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Two-photon-exchange QED effects in the 1s2s 1S and 3S states of heliumlike ions

Björn Åsén, Sten Salomonson, and Ingvar Lindgren
Physics and Engineering Physics, Go¨teborg University and Chalmers University of Technology, SE-412 96 Go¨teborg, Sweden
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A numerical calculation, based on full QED, of the energy shift due to the effect of two-photon exchange in
the 1s2s 1S and 3S states in heliumlike ions is presented. At lowZ, the QED effects are compared with the
known analytical (Za)3 contributions, and we find good agreement. The calculations have been performed in
the rangeZ510–92. Already in the medium-Z range, the effects beyond the leading (Za)3 order are found to
be dominant.
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I. INTRODUCTION

In this paper, we are concerned with accurate calculati
of the energy of excited states of heliumlike systems, m
specifically the 1s2s 1S and 3S states. For lowZ there are
very accurate calculations by Drake@1#, using the so-called
unified method. In this method the relativistic and quant
electrodynamic~QED! effects, beyond their very accura
nonrelativistic energy, are calculated to leading orders in
fine-structure constanta. All effects of ordera3, in atomic
units, are included. For higherZ, effects scaling as (Za)4

and higher become important. A large part of these effe
are included in relativistic many-body perturbation theo
~RMBPT!. In this method one usually makes theno-virtual-
pair approximation~NVPA!, where the effects of negativ
energy states and retardation are neglected. To match
experimental accuracy that is possible to achieve today,
necessary to also include the effects of QED to high orde
the expansion parameterZa. In this paper, we give a com
plete description of the numerical calculations of the eff
of the exchange of two virtual photons between the electr
in the 1s2s excited states of heliumlike ions. Other calcul
tions of this effect for the 1s2s and 1s2p ~not J51) triplet
states have recently been presented by Mohr and Sapir
@2#, and for the 1s2s singlet and triplet states by Andree
et al. @3#. A calculation of the quasidegenerate 1s2p 1P1
and 3P1 states has been performed by us in@4#, using an
extended model space, involving calculating matrix eleme
nondiagonal in energy, which is not possible with the co
monly usedS-matrix formulation by Sucher@5#. In this pa-
per, however, we use theS-matrix formulation and the pre
sented work is essentially a nontrivial generalization o
calculation in a previous paper concerning the ground s
@6#. We are not considering here the remaining QED tw
photon effects, the screened self-energy and vacuum p
ization, although they are certainly as important as the c
sidered two-photon exchange. Calculations of these eff
have been made for the ground state of various helium
and lithiumlike systems@7–9#. The QED effect considered in
this paper contains both negative energy states and reta
tion of the photons, both effects which scale as (Za)3 and
(Za)3ln(Za). Our results are, in the low-Z region, compared
with known analytical expressions for the (Za)3 contribu-
tions. These analytical expressions contain the Bethe lo
rithm and to be able to make the comparison we have ca
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lated the relevant (Za)3 part associated with the two-photo
exchange.

The outline of the paper is the following. In Sec. II
theoretical derivation of the expressions needed are
formed both in the Feynman and Coulomb gauge. The
merical procedure and some numerical difficulties are p
sented in Sec. III. In Sec. IV, the numerical results a
presented followed in Sec. V by a comparison with analyti
results in the low-Z region and a discussion of the results

II. FORMALISM

The exchange of two virtual photons between two el
trons is represented by the two Feynman diagrams in Fig
the ladder diagram~L! with uncrossed photons and th
crossed photons diagram (X). The energy shift due to thes
effects are given by the formula derived in 1957 by Suc
@5#

DEA5 lim
g→0

1

2
ig$4^Fa

0uSlad,g
4 uFa

0&14^Fa
0uScro,g

4 uFa
0&

22^Fa
0uSg

2uFa
0&2%, ~1!

whereFa
0 , the reference state, is the two-electron state c

sidered, constructed from orbitals that are solutions to
one-electron Dirac equation.

A. Feynman Gauge. Uncrossed photons

We consider first the uncrossed diagram in Fig. 1. T
S-matrix element for this diagram is (\51)

FIG. 1. The Feynman diagrams representing the two-photon
change between two electrons with uncrossed and crossed pho
©2002 The American Physical Society16-1
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^Fa
0uSlad,g

4 uFa
0&

5~ ie!4E d4x1E d4x2E d4x3E d4x4

3e2gut3ue2gut1uF r
†~x3!a3

niSF~x3 ,x1!a1
mFa~x1!

3e2gut4ue2gut2uFs
†~x4!a4

n8iSF~x4 ,x2!a2
m8Fb~x2!

3
i

c
DFnn8~x32x4!

i

c
DFm8m~x22x1!, ~2!

where the photon propagator in the Feynman gauge is
fined by

DFnm~x22x1!52
1

e0
gnmE d4k

~2p!4

e2 ik(x22x1)

~k21 i e!

5E dz

2p
e2 iz(t22t1)DFnm~x22x1 ,z! ~3!

and

DFnm~x22x1 ,z!52
c

e0
gnmE d3k

~2p!3

eik•(x22x1)

~z22c2k21 i e!
.

~4!

We have here defined thez parameter byk5(z/c,k) ande is
a small positive number. The electron propagator is defi
by

SF~x2 ,x1!5(
n
E dz

2p
e2 iz(t22t1)

Fn~x2!Fn
†~x1!

z2en~12 ih!

5E dz

2p
e2 iz(t22t1)SF~x2 ,x1 ,z!, ~5!

where h is a small positive number. The time-depende
functions are given by

Fn~x!5e2 ientFn~x!. ~6!

We use here the Furry interaction picture@10#, which implies
that nuclear recoil is not included, with the single-electr
statesFn(x) being solutions of the time-independent Dir
equation,

hDFn~x!5enFn~x! ~7!

where

hD5ca•p1bmc21V. ~8!

V is here the Coulomb potential from the nucleus. For lowZ
we use a point nucleus but for higherZ an extended nucleu
with homogeneous charge density is used. If the intermed
states are not degenerate with the reference state, the
integrations in Eq.~2! are trivial to perform leading to energ
03251
e-

d

t
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me

conservation at the vertices~in the limit where the adiabatic
damping factorg→0). The remainder of Eq.~2! reduces to a
space integralM ~the Feynman amplitude!

M5E d3x1E d3x2E d3x3E d3x4E dz

2p

3F r
†~x3!ieca3

niSF~x3 ,x1 ,ea2z!ieca1
mFa~x1!

3Fs
†~x4!ieca4

n8iSF~x4 ,x2 ,eb1z!ieca2
m8Fb~x2!

3
i

c
DFnn8~x32x4 ,z8!

i

c
DFm8m~x22x1 ,z!, ~9!

or, alternatively, by using the explicit representation of t
photon and electron propagators, we obtain

M5S e2c2

e0
D 2

(
t,u

E dz

2p

3^rsua4
nan3E d3k8

~2p!3

eik8•(x32x4)

~z822k821 i e!
utu&

3^tuua2
mam1E d3k

~2p!3

eik•(x22x1)

~z22k21 i e!
uab&

3
1

@ea2z2et~12 ih!#

1

@eb1z2eu~12 ih8!#
,

~10!

wherez andz85z1er2ea are associated with the momen
tum k andk8, respectively. Intermediate statest,u degenerate
with the reference state are omitted in the summation. Ho
ever, these states give rise to finite contributions,the refer-
ence state contributions, which are considered in the Appen
dix. We begin by evaluating the integral

I L5 i E
2`

` dz

2p

1

~p2z1 ih t!

1

~p81z1 ihu!

3
1

@z822~ck82 ih!2#

1

@z22~ck2 ih!2#
~11!

whereh t andhu are small numbers with the same sign aset
andeu , respectively.~We have here used thatk5uku is posi-
tive.!

With the notationp5ea2et ,p85eb2eu ,q5ea2er ,q8
5eb2es , and with1 and2 denoting positive and negativ
intermediate states fort andu, respectively, we have
6-2
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I L115
1

4ckck8~p1p8!
H 2

1

~p2ck!~ck1ck82q!

1
1

~q1p82ck8!~p82ck!

2
1

~q1p82ck8!~ck1ck82q!

1
1

~p2ck!~q81p2ck8!

2
1

~q81p2ck8!~ck1ck82q8!

2
1

~p82ck!~ck1ck82q8!
J , ~12!

I L2252
1

4ckck8~p1p8!
H 2

1

~p81ck!~ck1ck82q!

1
1

~p2q1ck8!~p1ck!

1
1

~p2q1ck8!~ck1ck82q!

1
1

~p81ck!~p82q81ck8!

1
1

~p1ck!~ck1ck82q8!

1
1

~p82q81ck8!~ck1ck82q8!
J , ~13!

I L125
1

4ckck8~p1p8!
H 2

1

~p2ck!~ck1ck82q!

1
1

~p2ck!~p1q82ck8!
2

1

~p81ck!~ck1ck82q!

2
1

~p81ck!~p82q81ck8!

2
1

~p1q82ck8!~ck1ck82q8!

2
1

~p82q81ck8!~ck1ck82q8!
J , ~14!
03251
I L215
1

4ckck8~p1p8!
H 2

1

~p2q1ck8!~ck1ck82q!

1
1

~p82ck!~p81q2ck8!

2
1

~p81q2ck8!~ck1ck82q!

1
1

~p1ck!~p2q1ck8!
2

1

~p1ck!~ck1ck82q8!

2
1

~p82ck!~ck1ck82q8!
J . ~15!

The expressions that follow directly from thez integrals
are not always suitable for implementation, since fictitio
poles will appear. These poles cancel out but will make
implementation more difficult. The expressions given are
written such that no fictitious poles appear.

Multiplying the Feynman amplitude by the imaginary un
( i ), yields the corresponding energy contribution

DEtu
L 5S e2c2

e0
D 2E d3k

~2p!3E d3k8

~2p!3

3^rsua3
nan4eik8•(x32x4)utu&

3^tuua1
mam2eik•(x22x1)uab&I L.

After the integration over the angular parts ofk andk8 this
becomes

DEtu
L 5S e2

2p2e0
D 2E dkE dk8^rsua3

nan4

sin~k8r 34!

k8r 34

utu&

3^tuua1
mam2

sin~kr12!

kr12
uab&~ck!2~ck8!2I L, ~16!

and by using the spherical-wave expansion

sin~kr12!

kr12
5(

l 50

`

~2l 11! j l~kr1! j l~kr2!Cl~1!•Cl~2!,

~17!

we obtain

DEL5S e2

2p2e0
D 2

(
l ,l 8

~2l 11!~2l 811!E dkE dk8

3(
t

(
u

^r uanCl 8 j l 8~k8r !ut&^suanCl 8 j l 8~k8r !uu&

3^tuamCl j l~kr !ua&^uuamCl j l~kr !ub&

3~ck!2~ck8!2I L. ~18!
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Since the electrons are nonequivalent, antisymmetriza
yields a direct integralI dir(rs5ab) as well as an exchang
integralI ex(rs5ba). The angular integrations are performe
using angular momentum graphs as described in@6# and give
a total direct contributionD and a total exchange contribu
tion E. The energy contribution to1S0 is D1E and to
3S1 D2E.

B. Feynman Gauge. Crossed photons

The Feynman amplitude for crossed-photon diagram~Fig.
1! can be evaluated in the same way as for uncrossed
tons

M5E d3x1E d3x2E d3x3E d3x4E dz

2p

3F r
†~x3!ieca3

niSF~x3 ,x1 ,ea2z!ieca1
mFa~x1!

3Fs
†~x2!ieca2

m8iSF~x2 ,x4 ,eb2z8!ieca4
n8Fb~x4!

3
i

c
DFnn8~x32x4 ,z8!

i

c
DFm8m~x22x1 ,z!, ~19!

wherez85z1q8. In the Feynman gauge this becomes

M5S e2c2

e0
D 2

(
t,u

E dz

2p

3^ruua3
nan4E d3k8

~2p!3

eik8•(x32x4)

~z822c2k821 i e!
utb&

3^tsua1
mam2E d3k

~2p!3

eik•(x22x1)

~z22c2k21 i e!
uau&

3
1

@ea2z2et~12 ih!#

1

@eb2z82eu~12 ih8!#
. ~20!

The integration overz leads to the integral

I X5 i E
2`

` dz

2p

1

[ ~p2z1 ih t!

1

~p82q82z!1 ihu]

3
1

@~z81q8!22~ck82 ih!2#

1

@z22~ck2 ih!2#
. ~21!

This integral becomes

I X115
1

4ckck8
H 2

1

~q1p82ck!~p2ck!~ck1ck82q!

1
1

~q1p82ck!~p2ck!~p82ck8!

2
1

~q81p2ck8!~p82ck8!~ck1ck82q8!
03251
n

o-

1
1

~q81p2ck8!~p82ck8!~p2ck!
J . ~22!

I X2252
1

4ckck8
H 1

1

~p82q81ck!~p1ck!~ck1ck82q8!

1
1

~p82q81ck!~p1ck!~p81ck8!

1
1

~p2q81ck8!~p81ck8!~ck1ck82q!

1
1

~p2q1ck8!~p81ck8!~p1ck!
J , ~23!

I X1252
1

4ckck8~p2ck!~p81ck8!~ck1ck82q!

2
1

4ckck8~p2p81q8!
H 2

1

~p2ck!~p81ck8!

1
1

~p82q81ck!~p81ck8!

1
1

~p82q81ck!~ck1ck82q8!

1
1

~p2ck!~p1q82ck8!

2
1

~p1q82ck8!~ck1ck82q8!
J , ~24!

I X2152
1

4ckck8~p1ck!~p82ck8!~ck1ck82q8!

2
1

4ckck8~p2p82q!
H 1

~p1ck!~p82ck8!

2
1

~p1ck!~p2q1ck8!

2
1

~p2q1ck8!~ck1ck82q!

1
1

~p82ck8!~p81q2ck!

1
1

~p81q2ck!~ck1ck82q!
J , ~25!

and the corresponding energy contribution
6-4
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DEtu
X 5S e2c2

e0
D 2E d3k

~2p!3E d3k8

~2p!3

3^ruua3
nan4eik8•(x32x4)utb&

3^tsua1
mam2eik•(x22x1)uau&I X. ~26!

After the integration over the angular parts of the pho
momenta we then get

DEX5S e2

2p2e0
D 2

(
l ,l 8

~2l 11!~2l 811!E dkE dk8

3(
t

(
u

^r uanCl 8 j l 8~k8r !ut&^uuanCl 8 j l 8~k8r !ub&

3^tuamCl j l~kr !ua&^suamCl j l~kr !uu&

3~ck!2~ck8!2I X. ~27!

C. Coulomb gauge

In the Coulomb gauge we have to replace the interac
in the Feynman gauge

2a1
mam2

e2c2

e0
E d3k

~2p!3

eik•(x22x1)

~z22c2k21 i e!
~28!

by the following three terms.
~a! Unretarded Coulomb interaction~scalar!

2
e2c2

e0
E d3k

~2p!3

eik•(x22x1)

~2c2k21 i e!
, ~29!

~b! Retarded Gaunt interaction~vector!

2a1•a2

e2c2

e0
E d3k

~2p!3

eik•(x22x1)

~z22c2k21 i e!
, ~30!

~c! Scalar retardation

2Fca1•“1 ,Fca2•“2 ,
e2c2

e0
E d3k

~2p!3

3
eik•(x22x1)

~z22c2k21 i e!~2c2k21 i e!
G G. ~31!

If the orbitals are generated in a local potential, we c
replaceca•“ in the commutators by the imaginary un
times the single-electron Dirac HamiltonianhD which gen-
erates the difference between the orbital energies (p or p8)
when acting on the orbitals. This gives the matrix eleme
03251
n

n

n

e2c2

e0
~ea2et!~eb2eu!^tuu E d3k

~2p!3

3
eik•(x22x1)

~z22c2k21 i e!~2c2k21 i e!
uab&. ~32!

1. Coulomb-Coulomb

The combination of two unretarded Coulomb interactio
leads, in the ladder case, to thez integral

I CC
L 5 i E

2`

` dz

2p

1

~p2z1 ih t!

1

~p81z1 ihu!

3
1

~2c2k21 ih!

1

~2c2k821 ih!
. ~33!

If the intermediate energieset andeu are both positive, the
integral becomes 1/(p1p8) and if both are negative21/(p
1p8). If et andeu have different signs, the integral vanishe

Considering crossed photons, thez integral will be

I CC
X 5 i E

2`

` dz

2p

1

~p2z1 ih t!

1

~p82q82z1 ihu!

3
1

~2c2k21 ih!

1

~2c2k821 ih!
. ~34!

In this case, the intermediate energieset and eu must have
different signs for a nonvanishing integral. The integral f
positive et , negativeeu becomes 1/(2p1p82q8) and for
negativeet , positiveeu we have 1/(p2p81q8).

2. Coulomb-Gaunt

There are two ways of writing this interaction. Thek pho-
ton may be Coulomb and thek8-photon Gaunt~denoted CG!
and vice versa~GC!. The z integrals become for uncrosse
photons

I CG
L 5 i E

2`

` dz8

2p

1

~p1q82z81 ih t!

1

~p81q1z81 ihu!

3
1

~z822c2k821 ih!

1

~2c2k21 ih!
, ~35!

I GC
L 5 i E

2`

` dz

2p

1

~p2z1 ih t!

1

~p81z1 ihu!

3
1

~z22c2k21 ih!

1

~2c2k821 ih!
, ~36!

which yields

I CG
L1152

1

p1p8
F 1

q81p2ck8

1

2ck8

1
1

q1p82ck8

1

2ck8
G 1

~2c2k2!
, ~37!
6-5
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I GC
L1152

1

p1p8
F 1

p2ck

1

2ck
1

1

p82ck

1

2ckG 1

~2c2k82!
,

~38!

I CG
L2252

1

p1p8
F 1

p2q1ck8

1

2ck8

1
1

p82q81ck8

1

2ck8
G 1

~2c2k2!
, ~39!

I GC
L2252

1

p1p8
F 1

p1ck

1

2ck
1

1

p81ck

1

2ckG 1

~2c2k82!
,

~40!

I CG
L1252

1

q81p2ck8

1

p82q81ck8

1

2ck8

1

~2c2k2!
,

~41!

I GC
L1252

1

p2ck

1

p81ck

1

2ck

1

~2c2k82!
, ~42!

I CG
L2152

1

p2q1ck8

1

p81q2ck8

1

2ck8

1

~2c2k2!
,

~43!

I GC
L2152

1

p1ck

1

p82ck

1

2ck

1

~2c2k82!
. ~44!

For crossed photons thez integrals become

I CG
X 5 i E

2`

` dz8

2p

1

~p1q81z81 ih t!

1

~p81z81 ihu!

3
1

~z822c2k821 ih!

1

~2c2k21 ih!
, ~45!

I GC
X 5 i E

2`

` dz

2p

1

~p81q2z1 ihu!

1

~p2z1 ih t!

3
1

~z22c2k21 ih!

1

~2c2k821 ih!
, ~46!

which leads to

I CG
X1152

1

p1q82ck8

1

p82ck8

1

2ck8

1

~2c2k2!
, ~47!

I GC
X1152

1

p2ck

1

p81q2ck

1

2ck

1

~2c2k82!
, ~48!

I CG
X2252

1

p2q1ck8

1

p81ck8

1

2ck8

1

~2c2k2!
, ~49!
03251
I GC
X2252

1

p1ck

1

p82q81ck

1

2ck

1

~2c2k82!
, ~50!

I CG
X1252

22ck81p2p81q8

2ck8~p1q82ck8!~p81ck8!~p2p81q8!

3
1

~2c2k2!
, ~51!

I GC
X1252

22ck1p2p81q8

2ck~p2ck!~p82q81ck!~p2p81q8!

3
1

~2c2k82!
, ~52!

I CG
X2152

22ck82p1p81q

2ck8~p2q1ck8!~p82ck8!~p82p1q!

3
1

~2c2k2!
, ~53!

I GC
X2152

22ck2p1p81q

2ck~p81ck!~p81q2ck!~p82p1q!

3
1

~2c2k82!
. ~54!

3. Coulomb-Scalar retardation

Thez integrals are, for uncrossed and crossed photons
same as for Coulomb-Gaunt and Gaunt-Coulomb@Eqs.~37–
44! and ~47–54!, respectively#. There is also an additiona
factor from the scalar retardation interaction. For t
Coulomb-Scalar case the resulting momentum express
must be multiplied with the factor 2(p2q)(p8
2q8)/(ck8)2 for ladder and2(p2q)p8/(ck8)2 for crossed.
For the Scalar-Coulomb case the resulting momentum
pressions must be multiplied with the factor2pp8/(ck)2 for
ladder and2p(p82q8)/(ck)2 for crossed.

4. Gaunt-Scalar retardation

Thez integrals are, for uncrossed and crossed photons
same as in the Feynman gauge@Eqs. ~12–15! and ~22–25!,
respectively#. The additional factors from the scalar retard
tion interaction are the same as in the Coulomb-Scalar re
dation case.

5. Scalar retardation-Scalar retardation

Thez integral is, for uncrossed as well as crossed photo
the same as in the Feynman gauge@Eqs. ~12–15! and ~22–
25!, respectively# timespp8(p2q)(p82q8)/@(ck)2(ck8)2#.
6-6
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D. Unretarded contributions

In order to be able to compare the QED results with th
of standard RMBPT calculations, we have performed the
culations also without retardation. This is easily done in
formalism presented here simply by settingz50 in the pho-
ton propagators. Leaving out the effects of the virtual pa
then yields results which are equivalent to the correspond
RMBPT results.

III. NUMERICAL PROCEDURE

The basis functions used in this calculation are obtai
by solving the single-particle Dirac equation in the nucle
potential, using the method of discretization, developed
Salomonson and O¨ ster @11#. Analytical Bessel functions are
used, and the radial integrations are performed numeric
Also the integrations over the photon momenta are p
formed numerically using the method of Gaussian quad
ture. 100–200 grid points are used in the radial integrati
and 100–140 points in the momentum integration. The
gular factors needed are taken from Ref.@6#.

A. Pole-integration

Since thek integration is performed along the real axis w
have to perform principal-value integrals whenever a p
appears. Special care must be taken when integrating
these poles in order to maintain the numerical accuracy.
excited states both simple and double poles will appear. C
sider now the case of a simple pole atk5v. The integral can
then be written as

E dk
f ~k!

k2v
, ~55!

where the numeratorf (k) is a discrete-valued function in th
chosenk grid. We use a Lagrange polynomial in (k2ki) to
interpolatef (k) to a continuous function. The integral abov
then reduces to a number ofk integrals which look like

E
ki

ki 11
dk

~k2ki !
m

k2v
. ~56!

These integrals are easily evaluated analytically and
principal-value integrals are obtained with high accuracy.
the case of double poles we have instead the integral

E dk
f ~k!

~k2v!2
. ~57!

By rewriting the numerator asf (k)5 f (v)1@ f (k)2 f (v)#,
the double pole is isolated in the first term and the remain
is again of simple pole structure. The double pole can
integrated analytically and we obtain
03251
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E
0

`

dk
f ~k!

~k2v!2
5E

0

K
dk

f ~v!

~k2v!2
1E

0

K
dk

f ~k!2 f ~v!

~k2v!2

1E
K

`

dk
f ~k!

~k2v!2

5
f ~v!K

v~v2K!
1E

0

K
dk

f ~k!2 f ~v!

~k2v!2

1E
K

`

dk
f ~k!

~k2v!2
, ~58!

where the integration limitK is defined such that all possibl
poles lies in the interval@0,K#. The reason for lettingK be
finite is that the second term converges slowly for largeK.
The second term is calculated using the scheme for sim
poles outlined above and the last term, together with all ot
pole freek integrations, is computed using Gauss-Legen
and Gauss-Laguerre quadrature.

B. Products of poles

Since we integrate over two momenta,k andk8, and thus
on two different real axes, there are cases when there
poles on both these axes simultaneously. We will then
just get a contribution from the principal integration, but al
from the product of the two imaginary semicircle integr
tions, which when multiplied will yield a real contribution t
the energy. For the case with two simple poles we have
expression

E dkE dk8
f ~k!

k2v

g~k8!

k82v8
h~k,k8!. ~59!

It is convenient to separate out the matrix elements, wh
depend only onk or k8. The additional contribution will be

ip f ~v!ipg~v8!h~v,v8!. ~60!

We only find contributions from poles which are on the sa
side of the real axis.

If one ~or both! of the poles is a double pole one has
differentiate the expression with respect to the moment
that corresponds to the double pole. Considering

E dkE dk8
f ~k!

~k2v!2

g~k8!

~k82v8!2
h~k,k8!, ~61!

the contribution will in this case be

~ ip!2$ f k8~v!gk8
8 ~v8!h~v,v8!1 f k~v!gk8

8 ~v8!hk8~v,v8!

1 f k8~v!gk8~v8!hk8
8 ~v,v8!

1 f k~v!gk8~v8!hk,k8
9 ~v,v8!%. ~62!

An extra difficult case is for the crossed exchange c
when the intermediate statest,u both are 1s. The term
6-7
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E dkE dk8
f ~k!

~k1k82v!

g~k8!

~k82v!2
h~k,k8! ~63!

will have a pole ink50,k85w. The imaginary contribution
from thek integration here comes from aquarter circle.

When differentiating the matrix elements one needs
derivatives of the spherical Bessel functions. We have cho
to use known recurrence relations to express these de
tives analytically.

The contributions from products of poles are very imp
tant, especially for the reference states~see the Appendix!
and corresponding crossed diagrams. We also find that
sum of all contributions from products of poles are gau
invariant.

C. Canceling of singularities

Some of the reference state contributions are singula
the limit k,k8→0. These singularities occur when the mat
elements do not approach zero whenk,k8→0, implying that
the Bessel functionsj L(kr) and j L8(k8r ), which are involved
in the matrix elements, do not approach zero, which w
only be the case ifL5L850. Singularities in the crosse
integrals with the same matrix elements, will be cancelled
a corresponding singularity in one of the reference state c
tributions. There is a singularity in the crossed direct con
bution whent,u51s,2s. This singularity is cancelled by th
reference state contribution in the ladder direct case w
t,u51s,2s. There is also a singularity in the crossed e
change contribution whent,u51s,1s or t,u52s,2s. These
expressions are canceled by the reference state contribu
for the ladder exchange whent,u51s,2s and t,u52s,1s,
respectively.

D. Numerical singularities

Considering crossed exchange, there is a contributio
the form

E dkE dk8
kk8M ~k,k8!

~k1k82v!~k82v!2
, ~64!

which becomes singular whenk8→v andk→0, if the ma-
trix elementsM (k,k8) do not approach zero. This makes t
principal integration very difficult numerically, a problem
which is solved by subtracting the most singular part. Mo
explicitly this is done by expanding the numerator

kk85@~k1k82v!2~k82v!#k8 ~65!

and the matrix-elementsM (k,k8) around the pole. In the
numerical evaluation we subtract the most singular p
which involves the second term in Eq.~65! and is given by

2M ~0,w!E
0

K
dkE

0

K
dk8

~k82v!v

~k1k82v!~k82v!2
. ~66!
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One of the k integrations can be performed analytical
which yields

2M ~0,w!E
2v

v 1

x
lnS 11

x

KDdx1E
v

K2v 1

x F lnS 11
x

KD
2 lnS x

KD Gdx. ~67!

Here thex integration can be performed to arbitrary accura
using Gaussian quadrature and then this semianalytic
evaluated term is readded.

E. Extrapolation

The calculation procedure discussed above is executed
different numbers of radial grid pointsN for each given par-
tial wave (L value!. The values obtained are then grid e
trapolated toN5`. We evaluate several partial waves, t
maximum number ofL depending on the convergence pro
erties of the given contribution, and finally we extrapolate
L5`. We typically use three grids in the range of 100–2
radial grid points and evaluate partial wave terms up toL
520. For Z510, however, we use up toL530 partial
waves, since for such lowZ the effects are so small that th
accuracy has to be high to give relevant results. It is a
necessary to use a large number of partial waves for
singlet state, since it converges slowly, which can be see
Tables I and II.

IV. RESULTS

The results of our calculations are given in Tables I–III.
should be noted that we have usedpoint nucleus for Z
510,14,18 andextendednucleus forz524,30,60,92. When
possible, we compare our values with recent calculations
Mohr and Sapirstein@2#. We have performed the calculation
in both the Feynman and Coulomb gauges, and the t
results are found to be gauge invariant. The A0-A0, A0-AL
and ALF-ALF parts, where A0 stands for the scalar part a
ALF for the vector part of the interaction, are also separat
gauge invariant. Furthermore, these parts as well as the
values are gauge invariant for each partial wave limit for
exchanged photons,l ,l 8<L in Eqs.~18! and ~27!

V. ANALYSIS

The various energy contributions to heliumlike ions
order (Za)3 and (Za)3ln(a) have been evaluated analyt
cally by Kabir and Salpeter@12#, Araki @13#, Sucher@5#,
Ermolaev@14# and others, and the results of Sucher are su
marized in Table IV. Araki gives the following total contri
butions in the three cases~we are omitting the factora3

below!:
6-8
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2
4

3
^d~r12!&, Coulomb-Coulomb

4

3 S 8

3
22 lna D ^d~r12!&2

4

3
^s1•s2d~r12!&2

8

3
Q

2
2

3p
M 8, Coulomb-Breit

S 17

3
2

8

3
ln 212 lna D ^d~r12!&1

1

3
^s1•s2d~r12!&

22Q, Breit-Breit ~68!

which gives thetotal contribution

TABLE I. Full two-photon-exchange calculation forZ510 us-
ing Coulomb gauge~in mhartree!. The calculation is performed
with a point nucleus. ‘‘Unretarded’’ represents results without re
dation and without virtual pairs~negative-energy states! and is
equivalent to RMBPT; ‘‘no-virtual pairs’’~NVP! represents results
with retardation but without virtual pairs;

Z510 1S 3S

Coulomb-Coulomb
Unretarded5NVP -115180.10 -47627.57
Virtual pairs 4.86 0.04
Total -115175.24 -47627.53

Coulomb-Breit
Unretarded -815.00 -10.37
No-virtual pairs -791.42 -11.36
Virtual pairs -19.09 0.05
Total -810.51 -11.31
QED5Total-Unretarded 4.49 -0.94

Breit-Breit
Unretarded -10.10 -0.14
No-virtual pairs -7.33 -0.12
Virtual pairs -5.67 -0.34
Total -13.00 -0.46
QED5Total-Unretarded -2.90 -0.32

Total
Unretarded -116005.55 -47638.07
No-virtual pairs -115978.85 -47639.05
Virtual pairs -19.90 -0.25

A0-A0 -115170.83 -47584.02
A0-ALF -803.53 -54.66
ALF-ALF -24.40 -0.62

GRAND TOTAL -115998.77 -47639.30

QED5Total-Unretarded (L510) 7.67 -1.23
QED5Total-Unretarded 6.45 -1.23
03251
S 71

9
2

8

3
ln 22

2

3
ln a D ^d~r12!&2^s1•s2d~r12!&2

14

3
Q

2
2

3p
M 8, ~69!

whereQ is the principal part of the logarithmically divergin
quantity r12

23 @1# and M 8 is a part of the Bethe logarithm
@15#. These results agree with those given by Sucher.

-

TABLE II. Full two-photon-exchange calculation forZ530 us-
ing Coulomb gauge~in mhartree!. The calculation is performed
with an extended nucleus~RMS53.955!. ‘‘Unretarded’’ represents
results without retardation and without virtual pairs~negative-
energy states! and is equivalent to RMBPT; ‘‘no-virtual pairs’
~NVP! represents results with retardation but without virtual pai

Z530 1S 3S

Coulomb-Coulomb
Unretarded5NVP -120895.80 -49433.33
Virtual pairs 99.73 3.11
Total -120796.12 -49430.22

Coulomb-Breit
Unretarded -7056.69 -98.20
No-virtual pairs -6712.45 -120.12
Virtual pairs -379.43 3.49
Total -7091.88 -116.63
QED5Total-Unretarded -35.05 -18.42

Breit-Breit
Unretarded -396.63 -10.21
No-virtual pairs -274.22 -8.18
Virtual pairs 11.35 7.05
Total -262.88 -1.13
QED5Total-Unretarded 133.95 9.08

TOTAL
Unretarded -128349.12 -49541.73
No-virtual pairs -127882.47 -49561.62
Virtual pairs -268.35 13.66

A0-A0 -121057.69 -49031.91
A0-ALF -6669.60 -517.23
ALF-ALF -423.59 1.19

GRAND TOTAL -128150.88 -49547.95

QED5Total-Unretarded (L510) 205.01 -6.44
QED5Total-Unretarded 198.24 -6.22

RMBPTa -49541.34
Grand Totala -49550.08
QEDa -8.74

aFrom Ref.@2#.
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The self-energy and vacuum-polarization contributio
have been evaluated by Araki with the following results:

DEse5
4

3 S 5

6
2 ln 222 lna D @Z^d~r1!&1Z^d~r2!&

22^d~r12!&#2
2

3
^s1•s2&^d~r12!&2

2

3p
M 9,

~70!

DEvp5
4

15
^d~r12!&2

4

15
Z@^d~r1!&1^d~r2!&#, ~71!

TABLE III. Full two-photon-exchange calculation compare
with MBPT and other calculations. The values are in hartree.

2 1S0 23S1

Z510
2g -0.11599877 -0.04763930
RMBPT -0.11600497 -0.04763807
QED 0.00000620 -0.00000123

Z514
2g -0.11742901 -0.04786237
RMBPT -0.11744606 -0.04785964
QED 0.0001690 -0.00000273

Z518
2g -0.11934461 -0.04816257
RMBPT -0.11938138 -0.04815795
QED 0.0000379 -0.00000462

Z524 (RMS53.655)
2g -0.12315605 -0.04876184
RMBPT -0.12324940 -0.04875490
QED 0.00009343 -0.00000694

Z530 (RMS53.955)
2g -0.1276a -0.04954a

2g -0.12815090 -0.04954795 -0.04955508b

RMBPT -0.12834910 -0.04954173 -0.04954134b

QED 0.00019810 -0.00000622 -0.00000874b

Z560 (RMS54.915)
2g -0.1753732 -0.0568096 -0.056799b

RMBPT -0.1777315 -0.0570252 -0.057023b

QED 0.0023583 0.0002156 0.000224b

Z592 (RMS55.86)
2g -0.3008a -0.07416a

2g -0.3018243 -0.0743067 -0.074246b

RMBPT -0.3149504 -0.0762391 -0.076230b

QED 0.0131261 0.0019323 0.001984b

aCorresponding values from Ref.@3#.
bFrom Ref.@2#.
03251
s

where M 9 is a second part of the Bethe logarithm. Th
^d(r12)& parts of the self-energy and vacuum-polarizati
contributions come from the vertex diagram and the int
electronic vacuum-polarization diagram, respectively. T
^d(r1)&,^d(r2)& parts consists of one electron self-ener
and vacuum polarization effects, as well as higher-or
coulomb-screening effects.

Adding these quantities to the total two-photon exchan
above Eq.~69!, gives (M 81M 95M )

F89

15
1

14

3
ln a2

5

3
^s1•s2&G^d~r12!&1

4

3 S 19

30
2 ln~2a2! D

3@Zd~r1!1Zd~r2!#2
14

3
Q2

2

3p
M . ~72!

With ^s1•s2&523 for singlet states, this agrees with th
results of Drake@16#.

To leading order in a 1/Z expansion,Q is

Q~1S!52@ ln~Z!1C~1S!#
2Z3

81p
, ~73!

Q~3S!52C~3S!
2Z3

81p
, ~74!

where we have evaluated the constants to be

C~1S!5
1

2
ln 32142 ln 21

1947

20
'20.527 59, ~75!

C~3S!52
1

2
ln 32141 ln 21

1963

20
'20.133 06, ~76!

which is in agreement with Drake@1#. Similarly M 8 is in
leading order given by

2
2

3p
M 8~1S!5S 2

16

3
ln Z1D~1S! D 2Z3

81p
, ~77!

2
2

3p
M 8~3S!5D~3S!

2Z3

81p
, ~78!

whereD(1S) andD(3S) are constants that have to be eva
ated numerically. We have evaluated these constants a
the lines in Appendix C in Ref.@6#. The values achieved ar
D(1S)'22.273 67 andD(3S)'20.010 80, and are ex
pected to be accurate to the number of digits given. We h
chosen to factor out 2Z3/81p, which is the value of̂d(r12)&
for the singlet state, using hydrogenic functions.

The total theoretical contributions are given in Tables
and VI, as well as numerical values from the average
several least-square fits, shown in Figs. 2 and 3. The fits
performed using different polynomials and do not include
Z560 andZ592 values, since other effects as, for instan
the extended nucleus, affects the fits too much. Our ca
lated zeroth-order nonrelativistic values are2114 510 har-
6-10
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TABLE IV. Coefficients~in hartree units! for the (Za)3 contributions for electron-electron interaction in heliumlike ions, evaluated
Sucher~Ref. @5#!. The entries for both1S and 3S should be multiplied by 2/81p, which is the value of̂d(r12)&/Z

3 for the singlet state. We
have chosen to keep the separation of terms depending on^s1•s2&, which has the value of23 for singlet states and 0 for triplet states. F
3S, ^d(r12)&50 and we only have contributions from theQ andM 8 parts.

Contribution 1S 3S

Coulomb-Coulomb
No pair5RMBPT

2Sp2 1
5

3D
Single pair 2
Double pair Sp2 2

5

3D
Total Coul-Coul

2
4
3

Coulomb-Breit
Unretarded5RMBPT

2
4

3Sp2 11D^s13s2&

No pair 8

3
C~1S!1D~1S!1

32

9
2

4

3Sp2 111
1

2
ln 2D^s13s2&2

8

3
ln~Za!

8
3

C(3S)1D(3S)

Single pair 4
3

(11 ln 2)̂ s13s2&
Double pair 4

3Sp2 212
1

2
ln 2D^s13s2&

Total Coul-Breit 8
3

C(1S)1D(1S)1
32
9

2
4
3^s13s2&2

8
3

ln(Za)
8
3

C(3S)1D(3S)

Breit-Breit
Unretarded5RMBPT 422p b

No pair
2

3p

4
111

1

2
ln 21

1

3S2 p

4
111

1

2
ln 2D^s13s2&

Single pair
113 ln 21

1
3
(12ln 2)̂ s13s2&

Double pair
2C~1S!1

3p

4
1

11

3
2

37

6
ln 21

1

3Sp4 211
1

2
ln 2D^s13s2&

12 ln~Za!

2C(3S)

Total Breit-Breit
2C(1S)1

17
3

2
8
3

ln 21
1
3^s13s2&12 ln(Za)

2C(3S)

TOTAL
Unretarded5RMBPT 19

3
2

p

2
a

No pair 8

3
C~1S!1D~1S!1

26

9
2

5p

4
1

1

2
ln 22S3p

4
111

1

2
ln 2D^s13s2&

2
8

3
ln~Za!

8
3

C(3S)1D(3S)

Single pair
3~11ln 2!1S531ln 2D^s13s2&

Double pair
2C~1S!1

5p

4
122

37

6
ln 21S3p

4
2

5

3
2

1

2
ln 2D^s13s2&

12 ln~Za!

2C(3S)

GRAND TOTAL 14
3

C(1S)1D(1S)1
71
9

2
8
3

ln 22^s13s2&2
2
3
ln(Za)

14
3

C(3S)1D(3S)

aThis expression is taken from Ref.@18#. Here thê s1•s2& term is not separated out.
bThis expression is deduced from the other unretarded values in this column.
032516-11
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TABLE V. Coefficients for (Za)n from the least-squares fit of the numerical data for the 1s2s 1S state. The (Za)3 coefficients are
compared with theoretical predictions of Sucher~Ref. @5#!. ‘‘Unretarded’’ represents results without retardation and without virtual p
~negative-energy states!; ‘‘no-virtual pairs’’ ~NVP! represents results with retardation but without virtual pairs.

(Za)2 (Za)3 1S (Za)3 1S (Za)4 1S
Contribution Numerical Numerical Sucher@5# Numerical

Coulomb-Coulomb 0.116~2!

Unretarded5NVP -0.025~2! -0.02545 -0.06~1!

Virtual pairs 0.015~1! 0.01497 -0.04~1!

Total -0.010~1! -0.01048 -0.11~1!

Coulomb-Breit 0.158~1!

Unretarded 0.081~2! 0.08082 -0.11~2!

No-virtual pairs 0.091~2! 0.09073 -0.19~1!

Virtual pairs -0.058~3! -0.06063 0.12~1!

Total 0.031~2! 0.03046 0.06~2!

QED5Total-Unretarded -0.049~2! -0.05037 0.06~2!

Breit-Breit
Unretarded -0.019~2! -0.01795 -0.10~1!

No-virtual pairs -0.013~1! -0.01235 -0.11~2!

Virtual pairs 0.026~1! 0.02620 0.10~1!

Total 0.014~1! 0.01390 -0.08~2!

QED5Total-Unretarded 0.032~1! 0.03180 0.04~3!

TOTAL
Unretarded 0.036~2! 0.03743 -0.33~2!

No-virtual pairs 0.051~2! 0.05294 -0.33~2!

Virtual pairs -0.017~3! -0.01946 0.01~1!

GRAND TOTAL 0.274~4! 0.033~2! 0.03380 0.23~2!

QED5Total-Unretarded -0.003~1! -0.00360 0.06~2!
on

on

an
s

n

cher
FIG. 2. Contributions to the total QED effect of the two-phot
exchange for the 1s2s 1S state, divided by (Za)3. The
(Za)3 ln(Za) parts have been subtracted. The curves represent
effects beyond RMBPT, although there are also (Za)3 contributions
in RMBPT. The points and slopes at the origin represent the (Za)3

and (Za)4 coefficients, respectively. The crosses represent the
lytical results by Sucher@5#. The Coulomb-Coulomb curve only ha
contributions from virtual pairs.
03251
ly
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FIG. 3. Contributions to the total QED effect of the two-photo
exchange for the 1s2s 3S state, divided by (Za)3. The points and
slopes at the origin represents the (Za)3 and (Za)4 coefficients,
respectively. The crosses represent the analytical results by Su
@5#.
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TABLE VI. Coefficients for (Za)n from the least-squares fit of the numerical data for the 1s2s 3S state. The (Za)3 coefficients are
compared with theoretical predictions of Sucher~Ref. @5#!. ‘‘Unretarded’’ represents results without retardation and without virtual p
~negative-energy states!; ‘‘no-virtual pairs’’ represents results with retardation but without virtual pairs. We have omitted the Coul
Coulomb part since there are no (Za)3 contributions here@there is however a (Za)2 contribution#.

(Za)2 (Za)3 3S (Za)3 3S (Za)4 3S
Contribution Numerical Numerical Sucher@5# Numerical

Coulomb-Breit -0.002~1!

Unretarded
No-virtual pairs -0.0029~1! -0.0029 0.002~2!

Virtual pairs
Total
QED5Total-Unretarded -0.0029~1! -0.0029 0.006~1!

Breit-Breit
Unretarded
No-virtual pairs
Virtual pairs -0.0019~2! -0.0021 0.17~2!

Total
QED5Total-Unretarded -0.0019~2! -0.0021 0.02~2!

TOTAL
Unretarded
No-virtual pairs -0.0029~1! -0.0029 -0.07~3!

Virtual pairs -0.0019~2! -0.0021 0.02~1!

GRAND TOTAL -0.043~2! -0.0048~3! -0.0050 -0.05~4!

QED5Total-Unretarded -0.0048~3! -0.0050 0.03~2!
t
io

ue

rc
c
ie
e

on

m
ar
e

nt

ed
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in

sed

rme-
s to

ad-

the
t

tree for the singlet state and247 409 hartree for the triple
state. The values are in agreement with previous calculat
by Safronova@17#.

We find good agreement between our numerical val
and the theoretical ones by Sucher.
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APPENDIX: THE REFERENCE STATE CONTRIBUTIONS

Consider the two-photon electron exchange contributi
given by the energy shift formula in Eq.~1!. The intermedi-
ate states degenerate with the initial state, calledreference
states, lead to divergent expressions in the ladder diagra
However, these divergencies are canceled by the squ
second-orderS-matrix contribution, and the remaining finit
contributions, called thereference state contributions, are de-
rived in this section. Furthermore, the reference state co
03251
ns

s

h
-

d

s

.
ed

ri-

butions also contains singularities, whenk or k8 goes to zero,
which are canceled by similar singularities in the cross
interaction, see Sec. III C. The procedure presented here
generalization to retarded interactions of the procedure
@6#. There is no reference state divergency in the cros
photon interaction. Contrary to@6#, we treat the reference
states in the crossed photon interaction as any other inte
diate state, and do not add the corresponding contribution
the ladder reference states contribution.

For simplicity the Feynman gauge is used below. The l
der contribution to the energy shift is given by Eq.~2!. For
simplicity we define a function

gsrba~z!5E d3x1E d3x2

2c

e0
E d3k

~2p!3

eik•(x22x1)

~z22c2k21 i e!

3Fs
†~x2!amF r~x2!Fb

†~x1!amFa~x1!. ~A1!

There will be four different cases to be calculated. For
overall direct caseD (rs5ab), we may have internal direc
Dd (tu5ab) or internal exchangeDe (tu5ba) ~see Fig. 1!.
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Similarly we define for overall exchange (rs5ba)Ed and
Ee , here referring to direct and exchange of the first inter
tion. Considering the overall direct, internal direct part
^Fa

0uSlad,g
4 uFa

0&, we have

Dd

5c2e4E
2`

` dz1

2p E
2`

` dz2

2p E
2`

` dz3

2p E
2`

` dz4

2p

1

@z32ea~12 ih!#

3
1

@z42eb~12 ih!# (
lad

gs8r 8b8a8~z2!gsrba~z1!

3E
2`

`

dt4e2 i (z41z22eb)t4e2gut4u

3E
2`

`

dt3e2 i (z32z22ea)t3e2gut3u

3E
2`

`

dt2e2 i (z12z41eb)t2e2gut2u

3E
2`

`

dt1e2 i (ea2z32z1)t1e2gut1u. ~A2!

By using the integral identity

f g~z2 ,z1!5E
2`

`

dz
1

@z2e0~12 ih!#

3
g

~e02z2z2!21g2

g

~e02z1z1!21g2

5
pg

~z21z1!214g2

~z22z124ig!

~z22 ig!~z11 ig!
, ~A3!

we can perform thez3 andz4 integrations, yielding the fol-
lowing expression:

Dd5
c2e4

p4 E dz1E dz2f g~z2 ,z1! f g~z1 ,z2!

3(
lad

gs8r 8b8a8~z2!gsrba~z1!. ~A4!

Using the same technique and introducingv5eb2ea , the
other three cases become

De5
c2e4

p4 E dz1E dz2f g~z21v,2v2z1!

3 f g~2v2z1 ,z21v!(
lad

gs8r 8b8a8~z2!gsrba~z1!,

~A5!
03251
-
f

Ed5
c2e4

p4 E dz1E dz2f g~z22v,z1! f g~z1 ,z22v!

3(
lad

gs8r 8b8a8~z2!gsrba~z1!, ~A6!

Ee5
c2e4

p4 E dz1E dz2f g~z2 ,2v2z1! f g~2v2z1 ,z2!

3(
lad

gs8r 8b8a8~z2!gsrba~z1!. ~A7!

In order to handle the divergent part of the ladder diagra
we focus on the squared one-photon counter part which
to be subtracted in order to obtain the finite ladder contri
tion. Following standard rules, we can write the directOd
and exchange Oe one-photon counter parts o
^Fa

0uSred,g
2 uFa

0& as

Od52 i
ce2

2p E
2`

`

dz
4g2

~z21g2!2
gsrba~z!, ~A8!

Oe52 i
ce2

2p E
2`

`

dz
4g2

~~z1v!21g2!2
gsrba~z!. ~A9!

The contribution from theDd diagram will be 4Dd22Od
2

and for theDe diagram 4De22Oe
2 . The two exchange dia

gramsEd and Ee yield the contributions 4Ed22OdOe and
4Ee22OeOd , respectively.

Consider the sum

f g~z2 ,z1!1 f g~z1 ,z2!

5
pg

~z21z1!214g2
3H ~z22z124ig!

~z22 ig!~z11 ig!

1
~z12z224ig!

~z12 ig!~z21 ig!J
52

2pg2i

~z1
21g2!~z2

21g2!
, ~A10!

and the square of the sum

1

2
@ f g~z2 ,z1!1 f g~z1 ,z2!#25

22p2g4

~z1
21g2!2~z2

21g2!2
.

~A11!

By using this identity we can rewrite the squared one-pho
counter parts as
6-14
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Od
25

2c2e4

4p2 E
2`

`

dz1E
2`

`

dz2

4g2

~z2
21g2!2

4g2

~z1
21g2!2

3(
lad

gs8r 8b8a8~z2!gsrba~z1!

5
c2e4

p4 E2`

`

dz1E
2`

`

dz2@ f g~z2 ,z1!1 f g~z1 ,z2!#2

3(
lad

gs8r 8b8a8~z2!gsrba~z1!, ~A12!

Oe
25

2c2e4

4p2 E
2`

`

dz1E
2`

`

dz2

4g2

@~2z22w!21g2#2

3
4g2

@~z11w!21g2#2 (lad
gs8r 8b8a8

3~2z22w!gsrba~z11w!

5
c2e4

p4 E2`

`

dz1E
2`

`

dz2@ f g~2z22w,z11w!

1 f g~z11w,2z22w!#2(
lad

gs8r 8b8a8

3~2z22w!gsrba~z11w!, ~A13!

OdOe5
2c2e4

4p2 E
2`

`

dz1E
2`

`

dz2

4g2

@~2z22w!21g2#2

3
4g2

@~z1!21g2#2 (lad
gs8r 8b8a8~2z22w!gsrba~z1!

5
c2e4

p4 E2`

`

dz1E
2`

`

dz2@ f g~2z22w,z1!

1 f g~z1 ,2z22w!#2

3(
lad

gs8r 8b8a8~2z22w!gsrba~z1!, ~A14!

OeOd5
2c2e4

4p2 E
2`

`

dz1E
2`

`

dz2

4g2

@~2z2!21g2#2

3
4g2

@~z11w!21g2#2

3(
lad

gs8r 8b8a8~2z2!gsrba~z11w!

5
c2e4

p4 E2`

`

dz1E
2`

`

dz2@ f g~2z2 ,z11w!

1 f g~z11w,2z2!#2

3( gs8r 8b8a8~2z2!gsrba~z11w!. ~A15!

lad

03251
Considering theDd diagram, it can be rewritten as

Dd5
c2e4

p4 E dz1E dz2f g~z2 ,z1! f g~z1 ,z2!

3(
lad

gs8r 8b8a8~z2!gsrba~z1!

5
c2e4

p4 E dz1E dz2H 1

2
@ f g~z2 ,z1!1 f g~z1 ,z2!#2

2
1

2
@ f g

2~z2 ,z1!1 f g
2(z1 ,z2#J

3(
lad

gs8r 8b8a8~z2!gsrba~z1!, ~A16!

and the squared one-photon counter term can then be
tracted, giving

4Dd22Od
25

2c2e4

p4 E dz1E dz22

3@ f g
2~z2 ,z1!1 f g

2~z1 ,z2!#

3(
lad

gs8r 8b8a8~z2!gsrba~z1!. ~A17!

Thus, we can in this case write the finite reference st
contribution as

DEDd

ref5 lim
g→0

1

2
ig~4Dd22Od

2!

5 lim
g→0

1

2
ig

2c2e4

p4 E dz1E dz22

3@ f g
2~z2 ,z1!1 f g

2~z1 ,z2!#

3(
lad

gs8r 8b8a8~z2!gsrba~z1!, ~A18!

or since f g(2z2 ,2z1)5 f g(z1 ,z2) and gsrba(z)
5gsrba(2z). Equation~A18! can be rewritten as

DEDd

ref5 lim
g→0

1

2
ig

2e4

p4 E dz1E dz24 f g
2~z2 ,z1!

3(
lad

gs8r 8b8a8~z2!gsrba~z1!. ~A19!

The other three cases can be done in the same fashion.
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To obtain expressions which are appropriate for numer
calculations, thez1 and z2 integrations are performed ana
lytically. This yields the momentum expressions to be us
in the ladder energy contribution, Eq.~18!,

I Dd

ref52
c2k21c2kk81c2k82

2c6k3k83~ck1ck8!
, ~A20!

I De

ref52
c2k21c2kk81c2k8212~ck1ck8!v1v2

4c2kk8~ck1ck8!~v1ck!2~v1ck8!2

2
c2k21c2kk81c2k8222~ck1ck8!v1v2

4c2kk8~ck1ck8!~v2ck!2~v2ck8!2
,

~A21!
ff,

k

re

tt.

03251
al

d
I Ed

ref52
1

4 H 1

c3k2k8~v2ck8!2
1

1

c4k3k8~ck1ck82v!

1
1

c3k2k8~v1ck8!2
1

1

c4k3k8~ck1ck81v!
J ,

~A22!

I Ee

ref52
1

4 H 1

c3k82k~v2ck!2
1

1

c4k83k~ck1ck82v!

1
1

c3k82k~v1ck!2
1

1

c4k83k~ck1ck81v!
J .

~A23!

They replace the expression Eq.~12!, which is only valid if
the intermediate states are not degenerate with the in
state.
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