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The current field of relativistic quantum chemistry (RQC) has been built upon the no-pair and no-
retardation approximations. While retardation effects must be treated in a time-dependent manner
through quantum electrodynamics (QED) and are hence outside RQC, the no-pair approximation
(NPA) has to be removed from RQC for it has some fundamental defects. Both configuration space
and Fock space formulations have been proposed in the literature to do this. However, the former
is simply wrong, whereas the latter is still incomplete. To resolve the old problems pertinent to the
NPA itself and new problems beyond the NPA, we propose here an effective many-body (EMB)
QED approach that is in full accordance with standard methodologies of electronic structure. As a
first application, the full second order energy E2 of a closed-shell many-electron system subject to
the instantaneous Coulomb-Breit interaction is derived, both algebraically and diagrammatically. It
is shown that the same E2 can be obtained by means of 3 Goldstone-like diagrams through the stan-
dard many-body perturbation theory or 28 Feynman diagrams through the S-matrix technique. The
NPA arises naturally by retaining only the terms involving the positive energy states. The potential
dependence of the NPA can be removed by adding in the QED one-body counter terms involving
the negative energy states, thereby leading to a “potential-independent no-pair approximation” (PI-
NPA). The NPA, PI-NPA, EMB-QED, and full QED then span a continuous spectrum of relativistic
molecular quantum mechanics. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811795]

I. INTRODUCTION

The last decade has witnessed fast developments of
relativistic quantum chemistry (RQC), as symbolized by
the advent of the so-called exact two-component (X2C)1

relativistic Hamiltonians (for recent reviews see Refs. 2–4).
What is equally important in this context is the observation
that, under very mild conditions, four- and two-component
relativistic approaches can be made fully equivalent in all the
aspects of simplicity, accuracy, and efficiency through the
generic ideas of “quasi-four-component” (Q4C)5 and “from
atoms/fragments to molecules”6–8 (or something similar9, 10).
In essence, the no-pair projected Dirac-Coulomb-Breit
(DCB) Hamiltonian H DCB

+ and its Q4C (H Q4C
+ ) and X2C

(H X2C
+ ) variants share the same generic second-quantized

normal-ordered form7 as the Schrödinger-Coulomb (SC)
Hamiltonian (H SC

+ ), viz.,

H X
+�X = E�X, �X = WX|0〉,

(1)
X = SC, X2C, Q4C, DCB,

H X
+ = H X

0 + H X
1 + H X

2 , (2)

H X
0 = 〈0|H X

+ |0〉, (3)

a)Author to whom correspondence should be addressed. Electronic mail:
liuwjbdf@gmail.com.

H X
1 = (f X)qp

{
ap

q

}
, ap

q = a†
paq, (4)

H X
2 = 1

4 ḡrs
pq

{
a

pq
rs

}
, a

pq
rs = a

†
pa

†
qasar ,

(5)
ḡrs

pq = grs
pq − gsr

pq = grs
pq − grs

qp,

grs
pq =

∫ ∫
d�r3

1 d�r3
2 ϕ†

p(�r1)ϕ†
q(�r2)g(1, 2)ϕr (�r1)ϕs(�r2). (6)

They differ formally only in the Fock operator f X generating
the orbitals. Yet, a subtlety lies in that the bare Coulomb,
Coulomb-Gaunt, or Coulomb-Breit operators, viz.,

g(1, 2) = gC(1, 2) + gB(1, 2), (7)

gC(1, 2) = I4I4

r12
, (8)

gB(1, 2) = gG(1, 2) + gg(1, 2), (9)

gG(1, 2) = − �α1 · �α2

r12
, (10)

gg(1, 2) = �α1 · �α2

2r12
− (�α1 · �r12)(�α2 · �r12)

2r3
12

(11)

can all directly be used for g(1, 2) (6) in the case of Q4C,
but they must be transformed appropriately in the case
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of X2C. As a very good approximation,11 the Gaunt or
Breit interaction can be treated at the mean-field level
through f X2C/Q4C, while only the bare Coulomb term is
adopted for the fluctuation potential (5) of X2C/Q4C. Then,
X2C/Q4C is computationally very similar to those approx-
imate two-comment (A2C) approaches12, 13 that combine
some approximately transformed one-electron operator hA2C

with the bare Coulomb operator. Although defined only
algebraically, the spin separations of the no-pair DCB, Q4C,
and X2C Hamiltonians are still possible, leading to a series
of new Hamiltonians that are infinite order in scalar relativity
and finite order in spin-orbit coupling.14 In this regard, the
sf-X2C+DKHn Hamiltonian by combining the spin-free
(sf) part of X2C with the nth order Douglas-Kroll-Hess12

(DKHn) type of spin-dependent (sd) terms is particularly
promising.15 The no-pair Hamiltonian axis,16 going from
SC through sf-A2C, sf-X2C, A2C, sf-X2C+DKHn, X2C,
and Q4C to DCB, can now be regarded as completed. Any
orbital-based correlation methods for parameterizing the
wave function �X through the wave operator WX can directly
be used (for recent reviews see Ref. 17). However, one has
to be aware that the no-pair approximation (NPA) itself has
several drawbacks: (a) Being defined only at matrix level, the
H X

+ (X = DCB, Q4C, X2C) Hamiltonians are incompatible
with the so-called explicitly correlated methods18–20 because
of two reasons. First, integrals like 〈pq|ĥrelf12|rs〉 and
〈pq|f12ĥrelf12|rs〉 must be evaluated analytically to achieve
fast convergence,21 but the required relativistic operator ĥrel

is not available in such Hamiltonians. Second and more
seriously, just like any second-quantized Hamiltonian, such
Hamiltonians have only a finite spectrum limited by the given
basis such that the effect of the correlation factor f12 is just
null for an obvious reason: The r12-dependent two-electron
basis functions try to simulate an orthogonal complementary
correlation space but which is not part of the Hamiltonians.
(b) At variance with the nonrelativistic full configuration
interaction (FCI), the no-pair FCI (more precisely, complete
active space CI) energy is always dependent on the potential
used to generate the orbitals.22 This is a direct consequence of
ignoring the correlation space spanned by the negative energy
states (NES) of the Dirac operator. An immediate question is
then whether the combination of a no-pair calculation with
only radiative quantum electrodynamics (QED) corrections
is meaningful at all: The missing contribution of NES to
correlation23 is of the same order of (Zα)3 as the leading QED
corrections. A recent numerical study24 indeed shows that,
for the ionization potential of the gold atom, the already good
agreement between the no-pair calculation25 and experiment
is worsened instead of improved when the corrections due
to one-electron self-energy and vacuum polarization are
included. This is likely due to the missing correlation of NES,
approximately 3% of the total correlation.

It turns out that the two problems in (a) can be resolved by
introducing an extended no-pair DCB Hamiltonian,16, 26 viz.,

H̃+ =
(

PHCSP PHCSQ

QHCSP QHCSQ

)
, (12)

P12 = (O+(1) + V +(1))(O+(2) + V +(2)), (13)

Q12 = (1 − O+(1) − V −(1))(1 − O+(2) − V −(2))

× (1 − V +(1)V +(2)). (14)

Here, HCS is the first-quantized configuration space (CS)
DCB Hamiltonian for N-electrons moving in the field of the
clamped nuclei

HCS =
N∑
i

D(i) +
N∑

i<j

g(i, j ), (15)

D = D0 + Vext , (16)

D0 = c�α · �p + βmc2, (17)

Vext (�r) = qφext (�r), φext (�r) =
∑
A

ZAe

|�r − �RA| , q = −e = −1,

(18)

where D0 is the free particle Dirac operator, Vext is the nuclear
attraction, c = 1/α is the speed of light, �p = −i �∇ is the linear
momentum operator, and �α and β are the usual 4 × 4 Dirac
matrices. The O+, V +, and V − operators in Eqs. (13) and (14)
are the respective projectors for the occupied positive energy
states (PES), unoccupied PES and NES defined by the given
basis. The projectors P12 and Q12 are to act on the conven-
tional and explicitly correlated subspaces, respectively. The
so-defined Q12 is formally in line with the filled Dirac picture:
Both O+ and V − can be viewed as occupied. It ensures strong
orthogonality to the “reference” O+ + V − as well as or-
thogonality to the conventional correlation subspace spanned
by orbital products. Moreover, it has minimal unphysical
contamination from the NES and the correct nonrelativistic
limit. Further combined with the coalescence conditions of
relativistic wave functions,26, 27 four-component relativistic
explicitly correlated methods can then be made fully parallel
to the nonrelativistic counterparts.26 A first implementation
along this line was just reported by Ten-no and Yamaki.28

It can be envisaged that the treatment of no-pair correlation
shall soon reach an accuracy of approximately 10−2 eV
for systems containing heavy elements. At that stage, the
intrinsic O(Zα)3 uncertainty of the no-pair correlation energy
must be removed to make the accuracy really valid. This can
only be achieved by further accounting for the contribution of
NES to correlation. The question is how. This is probably the
single final issue left with RQC from a formal point of view.29

It is also related to the exponible as how to bridge seamlessly
RQC and QED, the two mutually exclusive subfields.

There have been two approaches in the field of RQC
for handling the NES, i.e., the configuration space (CS)
approach30–35 associated with the empty Dirac picture and the
Fock space (FS) approach37–41 associated with the filled Dirac
picture. While they yield identical results for one-electron
properties of any order, the two approaches are completely
different in the contribution of NES to two-electron properties
beyond first order, including electron correlation.16 In the lat-
ter regard, the CS approach is completely illegitimate for both
mathematical and physical reasons. Mathematically, it suffers
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from the (in)famous continuum dissolution problem,42 which
implies essentially that the first-quantized configuration space
DC/DCB Hamiltonian (15) does not have any bound elec-
tronic states and even its discrete states are characterized by
complex energies and are hence resonances of finite life times.
The latter further implies that the DC/DCB Hamiltonian is
not self-adjoint (Hermitian). Although deduced only from a
crude model42 and numerical experimentations,32–35 such de-
ductions are further confirmed by firmer formal evidence.26, 43

The CS approach is also physically wrong: It conserves the
number of electrons, at variance with the true physics where
it is the charge instead of the number of particles that is con-
served. In other words, the CS approach treats the NES as
if they were energetically positive, just like the unoccupied
1s spin orbitals of He2s2. This is more clearly seen from the
“recovery”16 of the CS approach from QED by replacing the
Feynman electron propagator

SF (x2, x1) = −i〈0|T [φ(x2)φ†(x1)]|0〉,
(19)

φ(x) = bpϕp(�r)e−iεpt + bp̃ϕp̃(�r)e−iεp̃ t

= −i〈0|�(t2 − t1)φ(x2)φ†(x1)

−�(t1 − t2)φ†(x1)φ(x2)|0〉 (20)

=
∫ +∞

−∞

dω

2π

ϕt (�r2)ϕ†
t (�r1)

ω − εt + iηεt

e−iω(t2−t1),

t ∈ {p, p̃} (21)

with the “configuration space propagator”

SC(x2, x1) = −i〈0|T [φ(x2)φ†(x1)]|0〉,
(22)

φ(x) = apϕp(�r)e−iεpt + ap̃ϕp̃(�r)e−iεp̃ t

= −i�(t2 − t1)〈0|φ(x2)φ†(x1)

+φ†(x1)φ(x2)|0〉 (23)

=
∫ +∞

−∞

dω

2π

ϕt (�r2)ϕ†
t (�r1)

ω − εt + iη|εt |e
−iω(t2−t1),

t ∈ {p, p̃}. (24)

Here, the implicit summations over t in Eqs. (21) and (24) in-
clude both PES (p) and NES (p̃), whether occupied or not.
While SF(x2, x1) (21) propagates the PES forward in time
(through the Heaviside function �(t2 − t1) or equivalently
the lower-half-plane poles εp − iη) and the NES backward
in time (through the Heaviside function �(t1 − t2) or equiv-
alently the upper-half-plane poles εp̃ + iη), SC(x2, x1) (24)
propagates both the PES and NES forward in time. Since
the replacement of SF(x2, x1) with SC(x2, x1) changes the
nature of NES completely, it is clear that the CS approach
is not an approximation of QED, the Holy Grail of electro-
magnetic interactions between charged particles. In particu-
lar, the anti-correlating contribution of NES in the CS ap-
proach (i.e., energy increasing when included in the corre-
lation treatment)30–35 is not part of QED effects, sometimes
claimed though. Again, this should not be confused with

the anti-correlating contribution of 1s to He2s2: While the
Schrödinger He2s2 is truly unstable, the Dirac He1s2 is cer-
tainly stable even in the presence of NES. In sum, the CS
approach should definitely be dumped even if the DC/DCB
Hamiltonian were self-adjoint and had bound states. In other
words, the first-quantized configuration space DC/DCB equa-
tion cannot be solved as it stands. Instead, the NPA is here
a conceptual must instead merely of a technical means44 to
avoid the continuum dissolution problem.

Rather unexpectedly, as far as the correlation contribu-
tion of NES is concerned,23 the FS approach37–41 differs also
from QED although they share the same framework. It will
be shown here that the previous comparison16 of FS with
QED was “unfair”: The FS second order energy contains
some radiative terms that were not ascribed to correlation and
were hence excluded deliberately from QED.16, 22 The two ap-
proaches do agree with each other when the same radiative
and non-radiative Feynman diagrams are considered. There-
fore, the FS approach should be regarded as an important step
for going beyond the no-pair RQC. Nonetheless, the FS ap-
proach is still incomplete: Only those radiative Feynman di-
agrams featured by photon self-energy and vertex correction
are captured, whereas those radiative Feynman diagrams fea-
tured by electron self-energy and vacuum polarization are all
missed. Note in particular that the former appear at second
and higher orders, whereas the latter enter already at first or-
der. It will be shown here that the missing electron vacuum
polarization and self-energy can be captured in a natural man-
ner through an effective one-body potential. Here, the newly
introduced “charge-conjugated contraction” of Fermion fields
plays the key role, see Sec. II A. The resulting Schrödinger-
Coulomb-like effective Hamiltonian can account for all kinds
of virtual-pair effects due to non-retarded interactions, and
meanwhile is fully compatible with with the standard many-
body theories of electronic structure. To confirm this, the full
second order energy of a closed-shell system of N-electrons
are to be derived in three different ways in Sec. II B. The
present findings lead naturally to a new definition of RQC
as “theory for anything due to non-retarded interactions,”
whereas QED accordingly as “theory for anything due to re-
tarded interactions.”

Apart from the Einstein summation convention over re-
peated indices, the following convention is to be adopted
throughout the work: The occupied PES are to be denoted
by {i, j, . . . }, whereas the unoccupied PES and NES by {a, b,
. . . } and {ĩ, j̃ , · · ·}, respectively. Unspecified orbitals are de-
noted as {p, q, r, s}. When necessary, the NES will explicitly
be designated by {p̃, q̃, r̃, s̃}.

II. EFFECTIVE MANY-BODY QED APPROACH

A. The non-retarded QED Hamiltonian

The so-called no-photon FS Hamiltonian is defined
as36–41

HFS[b] =
∫

d�r{φ†(�r)Dφ(�r)} + 1

2

∫ ∫
d�r1d�r2{φ†(�r1)φ†(�r2)

× g(r1, r2)φ(�r2)φ(�r1)}, (25)
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where the curly brackets indicate normal ordering. The field
operator φ(�r) is defined as

φ(�r) = bpϕp(�r) + bp̃ϕp̃(�r), bp|0; 0̃〉 = bp̃|0; 0̃〉 = 0,

(26)

where bp (bp) annihilates (creates) an electron of positive en-
ergy εp, whereas bp̃ (bp̃) creates (annihilates) a positron of
positive energy |εp̃| = −εp̃. Inserting the expression (26) for
φ(�r) into HFS[b] (25) leads to 4 and 16 terms for the one- and
two-body parts, respectively. Close inspections reveal that the
Hamiltonian (25) is based on three essential ingredients:

(I) Second-quantize the matter field φ(�r) in terms of the
PES and NES of a mean-field operator h, viz.,

hϕp = εpϕp, h = D + U. (27)

Various choices can be made for the counter po-
tential U: (a) U = −Vext , the free-particle picture;45

(b) U = 0, the Furry picture;46 (c) U = VHF , the Fuzzy
picture;47 (d) U = Vloc, the extended Furry picture. It
appears that the appearance of unoccupied NES im-
poses no particular problem on solving Eq. (27) rep-
resented in a finite basis, as long as the basis is con-
structed according to, e.g., the restricted kinetic balance
(RKB) condition48 and meanwhile the electrons are, in
each iteration cycle, assigned to the lowest PES. Even
full variational safety49 can be guaranteed via the dual
kinetic balance (DKB) condition.50

(II) Introduce the particle-hole picture. That is, the NES are
reinterpreted as holes (virtual positrons). This is dic-
tated by the charge conjugation symmetry. The charge
conservation further dictates that the operator bp̃ (in-
stead of bp̃) must accompany bp in the field operator
φ(�r) (26). This can be seen as follows. Both bp and bp̃

increase the charge of a state by one unit; bp does this
by destroying an electron, whereas bp̃ does this by cre-
ating a positron. Thus, the field operator φ(�r) always
increases one unit of charge. Similarly, the field oper-
ator φ†(�r) always decreases one unit of charge. There-
fore, the operator φ†(�r)φ(�r) conserves the charge.

(III) Introduce the concept of normal ordering. Effectively,
this will change the sign of the negative energy εp̃ and
meanwhile get rid of the infinite energy of the other-
wise filled Dirac sea.

Additional remarks should be made here.

(1) At first glance, it is quite puzzling that the mean-field
equation (27) is usually solved under the empty Dirac
picture but the field quantization (26) actually adopts
the filled Dirac picture. Yet, as shown by Dyall and
Fægri,40 variation of the expectation value of HFS[b]
over a single determinant wave function |α〉 = |N ; 0̃〉(0)

leads to precisely the same equation (27), provided that
the vacuum |0; 0̃〉 itself is “floating,” i.e., updated self-
consistently. Therefore, the mean-field calculation with
the empty Dirac picture is perfectly justified. The situa-
tion would be different if a frozen vacuum (e.g., the free
particle one) is considered. In this case, (unrenormal-
ized) vacuum polarizations would arise from the one-

body potential Vext + U already at the mean-field level.
Therefore, the Hamiltonian HFS[b] (25) should be clas-
sified into two types, with the associated vacuum |0; 0̃〉
frozen37–39 or floating.40, 41 The latter is more appealing
for bound states, where virtual pairs are only created by
the fluctuation potential and represent pure correlation
effects when the screening potential U is chosen to be
the Hartree-Fock potential VHF .

(2) The same Hamiltonian HFS[b] (25) along with a float-
ing vacuum |0; 0̃〉 was discussed by both Dyall40 and
Kutzelnigg.41 However, the former focused only on
the stationarity conditions for mean-field calculations,
whereas the latter advocated strongly that the Hamilto-
nian HFS[b] is the only acceptable relativistic many-body
Hamiltonian under the no-photon approximation, pro-
vided that the polarization of the floating |0; 0̃〉 is also
taken into account.

(3) As explained before,16 the Hamiltonian HFS[b] (25) can
be rewritten as

HFS[a] = Dq
p

{
ap

q

}
n
+ 1

2
grs

pq

{
apq

rs

}
n

(28)

= εp

{
ap

p

}
n
− Uq

p

{
ap

q

}
n
+ 1

2
grs

pq

{
apq

rs

}
n
, (29)

where the subscript n emphasizes that the normal or-
dering is taken with respect to the vacuum |0; Ñ〉
= �Ñ

ĩ
aĩ |0; 0̃〉, manifesting the filled Dirac picture. This

form is more akin to nonrelativistic quantum mechan-
ics and is operationally much easier when deriving the
energy expressions (cf. Sec. II B 1).

In short, the Hamiltonian HFS[b] (25) together with the
polarization of the floating |0; 0̃〉, or equivalently the Hamilto-
nian HFS[a] (28) together with the polarization of the floating
|0; Ñ〉, defines the no-photon Fock space approach proposed
by Kutzelnigg.41 However, the so-introduced “vacuum polar-
ization” refers actually to “photon self-energy” rather than
“electron vacuum polarization,” as clearly seen from the anal-
ysis in Sec. II B 2. Both electron vacuum polarization and
electron self-energy are missed by taking only the normal-
ordered two-body interaction, the second term of Eq. (25)
or (28). The question is how to incorporate such terms into
the Hamiltonian in the same way as above. To achieve this
goal, we first notice that the normal-ordered Hamiltonian (28)
arises actually as follows:

HFS[a] = H − 〈0; Ñ |H |0; Ñ〉 (30)

= εp

{
ap

p

}
n
− Uq

p

{
ap

q

}
n
+ 1

2
grs

pq

{
apq

rs

}
n
, (31)

where the unnormal-ordered Hamiltonian H reads

H = Dq
pap

q + 1

2
grs

pqa
pq
rs = εpap

p − Uq
pap

q + 1

2
grs

pqa
pq
rs .

(32)

Going from Eqs. (30) to (31) is the usual normal order-
ing, apart from that the contractions among the occupied
NES are excluded. Otherwise, we would obtain the following
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Hamiltonian:

HCS[a] = HFS[a] + ḡ
qj̃

pj̃

{
ap

q

}
n
. (33)

This is just the second-quantized Schrödinger-Coulomb
Hamiltonian if the NES j̃ are interpreted as the occupied HF
orbitals. For the present case, it can readily be shown that even
the first order energy Ẽ(1) of HCS[a] (33), i.e.,

Ẽ(1) = E(1)
np + ḡ

ij̃

ij̃
, (34)

E(1)
np = 1

2
ḡ

ij

ij − Ui
i (35)

is incorrect, as compared either to E(1)
np (35) or E (1) (62). As

a matter of fact, HCS[a] (33) corresponds to a truly filled
Dirac sea, at variance with HFS[a] (28) where the filled
Dirac sea is introduced only as a formal step to avoid con-
ceptually the so-called radiation catastrophe associated with
the empty Dirac sea. The second term of Eq. (33) arising
from the contractions only within the NES amounts to treat-
ing the PES and NES asymmetrically. If we start with the
free-particle Dirac equation, we usually interpret the PES
(q1) as electrons and the NES (q2) as positrons, but we can
equally interpret the PES as positrons and the NES as elec-
trons. The situation remains unchanged when switching on
the internal Coulomb interaction q1q2

r12
, which is exchangeable

with respect to the charges: q1q2 = +1 for both q1 = q2

= −1 and q1 = q2 = +1; q1q2 = −1 for both q1 = −1, q2

= +1 and q1 = +1, q2 = −1. The charge conjugation symme-
try is broken only when an external field φext (�r) is introduced
through the minimal coupling principle, i.e., qφext (�r), which
is different for different charges. The question is: What is the
mean-field interaction between the PES and NES before the
external field is switched on? Such a mean-field, generated
from the contractions of the Coulomb interaction through nor-
mal ordering, must be symmetric with respect to the PES and
NES. To achieve this, we introduce here a “charge-conjugated
contraction” (CCC) of the Fermion operators, viz.,

AB = 〈vac|1

2
[A,B]|vac〉, (36)

such that

AB = {AB} + AB. (37)

It is understood that the expansion (37) includes all possible
numbers and combinations of contractions. For the present
case, we have |vac〉 = |0; Ñ〉 and hence

apaq = {apaq}n − 1

2
δp
q , εp, εq > 0, (38)

ap̃aq̃ = {aq̃ap̃}n + 1

2
δ

p̃

q̃ , εp̃, εq̃ < 0, (39)

which can generally be written as

ap
q = {apaq}n − 1

2
δp
q sgn(εq), ∀PES, NES. (40)

By applying this relation repeatedly we obtain

apq
rs = {

apq
rs

}
n
− 1

2

{
δp
r aq

s sgn(εr ) + δq
s ap

r sgn(εs)

− δq
r ap

s sgn(εr ) − δp
s aq

r sgn(εs)
}

n

+ 1

4

(
δp
r δq

s − δq
r δp

s

)
sgn(εr )sgn(εs), (41)

which leads to
1

2
grs

pqa
pq
rs = 1

2
grs

pq

{
apq

rs

}
n
+ Qq

p

{
ap

q

}
n
+ 1

8
ḡpq

pq sgn(εp)sgn(εq),

(42)

where

Qq
p = Q̃q

p + Q̄q
p = −1

2
ḡqω

pωsgn(εω), (43)

Q̃q
p = −1

2
gqω

pωsgn(εω), (44)

Q̄q
p = 1

2
gωq

pωsgn(εω). (45)

The implicit summations over ω in Q̃ and Q̄ include all the
PES and NES, whether occupied or not. Together with the
one-body term of Eq. (32), we obtain the desired Hamiltonian

HQED[a] = εp

{
ap

p

}
n
− Uq

p

{
ap

q

}
n
+ 1

2
grs

pq

{
apq

rs

}
n
+ Qq

p

{
ap

q

}
n

(46)

= HFS[a] + Q, Q = Qq
p

{
ap

q

}
n

(47)

normal ordered with respect to the Dirac vacuum |0; Ñ〉. By
further introducing the particle-hole picture we would obtain
a Hamiltonian HQED[b] normal ordered with respect to the
genuine vacuum |0; 0̃〉. It is seen that HQED[a] (or HQED[b]) is
just an extension of the original FS Hamiltonian HFS[a] (29)
(or HFS[b]) by adding in the one-body term Q. Since it is in
full agreement with the non-retarded part of QED (vide post),
it may legitimately be called “effective QED Hamiltonian.” It
differs from HCS[a] (33) only in the second term. That is, only
the Q term of HQED[a] (47) arising from the CCC (36) looks
peculiar as compared with nonrelativistic quantum mechan-
ics. To reveal the physical meaning of this term, we calculate
the induced charge density

ρvp(�r) = −|e|
2

〈0; Ñ |[φ†(�r), φ(�r)]0; Ñ〉,
(48)

φ(�r) = apϕp(�r) + ap̃ϕp̃(�r)

= −|e|
2

(n−(�r) − n+(�r)),

n+ =
∑

p

ϕ†
pϕp, n− =

∑
p̃

ϕ
†
p̃ϕp̃, (49)

where the summations in n+ and n− involve the whole PES
and NES, respectively. By virtue of the identity n+ + n−
= n̄+ + n̄− = 2n̄− with n̄+ and n̄− (= n̄+) being the free-
particle number densities, we have

ρvp(�r) = −|e|(n−(�r) − n̄−(�r)), (50)
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which is clearly the vacuum charge polarization. It is hence
clear that the Q̃ term (44) corresponds to the electron vac-
uum polarization. Equation (49) implies that the NES are oc-
cupied by electrons, whereas the PES by positrons. Since the
two pictures are equivalent thanks to charge conjugation sym-
metry, they should be averaged with an equal weight, viz.,
1/2. The Q̄ term (45) then corresponds to the electron self-
energy as the exchange of Q̃. It is also clear that, in the case
of Coulomb interaction, the vacuum polarization is larger in
magnitude than the self-energy. However, the opposite is true
for the exchange of a transverse photon not considered here,
which contributes to the self-energy but not to the vacuum po-
larization. When both contributions are considered, the elec-
tron self-energy becomes larger than the vacuum polarization
typically by one order of magnitude for light atoms. However,
the vacuum polarization increases more sharply as the nu-
clear charge increases, such that it becomes comparable with
the self-energy for heavy atoms, see Ref. 24 for most recent
numerical results. It also deserves to be mentioned here that
the formally quadratically divergent Q̃ can readily be regular-
ized and renormalized, whereas the regularization and renor-
malization of the linearly divergent Q̄ are only possible to-
gether with the transverse-photon contribution. Nevertheless,
this will not affect the subsequent discussions: One can sim-
ply regard Q̄ as the total electron self-energy wheresoever it
appears.

In summary, in addition to the three ingredients (I)–
(III) mentioned in the beginning, a fourth ingredient, i.e., the
charge-conjugated contraction (36), should also be invoked to
make the no-photon FS approach41 complete.

B. The second order energy

The previously defined Hamiltonian (46) taking |0; Ñ〉
as the vacuum is fully compatible with standard many-body
theories. To show this, we derive the lowest order energies in
different ways.

1. Treating the occupied PES as holes

To follow nonrelativistic quantum mechanics as closely
as possible, we first calculate the energy as the difference be-
tween the �(N ; Ñ ) and �(0; Ñ ) states16

E = 〈�(N ; Ñ )|H̄ |�(N ; Ñ )〉 − 〈�(0; Ñ )|H̄ |�(0; Ñ )〉,
(51)

H̄ = H̄0 + V̄0 + V1 + V2, (52)

H̄0 =
N+Ñ∑

m

εm + εp

{
ap

p

}
, (53)

V̄0 = 1

2
(VHF )ii −

N+Ñ∑
m

Um
m +

N+Ñ∑
m

Qm
m, (54)

V1 = (V1)qp
{
ap

q

}
, (55)

V2 = 1

2
grs

pq

{
apq

rs

}
, (56)

where the one-electron integrals are defined as

(V1)qp = (VHF )qp + (V̄1)qp, (57)

(VHF )qp = ḡ
qi

pi , (58)

(V̄1)qp = −Uq
p + Qq

p, Qq
p = Q̃q

p + Q̄q
p. (59)

Note that the normal ordering has been taken with respect to
the reference |N ; Ñ〉, as indicated by the summation over m
in (53) and (54). Since the VHF term in (54) and (55) emerges
only for systems of more than one positive energy electrons, it
does not apply to the �(0; Ñ ) state. The analogy with nonrel-
ativistic formulation is revealed by regarding the second term
on the right hand side of Eq. (51) as the HF reference energy
and the left hand side as the correlation energy. Therefore, fol-
lowing the standard many-body perturbation theory (MBPT)
we obtain immediately

E(0) =
N+Ñ∑

m

εm −
Ñ∑
m

εm =
N∑
i

εi , (60)

E(1) =
⎡
⎣1

2
(VHF )ii −

N+Ñ∑
m

Um
m +

N+Ñ∑
m

Qm
m

⎤
⎦

−
⎡
⎣−

Ñ∑
m

Um
m +

Ñ∑
m

Qm
m

⎤
⎦ (61)

=
(

1

2
VHF − U + Q

)i

i

, (62)

E(2) = E
(2)
1 + E

(2)
2 , (63)

E
(2)
1 = (V1)ai (V1)ia�

a
i + (V1)a

ĩ
(V1)ĩa�

a

ĩ
− (V̄1)i

ĩ
(V̄1)ĩi�

i

ĩ

− (V̄1)a
ĩ
(V̄1)ĩa�

a

ĩ
, (64)

E
(2)
2 = 1

4
ḡab

mnḡ
mn
ab �ab

mn|m,n=i,j,ĩ,j̃ − 1

4
ḡ

pq

ĩj̃
ḡĩj̃

pq�
pq

ĩj̃
|p,q=i,j,a,b

(65)

= 1

4
ḡab

ij ḡ
ij

ab�
ab
ij + 1

2
ḡab

ij̃
ḡ

ij̃

ab�
ab

ij̃
− 1

2
ḡia

ĩj̃
ḡ

ĩj̃

ia�
ia

ĩj̃

− 1

4
ḡ

ij

ĩj̃
ḡ

ĩj̃

ij �
ij

ĩj̃
, (66)

�q
p = 1

εp − εq

, �rs
pq = 1

εp + εq − εr − εs

. (67)

Here, all the terms with a global negative sign stem from
the �(0; Ñ ), whereas the others from the �(N ; Ñ ) state. The
two terms of Eq. (65) can nicely be represented by the same
Goldstone-like diagrams shown in Fig. 1. It is just that the
particles and holes as well as the one-body potential are inter-
preted differently.
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(a) (b) (c)

FIG. 1. Diagrammatical representation of the second order energy (65). (a)
two-body direct; (b) two-body exchange; (c) one-body. The horizontal dashed
line represents the instantaneous Coulomb/Breit interaction. For the �(N ; Ñ )
state, the particles (upgoing lines) and holes (downgoing lines) are {a, b} and
{i, j, ĩ, j̃}, respectively. The one-body potential represented by the square is
V1 (57). For the �(0; Ñ) state, the particles and holes are {a, b, i, j} and
{ĩ, j̃}, respectively. The one-body potential is V̄1 (59). A global negative sign
should be inserted to the terms of �(0; Ñ).

2. Treating the occupied PES as particles

The previous derivation of the energy is truly simple and
can readily be extended to arbitrary orders. Yet, the expres-
sions are too compact to elucidate the various contributions.
For this purpose, the occupied PES should be treated as parti-
cles. This amounts to directly calculating the left hand side of
Eq. (51) by using the HQED[a] Hamiltonian (46) yet without
explicitly referring to the vacuum |0; Ñ〉.

Consider a one-dimensional model space defined by the
projector P = |α̃〉〈α̃| with α̃ = |N ; Ñ〉. The zeroth and first
order energies of |α̃〉 can readily be obtained as

E(0) = 〈α̃|εp

{
ap

p

}
n
|α̃〉 = 〈α̃|εia

i
i |α̃〉 =

N∑
i

εi , (68)

E(1) = 〈α̃|(Q − U )qp
{
ap

q

}
n
+ 1

2
grs

pq

{
apq

rs

}
n
|α̃〉 (69)

= 〈α̃|(Q − U )ji a
i
j + 1

2
gkl

ij a
ij

kl |α̃〉 (70)

=
(

1

2
VHF − U + Q

)i

i

. (71)

The first order wave operator �(1) ≡ (1 − P)�(1)P normal
ordered with respect to |0; Ñ〉 contains ap, aq and aq̃ types of
operators but no ap̃, viz.,

�(1) = Xu
t

{
at

u

}
n
+ Xũ

t

{
at

ũ

}
n
+ 1

2
Xvw

tu

{
atu

vw

}
n
+ Xvw̃

tu

{
atu

vw̃

}
n

+ 1

2
Xṽw̃

tu {atu
ṽw̃}n + X̃

{
at

u

}
n
+ X̃ũ

t

{
at

ũ

}
n
+ X̄u

t

{
at

u

}
n

+X̄ũ
t

{
at

ũ

}
n
, (72)

where

Xu
t = Wu

t �t
u, W ≡ −U, (73)

X̃u
t = Q̃u

t �
t
u, (74)

X̄u
t = Q̄u

t �
t
u, (75)

Xvw
tu = gvw

tu �tu
vw. (76)

The corresponding potential that can be contracted with �(1)

reads

V = Wq
p

{
ap

q

}
n
+ W

q

p̃

{
ap̃

q

}
n
+ 1

2
grs

pq

{
apq

rs

}
n
+ grs

pq̃

{
apq̃

rs

}
n

+ 1

2
grs

p̃q̃

{
ap̃q̃

rs

}
n
+ Q̃q

p

{
ap

q

}
n
+ Q̃

q

p̃

{
ap̃

q

}
n
+ Q̄q

p

{
ap

q

}
n

+ Q̄
q

p̃

{
ap̃

q

}
n
. (77)

The terms in V (77) and �(1) (72) can be represented by the
diagrams shown in Figs. 2 and 3, respectively, in the same
ordering as they appear in the equations. The following rules
for contracting the V and �(1) operators should be followed
up: (1) The NES must all be contracted; (2) Zero contractions
leading to unlinked terms should be discarded; (3) At least
one pair of particle creation and annihilation operators should
be retained. Further using the relations given in Appendix A,
we obtain

H
(2)
eff = PV (1 − P )�(1)P =

28∑
I=1

S(I ), (78)

where

S(1) = Wq
p Xu

q

{
ap

u

}
n
− W

q

p̃ X
p̃
t

{
at

q

}
n
, (79)

S(2) = Wq
p Xvw

qu

{
apu

vw

}
n
− grs

pq̃X
q̃
t

{
apt

rs

}
n
, (80)

S(3) = grs
pqX

u
s

{
apq

ru

}
n
− W

q

p̃ X
vp̃
tu

{
atu

vq

}
n
, (81)

S(4) = 1

2
grs

pqX
vw
rs

{
apq

vw

}
n
+ 1

2
grs

p̃q̃X
p̃q̃
tu

{
atu

rs

}
n
, (82)

S(5) = grs
pqX

vw
ru

{
apqu

vsw

}
n
− grs

pq̃X
vq̃
tu

{
aput

rsv

}
n
, (83)

S(6) = −W
q

p̃ Xvp̃
qu

{
au

v

}
n
− grs

pq̃X
q̃
r

{
ap

s

}
n
, (84)

S(7) = grs
pq̃X

q̃
s

{
ap

r

}
n
+ W

q

p̃ X
vp̃
tq

{
at

v

}
n
, (85)

×

(1)

×

(2) (3) (4) (5) (6) (7)

(8) (9)

FIG. 2. Diagrammatical representation of the potential (77). Free orbital lines directed upwards and downwards represent PES and NES, respectively. The
internal orbital lines for the electron vacuum polarization (6) and (7) and self-energy (8) and (9) can be both PES and NES, whether occupied or not. Both the
dashed and wavy lines represent the instantaneous Coulomb/Breit interaction. The cross indicates the counter potential −U.
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×

(1)

×

(2) (3) (4) (5) (6) (7)

(8) (9)

FIG. 3. Diagrammatical representation of the first order wave operator �(1) (72). Free orbital lines directed upwards and downwards represent PES and NES,
respectively. The internal orbital lines for the electron vacuum polarization (6) and (7) and self-energy (8) and (9) can be both PES and NES, whether occupied
or not. Both the dashed and wavy lines represent the instantaneous Coulomb/Breit interaction. The cross indicates the counter potential −U.

S(8) = grs
pq̃X

vq̃
rs

{
ap

v

}
n
− grs

p̃q̃X
p̃q̃
ru

{
au

s

}
n
, (86)

S(9) = −grs
pq̃X

vq̃
sr

{
ap

v

}
n
+ grs

p̃q̃X
q̃p̃
ru

{
au

s

}
n
, (87)

S(10) = −grs
pq̃X

vq̃
su

{
apu

rv

}
n
− grs

pq̃X
vq̃
tr

{
apt

sv

}
n
, (88)

S(11) = grs
pq̃X

vq̃
ts

{
apt

rv

}
n
, (89)

S(12) = −grs
pq̃X

vq̃
ru

{
apu

vs

}
n
. (90)

S(13) = grs
pqX̃

u
r

{
apq

us

}
n
− Q̃

q

p̃X
vp̃
tu

{
atu

vq

}
n
, (91)

S(14) = grs
pqX̄

u
r

{
apq

us

}
n
− Q̄

q

p̃X
vp̃
tu

{
atu

vq

}
n
, (92)

S(15) = Q̃q
pXvw

qu

{
apu

vw

}
n
− grs

pq̃ X̃
q̃
t

{
apt

rs

}
n
, (93)

S(16) = Q̄q
pXvw

qu

{
apu

vw

}
n
− grs

pq̃ X̄
q̃
t

{
apt

rs

}
n
, (94)

S(17) = Q̃q
pX̃u

q

{
ap

u

}
n
− Q̃

q

p̃X̃
p̃
t

{
at

q

}
n
, (95)

S(18) = Q̃q
pX̄u

q

{
ap

u

}
n
− Q̃

q

p̃X̄
p̃
t

{
at

q

}
n
, (96)

S(19) = Q̄q
pX̃u

q

{
qp

u

}
n
− Q̄

q

p̃X̃
p̃
t

{
at

q

}
n
, (97)

S(20) = Q̄q
pX̄u

q

{
ap

u

}
n
− Q̄

q

p̃X̄
p̃
t

{
at

q

}
n
, (98)

S(21) = grs
pq̃ X̃

q̃
s

{
ap

r

}
n
+ Q̃

q

p̃X
vp̃
tq

{
at

v

}
n
, (99)

S(22) = grs
pq̃ X̄

q̃
s

{
ap

r

}
n
+ Q̄

q

p̃X
vp̃
tq

{
at

v

}
n
, (100)

S(23) = −grs
pq̃ X̄

q̃
r

{
ap

s

}
n
− Q̄

q

p̃Xvp̃
qu

{
au

v

}
n
, (101)

S(24) = −grs
pq̃ X̃

q̃
r

{
ap

s

}
n
− Q̃

q

p̃Xvp̃
qu

{
au

v

}
n
, (102)

S(25) = Wq
p X̃u

q

{
ap

u

}
n
− Q̃

q

p̃X
p̃
t

{
at

q

}
n
, (103)

S(26) = Wq
p X̄u

q

{
ap

u

}
n
− Q̄

q

p̃X
p̃
t

{
at

q

}
n
, (104)

S(27) = Q̃q
pXu

q

{
ap

u

}
n
− W

q

p̃ X̃
p̃
t

{
at

q

}
n
, (105)

S(28) = Q̄q
pXu

q

{
ap

u

}
n
− W

q

p̃ X̄
p̃
t

{
at

q

}
n
. (106)

Every term of the S(I) operators can be represented by a time-
ordered Feynman diagram shown in Fig. 4. Reversely, each
term of S(I) can also be obtained by joining systematically
the bottom lines of the diagrams in Fig. 2 and the top lines
of the diagrams in Fig. 3, demonstrating the equivalence of
the diagrammatic and algebraic derivations. Note in passing
that the number of the so-joined diagrams can considerably
be reduced if the Q and −U potentials are summed up in
Figs. 2 and 3. However, the “primitive diagrams” in Fig. 4 are
more transparent for a detailed analysis. They are also closely
related to the time-unordered Feynman diagrams shown in
Fig. 5. The calculation of the second order energy

E(2) = 〈α̃|H (2)
eff |α̃〉 = 〈α̃|V Q�(1)|α̃〉 (107)

is further facilitated by the following identity:

〈α̃|{ap1p2···pm−1pm

q1q2···qm−1qm

}
n
|α̃〉

= 〈α̃|{δpm

qm
ap1p2···pm−2pm−1

q1q2···qm−2qm−1
− δpm

qm−1
ap1p2···pm−2pm−1

q1q2···qm−2qm

− δpm

qm−2
ap1p2···pm−2pm−1

q1q2···qmqm−1
− · · · − δpm

q2
ap1p2···pm−2pm−1

q1qm···qm−2qm−1

− δpm

q1
ap1p2···pm−2pm−1

qmq2···qm−2qm−1

}
n
|α̃〉np1np2 · · · npm

, (108)

where {npi
} are the occupation numbers (0 or 1) of the PES

in |α̃〉. Repeated use of Eq. (108) can be made to obtain the
fully contracted result. Moreover, intermediate states leading
to zero energy denominators are excluded because of the un-
derlying intermediate renormalization. The results read

E(2)(1) = Wa
i Wi

a�
a
i − Wi

ĩ
W ĩ

i �
i

ĩ
, W = −U, (109)

E(2)(2) = Wa
i (VHF )ia�

a
i − (VHF )i

ĩ
W ĩ

i �
i

ĩ
, (110)

E(2)(3) = (VHF )ai W
i
a�

a
i − Wi

ĩ
(VHF )ĩi�

i

ĩ
, (111)

E(2)(4) = 1

4
ḡ

pq

ij ḡij
pq�

pq

ij

∣∣
p,q=k,l,a,b

+ 1

4
ḡ

ij

ĩj̃
ḡ

ĩj̃

ij �
ij

ĩj̃

= 1

4
ḡab

ij ḡ
ij

ab�
ab
ij + 1

2
ḡak

ij ḡ
ij

ak�
ak
ij

∣∣
i 
=j 
=k

+ ḡ
aj

ij ḡ
ij

aj�
aj

ij

+ 1

4
ḡ

ij

ĩj̃
ḡ

ĩj̃

ij �
ij

ĩj̃
, (112)

Downloaded 02 Jul 2013 to 162.105.153.113. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



014108-9 W. Liu and I. Lindgren J. Chem. Phys. 139, 014108 (2013)

×
×

(1)

×
×

(2)

×

(3)

×

(4)

×

(5)

×

(6) (7)

(8) (9) (10)

×
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×
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×
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×
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(43) (44) (45) (46)

×

(47)

×

(48)

×

(49)

FIG. 4. Time-ordered Feynman diagrams for the S-operators (79)–(106) with instantaneous interactions.

E(2)(5) =
[
ḡ

pj

ij ḡik
pk�

pk

ik − 1

2
ḡ

pk

ij ḡ
ij

pk�
pk

ij

] ∣∣
p=l,a

−
[
ḡ

ij

ij̃
ḡ

kj̃

kj �
kj

kj̃
− 1

2
ḡ

kj

ij̃
ḡ

ij̃

kj�
kj

ij̃

]
, i 
= j 
= k

=
[
ḡ

aj

ij ḡik
ak�

ak
ik − 1

2
ḡak

ij ḡ
ij

ak�
ak
ij

]
−

[
ḡ

ij

ij̃
ḡ

kj̃

kj �
kj

kj̃

− 1

2
ḡ

kj

ij̃
ḡ

ij̃

kj�
kj

ij̃

]
, i 
= j 
= k

=
[

(VHF )ai (VHF )ia�
a
i − ḡ

aj

ij ḡ
ij

aj�
aj

ij

− 1

2
ḡak

ij ḡ
ij

ak�
ak
ij |i 
=j 
=k

]

−
[

(VHF )i
ĩ
(VHF )ĩi�

i

ĩ
− ḡ

ij

ĩj
ḡ

ĩj

ij �
ij

ĩj

− 1

2
ḡ

kj

ij̃
ḡ

ij̃

kj�
kj

ij̃
|i 
=j 
=k

]
, (113)

E(2)(6) = −W
p

j̃
g

ij̃

pi�
pi

ij̃
− g

pi

ij̃
W j̃

p�
p

j̃
, p = j, a,

(114)
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×
×
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×
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×

7[13,14]

8[15,16] 9[17,18] 10[19,20] 11[21]

..............
..............
..............
..............
..............

12[22] 13[23,24] 14[25,26]

15[27,28] 16[29,30] 17[31,32] 18[33,34] 19[35,36] 20[37,38] 21[39,40]

22[41,42] 23[43,44] 24[45,46]

×

25[47,48]

×

26[49,50]

×

27[51,52]

×

28[53,54]

FIG. 5. Non-retarded Feynman diagrams for the second order energy. The numbers in brackets refer to the diagrams in Fig. 4. The retarded diagrams are
obtained by replacing one or two Coulomb photons with transverse photons.

E(2)(7) = W
p

j̃
g

ij̃

ip�
ip

ij̃
+ g

ip

ij̃
W j̃

p�
p

j̃
, p = j, a, (115)

E(2)(8) = g
pq

ij̃
gij̃

pq�
pq

ij̃
− g

pi

ĩj̃
g

ĩj̃

pi�
pi

ĩj̃
, p, q = k, l, a, b,

(116)

E(2)(9) = −g
pq

ij̃
gij̃

qp�
qp

ij̃
+ g

pi

ĩj̃
g

ĩj̃

ip�
ip

ĩj̃
, p, q = k, l, a, b,

(117)

E(2)(10) = −g
ip

ij̃
g

j j̃

pj �
pj

j j̃
+ g

jp

ij̃
g

ij̃

pj�
pj

ij̃
− g

pi

ij̃
g

j j̃

jp�
jp

jj̃

+ g
pj

ij̃
g

ij̃

jp�
jp

ij̃
, i 
= j, p = k, a, (118)

E(2)(11) = g
ip

ij̃
g

j j̃

jp�
jp

jj̃
− g

jp

ij̃
g

ij̃

jp�
jp

ij̃
, i 
= j, p = k, a,

(119)

E(2)(12) = g
pi

ij̃
g

j j̃

pj �
pj

j j̃
− g

pj

ij̃
g

ij̃

pj�
pj

ij̃
, i 
= j, p = k, a,

(120)

E(2)(13) = (VHF )ai Q̃
i
a�

a
i − Q̃i

ĩ
(VHF )ĩi�

i

ĩ
, (121)

E(2)(14) = (VHF )ai Q̄
i
a�

a
i − Q̄i

ĩ
(VHF )ĩi�

i

ĩ
, (122)

E(2)(15) = Q̃a
i (VHF )ia�

a
i − (VHF )i

ĩ
Q̃ĩ

i�
i

ĩ
, (123)

E(2)(16) = Q̄a
i (VHF )ia�

a
i − (VHF )i

ĩ
Q̄ĩ

i�
i

ĩ
, (124)

E(2)(17) = Q̃a
i Q̃

i
a�

a
i − Q̃i

ĩ
Q̃ĩ

i�
i

ĩ
, (125)

E(2)(18) = Q̃a
i Q̄

i
a�

a
i − Q̃i

ĩ
Q̄ĩ

i�
i

ĩ
, (126)

E(2)(19) = Q̄a
i Q̃

i
a�

a
i − Q̄i

ĩ
Q̃ĩ

i�
i

ĩ
, (127)

E(2)(20) = Q̄a
i Q̄

i
a�

a
i − Q̄i

ĩ
Q̄ĩ

i�
i

ĩ
, (128)

E(2)(21) = g
ip

ij̃
Q̃j̃

p�
p

j̃
+ Q̃

p

j̃
g

ij̃

ip�
ip

ij̃
, p = j, a, (129)

E(2)(22) = g
ip

ij̃
Q̄j̃

p�
p

j̃
+ Q̄

p

j̃
g

ij̃

ip�
ip

ij̃
, p = j, a, (130)

E(2)(23) = −g
pi

ij̃
Q̄j̃

p�
p

j̃
− Q̄

p

j̃
g

ij̃

pi�
pi

ij̃
, p = j, a, (131)

E(2)(24) = −g
pi

ij̃
Q̃j̃

p�
p

j̃
− Q̃

p

j̃
g

ij̃

pi�
pi

ij̃
, p = j, a, (132)

E(2)(25) = W
p

i Q̃i
p�

p

i − Q̃i

ĩ
W ĩ

i �
i

ĩ
, p = j, a, (133)

E(2)(26) = W
p

i Q̄i
p�

p

i − Q̄i

ĩ
W ĩ

i �
i

ĩ
, p = j, a, (134)

E(2)(27) = Q̃
p

i W i
p�

p

i − Wi

ĩ
Q̃ĩ

i�
i

ĩ
, p = j, a, (135)

E(2)(28) = Q̄
p

i W i
p�

p

i − Wi

ĩ
Q̄ĩ

i�
i

ĩ
, p = j, a. (136)
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The terms from E(2)(4) to E(2)(28) can be regrouped as

5∑
I=4

E(2)(I ) = (VHF )ai (VHF )ia�
a
i − (VHF )i

ĩ
(VHF )ĩi�

i

ĩ

+ 1

4
ḡab

ij ḡ
ij

ab�
ab
ij + 1

4
ḡ

ij

ĩj̃
ḡ

ĩj̃

ij �
ij

ĩj̃
+ ḡ

ij

ij̃
ḡ

ij̃

ij �
ij

ij̃

+ 1

2
ḡ

kj

ij̃
ḡ

ij̃

kj�
kj

ij̃

∣∣
i 
=j 
=k

, (137)

7∑
I=6

E(2)(I ) = Wa

ĩ
(VHF )ĩa�

a

ĩ
+ (VHF )a

ĩ
W ĩ

a�
a

ĩ

+Wi

ĩ
(VHF )ĩi�

i

ĩ
+ (VHF )i

ĩ
W ĩ

i �
i

ĩ
, (138)

9∑
I=8

E(2)(I ) = 1

2
ḡ

pq

ij̃
ḡij̃

pq�
pq

ij̃
− 1

2
ḡ

pi

ĩj̃
ḡ

ĩj̃

pi�
pi

ĩj̃
,

p, q = k, l, a, b

= ḡia

ij̃
ḡ

ij̃

ia�
ia

ij̃
+ 1

2
ḡab

ij̃
ḡ

ij̃

ab�
ab

ij̃

− 1

2
ḡ

ij

ĩj̃
ḡ

ĩj̃

ij �
ij

ĩj̃
− 1

2
ḡia

ĩj̃
ḡ

ĩj̃

ia�
ia

ĩj̃

+ḡ
aj

ij̃
ḡ

ij̃

aj�
aj

ij̃

∣∣
i 
=j

+ ḡ
ij

ij̃
ḡ

ij̃

ij �
ij

ij̃

+ 1

2
ḡ

kj

ij̃
ḡ

ij̃

kj�
kj

ij̃

∣∣
i 
=j 
=k

, (139)

12∑
I=10

E(2)(I ) = ḡ
ip

ij̃
ḡ

j j̃

jp�
jp

jj̃
− ḡ

pj

ij̃
ḡ

ij̃

pj�
pj

ij̃
, i 
= j, p = k, a

= ḡia

ij̃
ḡ

j j̃

ja�
ja

j j̃

∣∣
i 
=j

+ (VHF )i
ĩ
(VHF )ĩi�

i

ĩ

− ḡ
aj

ij̃
ḡ

ij̃

aj�
aj

ij̃

∣∣
i 
=j

− 2ḡ
ij

ij̃
ḡ

ij̃

ij �
ij

ij̃
− ḡ

kj

ij̃
ḡ

ij̃

kj�
kj

ij̃

∣∣
i 
=j 
=k

, (140)

16∑
I=13

E(2)(I ) = (VHF )ai Q
i
a�

a
i + Qa

i (VHF )ia�
a
i

−Qi

ĩ
(VHF )ĩi�

i

ĩ
− (VHF )i

ĩ
Qĩ

i�
i

ĩ
, (141)

20∑
I=17

E(2)(I ) = Qa
i Q

i
a�

a
i − Qi

ĩ
Qĩ

i�
i

ĩ
, (142)

24∑
I=21

E(2)(I ) = (VHF )a
ĩ
Qĩ

a�
a

ĩ
+ Qa

ĩ
(VHF )ĩa�

ĩ
a

+Qi

ĩ
(VHF )ĩi�

ĩ
i + (VHF )i

ĩ
Qĩ

i�
i

ĩ
, (143)

28∑
I=25

E(2)(I ) = Wa
i Q̃i

a�
a
i +Q̃a

i W
i
p�a

i −Wi

ĩ
Q̃ĩ

i�
i

ĩ
− Q̃i

ĩ
W ĩ

i �
i

ĩ
.

(144)

The one-body terms in Eqs. (109)–(111) and (137)–(144) can
be summed up, leading to

E
(2)
1 = E

(2)
FS,1 + E

(2)
VS,1, (145)

E
(2)
FS,1 = (VHF − U )ai (VHF − U )ia�

a
i

+ (VHF − U )a
ĩ
(VHF − U )ĩa�

a

ĩ

−Ua

ĩ
U ĩ

a�
a

ĩ
− Ui

ĩ
U ĩ

i �
i

ĩ
, (146)

E
(2)
VS,1 = [

(VHF − U )ai Q
i
a + Qa

i (VHF − U )ia + Qa
i Q

i
a

]
�a

i

+ [
(VHF )a

ĩ
Qĩ

a + Qa

ĩ
(VHF )ĩa

]
�a

ĩ

− [
Qi

ĩ
Qĩ

i − Ui

ĩ
Qĩ

i − Qi

ĩ
U ĩ

i

]
�ĩ

i, (147)

where E
(2)
FS,1 arises from the one-body terms of E(2)(I) (I

= 1, . . . , 12), while E
(2)
VS,1 from the one-body terms of E(2)(I)

(I = 13, . . . , 28). The former agrees with the previous FS re-
sult, see Eqs. (54)–(56) of Ref. 16. It can readily be shown
that the sum of E

(2)
FS,1 (146) and E

(2)
VS,1 (147) leads to the com-

pact expression shown in Eq. (64). The two-body terms in
Eqs. (137), (139), and (140) (i.e., E(2)(I) with I = 4, 5; 8, . . .
12) can be summed up, leading to

E
(2)
2 = 1

4
ḡab

ij ḡ
ij

ab�
ab
ij + 1

2
ḡab

ij̃
ḡ

ij̃

ab�
ab

ij̃
− 1

2
ḡia

ĩj̃
ḡ

ĩj̃

ia�
ia

ĩj̃

− 1

4
ḡ

ij

ĩj̃
ḡ

ĩj̃

ij �
ij

ĩj̃
, (148)

which agrees with Eq. (66) and also with the FS result (see
Eqs. (58)–(61) of Ref. 16).

Compared with the procedure adopted in Sec. II B 1,
the above procedure is very lengthy but helpful in identify-
ing various contributions. For instance, the FS/QED energy
E

(2)
2 (148) appears as a sum of both non-radiative and radia-

tive contributions (see Sec. II B 3 (E) for further discussions).
More specifically, the former includes E(2)(4) (uncrossed lad-
der; cf. Fig. 5(4)), E(2)(5) (three-electron two-photon; cf.
Fig. 5(5)), as well as E(2)(12) (crossed ladder; cf. Fig. 5(12)),
whereas the latter includes E(2)(8) (combined electron and
photon self-energy;51 cf. Fig. 5(8)), E(2)(9) (double vertex
correction; cf. Fig. 5(9)), E(2)(10) (single vertex correction;
cf. Fig. 5(10)), as well as E(2)(11) (photon self-energy; cf.
Fig. 5(11)). In contrast, for the special purpose of explor-
ing correlation-only contributions of NES,23 only the non-
radiative terms E(2)(4), E(2)(5), and E(2)(12) were considered
deliberately in the previous QED treatments.16, 22 This ex-
plains the “apparent discrepancy” between FS and QED ob-
served previously:16 Different contributions were considered.
After all, the time-dependent QED and time-independent
MBPT approaches should yield the same results for instan-
taneous interactions, as long as the same set of diagrams is
considered.

It is also interesting to note that the last, positively val-
ued term of E

(2)
2 (148) arises as a sum of the fourth term

of Eq. (137) (actually the last term of E(2)(4) (112)) and
the third term of Eq. (139). The former is non-radiative (cf.
Fig. 5(4)) and correlating, whereas the latter is radiative (cf.
Figs. 5(8) and 5(9)) and anti-correlating. Therefore, if only
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TABLE I. The spectrum of relativistic Hamiltonians. SC: Schrödinger-Coulomb; A1C: spin-free part of A2C; A2C: approximate two-component; X1C: spin-
free part of X2C; X2C: exact two-component; Q4C: quasi-four-component; DCB: no-pair Dirac-Coulomb-Breit; PI-DCB: potential-independent DCB; eQED:
effective (non-retarded) QED.

Interaction g(0; 1, 2) g(ω; 1, 2)

Speed of light c = ∞ c = 137

Virtual pairs 0 1a all

Hamiltonian SC A1C, X1C, A2C, PI-DCB eQED QED
X1C+DKHn, X2C,

Q4C, DCB

Methodology Standard many-body theory Time-dependent perturbation theoryb

aOne-body virtual pairs, see Eq. (150).
bFor the retarded part of QED.

non-radiative contributions of NES (i.e., Figs. 5(4), 5(5), and
5(12)) are characterized as correlation,16, 22 viz.,

E
(2)
2,C = 1

4
ḡab

ij ḡ
ij

ab�
ab
ij + 1

4
ḡ

ij

ĩj̃
ḡ

ĩj̃

ij �
ij

ĩj̃
+ 1

2
ḡ

kj

ij̃
ḡ

ij̃

kj�
kj

ij̃
|i 
=j 
=k

− 1

2
g

pj

ij̃
g

ij̃

pj�
pj

ij̃
|p=i,j,k,a;i 
=j , (149)

the NES would be correlating rather than anti-correlating.
Nonetheless, even if all the contributions are included, as
should (cf. Sec. II B 3 (E)), the second correlating term of E

(2)
2

(148) would strongly diminish the last two anti-correlating
terms. This is different from CS, where the two terms involv-
ing the NES (see Eqs. (24) and (25) of Ref. 16) are both anti-
correlating.

The NPA is obtained by neglecting all the terms involving
the NES. As shown numerically by Sapirstein,22 if the last
terms of Eqs. (109)–(111) arising from the counter potential
−U (cf. Figs. 5(1)–5(3)), viz.,

E
(2)
PC = (VHF )i

ĩ
U ĩ

i �
i

ĩ
+ Ui

ĩ
(VHF )ĩi�

i

ĩ
− Ui

ĩ
U ĩ

i �
i

ĩ
(150)

are retained, the potential dependence of the NPA can be
removed to a large extent, thereby leading to a “potential-
independent no-pair approximation” (PI-NPA). The corre-
sponding Hamiltonian for Eq. (1) reads

H PI−DCB
+ = Eref + (f DCB)qp

{
ap

q

} + 1

2
grs

pq

{
apq

rs

}
,

(151)
Eref = 〈0|H DCB

+ |0〉 + E
(2)
PC,

where all orbital indices refer to PES, except for E
(2)
PC (150).

At this stage, the whole spectrum of the Hamiltonian axis can
be established, see Table I.

3. The S-matrix approach

The S-matrix formulation52, 53 of QED is well estab-
lished. Herewith we only recapitulate briefly a few essential
points:

(A) In the QED literature, the 4-current operator Jμ is
oftentimes written as

Jμ(x) = −|e|{φ†(x)cαμφ(x)}, x = �rt, αμ = (c−1, �α),

(152)

where the field φ(x) in the interaction representation is already
defined in Eq. (19). The problem resides in that this form of
Jμ, viz., normal ordered with respect to |0; 0̃〉, excludes by
construction the electron vacuum polarization represented by
a tadpole (i.e., a Fermion loop connected with a single inter-
action, see Fig. 2(6)). This is correct only for free particles.
For bound states, it is the symmetrized form of Jμ that should
be adopted, viz.,

Jμ(x) = −1

2
|e|[φ†(x), cαμφ(x)]

≡ −1

2
|e|c(αμ)ρσ (φ†

ρφσ − φσφ†
ρ), (153)

which reduces to Eq. (152) in the special case of free parti-
cles. By virtue of the identity for time ordering of Fermion
operators

T

[
AB

1

2
(CD − DC)EF · · ·

]
= T [ABCDEF · · ·], (154)

Jμ (153) can simply be written as a single product

Jμ(x) = −|e|φ†(x)cαμφ(x) (155)

when writing the interaction Hamiltonian density, viz.,

H(x) = −eφ†(x)cαμAμ(x)φ(x), Aμ = (φext ,− �A) (156)

= φ†(x)(Vext (x) + ec�α · �A(x))φ(x). (157)

The electron vacuum polarization then arises correctly from
the so-called “equal-time contraction” (ETC),53

A(t)B(t) = 〈0; 0̃|T [A(t)B(t)]|0; 0̃〉

= 〈0; 0̃|1

2
[A(t), B(t)]|0; 0̃〉. (158)

This is taken into account automatically by the electron prop-
agator (19), viz.,

ρvp(�r) = |e|iT r[SF (x1, x1)] = −|e|
2

(n−(�r) − n+(�r)),

(159)

where use of the spectral representation of SF (21) and the
half-pole integral I−

10(0, εt ) (B9) has been made to arrive at
the second equality. Equation (159) is obviously the same as
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Eq. (49). As such, the previously introduced CCC (36) is
just the time-independent equivalent of the above ETC (158).
However, the former allows one to generate both the electron
vacuum polarization Q̃ (44) and self-energy Q̄ (45) due to the
Coulomb interaction in a time-independent fashion. Had the
ETC been defined as

A(t)B(t) = lim
η→0+

〈0; 0̃|T [A(t)B(t + η)]|0; 0̃〉, (160)

we would obtain

ρvp(�r) = |e|iT r[SF (x1, x1)] = −|e|n−(�r), (161)

which corresponds to the contraction (33). This form of ETC
holds only in the nonrelativistic limit, where the holes are the
occupied PES. It is hence clear that the electron vacuum polar-
ization and self-energy are a direct consequence of the charge
conjugation symmetry and are hence intrinsic QED effects.

(B) In the QED literature, the energy relative to the vac-
uum is oftentimes written as53

E = lim
γ→0,λ→1

iγ

2
λ

∂
∂λ

〈α|S|α〉C
〈α|S|α〉C + constant, |α〉 = |N ; 0̃〉(0),

(162)

where the subscript “C” indicates that only connected dia-
grams are to be included. This should be viewed with caution.
It can be demonstrated (vide post) that the disconnected but
linked diagrams should also be included to cancel precisely
the γ −1 type of divergences. That is, the subscript “C” should
be replaced with “L” for linked diagrams. The first and second
order energies can then be evaluated as

E(1) = lim
γ→0

iγ

2

{〈α|S(1)|α〉L + [
2〈α|S(2)|α〉L − 〈α|S(1)|α〉2

L

]}
,

(163)

E(2) = lim
γ→0

iγ

2
{[3〈α|S(3)|α〉L − 3〈α|S(1)|α〉L〈α|S(2)|α〉L]

+ [4〈α|S(4)|α〉L − 2〈α|S(2)|α〉2
L]}. (164)

(C) The nth order S-matrix defined as

S(n) = (−i)n

n!

∫
dx4

1 · · ·
∫

dx4
nT [H(x1)

· · ·H(xn)]e−γ (|t1|+···|tn|) (165)

can be rewritten in second-quantized form

S(n) = nd

n!
(S(n))q1q2···qm

p1p2···pm
{ap1p2···pm

q1q2···qm
}n, (166)

where {p1, p2, . . . , pm} and {q1, q2, . . . , qm} denote the respec-
tive outgoing and incoming free orbital lines of a Feynman
diagram (see Figs. 5 and 6), while nd represents the degener-
acy of the diagram. The prefactor nd

n! for a given diagram can
usually be determined by the symmetries of the diagram.54

However, the use of such rules is sometimes uncertain. Here
we provide the following alternative rules for counting the
weight factor nd: Each of the possible assignments of the elec-

×

(1) (2) (3) (4)

FIG. 6. Non-retarded Feynman diagrams for the first order energy. The re-
tarded diagrams are obtained by replacing the Coulomb photon with a trans-
verse photon.

tron propagators

SF (xi, xj ) =
∫ +∞

−∞

dω

2π
SF (ω; �ri, �rj )e−iω(ti−tj ),

(167)

SF (ω; �ri, �rj ) = ϕt (�ri)ϕ
†
t (�rj )

ω − εt (1 − iη)
, i ≤ j

contributes a factor of two if SF(xi, xj) (i < j) is not looped
by SF(xj, xi), or a factor of one if SF(xi, xj) (i ≤ j) is looped
by SF(xj, xi). The numbers of such electron propagators are
denoted as nF2 and nF1, respectively. In contrast, each of
the possible assignments (nP) of all the photon interactions
I (z; �ri, �rj ) contributes a factor of one independently of the
ordering of the vertices i and j, i.e., I (z; �rj , �ri) = I (z; �ri, �rj ).
Therefore, nd = max(1, nF1 + 2nF2) × max(1, nP). Specific
examples are given in Table II.

The integral (S(n))q1q2···qm
p1p2···pm

in Eq. (166) reads

(S(n))q1q2···qm

p1p2···pm

= (−1)nl

∫
dz1

2π

∫
dz2

2π
· · ·

∫
ω1

2π

∫
ω2

2π
· · ·

× 〈p1p2 · · · pm|(−i)I (z1; �ri1 , �ri2 )(−i)I (z2; �ri3 , �ri4 ) · · ·
× iSF (ω1; �rj1 , �rj2 )iSF (ω2; �rj3 , �rj4 ) · · · |q1q2 · · · qm〉
× 2π�γ (E1)2π�γ (E2) · · · 2π�γ (En). (168)

TABLE II. Degeneracy (nd) of low-order Feynman diagrams. nF2: number
of electron-field contractions between two different vertices enumerated in an
ascending order; nF1: number of electron-field contractions within the same
vertex; nP: number of possible assignments of all the photon interactions; nd

= max(1, nF1 + 2nF2) × max(1, nP).

Diagram nF2 nF1 nP nd nd/n!

Fig. 5(2) C2
3 0 1 6 1

Fig. 5(3) C2
3 0 1 6 1

Fig. 5(4) 1
2 C2

4 + 1
2 C2

4 0 1 12 1/2
Fig. 5(5) C2

4 0 2 24 1
Fig. 5(6) C2

3 0 1 6 1
Fig. 5(7) 0 C2

3 2 6 1
Fig. 5(11) 0 C2

4 2 12 1/2
Fig. 5(12) 1

2 C2
4 + 1

2 C2
4 0 1 12 1/2

Fig. 6(2) 0 0 1 1 1/2
Fig. 6(3) 0 C1

2 1 2 1
Fig. 6(4) C2

2 0 1 2 1
Fig. 7(a) 0 0 0 1 1/2
Fig. 7(b) 0 0 C2

3 3 1/2
Fig. 7(c) 0 0 1

2 C2
4 3 1/8
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×
×

(a)

×

(b) (c)

FIG. 7. Disconnected but linked Feynman diagrams: (a), (b), and (c) go with
Figs. 5(1), 5(2, 3), and 5(4, 5), respectively.

That is, there is a factor
∫

dω
2π

iSF (ω; �ri, �rj ) for each contracted
pair of electron fields and a factor

∫
dz
2π

(−i)I (z; �rk, �rl) for
each photon interaction. In the Coulomb gauge, the instan-
taneous Coulomb/Breit interaction I (z; �rk, �rl) is simply the
standard g(k, l) operator (7). Note that there is no z-integration
for the counter potential −U (�r). Furthermore, there is a fac-
tor 2π�γ (Ei) for each vertex arising from the time integra-
tion (see Eq. (B1)). The argument Ei is just the difference
between the incoming and outgoing orbital energies/photon
frequencies through the vertex. Finally, there is a global fac-
tor (−1)nl , with nl being the number of loops. These rules of
thumb for evaluating the Feynman diagrams have been docu-
mented in the recent book by one of the authors.56 However,
they are only complete when combined with the present rules
for counting the degeneracy nd of the diagrams. The integral
identities in Appendix B can further be employed to facilitate
the evaluation of (S(n))q1q2···qm

p1p2···pm
(168).

(D) There exist 4 connected Feynman diagrams for the
first order energy (see Fig. 6) and in total 28 connected Feyn-
man diagrams for the second order energy (see Fig. 5). The
latter can be obtained by merging the 54 time-ordered Feyn-
man diagrams shown in Fig. 4: Every pair of the time-ordered
diagrams corresponds to a time-unordered Feynman diagram,
except for diagrams shown in Figs. 4(21) and 4(22), each of
which corresponds to a time-unordered Feynman diagram. It
is interesting to note that the prefactors of diagrams shown in
Figs. 4(21) and 4(22) are both one, whereas the prefactors of
the corresponding diagrams shown in Figs. 5(11) and 5(12)
are both 1/2. This is due to symmetrization in time. Specif-
ically, the left intermediate state of diagram Fig. 5(11) can
either be a PES or NES, while the right intermediate can ac-
cordingly be a NES or PES, thereby twice Fig. 4(21). The
same occurs also to diagram Figs. 5(12) vs. 4(22).

To illustrate the above rules, we here evaluate the follow-
ing diagrams: Figs. 5(4), 5(5), 6(2), and 7(c). Although the
enumeration of the vertices xi = �ri ti , the “direction” of the
virtual photons zi, as well as the designation of the free or-
bital lines are completely arbitrary, the following expressions
follow the convention that, for a given diagram, the vertices
are enumerated in a clockwise and ascending order, the virtual
photons are directed from the left to right, while the outgoing
(incoming) free orbital lines are denoted as p, q, . . . (r, s, . . . )
from the left to right. In addition, the frequency ωi in the elec-
tron propagator goes always upwards. These “directions” are
necessary just for calculating the arguments Ei = Ein − Eout

of the vertex 2π�(Ei) functions.

Fig. 6(2):

S(2) = 1

2
(S(2))rspq

{
apq

rs

}
n
, (169)

(S(2))rspq =
∫

dz

2π
〈pq|(−i)I (z; �r2, �r1)|rs〉

× 2π�γ (εr − εp − z)2π�γ (εs − εq + z)

(170)

→ −igrs
pq2π�γ (εr + εs − εp − εq). (171)

Note that Eq. (170) holds for both instantaneous and retarded
interactions, whereas Eq. (171), as indicated by the arrow, is
confined only for the instantaneous interaction. This assump-
tion is adopted hereafter. The expectation value of S(2) over
the unperturbed electronic state |α〉 reads

〈α|S(2)|α〉 = ḡ
ij

ij

2iγ
, (172)

which contributes to the first order energy (cf. Eq. (163)) as

E
(1)
6(2) = iγ

2
[2〈α|S(2)|α〉] = 1

2
(VHF )ii . (173)

Fig. 5(4):

S(4) = 1

2
(S(4))rspq

{
apq

rs

}
n
, (174)

(S(4))rspq =
∫

dz1

2π

∫
dz2

2π

∫
dω1

2π

∫
dω2

2π

×〈pq|(−i)I (z1; �r2, �r1)(−i)I (z2; �r3,

�r4iSF (ω1; �r1, �r4)iSF (ω2; �r2, �r3)|rs〉
× 2π�γ (εr − z2 − ω1)2π�γ (z2 + εs − ω2)

× 2π�γ (ω1 − εp − z1)2π�γ (z1 + ω2 − εq)

(175)

→
∫

dω1

2π

∫
dω2

2π
〈pq|g(2, 1)g(3, 4)SF (ω1; �r1, �r4)

× SF (ω2; �r2, �r3)|rs〉
× 2π�2γ (εr + εs − ω1 − ω2)

× 2π�2γ (εp + εq − ω1 − ω2) (176)

= gtu
pqg

rs
tu

∫
dω1

2π

∫
dω2

2π

1

ω1 − εt (1 − iη)

× 1

ω2 − εu(1 − iη)
2π�2γ (εr + εs − ω1 − ω2)

× 2π�2γ (εp + εq − ω1 − ω2) (177)

= gtu
pqg

rs
tuI

L−−
22 (εt , εu; εr + εs, εp + εq, 2γ ), (178)

where the integral IL−−
22 is given in Eq. (B20). From the ex-

pectation value

〈α|S(4)|α〉 = 1

2
gtu

ij ḡ
ij
tuI

L−−
22 (εt , εu; εi + εj , εi + εj , 2γ )

(179)
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= gtu
ij ḡ

ij
tu

4iγ

{
Ltu

εi + εj − εt − εu + 2iγLtu

+ 2iγ |Ltu|
[εi + εj − εt − εu + 2iγLtu]2

}
(180)

= gtu
ij ḡ

ij
tu

4iγ

{
Ltu

εi + εj − εt − εu

∣∣∣∣
εi+εj 
=εt+εu

+ 1

iγ

∣∣∣∣
εi+εj =εt+εu

}
,

(181)

we obtain (cf. Eq. (164)),

E
(2)
5(4),γ = iγ

2
[4〈α|S(4)|α〉]

= 1

4

ḡtu
ij ḡ

ij
tuLtu

εi + εj − εt − εu

∣∣∣∣
εi+εj 
=εt+εu

+ ḡ
ij

ij ḡ
ij

ij

2iγ
, (182)

where the first term can be written as

E
(2)
5(4) = 1

4
ḡab

ij ḡ
ij

ab�
ab
ij + 1

2
ḡak

ij ḡ
ij

ak�
ak
ij

∣∣
i 
=j 
=k

+ ḡ
aj

ij ḡ
ij

aj�
aj

ij

+ 1

4
ḡ

ij

ĩj̃
ḡ

ĩj̃

ij �
ij

ĩj̃
, (183)

which is identical with E(2)(4) (112).

Fig. 5(5):

S(4) = (S(4))ijk
pqr

{
a

pqr

ijk

}
n
, i 
= j 
= k, (184)

(S(4))ijk
pqr =

∫
dz1

2π

∫
dz2

2π

∫
dω

2π
〈pqr|(−i)I (z1; �r2, �r1)(−i)

× I (z2; �r3, �r4)iSF (ω; �r2, �r4)|ijk〉
× 2π�γ (εi − εp − z1)2π�γ (εj − z2 − ω)

× 2π�γ (εk + z2 − εr )2π�γ (z1 + ω − εq)

→ −i

∫
dω

2π
〈pqr|g(2, 1)g(3, 4)SF (ω; �r2, �r4)|ijk〉

× 2π�2γ (εi − εp − εq + ω)

× 2π�2γ (εj + εk − εr − ω) (185)

= −igit
pqg

kj
rt

∫
dω

2π

1

ω − εt (1 − iη)

× 2π�2γ (εp + εq − εi − ω)

× 2π�2γ (εj + εk − εr − ω) (186)

= −igit
pqg

kj
rt I

−
12(εt ; εp + εq − εi, εj + εk − εr , 2γ ).

(187)

From the expectation value (cf. Eq. (108)),

〈α|S(4)|α〉 = −i

{
ḡit

ij ḡ
kj

kt I
−
12(εt ; εj , εj , 2γ )

−1

2
ḡit

kj ḡ
kj

it I−
12(εt ; εj + εk−εi, εj + εk−εi, 2γ )

}
(188)

= ḡit
ij ḡ

kj

kt

2iγ

[
1

εj − εt (1 − 2iγ )
+ 2iγ sgn(εt )

[εj − εt (1 − 2iγ )]2

]

− ḡit
kj ḡ

kj

it

4iγ

[
1

εj + εk − εi − εt (1 − 2iγ )

+ 2iγ sgn(εt )

[εj + εk − εi − εt (1 − 2iγ )]2

]
, i 
= j 
= k, (189)

we obtain (cf. Eq. (164)),

E
(2)
5(5),γ = iγ

2
[4〈α|S(4)|α〉] (190)

=
{

(VHF )ti(VHF )it
εi − εt

∣∣∣∣
i 
=t

− ḡ
tj

ij ḡ
ij

tj

εi − εt

∣∣∣∣
i 
=t

− 1

2

ḡkt
ij ḡ

ij

kt

εi + εj − εk − εt

∣∣∣∣
i 
=j 
=k 
=t

}

+ ḡ
ij

ij ḡ
ik
ik

iγ

∣∣∣∣
i 
=j 
=k

, (191)

where the first term can be written as

E
(2)
5(5) =

[
(VHF )ai (VHF )ia�

a
i − ḡ

aj

ij ḡ
ij

aj�
aj

ij − 1

2
ḡak

ij ḡ
ij

ak�
ak
ij

∣∣
i 
=j 
=k

]

−
[
(VHF )i

ĩ
(VHF )ĩi�

i

ĩ
− ḡ

ij

ĩj
ḡ

ĩj

ij �
ij

ĩj
− 1

2
ḡ

kj

ij̃
ḡ

ij̃

kj �
kj

ij̃

∣∣
i 
=j 
=k

]
,

(192)

which is identical with E(2)(5) (113).

Fig. 7(c):

S(4) = 1

8
(S(4))rsvw

pqtu

{
apqtu

rsvw

}
n
. (193)

A direct evaluation of this diagram according to Eq. (193) is
possible but is very lengthy. The evaluation is expedited by
observing that transitions between the disconnected parts of a
disconnected diagram all vanish in the limit γ → 0. That is,
the disconnected parts can be treated as if they were infinitely
separated in space and time. Therefore, the expectation of S(4)

(193) can be factorized as

〈α|S(4)|α〉 = 1

8

(
S

(2)
L

)rs

pq
〈α|{ars

pq

}
n
|α〉(S(2)

R

)vw

tu
〈α|{avw

tu

}
n
|α〉

(194)

= 1

2
〈α|S(2)

L |α〉〈α|S(2)
R |α〉 (195)

= 1

2

ḡ
ij

ij

2iγ

ḡkl
kl

2iγ
|i 
=j 
=k 
=l , (196)

where use of the expression (172) has been made for both the
left (S(2)

L ) and right (S(2)
R ) parts of the diagram. We then obtain

(cf. Eq. (164)),

E
(2)
7(c),γ = iγ

2
[4〈α|S(4)|α〉] = ḡ

ij

ij ḡ
kl
kl

4iγ

∣∣∣∣
i 
=j 
=k 
=l

. (197)
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The second terms of Eqs. (182) and (191) together can only
be canceled out by the sum of Eq. (197) and the following
term (cf. Eqs. (164) and (172)):

iγ

2
[−2〈α|S(2)|α〉2] = − ḡ

ij

ij ḡ
kl
kl

4iγ

∣∣∣∣
i 
=j,k 
=l

= − ḡ
ij

ij ḡ
ij

ij

2iγ

∣∣∣∣
i 
=j

− ḡ
ij

ij ḡ
kl
kl

iγ

∣∣∣∣
i 
=j 
=k

− ḡ
ij

ij ḡ
kl
kl

4iγ

∣∣∣∣
i 
=j 
=k 
=l

. (198)

It is therefore clear that the disconnected but linked di-
agrams are responsible for removing the γ −1-type of di-
vergences from the reducible diagrams (i.e., diagrams with-
out photon crossings, e.g., Figs. 5(1)–5(5); 5(13)–5(20); and
5(25)–5(28)), although they do not contribute to the energy.
Note in passing that, at variance with such complete manipu-
lations, the same results can alternatively be obtained by dis-
carding the singular terms from the outset, including the terms
with a negative sign in Eqs. (163) and (164), the last terms in
the integrals (B6)–(B8) and (B20)–(B27). It is this “shortcut”
that is usually employed in the literature.56 It looks like that
this shortcut is equivalent to imposing the intermediate nor-
malization, as done in Sec. II B 2.

All the Feynman diagrams in Figs. 5 and 6 can readily be
evaluated by following the above rules and examples. The re-
sults agree completely with the previous expressions for E(1)

(71) and E(2)(I) (I = 1, . . . , 28) shown in Eqs. (109)–(136).
As expected, the results also agree with those by the covari-
ant evolution operator (CEO) approach55, 56 that aims to treat
correlation, relativity and full QED on the same footing.

(E) In the QED literature, numerical results are usu-
ally reported for individual Feynman diagrams. This should
be viewed with caution. For instance, the last two terms of
Eqs. (137), (139), and (140) are the so-called EPV (exclusion-
principle violating) terms. They can only be canceled out
by summing up the corresponding diagrams, viz., Figs. 5(4),
5(5), and 5(8)–5(12). Many diagrams (e.g., Figs. 5(6)–5(24))
even cannot be expressed in terms of anti-symmetrized
two-electron integrals (cf. Eqs. (114)–(132)), implying that
such diagrams may contain individually unphysical self-
interactions (SI) (i.e., (ip|ii)). Therefore, the Feynamn dia-
grams must be combined properly so as to cancel precisely
the EPV and SI errors. This raises the question whether the
standard partitioning23 of QED effects into radiative (e.g.,
Figs. 5(8)–5(11)) and non-radiative effects (e.g., Figs. 5(4),
5(5), and 5(12)) is meaningful at all. In essence, only elec-
tron vacuum polarization and self-energy, as well as retarda-
tion, are genuine QED effects, whereas photon self-energy
(another kind of vacuum polarization) and vertex correction
should be regarded as “derived” QED effects51 or simply cor-
relation/screening effects in the case of instantaneous inter-
actions. This viewpoint is further supported by the fact that
photon self-energy and vertex correction also appear in non-
relativistic descriptions of correlation/screening effects.

(F) The S-matrix approach discussed so far treats all the
occupied PES as particles. To treat the core states (denoted

as c and d) as holes, one can modify the electron propagator
SF (21) as follows:57

SM
F (x2, x1) = SF (x2, x1) + Sc

F (x2, x1), (199)

where

Sc
F (x2, x1) =

∮
Rc

dω

2π

ϕc(�r2)ϕ†
c (�r1)

ω − εc(1 + iη)
e−iω(t2−t1). (200)

Here, Rc is the counter-clockwise integration contour closing
all the core states. This amounts to shifting the Fermi level to
the top edge of the core states. The above rules as well as the
integral identities in Appendix B can still be employed. For
instance, we can readily obtain the following results for the
diagrams in Fig. 6:

E
(1)
6(1) = −Uv

v , (201)

E
(1)
6(2) = 1

2
ḡuv

uv , (202)

E
(1)
6(3) = −1

2
gvω

vωsgn(εω) + gvc
vc , (203)

E
(1)
6(4) = 1

2
gωv

vωsgn(εω) − gcv
vc , (204)

where u and v refer to the valence states. Use of Eq. (B28) has
been made to arrive at Eqs. (203) and (204). The sum of these
terms can be rewritten as

E(1)
c =

4∑
i=1

E
(1)
6(i) = E(1) −

(
1

2
ḡcd

cd + Qc
c − Uc

c

)
, (205)

where E(1) (71) is the first order energy by treating all the
occupied NES as particles. That is, the two treatments dif-
fer only by a constant, which does not affect valence excita-
tion energies. This holds also for higher order terms. How-
ever, the situation would be different if the relevant diagrams
are not all considered simultaneously. For instance, if only
diagram shown in Fig. 5(2) is considered, its valence en-
ergy E

(1)
6(2) (202) differs from the all-particle energy 1

2 ḡ
ij

ij by

−ḡvc
vc − 1

2 ḡcd
cd , the first term of which is not a constant and

hence does affect valence excitation energies. Again, this
shows that numerical results should not be reported only for
individual Feynman diagrams. Note also that, although both
are treated as holes, the core states and the NES are still dif-
ferent: They interact differently with the valence states, as can
be seen from Eqs. (203) to (204). If all the occupied PES are
treated as holes, the result E(1)

c (205) is simply zero. This is a
direct consequence of the fact that the modified electron prop-
agator (199) excludes by construction the interaction between
the positive- and negative-energy holes. In other words, unlike
the approach presented in Sec. II B 1, the S-matrix formula-
tion of QED is a valence approach and cannot treat all the
occupied PES as holes.

III. CONCLUSIONS AND OUTLOOK

The exponible as how to go beyond the no-pair relativis-
tic quantum chemistry has been addressed critically. While
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the configuration space approach is plainly wrong, the previ-
ous Fock space approach also has to be extended. This has
been achieved by introducing the charge-conjugated contrac-
tion of Fermion operators, which gives rise naturally to an
effective one-body potential Q (43) responsible for electron
vacuum polarization and self-energy. The resulting many-
body Hamiltonian (46), constructed in a bottom-up fashion
rather than derived from QED in a top-down manner, can ac-
count for all kinds of virtual-pair effects due to non-retarded
interactions. In particular, it is fully compatible with the stan-
dard methodologies of electronic structure. After adding in
the contribution from the exchange of a transverse photon,
the Q potential can be regularized/renormalized and then fit-
ted into a semi-local all-electron model potential, such that
electron vacuum polarization and self-energy together can be
treated variationally at the mean-field level, just like the nu-
clear attraction. The subsequent treatments of correlation and
properties are then simplified greatly, e.g., diagrams shown in
Figs. 5(13)–5(28) are no longer needed. In practice, the fol-
lowing ansatz16 may be pursued for high precision calcula-
tions of many-electron systems

E = EHL
NPP,++(valence) + E

(2)
EQED,+−(core′) + ER

FQED. (206)

Here, the first term stands for a high-level treatment of valence
electrons within the PES manifold, combined favorably with
explicitly correlated functions.26 If the electron vacuum polar-
ization and self-energy are included variationally at the mean-
field level, the interplay between them and no-pair correla-
tion is already accounted for at this stage. The second term of
Eq. (206) stands for the second order treatment of core-core
and core-valence interactions within both the PES and NES
manifolds (see Eqs. (64) and (66)), whereas the third term
stands for further corrections due to retardation, finite nuclear
mass, and quantization of the electromagnetic field. It is the
second term that will eliminate the often mentioned intrinsic
uncertainty of order (Zα)3 in the eigenenergies of the no-pair
DC or DCB equation.

Finally, it deserves to be mentioned that the Hamiltoni-
ans discussed so far (see Table I) are defined in the laboratory
frame of reference. For molecular spectroscopies involving
nuclear vibrations and/or rotations, it is the body-fixed molec-
ular Hamiltonians that should be used. A general body-fixed
no-pair relativistic molecular Hamiltonian, including nuclear
mass-polarization and recoil, is just proposed,58 the extension
of which to the present effective QED Hamiltonian is straight-
forward.
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APPENDIX A: USEFUL RELATIONS FOR OPERATOR
CONTRACTIONS

There exist two kinds of contractions between V (77) and
�(1) (72): (1) The ap̃ operators of V and the aq̃ operators of
�(1) must all be contracted. (2) The ap operators of V and
the aq operators of �(1) should also be contracted. However,
neither zero nor full contractions are allowed. With these rules
we have
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APPENDIX B: USEFUL INTEGRALS

We first define56∫ +∞

−∞
dteiωt e−γ |t | = 2γ

ω2 + γ 2
= 2π�γ (ω), (B1)

where �γ (ω) is an even function of ω and has the following
properties:

lim
γ→0

�γ (ω) = δ(ω), (B2)

lim
γ→0

πγ�γ (ω) = δω
0 , (B3)

∫ +∞

−∞

dω

2π
2π�α(a − ω)2π�β(b + ω) = 2π�α+β (a + b).

(B4)

The integral I±
11 with one electron propagator and one � func-

tion reads

I±
11(εt ; a, γ ) =

∫ +∞

−∞

dω

2π

1

ω − εt (1 ± iη)
2π�γ (a − ω)

= 1

a − εt (1 ± iγ )
, (B5)
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where η is an infinitesimally positive number, whereas γ is a small but finite positive number (i.e., η + γ ≈ γ ). The integral I±
12

with one electron propagator and two � functions reads

I±
12(εt ; a, b, γ ) =

∫ +∞

−∞

dω

2π

1
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{
1
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+ 1
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± γ sgn(εt )
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}
, (B6)

which reduces to
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(B7)

in the case of a = b. Likewise,
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Further in view of the identities
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IL−−
20 (a, εt , b, εu; n) =
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IX++
20 (a, εt , b, εu; n) =
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where

Ltu = L++ = −L−− = 1, Ltu = L+− = L−+ = 0, (B18)

Xtu = X++ = X−− = 0, Xtu = X+− = −X−+ = 1, (B19)

the integrals IAbc
22 (A = L, X; b, c = +, −) with two electron propagators and two � functions can readily be evaluated as

IL−−
22 (εt , εu; a, b, γ ) =

∫ +∞

−∞

∫ +∞

−∞

dω1

2π

dω2

2π

1

ω1 − εt (1 − iη)

1

ω2 − εu(1 − iη)

× 2π�γ (a − ω1 − ω2)2π�γ (b − ω1 − ω2)

= 2π�2γ (a − b)

{ −iLtu

2[a − εt − εu + iγLtu]

+ −iLtu

2[b − εt − εu + iγLtu]

+ γ |Ltu|
[a − εt − εu + iγLtu][b − εt − εu + iγLtu]

}
, (B20)

IL++
22 (εt , εu; a, b, γ ) =

∫ +∞

−∞

∫ +∞

−∞

dω1

2π

dω2

2π

1

ω1 − εt (1 + iη)

1

ω2 − εu(1 + iη)

× 2π�γ (a − ω1 − ω2)2π�γ (b − ω1 − ω2)

= 2π�2γ (a − b)

{
iLtu

2[a − εt − εu − iγLtu]

+ iLtu

2[b − εt − εu − iγLtu]

+ γ |Ltu|
[a − εt − εu − iγLtu][b − εt − εu − iγLtu]

}
, (B21)

IL+−
22 (εt , εu; a, b, γ ) =

∫ +∞

−∞

∫ +∞

−∞

dω1

2π

dω2

2π

1

ω1 − εt (1 + iη)

1

ω2 − εu(1 − iη)

× 2π�γ (a − ω1 − ω2)2π�γ (b − ω1 − ω2)

= 2π�2γ (a − b)

{
iXtu

2[a − εt − εu − iγXtu]

+ iXtu

2[b − εt − εu − iγXtu]

+ γ |Xtu|
[a − εt − εu − iγXtu][b − εt − εu − iγXtu]

}
, (B22)

Downloaded 02 Jul 2013 to 162.105.153.113. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



014108-20 W. Liu and I. Lindgren J. Chem. Phys. 139, 014108 (2013)

IL−+
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At variance with the half-pole integral (B9), the follow-
ing integral is a full-pole integral:

I±
Rc

(a, εc) =
∮

Rc

dω

2π

1

a + ω − εc(1 ± iη)

=
∮

Rc

dω

2π

1

a − ω − εc(1 ± iη)

= isgn(εc), (B28)

where Rc is the counter-clockwise integration contour closing
the c state.
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