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The development of standard MBPT for single-reference and multi-reference cases is reviewed,
and its extension to the relativistic case in the form of the Dirac-Coulomb-Breit (DCB) ap-
proximation is described. The latter scheme is non-covariant, and the recent development of
a fully covariant MBPT scheme is discussed. This is based upon a new scheme for quantum-
electrodynamical (QED) calculations, the covariant-evolution-operator method, which is com-
bined with standard MBPT. This scheme is fully compatible with the relativistically covariant
Bethe-Salpeter equation. Some numerical results of the new scheme are given.
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1. Introduction

What is traditionally understood as Many-Body Perturbation Theory (MBPT) is
a systematic treatment of many-body systems beyond standard low-order pertur-
bation theory [1]. This is normally based upon the diagrammatic formulation of
Rayleigh-Schrödinger (RS) perturbation expansion, which can be generated from
the famous equation of Claude Bloch from 1958 [2]. This perturbation contains
certain non-linear terms, and it was argued by Brueckner [3] that these terms must
cancel for physical reasons. This led to the linked-diagram or linked-cluster expan-
sion, which Brueckner proved to some low orders. Later this was proved to all
orders by Goldstone [4]. In expressing the perturbations in terms of Feynman-like
diagrams, only so-called linked diagrams survive.

The alternative way of treating many-body systems is the self-consistent-field
methods of multi-configurational Hartree-Fock (MCHF) and Dirac-Fock (MCDF)
type. We shall not consider these methods here, but refer the reader to the recent
book by Grant [5].

The Brueckner-Goldstone scheme was primarily used in nuclear physics. In the
1960’s it was introduced and applied in atomic physics by Kelly [6]. It was around
the same time also applied on various atomic problems by Sandars [7].

The treatment of Brueckner and Goldstone was limited to a degenerate model
space, where all unperturbed states under consideration have the same energy. This
was extended to the non-degenerate (quasi-degenerate) case by Brandow [8] by
using a double perturbation expansion and later in a more direct way by Lindgren,
using a generalization of the original Bloch equation [9]. This has been found to
be a good basis for many MBPT applications in atomic and molecular physics.
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Originally, the Bloch equation was expanded order by order, the problem then
being that the number of terms or diagrams increases very rapidly with the order
of perturbation. The situation becomes virtually impossible to handle beyond third
order for a closed-shell system and even earlier for general open-shell systems.

Later, so-called all-order methods were developed, where certain effects, such
as the pair correlation, could conveniently be generated to arbitrary order by an
iterative process. This is more or less equivalent to the pair-correlation procedures
developed early by Sinanŏglu, Nesbet, and others (see, for instance, review article
by Kutzelnigg [10] and Lindgren-Morrison [1, section 15.5]).

More complete computational methods for this kind of calculations were devel-
oped at the Gothenburg and Notre Dame groups, and particularly by the latter
systematically applied to various atomic systems [11].

A more efficient all-order procedure is the Coupled-Cluster Approach (CCA), first
developed in nuclear physics and introduced into quantum chemistry by Čižek [12]
already in 1965. However, it was not until the late 1970’s and early 1980’s that
this technique was more widely used. Nowadays, this is the dominating computa-
tional procedure in quantum chemistry. Several articles in this issue are devoted
particularly to the coupled-cluster procedure, and therefore I shall not go into this
method in any detail here.

Relativistic many-body procedures have been developed, based upon the so-
called Dirac-Coulomb-Breit or No-Virtual-Pair Approximation. This works well
for many applications, but it is not relativistically covariant, since effects due to
retardation of the electromagnetic interaction as well as the existence of negative
energy states are omitted. The latter effects are, together with the so-called ra-
diative effects (vacuum polarization, self energy, vertex correction), conventionally
referred to as quantum-electrodynamical (QED) effects.

Several numerical methods have been developed for evaluating QED effects. Most
frequently used is the S-matrix formulation, and more recently two more versatile
methods have appeared, the Two-times Green’s function method, developed by the
St Petersburg group [13] and the Covariant-Evolution-Operator (CEO) method,
developed by the Gothenburg group [14].

The existing methods for QED calculations are for practical reasons limited to
two-photon exchange, which implies that the electron correlation can be only partly
included. Recently, we have in Gothenburg developed a fully covariant relativistic
procedure that is a combination of the standard MBPT and the CEO many-body
procedure for QED calculations. This can, in principle, carry the electron correla-
tion and QED effects to arbitrary order, an expansion that is equivalent to the full
Bethe-Salpeter equation.

The work in our group in Gothenburg has been carried out in close contact with
the QTP in Florida. The contact started when the author attended a summer
school on the Sanibel Island in 1971 and learned basic perturbation theory from
the lectures of Per-Olov Löwdin. The progress made in our group has subsequently
been reported at several Sanibel conferences.

In the following we shall here first summarize the development of the standard
many-body perturbation theory—non-relativistically as well as relativistically—
and later turn in to the recent development of the covariant MBPT.
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2. Standard many-body perturbation theory

2.1. Degenerate case

We consider first the simple case of a nondegenerate system with the Schrödinger
equation

H|Ψ〉 = E|Ψ〉 (1)

where H is the non-relativistic N -body Hamiltonian1

H =
N∑

i=1

(
1
2 ∇2 + vext

)
i
+

N∑

i<j

e2

4πrij
(2)

and vext is the external (normally nuclear) field.
The Schrödinger equation can be reexpressed as

(E0 −H0)|Ψ〉 = (V −∆E)|Ψ〉 (3)

with the partitioning

H = H0 + V ; E = E0 + ∆E (4)

We start the perturbation expansion from a model function, satisfying the equa-
tion, H0|Ψ0〉 = E0|Ψ0〉. Using intermediate normalization, 〈Ψ|Ψ0〉 = 〈Ψ0|Ψ0〉 = 1,
the equation (3) can be expressed

(E0 −H0)|Ψ〉 = V |Ψ〉 − |Ψ〉〈Ψ0|V |Ψ〉 (5)

which is equivalent to the original Bloch equation [2].
With the order-by-order expansion

|Ψ〉 = |Ψ0〉+ |Ψ(1)〉+ |Ψ(2)〉+ · · · (6)

this leads to the Rayleigh-Schrödinger expansion,

|Ψ(1)〉 = V |Ψ0〉 − |Ψ0〉〈Ψ0|V |Ψ0〉
|Ψ(2)〉 = V |Ψ(1)〉 − |Ψ0〉〈Ψ0|V |Ψ(1)〉 − |Ψ(1)〉〈Ψ0|V |Ψ0〉

etc. (7)

The formulation presented here works also when several unperturbed states are
degenerate with the same unperturbed energy E0 and there are no closely-lying
unperturbed states.

2.2. Quasi-degenerate case

The situation is more challenging when there are several unperturbed states close in
energy, referred to as the quasi-degenerate situation. Then standard perturbation

1We use here natural or relativistic units: c = ~ = me = ε0 = 1, e2 = 4πα, α being the fine-structure
constant.
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expansion can encounter great convergence problems. A well-known example is the
relativistic calculation of the fine-structure levels of heliumlike ions. For light ions
the unperturbed states 2p1/2 and 2p3/2 are very close in energy, and starting from
only one of them can lead to serious problems [11].

In order to handle the general quasi-degenerate situation, a different approach is
needed. We consider now a group of target states, |Ψa〉, satisfying the Schrödinger
equations

H|Ψa〉 = Ea|Ψa〉 (8)

The perturbation expansion starts from one model state |Ψa
0〉 for each target state,

and in the intermediate normalization this is the projection of the target states on
the model space

|Ψa
0〉 = P |Ψa〉 (9)

We introduce the wave operator, Ω, transforming the model states back to the
target states

|Ψα〉 = Ω|Ψα
0 〉 (10)

This operator is in our formalism assumed to be the same for all states under
consideration.

With the partitioning (4) we can derive the form of an effective Hamiltonian in
intermediate normalization

Heff = PHΩP = PH0P + PV ΩP (11)

satisfying the secular equation

HeffΨa
0 = EaΨa

0 (12)

This implies that the target energies are the eigenvalues of the effective Hamilto-
nian, operating only in the model space, and the model states are the corresponding
eigenvectors.

The wave operator now satisfies a generalized Bloch equation [9]

[
Ω,H0

]
P =

(
V Ω− ΩVeff

)
P (13)

where Veff is the effective interaction, defined by

Heff = PH0P + Veff (14)

and in intermediate normalization Veff = PV ΩV .
The generalized Bloch equation leads to a corresponding generalized Rayleigh-

Schrödinger perturbation expansion. The corresponding linked-diagram expansion
can be derived from the formula

[
Ω,H0

]
P =

[(
V Ω− ΩVeff

)
P

]
linked

(15)
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Figure 1. Diagrammatic representation of the second-order equation (16). The heavy vertical lines repre-
sent electron orbitals and propagators in the Furry picture. The second diagram is the ”folded” diagram,
which has a double denominator, associated with the last interaction. In the last diagram this is drawn
straight, and the double denominator is represented by a double bar.

implying that only linked diagrams are to be retained. The last term represents
here the so-called folded diagrams, introduced by Brandow [8].

Expansion of the Bloch equation (15) leads in lowest orders to (Q = 1− P )

{[
Ω(1),H0

]
P = V P − PV P = QV P[

Ω(2),H0

]
P = Q

(
V Ω(1) − Ω(1)V

(1)
eff

)
linked

P
(16)

The second-order equation is illustrated in Fig. 1. The single-electron orbitals are
here generated in the potential of the nucleus (or some other external potential)—
known as the Furry picture. The last diagram is the folded diagram that represents
the contribution due to an intermediate state in the model space, model-space
contribution (MSC). Such a state leads to a (quasi)singularity that is automatically
eliminated by the Bloch equation.

Once the wave operator is determined to the desired accuracy, the corresponding
wave functions are obtained from the definition (10). In the general case the model
functions are not known in advance, but they can be obtained by means of the
secular equation (12).

The linked-diagram expansion for the open-shell case (Eq. 15) holds provided
the model space is complete, i.e., contains all configurations that can be formed
by the valence electrons. It can be shown to hold also for an incomplete model
space, if the intermediate-normalization condition is abandoned, as demonstrated
by Mukherjee [15].

With the ”extended” model space described here the quasi-degenerate problem
can normally be handled without problem. This is illustrated, for instance, in the
case of the fine structure of light heliumlike ions, mentioned above. With this
technique the calculations converge nicely for all nuclear charges [16].

We have assumed here that we work in a scheme known as multi-reference, im-
plying that the wave operator is the same for all states belonging to the model
space. In such a case convergence problems will appear, if a state under consider-
ation will cross a state not belonging to the model space, as the perturbation is
adiabatically turned on. A well-known example is here the Be atom, if the model
space is chosen to contain the configurations 1s2 2s2 and 1s2 2p2. This problem is
much more pronounced in molecular applications than in atomic ones.

2.3. All-order approaches

By means of second quantization the wave operator can be separated into one-,
two-, ... body effects

Ω = 1 + Ω1 + Ω2 + · · · (17)
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Figure 2. Expansion of the all order pair function (20).
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Figure 3. Graphical representation of the self-consistent pair equation (19). The last diagram represents
the ”folded” diagram, drawn in analogy with that in Fig. 1 (right).

This leads to the corresponding partitioning of the following Bloch equation

[
Ωn,H0

]
P =

(
V Ω− ΩVeff

)
linked,n

P (18)

and solving a number of these coupled sub-equations iteratively, yields the corre-
sponding effects essentially to all orders. This is known as the all-order perturbation
approach, which is frequently employed.

Including only double excitations (pair correlation), Ω ≈ 1+Ω2, leads to the pair
equation

[
Ω2,H0

]
P = Q

(
V (1 + Ω2)− Ω2Veff

)
linked,2

P (19)

This can also be expressed

Ω2PE = ΓQ(E)IPairPE (20)

operating on a part of the model space with energy E . Here,

ΓQ(E) =
Q

E −H0
(21)

is the reduced resolvent and IPair is a ladder of Coulomb interactions, including
the folded terms, illustrated in Fig. 2. This can also be graphically expressed in
the form of a Dyson equation, as shown in Fig. 3.

An even more effective way of treating electron correlation is the coupled-cluster
approach or exponential Ansatz, which we shall not consider further here (see, other
articles in this issue and the recent book, edited by Čársky et al. [? ]).

2.4. Relativistic MBPT

For relativistic many-body calculations a natural starting point is to replace the
Schrödinger single-electron Hamiltonian in the Hamiltonian (2) by the correspond-
ing Dirac operator

hD = α · p̂ + β + vext (22)
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Figure 4. Some low-order non-radiative (upper line) and radiative (lower line) ”QED effects”. These
diagrams are Feynman diagrams, and the heavy lines represent particle as well as hole or anti-particle
states in the Furry picture. The wavy lines represent the covariant photon exchange. The second diagram
is, when the intermediate states are particle states, reducible, since it can be separated into two single-
photon-exchange diagrams, while all the remaining diagrams are irreducible.

Such an operator would not be bound from below due to the negative-energy eigen-
states of the Dirac operator. In order to prevent these from entering, a projection
operator Λ+ can formally be introduced. Including also the instantaneous Breit
interaction

HB = − e2

8π

∑

i<j

[αi · αj

rij
+

(αi · rij)(αj · rij)
r3
ij

]
(23)

this leads to the projected Dirac-Coulomb-Breit approximation, first formulated by
Sucher [17],

H = Λ+

[ N∑

i=1

hD(i) +
N∑

i<j

e2

4πrij
+ HB

]
Λ+ (24)

This is also known as the No-Virtual-Pair Approximation (NVPA). In many self-
consistent calculations of Dirac-Fock type no explicit projection operators are used,
but the boundary conditions used have the effect of eliminating the negative-energy
states.

Effects beyond the NVPA are conventionally referred to as QED effects, and
the lowest-order diagrams are depicted in Fig. 4. The first row represents so-called
non-radiative effects, or Araki-Sucher effects, and the second row radiative effects
(self energy, vacuum polarization and vertex correction).

2.5. Implementation

The MBPT technique is nowadays widely used in atomic and molecular physics.
Here, I will concentrate on atomic applications, since molecular applications will
be covered in other articles of this issue.

The MBPT procedure was first applied to electronic systems by Kelly in the
1960’s, using a basis set of analytical functions, nowadays frequently used in molec-
ular applications. Later, accurate numerical approaches were developed for atomic
applications. One of the first application was made by Morrison and Rajnak, using
numerical one- and two-particle functions [18]. This technique was subsequently
further developed by Morrison together with the Gothenburg group and applied
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to fine- and hyperfine-structure problems [1]. An all-order single-particle program
was developed by Lindgren and Garpman et al. [19] and an all-order pair pro-
gram by Ann-Marie Mårtensson [20], a procedure that was further developed into
a coupled-cluster procedure by Salomonson [21, 22]. A relativistic pair program was
later developed by Eva Lindroth [23]. The numerical technique was further refined
by Salomonson and Öster by introducing a ”discretization technique” [24]. This
technique has subsequently been applied in various relativistic and non-relativistic
many-body calculations by the Gothenburg group.

An all-order relativistic pair program, based upon the Dirac-Coulomb-Breit
Hamiltonian (24) was also developed by Johnson et al. at Notre Dame, using a
numerical spline technique [25], and applied to numerous atomic systems [11, 26].

The atomic many-body perturbation technique has also been frequently applied
to other problem than energy calculations, such as the photo-ionization process [?
? ].

3. Covariant many-body procedure

3.1. Time-dependent perturbation theory

In developing a covariant many-body procedure it is necessary to consider the
time dependence of the perturbation. It is convenient to use the interaction picture
(IP), where the state vectors and operators are related to those in the Schrödinger
picture (SP) by

|χI(t)〉 = eiH0t |χS(t)〉; VI(t) = eiH0t V e−iH0t (25)

The time-dependent Schrödinger equation then becomes

i
∂

∂t
|χI(t)〉 = VI(t) |χI(t)〉 (26)

The time-evolution operator in IP, U(t, t0), is defined by1

|χ(t)〉 = U(t, t0) |χ(t0)〉 (t > t0) (27)

and it satisfies the differential equation

i
∂

∂t
U(t, t0) = V (t) U(t, t0) (28)

This leads to the expansion

Uγ(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtn T
[
V (t1) . . . V (tn)

]
e−γ(|t1|+|t2|...+|tn|) (29)

where T is the time-ordering operator and γ is an adiabatic damping factor.
For finite times the evolution operator is non-covariant. Setting t = ∞ and

t0 = −∞, leads to the S-matrix

S = U(∞,−∞) (30)

1In the following we shall leave out the subscript ”I”.
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which is relativistically covariant.
The perturbation above is represented by the interaction between an electron

and the radiation fields

V (t) =
∫

d3xH(t, x) ; H(x) = −eψ̂†(x)αµAµ(x)ψ̂(x) (31)

where x = (t, x) is the four-dimensional space-time coordinate and ψ̂(x), ψ̂†(x)
and Aµ are the electron-field and the photon-field operators, respectively. The
expansion (29) then becomes

U(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0

d4x1 . . .

∫ t

t0

d4xn T
[H(x1) . . .H(xn)

]
e−γ(|t1|+|t2|...+|tn|) (32)

Here, the perturbation operates in the extended photonic Fock space, where the
number of photons is no longer constant. The exchange of a single (virtual) photon
is represented by two perturbations of this kind. In Fig. 5 we show the Feynman
diagram representing a single-photon exchange between the electrons. This contains
two time orderings, as indicated by the two time-ordered diagrams.

6 6

6

-r rµ ν

6

=
6 6

6

-
r

r

6

+
6 6

6

- r
r

6

Figure 5. The Feynman representation of the exchange of a single, virtual photon between two electrons.
This contains two time-orderings.

3.2. Covariant many-body Hamiltonian

The Dirac-Coulomb-Breit relativistic Hamiltonian (24) is not relativistically covari-
ant, since only positive-energy states are considered. In order to be able to treat
electron correlation and QED effects on the same footing, it is necessary to start
from a Hamiltonian that is fully covariant. This can be achieved by replacing the
electron-electron interaction by the covariant interaction (31). We want here to use
the Coulomb gauge, and therefore we separate the interaction into the Coulomb
interaction and the transverse-photon interaction. In second quantization this leads
to the covariant many-body Hamiltonian

HCov = H0 −
∫

d3x ψ̂†(x)eαµAµ(x)ψ̂(x)

+
1
2

∫∫
d3x1 d3x2 ψ̂†(x1) ψ̂†(x2)

e2

4πr12
ψ̂(x2) ψ̂(x1)

H0 =
∫

d3x ψ̂†(x)
(
α · p̂ + β + vext

)
ψ̂(x) + HRad

(33)

The first part of the perturbation contains the transverse-photon interaction and
corresponds to the Breit interaction in the DCB Hamiltonian (24), and the follow-
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Figure 6. Comparison between the standard and the covariant evolution operator for single-photon ex-
change. In the latter there are electron propagators on the in- and outgoing lines, implying that they can
represent particle or hole with time running both ways.

ing term represents the Coulomb interaction. HRad in the zeroth-order Hamiltonian
is the Hamiltonian of the radiation field, which has to be included, since the number
of photons is no longer constant in this formalism.

3.3. Covariant evolution operator. Green’s operator. Connection to MBPT

In order to make the evolution operator relativistically covariant, we must allow
time to run also backwards in the negative direction, corresponding to the propa-
gation of hole or antiparticle states with negative energy. This can be achieved by
inserting electron propagators on the free lines, as shown in Fig. 6. This leads to
the covariant evolution operator (CEO), introduced by Lindgren, Salomonson and
coworkers [14].

The covariant evolution operator contains singularities in higher orders, when
there is an intermediate state in the model space (c.f. Fig. 3). Eliminating these
singularities leads to what we have referred to as the Green’s operator, since this
object is quite analogous to the Green’s function. This operator plays a central role
in the present formalism.

We define the Green’s operator, G(t,−∞), by

U(t,−∞)P = G(t,−∞) · PU(0,−∞)P (34)

where the heavy dot implies that the operator to the left does not operate beyond
the dot. The Green’s operator for t = 0 corresponds to the standard wave operator
in MBPT (10) and can be regarded as its extension to the covariant formalism,

Ω ⇒ G(0,−∞) (35)

For the moment neglecting virtual pairs, the covariant wave operator satisfies in
the lowest orders the equations

{
Ω(1)PE = ΓQ(E)V (E)PE
Ω(2)PE = ΓQ(E)

[
V (E)Ω(1) − Ω(1)V

(1)
eff + δV (E)

δE V
(1)
eff

]
linked

PE
(36)

The second term on the rhs of the second equation is identical to the folded term
of MBPT (Eq. 16), and the last term is an additional contribution from the in-
termediate model-space state due to the energy dependence of the potential. This
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Figure 7. Graphical representation of the single-photon Bloch equation (38). This represents the first step
towards the full Bethe-Salpeter equation.

Table 1. Comparison in the ground state of some heliumlike ions between two-photon
Coulomb-Breit (unretarded no-pair, retarded no-pair, and virtual pairs) and cor-
respondingly WITH electron correlation, beyond two photons (in µH).

Two-photon Coul-Breit Beyond Two-phot. Coul-Breit
Z Unretarded Retarded Virt.pairs Unretarded Retarded Virt.pairs
6 -1055 32 -10 137 -17 2.7
10 -2871 122 -46 223 -40 7.3
14 -5517 293 -122 301 -68 13
18 -8949 553 -248 372 -100 21
30 -23632 1909 -1010 553 -210 46
41 -43521 3904 -2435 688 -322 71
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Figure 8. Feynman diagram representing the ”QED potential”, containing also radiative QED effects.

equation can also be expressed

Ω(2)
CovPE =

[
ΓQ(E)V (E)Ω(1) +

δΩ(1)

δE V
(1)
eff

]

linked

PE (37)

Generalizing this to all orders, leads to the Bloch equation

ΩPE =

[
1 + ΓQ(E)V (E)Ω +

δ∗Ω
δE Veff

]
PE (38)

In the last folded term we have introduced the symbol δ∗, implying that only the
last interaction, including the associated resolvent, is differentiated. This equation
is illustrated in Fig. 7. In the presence of virtual pairs, we can modify the potential
by a Coulomb interaction, so that in- and outgoing states of the modified potential
are all positive-energy states.

The procedure described so far contains only the so-called non-radiative QED
effects (top row in Fig. 4). Some radiative effects can be included into the potential,
as illustrate in Fig. 8. This involves the exchange of a retarded photon between
the electrons as well as self interaction, in both cases with and without crossing



May 3, 2010 10:13 Molecular Physics QTP2

12

r r6 6

6
6

-q
q

6
6

r r
6 6

r r6 6

6 6

6
6q qq qq q

6q

q

6
6r r

6 6

r r6 6
6 6

6
6

r r r r r r
-q

q

6
6r r

6 6

r r6 6

6
6

6
6r r r r r r

6q

q

6
6r r

6 6

r r6 6

6
6

6
6-q
q

-q
q

6
6r r

6 6

r r6 6
6 6

6 66q

q
6 q

q

6 6r r
6 6

Figure 9. One- and two-photon exchange diagrams with electron correlation, represented by incoming
and/or outgoing pair functions with one or several Coulomb interactions.

Coulomb interactions. In addition, vacuum-polarization effects can be included by
modifying the electron and photon propagators. These modifications have not yet
been implemented but seem quite feasible. This would then generate most of the
QED effects.

To go further, the next step would be to include also irreducible two-photon
effects (see Fig. 4). This is not feasible for the time being, but a reasonable ap-
proximation would be to replace one of the photons by the instantaneous Breit
interaction (23) (see Fig. 9).

By continuing this procedure and including more and more irreducible interac-
tions, this will eventually lead to the solution of the fully covariant two-particle
Bethe-Salpeter equation , as recently demonstrated by Lindgren et al. [27].

4. Implementation of the covariant procedure

The covariant form of MBPT, described here, is now being implemented at our lab-
oratory. The first diagram in Fig. 9, corresponding to a single, retarded photon with
iterated Coulomb interactions (Fig. 2) in and out, has been fully implemented—
with all combinations of particles and holes. This corresponds to evaluating the
corresponding QED effects with a fully correlated wave function of Hylleraas type.
The second diagram with crossing Coulomb interactions is implemented in the
no-pair approximation. The results are given in the second part of Table 1 and
displayed in Fig. 10. These results are compared in the first part of the table with
corresponding two-photon S-matrix results [28]. The results are presented in the
thesis of Daniel Hedendahl [29] and will be published shortly. This represents the
first calculations ever performed beyond two-photon exchange.

The next two diagrams in Fig. 9, which include one retarded and one unretarded
Breit interaction, are also quite feasible to evaluate, while the last two—with TWO
retarded interactions—are beyond reach for the time being. It should be noted,
though, that the corresponding effects would be quite small. In Fig. 10 we have
also indicated the (estimated) effect of doubly retarded two-photon exchange with
correlation.

One important conclusion that can be drawn from our results is that the ef-
fect of electron correlation on the first-order QED effect is considerably
larger than the second-order QED effect for light and medium-heavy
elements.

In the pipeline for us is presently to implement the radiative part of the potential
in the figure 8. This will require regularization and renormalization in the Coulomb
gauge, which is doable but not straightforward.

Our intention is also to apply the procedure to excited states of heliumlike ions
in order to evaluate level separations, such as the fine-structure splitting. Very
accurate experimental results are here available that presently have no matching
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Beyond two-photon exchange

Coulomb-Breit NVP (ret. and unret.)

Coulomb-Breit retarded

Coulomb-Breit virt. pairs

Doubly retarded Breit-Breit (est’d)

Figure 10. The Coulomb-Breit interaction with electron correlation beyond two-photon exchange, unre-
tarded (squares), retarded (circles), and virtual pairs (triangles). Included is also the (estimated) two-
photon Breit-Breit interaction with DOUBLE retardation and correlation (dashed). The values are nor-
malized to the ionization energy. The vertical scale is logarithmic with one unit corresponding to a factor
of the fine-structure constant α ≈ 1/137.

theoretical counterpart [30, 31]. In order to reach sufficient accuracy, our numerical
procedure has to be further improved, a procedure that is presently under way in
collaboration with the mathematical department at our university.

To what extent we will be able to realize the ambitious program indicated here,
will largely depend on the economical and personal resources that we can access
in the future.
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