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Quantum computers, if available, could perform certain tasks
much more ef®ciently than classical computers by exploiting
different physical principles1±3. A quantum computer would be
comprised of coupled, two-state quantum systems or qubits,
whose coherent time evolution must be controlled in a computa-
tion. Experimentally, trapped ions4,5, nuclear magnetic reso-
nance6±8 in molecules, and quantum optical systems9 have been
investigated for embodying quantum computation. But solid-
state implementations10±14 would be more practical, particularly
nanometre-scale electronic devices: these could be easily
embedded in electronic circuitry and scaled up to provide the
large numbers of qubits required for useful computations. Here
we present a proposal for solid-state qubits that utilizes con-
trollable, low-capacitance Josephson junctions. The design
exploits coherent tunnelling of Cooper pairs in the superconduct-
ing state, while employing the control mechanisms of single-
charge devices: single- and two-bit operations can be controlled
by gate voltages. The advantages of using tunable Josephson
couplings include the simpli®cation of the operation and the
reduction of errors associated with permanent couplings.

Two versions of Josephson-junction qubits are shown in Fig. 1.
The simpler one (Fig. 1a), proposed earlier10, consists of a super-
conducting electron box, that is, a low-capacitance island coupled
via a Josephson tunnel junction to a lead. The Coulomb interaction
(charging energy) restricts the number, n, of Cooper-pair charges,
Q � 2ne (where e is the charge on an electron), on the island. If
biased near a degeneracy point the system constitutes a qubit with
two states differing by one Cooper-pair charge. Quantum logic
operations can be performed by switching the gate voltage. Before
describing the systems in detail we will ®rst present an ideal model.
This puts in perspective the possibilities and drawbacks of the
simple design, as well as the advantages of the new design with
Josephson coupling controlled by a superconducting quantum
interference device (SQUID: Fig. 1b). These are, ®rst, during idle
periods between operations the energy splitting between logical
states is tuned to zero, thus avoiding an undesired phase evolution.
With this drawback of most proposals overcome, the requirement
on the precision of time control is substantially reduced; second, the
2-bit couplings can be switched on and off avoiding errors
associated with permanent couplings.

To realize a quantum computer we search for a system with the
following `̀ ideal'' model hamiltonian:
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A spin notation is used for the qubits with Pauli matrices jÃ z, jÃx,
jÃ6 � 1

2
�jÃx 6 ijÃy�. Ideally, each energy Hi

z(t), Hi
x(t) and the (real

symmetric) couplings Jij(t) can be switched separately for controlled
times between zero and ®nite values. We assume that Hi

z is the
largest energy, suggesting the choice of basis states |"ii and |#ii aligned
along the z-axis. Residual inelastic interactions (which destroy the
coherence), and the measurement device (when turned on) should
be accounted for by extra terms HÃ res and HÃ meas(t), respectively.

Quantum computation requires four elementary steps.
(1) The system has to be prepared in a well de®ned initial state.
For this we turn on at low temperature all Hi

z q kBT, while
Hi

x � Jij � 0. After suf®cient time the residual interaction HÃ res

relaxes all spins to the ground state, |""¼i. Then Hi
z(t) is set back

to zero.
(2) Single-bit operations (gates) have to be performed. They are
controlled by turning on one of the ®elds. If Hi

x is switched on,
the spin i evolves according to the unitary transformation
Ui

1b�t� � exp�iHi
xtjÃ

i
x=~�. Depending on the time span t, a p- or

p/2-rotation is performed, producing a spin ¯ip or an equal-weight
superposition of spin states. Switching on one Hi

z produces another
needed operation: a phase shift between |"ii and |#ii. Back in the idle
state, where ÃH � 0, the relative phase shift of the states does not
evolve further.
(3) A two-bit operation on qubits i and j is achieved by turning
on the corresponding Jij. In the basis |"i#ji, |#i"ji, the result is described

by Uij
2b�t� �

cos a i sin a
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� �
, with a � Jijt=~, while the states

|"i"j i,|#i#ji are not affected. For a � p=2 the result is a spin-
swap operation, while a � p=4 yields a `square-root swap'. The
latter transforms the state |"i#ji into the entangled state
�j "i #j i � ij #i "j i�=

���
2

p
. The combination with single-bit operations

allows us to perform the `controlled-not' gate; in fact, they
provide a universal set, suf®cient for all logic gates of quantum
computations15.
(4) The ®nal state has to be read out, which constitutes a quantum
measurement process16.

Searching for nanometre-scale electronic realizations of qubits,
one might consider normal-metal single-electron devices. But they
are ruled out, because in the normal state different tunnelling
processes are incoherent. Ultrasmall quantum dots with discrete
levels or spin degrees of freedom in nanostructured circuits13,14 are
candidates, but are dif®cult to fabricate in a controlled way. More
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Figure 1 Josephson junction qubits. a, A simple realization of a qubit is provided

by the superconducting electron box. A superconducting metallic island is

coupled by a Josephson tunnel barrier (with capacitance CJ and Josephson

coupling energy EJ; grey area) to a superconducting lead and through a gate

capacitor C to a voltage source. The important degree of freedom is the Cooper-

pair charge Q � 2ne on the island. b, The improved design of the qubit. The island

is coupled to the circuit via two Josephson junctions with parameters C0
J and E0

J .

This d.c.-SQUID can be tuned by the external ¯ux ©x which is controlled by the

current through the inductor loop (dashed line). If the self-inductance L© of the

SQUID is low, ©2
0=L© q 4p2E0

J , e2/C0
J , ¯uctuations of the ¯ux from ©x are weak.

Furthermore, if the frequencyof ¯uxoscillations is high, ~q© � ~�L©C0
J =2�

2 1=2 q E0
J ,

Ech, kBT, the ©-degree of freedom is in the ground state. In this case, the set-up

allows switching the effective Josephson coupling to zero. (EJ � 0 requires the

Josephson energies of two junctions in the loop to be equal. This has been

reached with a precision of 1% in quantum tunnelling experiments17. Even with

this precision, taking into account10 the ®nite value of EJ one can perform a large

number of logical gates. On the other hand, by replacing one junction in b by

another SQUID, one can tune the Josephson couplings to be equal.) The effective

junction capacitance is CJ � 2C0
J .
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promising are systems built from Josephson junctions, where the
coherence of the superconducting state can be exploited. Quantum
extension of elements based on single-¯ux logic have been con-
sidered (ref. 17, and J. E. Mooij, personal communication). Encour-
aged by successful experiments that demonstrated the superposition
of charge states12,18,19, we suggest here the use of superconducting
electron boxes with low-capacitance Josephson junctions as qubits.

In the system of Fig. 1a Cooper pairs tunnel coherently, while
Coulomb blockade effects allow the control of the charge. The
relevant conjugate variables are the phase difference g across the
junction and the charge Q � 2ne on the island. If quasiparticle
tunnelling is suppressed by the superconducting gap and only `even-
parity' states are involved20, the circuit dynamics is governed by the
hamiltonian:

ÃH �
�Q 2 CV x�

2

2�C � CJ�
2 EJ cos g; Q �

~
i

]

]�~g=2e�
�2�

For the junctions considered, the charging energy with scale
EC [ e2=2�C � CJ� dominates over the Josephson coupling EJ. It is
plotted in Fig. 2 as a function of the external voltage Vx for different
n. In equilibrium at kBT p EC, the system is in the state correspond-
ing to the lowest parabola. But, near the voltages Vdeg �

�2n � 1�e=C, the states n and n � 1 are near-degenerate, and EJ

mixes them strongly. Here, in the basis of charge states j"i � jni and
j#i � jn � 1i, the hamiltonian reduces to a two-state model

ÃH � Ech�V x�jÃz 2
1

2
EJjÃx �3�

where Ech�Vx� � e�V x 2 Vdeg�Cqb=CJ, and the capacitance of the
qubit in the circuit is C 2 1

qb � C 2 1
J � C 2 1.

On the way towards the model of equation (1), we achieved a
tunable Hi

z(t); but the Josephson coupling is ®xed, Hi
x�t� � EJ=2.

Still, single-bit operations can be performed by controlling the bias
voltage Vx (ref. 10). Furthermore, when the qubits are connected in
parallel with an inductor (as in Fig. 3), the common LC-oscillator
mode provides a two-bit coupling with weak, but constant
Jij < �C2=C2

J ��E
2
J L=©2

0�, where ©0 � h=2e. This coupling provides a
two-bit gate if two qubits, i and j, are brought into resonance by
biasing them with the same gate voltage Vxi � Vxj. Out of reso-
nance, the two-bit coupling provides only a weak perturbation.

The external voltage source is part of a dissipative circuit with
effective resistance RV. Its Johnson±Nyquist voltage ¯uctuations
destroy the phase coherence. The dephasing rate varies slightly
during manipulations21,22. At the degeneracy point, the decoherence
time is:
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Here RV is compared to the quantum resistance RK � h=e2 < 26 kQ.
A small gate capacitance C < Cqb p CJ helps further decoupling of
the qubit from the environment. Both can be optimized to yield a
phase coherence time that is long compared to typical operation
times ~/EJ.

A problem with the simple design is that the eigenstates of the
hamiltonian shown in equation (3) are non-degenerate at all Vx.
Therefore, the relative phase of two logical states evolves even
during idle periods. We can still store quantum information in
the qubit, as becomes apparent after a transformation to the
interaction representation. But this introduces an explicit time
dependence in the operators, with the result that the unitary
transformations not only depend on the time span t of the
operations but also on the time t0 when they start. Hence the time
elapsed since the beginning of the computation, multiplied by the
energy spacing between the logical states should be controlled with
high accuracy. A second problem of the simple design is the non-
vanishing two-bit coupling, even out of resonance. It introduces an
error in the computation. The design discussed below overcomes
both these problems.

A crucial step towards the ideal model (equation (1)) is to tune
the Josephson coupling. This is achieved in the design of Fig. 1b,
where each Josephson junction is replaced by a d.c.-SQUID (see, for
example, ref. 20). The SQUID is biased by an external ¯ux ©x,
coupled into the system through an inductor loop. If the loop self-
inductance L© is low the SQUID-controlled qubit is described by a
hamiltonian of the form of equation (2), but with potential energy
2E0

J cos(p©x/©0) cos g. Hence, the effective Josephson coupling is
tunable by the external ¯ux ©x between 2E0

J and zero:

EJ�©x� � 2E0
J cos�p©x=©0� �5�

The SQUID-controlled qubit is described by the ®rst two terms of
the model hamiltonian shown in equation (1), with z- and x-
components controlled independently by the gate voltage and the
¯ux. In the idle state we keep V x � Vdeg and ©x � ©0=2, so that the
hamiltonian ÃH � 0. Changing one of them generates z- or x-
rotations, respectively, that is, the elementary one-qubit operations.
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Figure 2 Spectrum of a superconducting electron box. The charging energy,

(Q 2 CVx�
2=�2�C � CJ�), of the superconducting electron box is shown (solid lines)

as a function of the applied gate voltage Vx for different numbers n of extra Cooper

pairs on the island. Near degeneracy points, the weaker Josephson coupling

energy mixes the charge states and modi®es the energy of the eigenstates

(dotted line). In this regime, the system effectively reduces to a 2-state quantum

system.

Φx2 Φx3Φx1

L

Vx1 Vx2 Vx3

Figure 3 Design of a quantum computer. The coupling of the qubits is provided by

the LC-oscillator mode in circuit shown. If the frequency of the LC-mode in the

resulting circuit is large, ~qLC � ~�NCqbL�
2 1=2 q EJ , Ech, kBT, the fast oscillations

produce an effective coupling of the qubits. We note that the system can be

scaled to large numbers of qubits. In the idle state all effective Josephson

couplings are tuned to zero, and the voltages are chosen such that the charge

states are degenerate. Single-bit operations are performed by changing the gate

voltage or ¯ux of one qubit at a time. Two-bit operations between any two qubits

are triggered by turning on the corresponding two Josephson couplings. The two

lowest states of the qubit are separated from higher states, which exist in the real

system, by the energies EC, ~qLC, ~q©. These should be larger than the energy

scales of the qubit, EJ, Ech, kBT. If, in addition, switching processes of Vx and ©x are

slow on the corresponding timescales, the requirements presented above also

ensure that the higher states are not excited. Alternatively, instead of sudden

switching, one can change the biases adiabatically. Another advantage of the

presented design is that the result of a single-bit operation depends only on the

time integral of energies EJ(t) and Ech(t) over the operation period, but not on the

pro®le of their time dependences.
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With the improved design there is no need to control the total
operation time t0, while the time dependence of the voltage and ¯ux
can be optimized such that the time span of the manipulations t is
long enough to simplify time control and short enough to speed up
the computation.

Also, the circuit of the current source, with resistance RI, which
couples the ¯ux ©x to the SQUID by the mutual inductance M,
introduces ¯uctuations and may destroy the coherence of the qubit
dynamics. At the degeneracy point, the decoherence time is21,22

tI � �1=p3��RI =RK��©
2
0=�E

0
J M��2�~=kBT�. This dephasing is slow if

the current source is coupled weakly to the qubit (small M) and
its resistance is high.

The control of the Josephson energies EJ(©xi) provides the
possibility of coupling each selected pair of qubits, while keeping
all the other ones uncoupled, bringing us close to the ideal model of
equation (1). The simplest implementation of the coupling is to
connect all N qubits in parallel with each other, and with inductor L
(Fig. 3). Fast oscillations in the resulting LC-circuit produce an
effective coupling of the qubits

ÃH int � 2
î,j

EJ�©xi�EJ�©xj�

EL

jÃ i
yjÃ

i
y �6�

where EL � �©2
0=�p

2L���CJ=Cqb�
2. The coupling shown in equation

(6) can be understood as the magnetic energy of the inductor which
is biased by a current composed of contributions from all qubits,
Ii ~ Ei

JjÃ
i
y.

With this design we can perform all gate operations. In the idle
state the interaction hamiltonian of equation (6) is zero as all the
Josephson couplings are turned off. The same is true during a
one-qubit operation, as long as we perform one such operation
at a time that is, only one Ei

J Þ 0. To perform a two-qubit
operation with any given pair of qubits, say 1 and 2, E1

J and E2
J

are switched on simultaneously, yielding the total hamiltonian
ÃH � 2 �E1

J =2�jÃ
i
x 2 �E2

J =2�j
2
x 2 �E1

J E2
J =EL�jÃ

1
yjÃ

2
y . Although not identi-

cal to equation (1), these two-bit gates, in combination with the
single-bit operations discussed above, also provide a complete set of
gates required for quantum computation.

To demonstrate that the constraints on the set of system
parameters can be met by available technology, we suggest a suitable
set. We choose junctions with capacitance CJ � 300 aF, correspond-
ing to a charging energy (in temperature units) EC < 3 K, and a
smaller gate capacitance C � 30 aF to reduce the coupling to the
environment (even lower C are available and improve the perfor-
mance further). The superconducting gap has to be slightly larger,
¢ . EC . Thus at a working temperature of the order of T � 50 mK,
the initial thermalization is assured. We further choose E0

J � 50 mK;
so the timescale of one-qubit operations is top � ~=EJ < 70 ps.
Fluctuations associated with the gate voltages (equation (4)), with
resistance RV < 50 Q, limit the coherence time to tV =top < 4;000
operations. With the parameters of the ¯ux-circuit L© � 0:1 nH,
M � 1 nH and RI � 102±106 Q, current ¯uctuations have a weak
dephasing effect. To assure fast two-bit operations, we choose the
energy scale EL to be of the order of 10EJ, which is achieved for
L < 3 mH. With these parameters, the number of qubits in the
circuit can be chosen in the range of 10±50, of course at the expense
of shorter coherence times tV,I/N.

Some further remarks are in order.
(1) After the gate operations, the resulting quantum state has to be
read out. This can be achieved by coupling a normal-state single-
electron transistor capacitively to a qubit. The important aspect is
that during computation the transistor is kept in a zero-current
state and adds only to the total capacitance. When the transport
voltage is turned on, the phase coherence of the qubit is destroyed,
and the dissipative current in the transistor, which depends on the
state of the qubit, can be read out. This quantum measurement
process has been described explicitly in ref. 16 by an analysis of the
time-evolution of the density matrix of the coupled system.

(2) Inaccuracy in the control of ¯uxes, voltages and the time-span of
operations leads to diffusion of the actual quantum state from the
one that exists in the absence of errors23. A random error of order e
per gate limits the number of operations to a value which is of order
e-2. For the circuit parameters above, e � 1% would lead to smaller
effects than those produced by environment.
(3) Many powerful quantum algorithms make use of parallel
operations on different qubits. Although this is not possible with
the present system, it may be achievable by a more advanced design,
making use of further tunable SQUIDs decoupling different parts of
the circuit. Such modi®cations, as well as the further progress of
nanotechnology, should provide longer coherence times and allow
scaling to larger numbers of qubits. M
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Several theories1±5 predict that a limiting and universal turbulent
regimeÐ`ultrahard' turbulenceÐshould occur at large Rayleigh
numbers (Ra, the ratio between thermal driving and viscous
dissipative forces) in Rayleigh±BeÂnard thermal convection in a
closed, rigid-walled cell. In this regime, viscosity becomes negli-
gible, gravitationally driven buoyant plumes transport the heat


