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We present numerical results for the energy shift due to the combination of Coulomb-correlation and quantum-
electrodynamic effects in the ground state of heliumlike highly charged ions. The combined effect of two or more
Coulomb interactions together with a single retarded photon, including radiative effects, is calculated for various
atomic numbers in the range Z = 14 to Z = 50. One step in our computational scheme involves the evaluation
of the Coulomb-screened self-energy at the two-photon level, and we present a detailed comparison between the
Coulomb and Feynman gauges with regard to the various contributions to this effect.
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I. INTRODUCTION

In highly charged ions relativistic and quantum-
electrodynamic (QED) effects are pronounced due to the
presence of the very strong nuclear potential. These systems
are therefore well suited for accurate tests of fundamental
theories in the strong-field regime, for example, by comparing
observed and calculated bound-state transition energies.

Theoretical studies of the structure of heliumlike highly
charged ions are undertaken with quite different methods
depending on the size of the atomic number Z. For low
Z it is essential to treat electron correlation accurately,
either by the use of variational methods or some variant
of many-body perturbation theory (MBPT). Corrections due
to QED effects (retardation, self-interactions, and negative-
energy states) cannot be included directly in these methods but
have to be computed separately. Among the approaches that
have been pursued to this end are various screening corrections
to hydrogenic one-loop QED shifts due to local potentials
[1–3] as well as the “unified method” of Drake [4].

In the high-Z range, on the other hand, the relative
importance of the electron-electron interaction is smaller
while the QED effects become increasingly important, and in
this region rigorous approaches based on bound-state QED
are needed. To date, the most complete bound-state QED
calculation was carried out in a comprehensive numerical
study by Artemyev et al. [5], which is based on the “two-times
Green’s function” method of Shabaev [6] and which includes
all contributions up to the two-photon level for the n = 1 and
n = 2 states in heliumlike ions in the range Z = 12−100. Two
other methods for bound-state QED have been developed:
the S-matrix formulation of Sucher [7], and the “covariant
evolution-operator” method developed more recently by our
group [8]. For practical reasons it is presently not possible
to go beyond the two-photon level with any of these three
approaches, and this means that a simultaneous treatment
of QED effects and electron correlation1 is currently beyond
reach with these methods.

1In this work we will refer to effects containing at least two electron-
electron interactions as correlational effects.

In order to study the combined effect of electron correlation
and QED, which might be necessary to consider in an
intermediate-Z range, a scheme has been developed by our
group where the QED effects can be included in an iterative
perturbation expansion of the atomic wave function and en-
ergy. This is accomplished in the covariant evolution-operator
framework by generalizing the standard relativistic many-
body perturbation theory to include also energy-dependent
perturbations, which is what the retarded nonlocal photons of
QED constitute. We will in this paper present numerical results
for the energy shift in the ground state of some heliumlike
ions in the range Z = 14−50 due to the combined effect
of correlation and single-photon QED effects (self-energy,
vacuum polarization, and retarded single-photon exchange)
obtained with this method.

II. THEORY

A. Energy-dependent many-body perturbation theory

The photon-mediated processes of bound-state QED cor-
respond to N -electron operators (for example, N = 1 in the
case of the electron self-energy and N = 2 for single photon
exchange) which can be considered as perturbations to bound
electron states. Due to the retarded nature of the photon
they will in general be energy-dependent perturbations and
in order to include them in a perturbation expansion of energy
shifts and corrections to wave functions we will rely on the
energy-dependent many-body perturbation theory developed
in [8–12] based on the covariant evolution-operator formalism.
We will here only summarize the main results of this theory
as it applies to the atomic problem.

Let |�〉 denote an exact, stationary state with energy E,
which includes the interaction among N electrons bound to
an (infinitely heavy) atomic nucleus as well as their self-
interactions. A so-called model state |�(0)〉 with energy E(0)

serves as a zeroth-order approximation to |�〉. The model
state lies in a model space and is constructed from a linear
combination of eigenstates |φ(0)

α 〉 to a model Hamiltonian
H0,

H0

∣∣φ(0)
α

〉 = E(0)
α

∣∣φ(0)
α

〉
, (1)
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which typically includes the interaction of the individual
electrons with the nuclear potential and perhaps some mean-
field interaction term between the electrons. We will in the
following for simplicity assume that the model space is
one-dimensional, although the formalism can be extended to
include multidimensional model spaces containing more than
one energy [9].

The exact state can be generated from its model state via
the energy-dependent Green’s operator G(E,t)

|�〉 = G(E(0),0)|�(0)〉, (2)

evaluated at time t = 0. The Green’s operator, which con-
tains the interaction between the electrons and their self-
interactions, is formally defined in terms of a relativistic
time-evolution operator and can be constructed perturbatively
using quantum field theory [9,12]. For our present purposes we
will use the fact that a large part of G can be written as a time-
ordered perturbation expansion in terms of energy-dependent,
photon-mediated perturbations V (E):

G(E,t) = G0(E,t) +
∞∑

n=1

δnG0(E,t)

δEn
Wn, (3)

where

G0(E,t) = e−it(E−H0)

[
1 +

∞∑
n=1

{�Q(E)V (E)}n
]

(4)

is that part of G whose perturbation-expansion contains no
model-space states. �Q is the reduced resolvent

�Q(E) = Q

E − H0
, (5)

which operates only in the complementary space with projec-
tion operator Q, orthogonal to the model space with projection
operator P .

W is the effective interaction

W (E) = P

(
i

∂

∂t
G(E,t)

)
t=0

P, (6)

which gives the energy shift

W (E(0))|�(0)〉 = (E − E(0))|�(0)〉 = �E|�(0)〉. (7)

The difference ratio δnG/δEn appearing in Eq. (3) is
discussed in detail in Appendix B of [10], and for n = 1 it
turns into an ordinary derivative

δG
δE → ∂G

∂E (8)

in the case of a model space containing only a single energy.
Equation (3) generates a so-called ladder-expansion of G

in which the perturbations V (E) do not overlap in time. All
contributions from intermediate model states are given by the
second term in Eq. (3) and we denote these as model-space
contributions (MSC). They are a generalization of the so-called
folded terms in standard many-body perturbation theory (see,
e.g., [13]) to which they reduce when the perturbation V is
energy independent.

In the following we will use the designation wave operator
for the Green’s operator at time t = 0 and denote it by

G(E,t = 0) = 	. (9)

This is in accordance with the notation used in standard
(energy-independent) many-body perturbation theory. Note
that in the case of a one-dimensional model space considered
here, the energy dependence of G (and therefore also 	) is
given by the energy E(0) of the model state it acts on.

A convenient form of the effective interaction (6) for
practical calculations is

W (n) = P	̃(n)P, (10)

where 	̃(n) is the nth-order wave operator without its final
resolvent:

	(n) = �Q	̃(n). (11)

B. Application to the ground state of heliumlike ions

A suitable model Hamiltonian for a heliumlike system is
the sum

H0 =
2∑

i=1

[α · p̂i + βm + Vnuc(ri)] (12)

of two single-electron Dirac Hamiltonians including the
attractive nuclear potential Vnuc. The interaction between the
pair of electrons as well as their self-interactions are described
by V (E) which we will here take to be

V (E) = VPE(E) + VSE(E) + VVP. (13)

The first term on the right-hand side of Eq. (13) is the operator
for single-photon exchange between the electrons which in
Coulomb gauge has the form

V Cou
PE (E) = VC + VT(E). (14)

Here, VC is the instantaneous Coulomb interaction (which
carries no energy dependence) and VT(E) is the transverse
part of the interaction which includes the retardation effect.
We will in the following use the Coulomb gauge for all photon
exchanges between the electrons.

The second term in Eq. (13) is given by the mass-
renormalized one-loop self-energy operator � and the
third term is given by the (energy-independent) charge-
renormalized single-electron vacuum-polarization potential.
This choice of V (E) corresponds to considering only one-
photon perturbations (see Fig. 1).

The Coulomb interaction VC can be treated numerically to
essentially all orders using standard many-body perturbation
theory and it represents most of the interelectron interaction.
By separating out VC from the single-photon exchange
operator we write V (E) as

V (E) = VC + VQED(E), (15)

where

VQED(E) = VT(E) + VSE(E) + VVP (16)

contains the energy-dependent QED effects which cannot be
handled with the standard (energy-independent) MBPT.
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FIG. 1. The one-photon perturbations in bound-state QED, from
left to right: single-photon exchange, self-energy, and vacuum
polarization. The double lines denote electrons propagating in the
nuclear electrostatic potential and the wavy lines denote photons.

In order to compute the combined effect of QED and
correlation we wish to treat VC to high order while retaining the
QED effects (retardation and radiative corrections) to lowest
order (a single retarded photon). To achieve this it is convenient
to formulate an iterative equation for the wave operator 	

where the Coulomb interaction is included recursively but the
QED effects appear in a nonrecursive way. Such an equation
is derived in [9] and [14] and it can be written as

	
1ph
I = �QVC	

1ph
I − �Q	

1ph
I WI − �Q	IW

1ph
I

+ �QVQED	I + �Q

∞∑
n=1

δnVQED

δEn
	I(WI)

n. (17)

Here the subscript I stands for “instantaneous” and denotes
a complete ladder sequence of instantaneous interactions.
	I is a self-consistently generated, energy-independent wave
operator containing only instantaneous Coulomb interactions,

	I = �QVC	I − �Q	IWI, (18)

and 	
1ph
I is that part of the full, energy-dependent wave

operator which contains precisely one retarded photon together
with arbitrarily many Coulomb interactions.2

	
1ph
I is included recursively in the first three terms on the

right-hand side of Eq. (17), and by iteratively updating the
right-hand side these terms will generate a series of Coulomb
interactions (including folded terms) after the retarded photon.
The last two terms of Eq. (17), on the other hand, introduce
the QED effects to the instantaneous wave operator precisely
once, and this means that they will only appear linearly in
	

1ph
I , in between the Coulomb interactions contained in 	I

and those that are generated afterward (see Fig. 4).
A numerical implementation of Eq. (17) can be accom-

plished by using the spectral representation of �Q:

�Q(E) =
∑

rs �=ab

|rs〉〈rs|
E − εr − εs

, (19)

where |rs〉 is an eigenstate of H0 with energy εr + εs , and
acting with the resulting operator to the right on the model

2The full wave operator is in this scheme written as an expansion
in terms of the number of retarded photons together with arbitrarily
many Coulomb interactions: 	 = 1 + 	I + 	

1ph
I + 	

2ph
I + · · · .

= + _

++= + ...

+

FIG. 2. The pair equation in diagrammatic form. The thin dashed
lines represent the Coulomb interaction and the heavy dashed lines
represent the accumulated effect of correlation. The last term of the
top row (the “folded” term) is given in the general form which allows
for intermediate model states |cd〉 which may be different from |ab〉
(an extended model space). Iterating this equation until convergence
gives the ordinary pair function |ρab,I〉 which contains an infinite
ladder of Coulomb interactions including folded terms.

state |1s1s〉 ≡ |ab〉. This gives, for a particular outgoing 〈rs|,
the equation

(εa + εb − εr − εs)
〈
rs

∣∣ρ1ph
ab,I

〉
= 〈rs|VC

∣∣ρ1ph
ab,I

〉 − 〈
rs

∣∣ρ1ph
ab,I

〉
WI − 〈rs|ρab,I〉W 1ph

I

+ 〈rs|VQED|�ab,I〉 +
∞∑

n=1

〈rs|δ
nVQED

δEn
|�ab,I〉(WI)

n.

(20)

Here,

|�ab,I〉 = 	I|ab〉 = |ab〉 + |ρab,I〉 (21)

is the extended pair function, which includes the model state
as well as the correction |ρab,I〉 due to Coulomb correlation
between the electrons. The correction |ρab,I〉 (the “ordinary”
pair function) is the solution to the pair equation [15]

|ρab,I〉 = �QVC|ab〉 + �QVC|ρab,I〉 − �Q|ρab,I〉WI, (22)

which is the result of acting with Eq. (18) on |ab〉 using
Eq. (21). The pair equation is shown in diagrammatic form
in Fig. 2. The extended pair function is shown in Fig. 3.

The function ∣∣ρ1ph
ab,I

〉 = 	
1ph
I |ab〉 (23)

is a Coulomb-correlated pair function containing precisely one
retarded photon (see Fig. 4). It is the correction to |ab〉 due to
the combined effects considered in Eq. (20).

The energy-shift associated with 	
1ph
ab,I is computed with

the effective interaction (10), and is given by the right-hand
side of (20) with 〈rs| replaced by 〈ab|. In order to isolate the
effects which lie beyond the two-photon level we compute the
difference

�EQED-corr. = �E
1ph
I − �E1ph − �E

1ph
1C after − �E

1ph
1C before

(24)
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= +

= + +

+ ... +

FIG. 3. The extended pair function |�ab,I〉 = |ab〉 + |ρab,I〉 is
equal to the exact two-electron state in the (no-virtual-pair) Coulomb
approximation.

where �E
1ph
I is the energy shift due to the fully correlated

one-photon wave operator 	
1ph
ab,I, �E1ph is the energy shift due

to the single-photon perturbation alone, and �E
1ph
1C before and

�E
1ph
1C after are the energy shifts for a single photon together

with one Coulomb interaction (before and after, respectively).
The subtraction is illustrated for the self-energy case in Fig. 5.

The energy shifts for the second-order terms (a single-
photon plus one Coulomb interaction) can be compared with

results at the two-photon level from the literature and thus serve
as a test of our method. In particular, our calculation involves
a numerical evaluation of the Coulomb-screened self-energy
shift in Coulomb gauge, and a detailed comparison of the
different contributions to this shift between Coulomb and
Feynman gauge can be carried out.

III. METHOD

We obtain a numerical basis set by solving the radial Dirac
equation including the electrostatic nuclear potential on a
discretized grid [16]. This allows a straightforward inclusion
of the nuclear-size effect directly into the radial wave functions
by modifying the 1/r dependence of the potential inside
the nuclear radius. In this work we model the nucleus as a
homogeneous, spherical charge distribution of radius Rnuc;
see Table I for the nuclear radii used in our calculations.

The numerical realization of Eq. (20) involves the compu-
tation of matrix elements of the various interactions (and their
derivatives) with respect to the numerical basis functions. The
spin-angular integrations can for the most part be performed
analytically using partial-wave expansions and graphical
angular-momentum techniques (see [13] for details regarding
angular-momentum graphs), while the radial integrals are
performed numerically. The calculations are performed for
a series of radial grids with increasing resolution and the
results are extrapolated to continuous space. The partial-wave
expansions are necessarily truncated and an extrapolation to
infinite summation limits is performed.

= + ++ + ...

= + +++ ...

= + + ++ ...

FIG. 4. Three different pair functions containing a single retarded photon (photon exchange, self-energy, or vacuum polarization) together
with arbitrarily many Coulomb interactions including model-space contributions.
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+ + +=

_ _ _

+ ...

FIG. 5. Effects beyond the two-photon level (correlational ef-
fects) are calculated as the difference between the energy shift
due to the fully correlated one-photon wave operator and the three
lowest-order approximations.

The matrix elements of the Coulomb interaction are well
known and can be put in the form

〈rs|VC|tu〉 =
∞∑

k=0

(−1)k〈jr ||Ck||jt 〉〈js ||Ck||ju〉RkA1, (25)

where jr is the total angular-momentum quantum number of
the state |r〉, Rk is a radial Slater integral, Ck is a spherical
tensor of rank k, and A1 is an angular-momentum factor. The
radial integrals are performed using Lagrange interpolation of
the basis functions between grid points, and A1 is computed
using angular-momentum graphs.

The matrix elements of VT(E) for positive-energy states are
[9,17]

〈rs|VT(E)|tu〉

= 〈rs|
∫ ∞

0
dkfT(x1,x2,k)

[
1

E − εr − εu − (k − iδ)

+ 1

E − εs − εt − (k − iδ)

]
|tu〉, (26)

where k is the linear momentum of the photon, and the
fT function for the transverse part of the Coulomb-gauge

TABLE I. The nuclear radii used in this work. We model the
nucleus as a homogeneous spherical charge distribution.

Z Nuclear radius (fm)

14 3.123
18 3.423
24 3.643
30 3.928
50 4.654

interaction is

fT(x1,x2,k) = − e2

4π2ε0

[
− α1 · α2

sin(kr12)

r12

+ (α1 · ∇1)(α2 · ∇2)
sin(kr12)

k2r12

]
. (27)

This expression can be generalized to allow also for negative-
energy states [9], the square bracket in Eq. (26) should then be
replaced with

± t±r∓
εt − εr ± (k − iδ)

± u±s∓
εu − εs ± (k − iδ)

± t±s±
E − εt − εs ∓ (k − iδ)

± u±r±
E − εr − εu ∓ (k − iδ)

. (28)

Here t+ (t−) is a projection operator for positive-energy
(negative-energy) t states and similarly for the other states.
The upper or lower sign should be used consistently in each
term.

The expression (26) contains a part which is energy
independent and which is known as the instantaneous Breit
interaction:

VIB = − e2

4πε0

[
α1 · α2

r12
+ 1

2
(α1 · ∇1)(α2 · ∇2)r12

]
. (29)

This part can be included in a perturbation expansion based
on standard MBPT and normally one considers the correction
due to retardation, which is the difference between the full
interaction (26) and the instantaneous part (29), as a genuine
QED effect.

In analogy with the Coulomb interaction, the matrix
elements (26) are expanded into a sum of partial waves

sin(kr12)

kr12
=

∞∑
l=0

(2l + 1)jl(kr1)jl(kr2)Cl
1 · Cl

2, (30)

where l is the orbital angular momentum of the photon and jl

are spherical Bessel functions, and also here the spin-angular
integrals can be treated using graphical methods. For each k

the remaining radial integrals are performed using Lagrange
interpolation together with recursion relations for integrals
Im
l over products rmjl(kr) of spherical Bessel functions

and powers of r . The final integration over k is performed
using Gauss-Legendre quadrature with a finite cutoff at large
momenta.

The two-electron matrix elements of the (mass-
renormalized) single-electron self-energy operator � are

〈rs|VSE(E)|tu〉 = δu,s〈r|�(E − εu)|t〉. (31)

The matrix elements are computed using the standard expan-
sion in terms of scattering order with the nuclear potential
into zero-, one-, and many-potential terms [18,19] (see Fig. 6),
and their Coulomb-gauge expressions are given in [20] and
[21]. The zero- and one-potential terms, which are computed
in momentum space, can in principle be obtained using the
Fourier transformations of the in- and outgoing single-electron
states |t〉 and |r〉. However, the highly excited discretized
radial solutions acquire considerable contributions from a wide
range of large momenta, and due to the oscillatory behavior
and slow decay of the integrands it is challenging to perform
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= + +

FIG. 6. Expansion of the bound self-energy operator in terms of
scattering order with the nuclear potential. The thin straight lines
correspond to freely propagating electrons, and the dashed lines with
a cross represent the Coulomb potential from the nucleus.

the numerical integration without introducing large numerical
errors. Much can be gained by instead working directly with
the single-coordinate radial representations of the incoming
pair function 〈r1|ρab,I〉 and outgoing resolvent

�Q(E − εu,r1,r
′
1) =

∑
n

〈r ′
1|n〉〈n|r1〉

E − εu − εn

, (32)

which are both relatively smooth and localized and whose
Fourier transforms decay quite rapidly. The numerical Fourier
transformations are computed similarly to the radial integrals
described above for the single-photon exchange, and the
integration over the momentum variables is performed using
Gauss-Legendre quadrature. The one-potential term contains
additional integrals over Feynman parameters as well as
over an angle between the incoming and outgoing momenta.
Some of the Feynman-parameter integrals can be performed
analytically [21], the remaining ones and the angular integral
are performed numerically.

The radial vacuum-polarization potential VVP(r) in Eq. (13)
contains two parts. The Uehling potential, which is the n = 1
term in a Zα expansion of the electron propagator in the loop
(the even terms vanish due to Furry’s theorem), can be written
as [22]

UUeh(r) = − e2

4πε0

α

π

∫ ∞

0
dr ′4πr ′2ρnuc(r ′)

×
∫ ∞

1
dt

√
t2 − 1

(
2

3t2
+ 1

3t4

)
× sinh(4πtr</λC)

4πtr</λC

e−4πtr>/λC

r>

, (33)

where ρnuc is the nuclear charge distribution, r< (r>) is the
lesser (greater) of the radial coordinates, and λC = h/(mc)
is the Compton wavelength of the electron. The remaining
Wichmann-Kroll part, which contains all higher-order terms,
can be computed approximately using the formulas given in
[23].

The model-space contributions (MSCs) involve energy
derivatives of the perturbations. We will in this work only
consider the n = 1 term in Eq. (20) and neglect the higher-
order derivatives. The energy derivative of the transverse-
photon interaction can be calculated in the same way as
Eq. (26) with the only difference being the power of the
denominators and the overall sign:

1

E − εt − εu − k
→ −1

(E − εt − εu − k)2
. (34)

+ +

FIG. 7. The complete, gauge-invariant Coulomb-screened self-
energy at the two-photon level. The leftmost diagram is the vertex
correction. The two remaining terms contain the wave-function
correction (only intermediate Q-space states) and the model-space
contribution (MSC). The vertex correction has to be considered
together with the MSC due to the cancellation of their respective
divergent terms.

The energy-derivative of the self-energy operator is more
troublesome since it contains a UV divergence. At the two-
photon level this divergence cancels against a corresponding
term in the vertex correction (the leftmost term in Fig. 7) which
is a nonseparable two-photon effect. We have not been able to
explicitly demonstrate this cancellation in higher orders, but
assuming that the divergences do cancel separately in each
order we may simply use the renormalized, finite expressions
for the corresponding operators in our perturbation expansion.

Unfortunately, the full evaluation of the two-electron
matrix elements of the vertex correction has to be performed
individually for each combination of in- and outgoing states
since their energies all appear in the integral, and this becomes
prohibitively time consuming in the general case. However,
our analysis of the Coulomb-screened self-energy at the
two-photon level (see Table II) suggests that in the Coulomb
gauge we can obtain a reasonable approximation to the full
evaluation of the self-energy MSC plus vertex correction
by simply neglecting the “higher-order terms.” These terms
are the remainders after subtracting away the zero-potential
terms which correspond to freely propagating electrons inside
the photon loops in Fig. 7. The zero-potential terms can be
computed without difficulty even in the fully correlated case,
and this enables us to obtain approximative results for the
self-energy MSC and vertex-correction contributions in the
Coulomb gauge, again assuming that the cancellation of diver-
gences proceeds in a straightforward way in the perturbation
expansion. The Feynman gauge, on the other hand, would
require evaluation also of the higher-order terms since there
are very large cancellations among the terms in this gauge.

Our calculation of the vertex correction and self-energy
MSC is carried out in a similar way as that described in [24]
and proceeds as follows. The cancellation of UV divergences
between the vertex correction and self-energy MSC is handled
with dimensional regularization following an expansion of
the bound electron propagators in terms of scattering order
with the nuclear potential. The UV-divergent quantities are
located in the zero-potential terms and the finite remainders
after cancellation are computed in momentum space as expec-
tation values of the corresponding renormalized free-electron
operators. The remaining higher-order contribution is com-
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TABLE II. Contributions to the Coulomb-screened self-energy shift at the two-photon level in the 1s2 state of some heliumlike ions, in
units of meV. Here WF refers to the wave-function correction which corresponds to the part with only intermediate Q states, MSC to the
model-space contribution, and VTX to the vertex correction.

Z = 14 Coulomb gauge Feynman gauge
WF zero-potential term −64.7(7) 1498.3(7)
WF one-potential term 2.70(2) −1149.16(4)
WF many-potential term 5.583(4) −396.046(5)
Sum −56.4(7) −46.9(7)

MSC zero-potential term −14.64(1) 3467.4(1)
VTX zero-potential term 10.42(1) −3327.6(1)
MSC + VTX higher-order terms −0.57(1) −153.9(5)
Sum −4.79(3) −14.1(7)

Total Coulomb-screened self-energy −61.2(7) −61(1)

Z = 18 Coulomb gauge Feynman gauge
WF zero-potential term −115.8(7) 1620.8(6)
WF one-potential term 0.441(4) −1218.16(4)
WF many-potential term 11.111(5) −489.559(6)
Sum −104.2(7) −86.9(6)

MSC zero-potential term −24.79(2) 3819.0(1)
VTX zero-potential term 16.21(2) −3653.3(1)
MSC + VTX higher-order terms −1.07(2) −192.2(6)
Sum −9.65(6) −26.5(8)

Total Coulomb-screened self-energy −113.8(8) −113(1)

Z = 24 Coulomb gauge Feynman gauge
WF zero-potential term −221.4(6) 1722.3(3)
WF one-potential term −11.1(1) −1279.37(5)
WF many-potential term 24.059(7) −617.076(9)
Sum −208.4(7) −174.1(4)

MSC zero-potential term −43.22(4) 4164.5(1)
VTX zero-potential term 24.12(4) −3972.3(1)
MSC + VTX higher-order terms −2.16(4) −246.9(8)
Sum −21.3(1) −54.7(10)

Total Coulomb-screened self-energy −229.7(8) −229(1)

Z = 30 Coulomb gauge Feynman gauge
WF zero-potential term −360.4(4) 1758.44(7)
WF one-potential term −37.0(4) −1322.11(5)
WF many-potential term 43.33(1) −733.10(1)
Sum −354.1(8) −296.8(1)

MSC zero-potential term −63.6(1) 4362.4(1)
VTX zero-potential term 28.3(1) −4158.8(1)
MSC + VTX higher-order terms −3.71(6) −299(1)
Sum −39.0(3) −95.3(10)

Total Coulomb-screened self-energy −393(1) −392(1)

Z = 50 Coulomb gauge Feynman gauge
WF zero-potential term −1046.1(1) 1650.9(7)
WF one-potential term −307(3) −1572.45(5)
WF many-potential term 162.4(9) −1088.9(1)
Sum −1191(4) −1010.5(9)

MSC zero-potential term −117.1(2) 4458.9(1)
VTX zero-potential term −24.9(1) −4328.7(1)
MSC + VTX higher-order terms −15.2(3) −473(2)
Sum −157.2(6) −342(2)

Total Coulomb-screened self-energy −1348(5) −1352(3)

puted in coordinate space from the bound-state QED Feynman
rules as the difference between the diagrams with bound prop-
agators and free propagators using a partial-wave expansion
of the photon.

Upon extrapolation to continuous space and to an infinite
summation limit in partial waves l, the uncertainty of the
individual diagrams on the left-hand side in Fig. 5 is on the
0.1% level for the self-energy correction. This uncertainty
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is of the same absolute magnitude as the very effects we
wish to compute. A drastic improvement can be obtained by
carrying out the subtraction for each set of grid and summation
parameters before any extrapolation is performed. The result
from this subtraction can then be extrapolated with a relative
uncertainty which is on the order of 1% for the self-energy.

IV. RESULTS AND DISCUSSION

In this section we give numerical results for the combined
effect of arbitrarily many Coulomb interactions together with
a one-photon QED perturbation. The self-energy and vacuum-
polarization contributions are calculated in this work and
the corresponding contribution for the exchange of a single
transverse photon was calculated in [14]. For comparison we
have computed all the self-energy corrections in this work
using both Coulomb gauge and Feynman gauge.

As mentioned above, our computational scheme requires
the computation of diagrams at the two-photon level (one
Coulomb interaction together with a single retarded photon).
In Table II we present results for the contributions to the
Coulomb-screened self-energy shift in the 1s2 state of some
heliumlike ions, as obtained in the Coulomb gauge and the
Feynman gauge. We note that the contributions in Coulomb
gauge behave in a physically intuitive way: the higher-order
terms act as small corrections to the zeroth-order terms. The
Feynman gauge, by comparison, is characterized by a large
degree of cancellation in general and large contributions from
higher-order terms. In Table III we compare the total shift we
obtain to results given in the literature.

In Table IV we give results for the energy shift (24) due
to the combined effect of correlation and self-energy (effects
beyond the two-photon level). The shift is calculated in the
Coulomb and Feynman gauges to allow comparison. The
contributions we have calculated behave quite differently in
the two gauges and it is interesting to note the unphysical
Z behavior of the Feynman gauge. In absolute terms, we
expect the combined effect of correlation and self-energy
beyond the two-photon level (including MSC and vertex
corrections) to scale roughly as 1/Z2 since it differs from
the self-energy screened by a single photon by an extra
(1/Z) Coulomb interaction. This is not at all the case for
the Feynman-gauge contributions we have calculated here;

TABLE III. Results for Coulomb-screened self-energy at the
two-photon level obtained in this work compared to values in the
literature. For comparison the fifth column shows values for the com-
plete screened self-energy, including the transverse part of the
exchanged photon. Units are meV.

Coulomb Feynman Other Other authors
Z gauge gauge authors (including Breit-screening)

14 −61.2(7) −61(1) −59.6(2)b

18 −113.8(8) −113(1) −113.8a −111.6a,−111.60(2)b

24 −229.7(8) −229(1) −230.1a −227.8a

30 −393(1) −392(1) −396.51(6)b

50 −1348(5) −1352(3) −1471.7(1)b

aSunnergren [25].
bArtemyev et al. [5].

TABLE IV. Self-energy contributions to the combined QED-
correlation energy shift beyond the two-photon level in the 1s2 state
of some heliumlike ions. The abbreviations are similar to those in
Table II. All values are given in units of meV.

Z = 14 Coulomb gauge Feynman gauge
Without MSC or vertex
-zero-potential term 3.47(3) −164.82(3)
-one-potential term −0.0275(2) 71.80(3)
-many-potential term −0.451(3) 12.170(4)
-sum 2.99(4) −80.85(6)
MSC zero-potential term 0.87 −30.7
VTX zero-potential term −0.63 66.5
Total sum 3.23(4) −45.05(6)

Z = 18 Coulomb gauge Feynman gauge
Without MSC or vertex
-zero-potential term 4.79(2) −142.39(2)
-one-potential term 0.143(1) 59.7(5)
-many-potential term −0.691(4) 11.569(3)
-sum 4.24(3) −71.1(5)
MSC zero-potential term 1.16 −24.3
VTX zero-potential term −0.73 54.2
Total sum 4.67(3) −41.2(5)

Z = 24 Coulomb gauge Feynman gauge
Without MSC or vertex
-zero-potential term 6.77(2) −118.482(5)
-one-potential term 0.585(6) 47.8(4)
-many-potential term −1.104(6) 10.79(2)
-sum 6.25(3) −59.9(4)
MSC zero-potential term 1.54 −17.6
VTX zero-potential term −0.76 41.6
Total sum 7.03(3) −35.9(4)

Z = 30 Coulomb gauge Feynman gauge
Without MSC or vertex
-zero-potential term 8.702(8) −101.507(2)
-one-potential term 1.22(1) 40.2(1)
-many-potential term −1.569(9) 10.250(6)
-sum 8.36(3) −51.1(1)
MSC zero-potential term 1.82 −13.0
VTX zero-potential term −0.61 33.2
Total sum 9.57(3) −30.9(1)

Z = 50 Coulomb gauge Feynman gauge
Without MSC or vertex
-zero-potential term 14.823(2) −69.641(1)
-one-potential term 5.17(5) 29.88(2)
-many-potential term −3.30(2) 19.29(1)
-sum 16.69(7) −20.47(3)
MSC zero-potential term 2.15 −4.9
VTX zero-potential term 1.10 19.4
Total sum 19.94(7) −5.97(3)

instead they actually decrease with increasing Z. This suggests
that a complete treatment including the higher-order MSC and
vertex-correction terms is needed to get sensible results in this
gauge. The corresponding Coulomb-gauge values, on the other
hand, show a Z dependence which is closer to the expected one.

The energy shifts due to the combined QED-correlation
effects beyond the two-photon level are compiled in Table V
for all the one-photon QED perturbations considered in this
work (single transverse-photon exchange, self-energy, and
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TABLE V. Contributions to the combined QED-correlation energy shift beyond the two-photon level in the 1s2 state of some heliumlike
ions. In the rightmost column we sum all contributions except the instantaneous Breit part. All values are given in meV.

Transverse photon Transverse photon
Z (instantaneous Breit) (retardation effect) Self-energy Vacuum polarization Total QED-correlation effect

14 8.19 −1.86 3.2(1) −0.136 1.2(1)
18 10.13 −2.73 4.7(1) −0.225 1.7(1)
24 12.73 −4.16 7.0(2) −0.402 2.5(2)
30 15.03 −5.71 9.6(3) −0.639 3.3(3)
50 21.46 −11.47 19.9(7) −2.093 6.3(7)

vacuum polarization). The single transverse-photon exchange
contributions are gathered from [14], and the self-energy
contributions are approximated as the sum of the calculated
Coulomb-gauge terms in Table IV. The total uncertainty of
the self-energy contribution is calculated as the sum of the
numerical uncertainty and the estimated size of the omitted
higher-order MSC and vertex terms. At the two-photon level
(Table II) the higher-order terms represent roughly 10% of the
total MSC + vertex contribution in Coulomb gauge, and we
thus expect an additional uncertainty from the uncalculated
terms taken as 20% of the MSC+vertex zero-potential terms
to be conservative in the correlated case. In the rightmost
column of Table V we have summed the contributions from
the self-energy, vacuum polarization, and the retardation effect
of the single-photon exchange, which are the effects normally
considered as QED effects in the context of MBPT. The
magnitude and relative sign of the self-energy correction
as compared to the vacuum polarization agrees with what
one finds in lower orders, and this further supports our
approximative treatment of the self-energy in Coulomb gauge.

In addition to the effects considered in this work there
are corrections from intermediate negative-energy states, an
effect which lies beyond the no-virtual-pair approximation
and traditionally belongs to the class of QED effects. This
effect is not very important when considered together with
only Coulomb interactions, but contributes significantly to-
gether with transverse-photon interactions (see, e.g., [26]).
Calculations of the combined effect of Coulomb-correlation
and single-photon exchange together with virtual pairs based
on the generalized potential (28) were performed in [14],
and the magnitude of the combined effect of retardation and
correlation beyond the two-photon level (column 3 in Table V)
was found to decrease by roughly 20% for all the values

TABLE VI. Total combined QED-correlation effect in the 1s2

state of heliumlike ions compared to the higher-order QED effect
from [5]. The second column gives our results in the no-virtual-pair
approximation. The third column gives the estimated results after
including virtual pairs. In units of meV.

QED-correlation QED-correlation
Z NVP with VP (estimated) Artemyev �E

QED
ho

14 1.2(1) 1.0(1) 0.8
18 1.7(1) 1.4(1) 0.9
24 2.5(2) 2.0(2)
30 3.3(3) 2.6(3) −0.2
50 6.3(7) 5.0(7) −7.7(50)

of Z considered. The corresponding correction from virtual
pairs to correlation combined with self-energy or vacuum
polarization has not yet been studied, but one might expect
a correction of the same order, namely, a reduction of the total
QED-correlation effect by 20%.

Although not exactly equivalent, our results for the com-
bined correlation and QED shift can be compared with the
higher-order QED correction in Artemyev et al. [5] which was
calculated using the unified method of Drake [4] (see Table VI).
The second column in Table VI is taken from Table V and in
the third column we have estimated the inclusion of virtual
pairs by multiplying our results by a factor of 0.8 based on
the discussion above. We see that for Z = 14 and 18 the
agreement with [5] is close but our results tend to be a bit
larger. For Z = 24 no value is specified in [5] but the result
we obtain here is more than twice as large in magnitude as the
uncertainty of the total ionization energy given in that work. A
severe disagreement is, however, seen for Z = 30 and Z = 50
which might be due to an increasing importance of relativistic
effects in the electron correlation for heavier nuclei, effects
that are included to a large extent in this work due to the
use of a relativistic Dirac model Hamiltonian (12) while the
method of [4] is based on a nonrelativistic treatment of electron
correlation. For Z = 30 the correction we find is of the same
size as the uncertainty of the total ionization energy obtained
in [5], and for Z = 50 it is a factor of 2 smaller.

Finally, we wish to make a comment regarding the Z-
dependent discrepancy between theory and experiment which
has recently been claimed to have been observed by Chantler
et al. in a compilation of measured transition energies for the
1s2p(1P1) → 1s1s(1S0) transition in heliumlike ions [27]. Our
results seem to rule out an explanation of such a discrepancy
in terms of the combination of correlation and QED effects
since (1) the magnitude of the correction we obtain is about a
factor of 100 smaller than the discrepancy found in [27], and
(2) the sign of the correction leads to an increase in energy of
the 1s1s level and thus to a decrease in the transition energy
(the combined corrections considered here can be expected to
have a negligible effect on the 1s2p state), while Chantler et al.
claim to see larger transition energies compared to theory.

V. CONCLUSION

We have computed the combined effect of electron
correlation together with electron self-energy and vacuum
polarization in the energy of the ground state of heliumlike
heavy ions. Together with previously calculated values for the
combination of correlation and single-photon exchange, this
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has allowed us to obtain the energy shift due to first-order
QED effects combined with electron correlation. We have
also presented a detailed analysis of the contributions to the
Coulomb-screened self-energy correction at the two-photon
level in the Coulomb and Feynman gauges. It was found that
an overall feature of the self-energy corrections in Coulomb
gauge is that most of the effect is located in the zero-potential
terms, with the higher-order terms acting as minor corrections.
This is not at all the case in the Feynman gauge where
often the higher-order terms dominate over the zero-potential

terms. Moreover, we have seen that an incomplete treatment
of the self-energy corrections in Feynman gauge may lead to
completely unphysical Z scalings.
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