducting magnets operating at 1.8 K.


21T 900MHz NMR

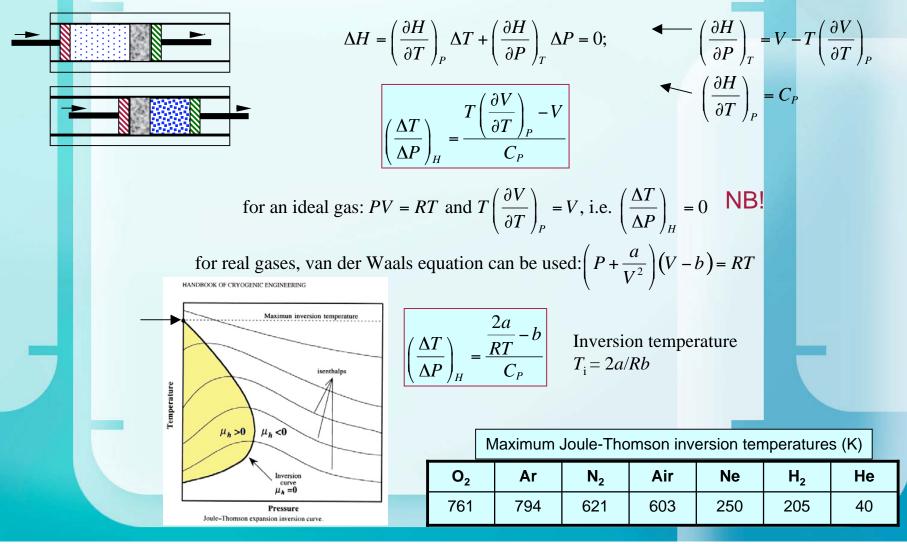
1.5T High Speed MRI

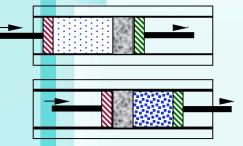

Gifford-McMahon (GM) cooler (Ericsson cycle)

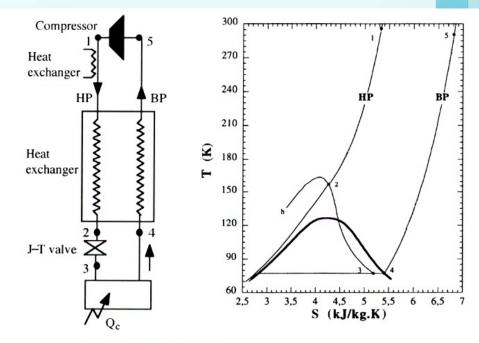
HASE

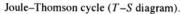


- 1. High pressure gas fills the regenerator at room temperature
- 2. The high-pressure gas passes through regenerator and is cooled down isobarically by the matrix
- 3. The gas undergoes expansion which results in cooling effect.
- PHASE 2
 4. The low-pressure gas passes through regenerator and is warmed up isobarically by the matrix

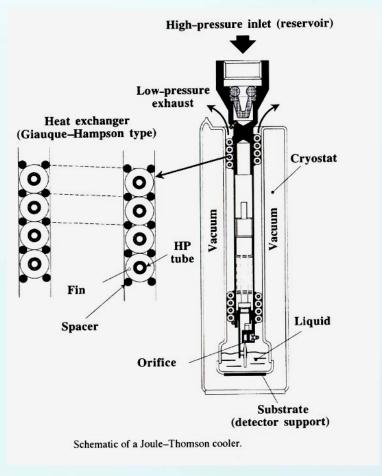

• Stirling-type cooler

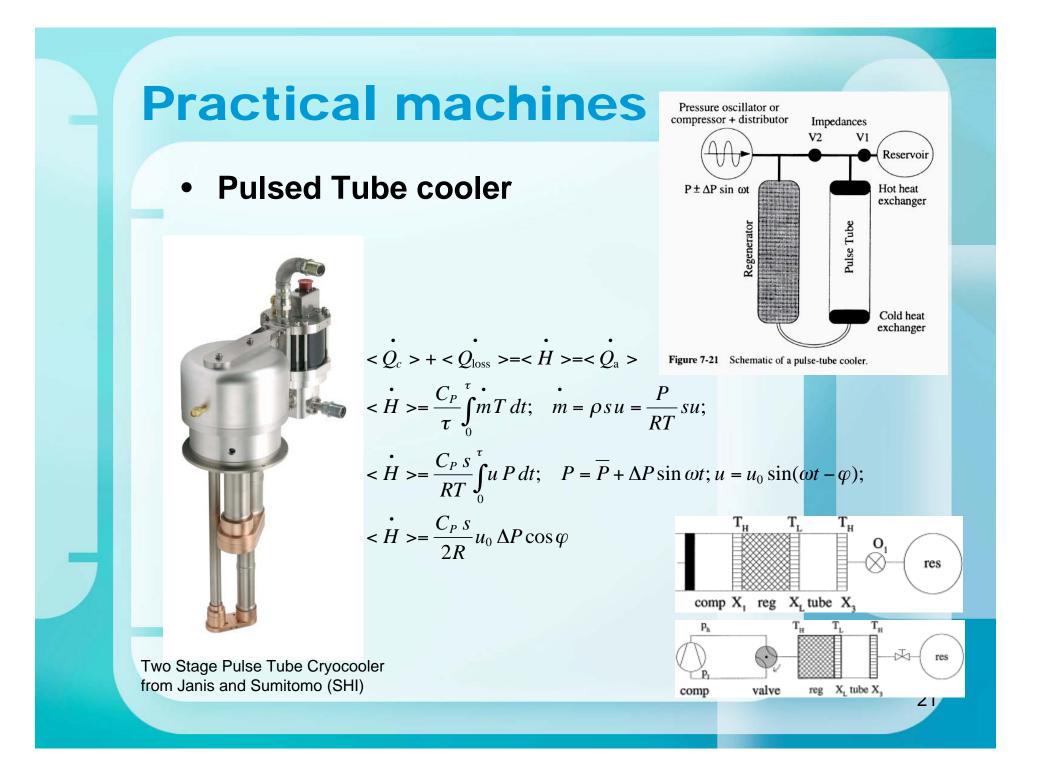

- The compression piston isothermally compresses the gas. A work is transmitted to the gas and the heat is rejected at ambient T.
- 2. Both pistons are moved simultaneously (constant volume); the gas is pressed through the regenerator and is cooled transferring heat to the regenerator.
 - . The expansion piston is moved to expand the gas; the work is extracted and the heat is absorbed.
- 4. Both pistons are moved simultaneously. The gas is heated up to the room temperature.

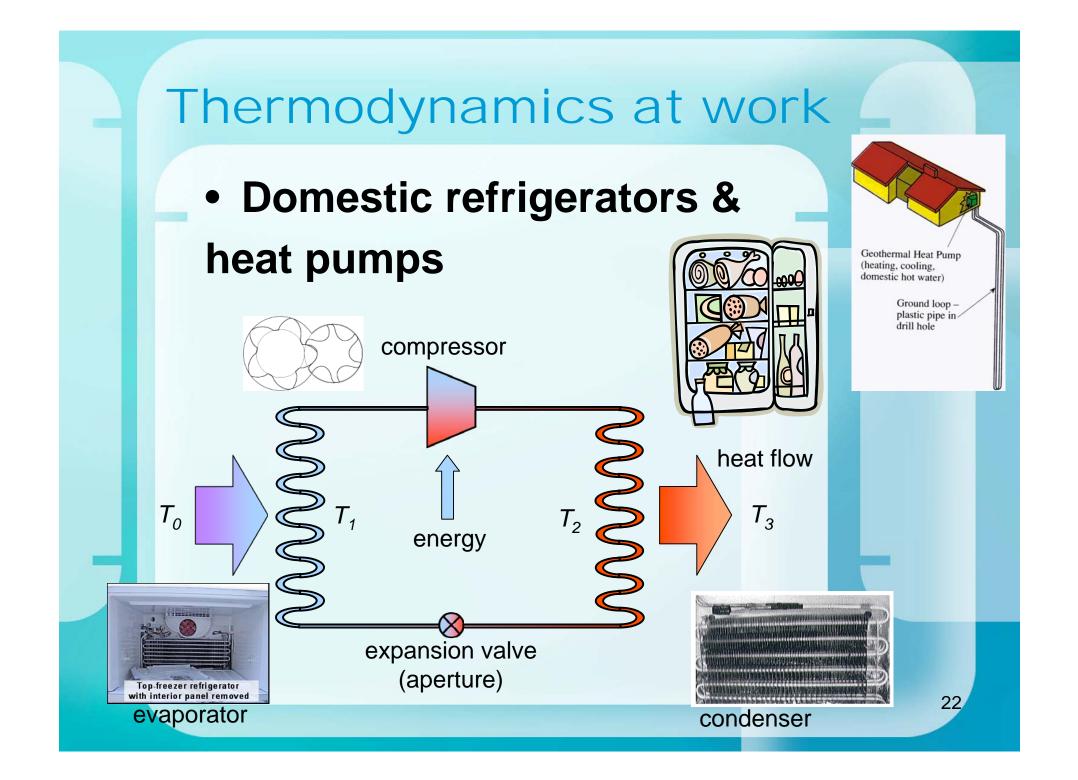

Joule-Thomson-Expansion cooler (contd.)



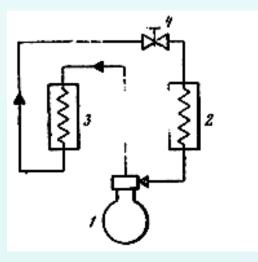
Joule-Thomson-Expansion cooler (contd.)




- The high-P gas is precooled (1-2) by the low-P (4-5) in a heat exchanger.
- 2. The isenthalpic expansion of the HP gas leads to a 2-phase mixture of liquid and vapor (3) at LP
 - The heat load is removed at T=const by evaporation of the liquid fraction of the mixture (3-4)

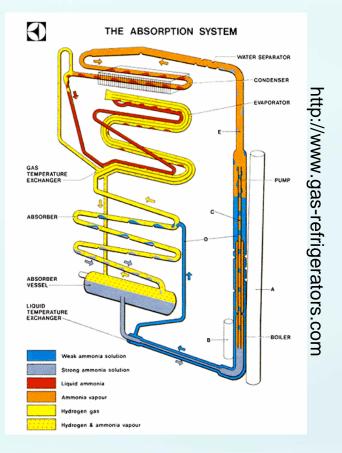


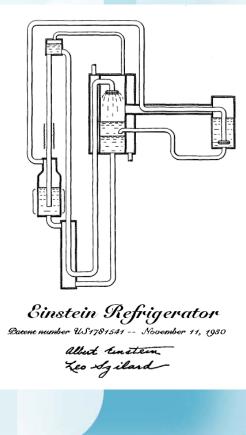
Joule-Thomson-Expansion cooler (contd.)



Absorption refrigerator

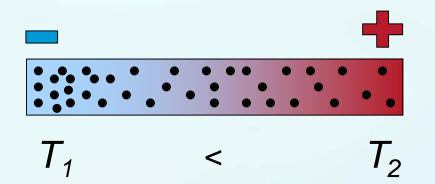
- 1922: the two Swedish students, Carl Munters and Baltzar von Platen invented absorption technology. A patent is granted on March 8, 1923.
- 1925: Electrolux acquires the von Platen-Munters patent and introduces the world's first absorption refrigerator for households. A patent is granted in the U.S. in 1926.


Conventional technique (compressor)


Absorption technique (no compressor)

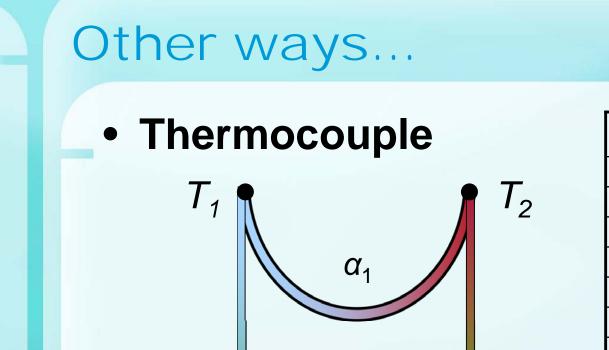
Absorption refrigerator

- Neat idea: no expansion valve by adding H₂ gas
- All depends on *partial* pressures


Refrigerants

are R-numbered and can be dangerous

Refrigerant	R number	Boiling t°C	Toxic group
CFCI ₃	R11	24	5
CF ₂ Cl ₂	R12	-30	6
CF ₃ CI	R13	-82	6
CF ₄	R14	-128	6
CHFCI ₂	R21	9	4
CHF ₂ CI	R22	-40	5
CHF ₃	R23	-84	5
CFCl ₂ CF ₂ Cl	R113	-47	4
$CFCl_2 CF_3$	R114A	3	6
$CF_2CI_2CF_3CI$	R114	3	6
$CF_2CI_2CF_3$	R115	-39	n/a
CO ₂	R744	-78	
NH ₃	R717	-33	2


Other ways...

Thermoelectric effects

$$\begin{cases} E = \rho \, j + \alpha \, \nabla T \\ q = \pi \, j - \kappa \, \nabla T \\ \pi = \alpha \, T \end{cases}$$

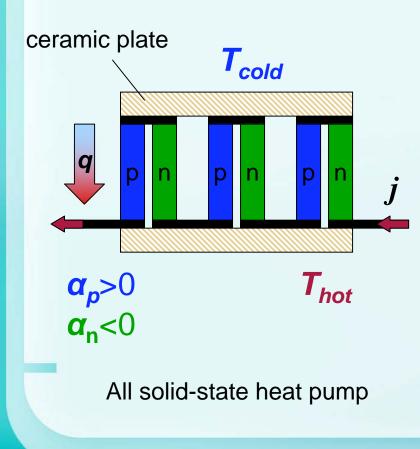
- ρ resistivity [Ω m]
- α Seebeck coefficient [V/K]
- π Peltier coefficient [V]
- κ thermal conductivity [W/(m K)]
- *E* electrical field [V/m]
- q heat flow density [W/m²]
- j electrical current density [A/m²]
- V*T* temperature gradient [K/m]

 α_2

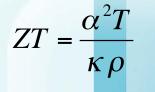
 T_0

Material	EMF (mV) (0-100C) vs. Pt
Cu	0.76
Au	0.78
Ni	-1.48
Pd	-0.57
w	1.12
AI	0.42
Fe	1.89
Alumel	-1.29
Chromel	2.81
Constantan	-3.51
90%Pt-10%Rh	0.643
Bi ₂ Te ₃	~24
UO ₂	~75

$$\Delta V = \alpha_2 (T_1 - T_0) + \alpha_1 (T_2 - T_1) + \alpha_2 (T_0 - T_2) = (\alpha_1 - \alpha_2)(T_2 - T_1)$$


 T_0

 α_2

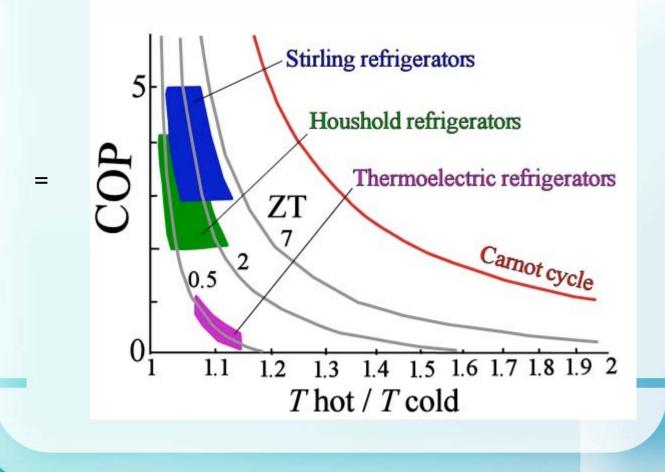

-o ΔV o

Other ways...

• Peltier cooler

Dimensionless figure of merit:

(the larger the better)


The best materials are small band gap semiconductors; Bi_2Te_3 has $\alpha = 220 \ \mu\text{V/K}$ and ZT = 1 at room temperature. However, ZT greater than 3 is needed to compete with other cooling techniques.

http://www.rmtltd.ru

• ZT is not sufficiently large

Primary thermometers

Ideal-gas thermometer

$$PV = \frac{m}{\mu}RT$$

Problems:

- volume is not constant (can be compensated for)
- non-ideality of gas which condenses at low temperature (He best)

Primary thermometers

Acoustic thermometer

 $c = \sqrt{\frac{dP}{d\rho}}$ sound velocity in a gas

Newton: sound is an isothermal process (P/p=const)

$$c_N = \sqrt{\left(\frac{dP}{d\rho}\right)_T} = \sqrt{\frac{RT}{\mu}}$$

Laplace: sound is an adiabatic process $\gamma PdV + VdP = 0$; $\gamma = C_P / C_V$

$$c_L = \sqrt{\gamma \frac{P}{\rho}} = \sqrt{\gamma} c_N$$

Water triple point = 273.16 K *exactly*

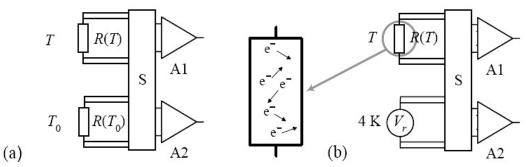
Then,
$$\frac{T}{273.16} = \lim_{P \to 0} \left(\frac{c(P,T)}{c(P,T_{\text{triple}})} \right)$$

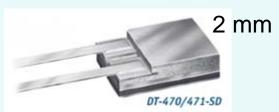
Primary thermometers

Noise thermometer

Nyquist derived the following equation from thermodynamic calculations valid for frequencies $f \ll T/h$,

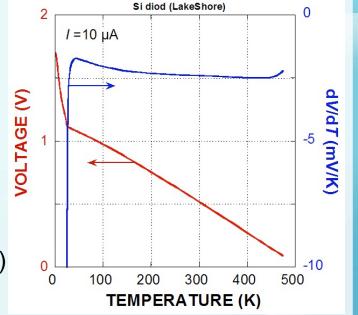
 $< U^2 > = 4 k_B T \Delta f$




Figure 2: (a) Block diagram for the conventional relative method with switched-input noise correlator, S: switching, A1, A2: amplification and digitisation. (b) Block diagram for the new absolute method.

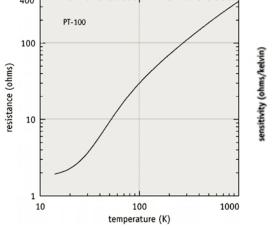
http://emtech.boulder.nist.gov/

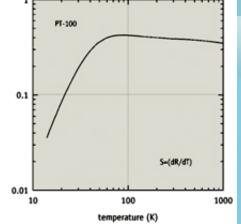
Problem:


long measurement time (10⁻⁵ accuracy requires 8 weeks)

Si diodes

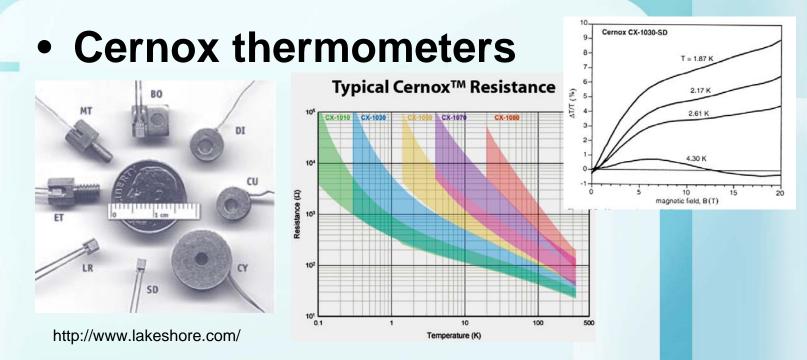
http://www.lakeshore.com/


\$200 - \$300 & not calibrated add \$140 for calibration (B=0)



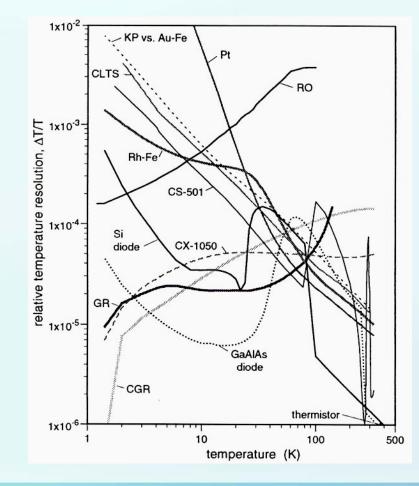
Compare to 1N4001 from ELFA for 1:- SEK which can equally well be used for temperature measurements !

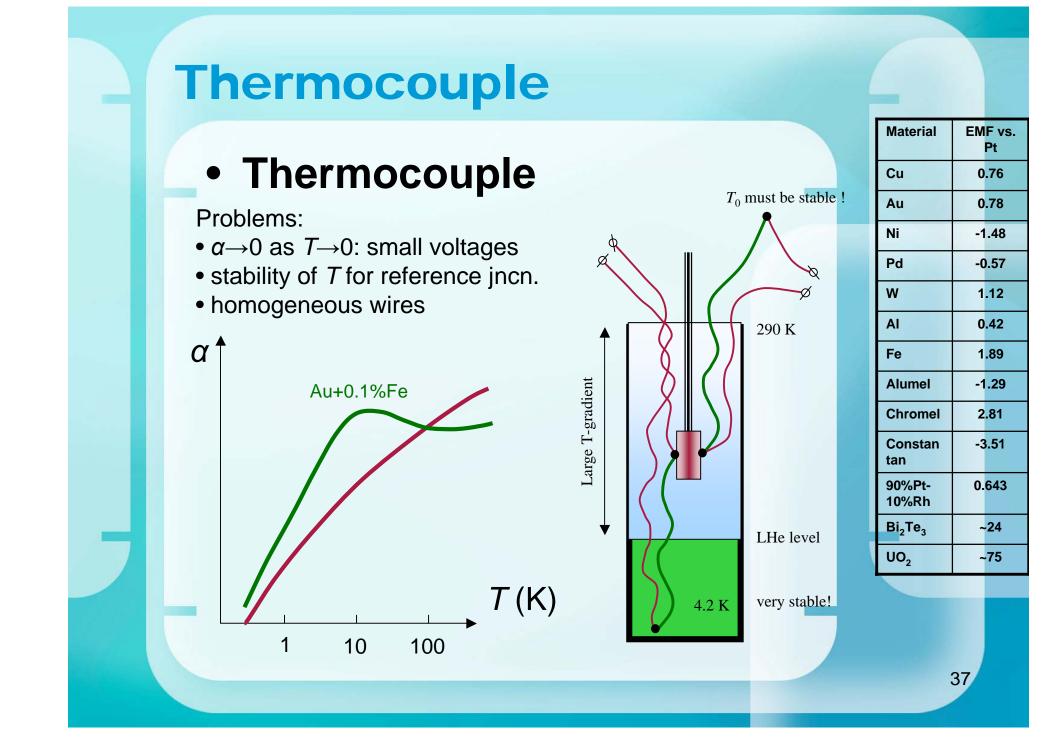
Pt thermometers



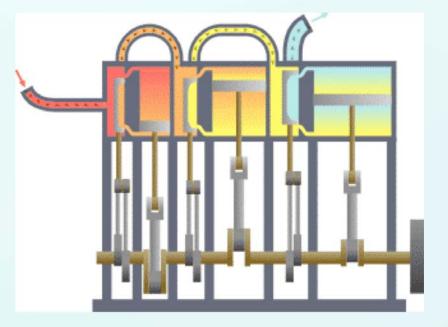
\$80 - \$140 & standard curve; add \$100-800 for exact calibration in $\mu H \neq 0$

Compare to Pt100/Pt1000 from ELFA for ~150:- SEK which can equally well be used for temperature measurements !




\$150 - \$240 & uncalibrated; add \$100-800 for exact calibration in $\mu H \neq 0$

Very good in high magnetic fields !!!


No equivalent from ELFA (carbon resistors, may be)

Sensitivity summary

Triple stage expansion machine

This is a file from the Wikimedia Commons.