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gj factor of an electron bound in a hydrogenlike ion
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We present a detailed theoretical evaluation for thegj factor of a bound electron in hydrogenlike ions up to
Z594. All quantum electrodynamical corrections of order (a/p) are evaluated in detail and various other
contributions to thegj factor are computed and listed for 61Z. A comparison with all existing experiments is
carried out and excellent agreement is found. The present uncertainty in our calculations is discussed. It is not
possible to improve this precision with only minor effort since two-photon bound-state QED terms are uncal-
culated up to now.

PACS number~s!: 31.30.Jv, 12.20.2m, 32.10.Fn
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I. INTRODUCTION

Currently, enormous effort is undertaken to investig
quantum electrodynamical~QED! effects in the strong fields
of highly charged few-electron ions. Experimentally, this im
plies handling and precise spectroscopy of systems u
U911. Theoretically, the binding field of the nucleus has
be considered nonperturbatively and must include all ord
in Za. In hydrogenlike ions, the theoretical evaluation
many diagrams of ordera2 contributing to the Lamb shift
has already been performed@1# and the current theoretica
uncertainty amounts to 2 eV in U911, whereas the most re
cent measurement agrees well with theory but still has
error of 613 eV @2#. For lithiumlike ions, a number of ex
cellent measurements in different heavy systems were
formed @3–8#, but theoretical predictions still lack a com
plete treatment of two-photon contributions@9–13#. Also a
number of very precise measurements of hyperfine struc
splittings in heavy hydrogenlike systems@14–17# and in
heavy lithiumlike systems@6# were carried out. Unfortu-
nately, due to insufficient knowledge of nuclear paramet
such as the nuclear magnetization distribution the theore
precision for hyperfine structure predictions is rather p
although it coincides with experiment@18–24#.

Another quantity particularly accessible for high precisi
experiments is thegj factor of an electron bound in a hydro
genlike system. Theoretical investigations date back to 1
when Breit performed his calculations on the relativis
spin-orbit coupling for theg factor @25#. The QED correc-
tions to theg factor of a free electron have their own famo
history. The computation of the leading correction in (a/p)
was already performed by Schwinger in 1947@26,27#, imme-
diately after Kusch and Foleys’s legendary experim
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@28,29#. Contributions of order (a/p)2 were considered by
Karplus and Kroll@30# and finally evaluated analytically by
Petermann@31# and Sommerfield@32#. The corrections of
order (a/p)3 comprise already 72 Feynman diagrams wh
have all been evaluated analytically since 1996@33#. The
most recent overview is given by Hughes and Kinoshita@34#
who also present a number of recent theoretical values
theg factor of the free electron, depending on the experim
tally measured value ofa which is employed. For example
from muonium hyperfine structure measurements@35# 1/a
5137.035 996 3(80), which leads to gfree5212
31 159 652 216.0(1.2)(67.8)310212, where the first error
results from the calculations of the (a/p)4 terms and from
nonelectronic QED and non-QED contributions. The seco
error is due to the uncertainty ina employed in this calcu-
lation. The terms of order (a/p)4 comprise 891 diagrams
and up to now have only been evaluated numerically.

The by far most precise experimental measuremen
date on theg factor of the free electron was performed b
Van Dyck et al. @36# who obtained a value ofgfree5212
31159 652 188.4(4.3)310212. Contrary to this outstanding
success, investigations on the QED bound-state modifi
tions to gj were rather sparse until the mid 1990’s. Grot
and Hegstrom@37–39# as well as Faustov@40,41# and Close
and Osborn@42# performed calculations on the first terms
a Za expansion for QED and recoil corrections togj . Ex-
periments were carried out on hydrogen and deuter
~Refs. @43–45#, and references therein! as well as on He1

@46#. The existing theoretical calculations were then su
cient to describe the experimental results.

Recently, a new setup was developed@47# and tested@48#
which allows the storage of a single hydrogenlike ion in
trap and the performance ofgj measurements with a prec
sion up to a few ppb@49#. At the same time, theoretica
results became available which treated the bound-state Q
effects nonperturbatively inZa. The self-energy diagrams o
ordera were calculated by Blundellet al. @50# and also by
ic
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THOMAS BEIER et al. PHYSICAL REVIEW A 62 032510
Perssonet al. @51#. Perssonet al. @51# investigated also the
vacuum polarization contributions and were thus the firs
publish results which contained the complete QED corr
tions of ordera for a number ofZ in the range up toZ
592. A detailed presentation of the separate contributi
was given only for C51, S151, and Ca191 @52#, but without a
specific presentation of the theoretical calculations. In t
work we are going to describe the method employed in R
@51,52# in detail. After a short summary on the gener
theory, we will focus on the QED contributions in particula
Our method in evaluating the diagrams will be presented
well as the numerical techniques we employ. We will a
list the other known contributions, i.e., the effects of fin
nuclear size and mass, and discuss their uncertainties.
sults will be presented for all evenZ up toZ594 and also for
a few oddZ which are of particular experimental interest d
to the possible determination of thegj factor from hyperfine-
transition lifetime measurements@53#. The results will be
compared to the sparse experimental values available u
now, and finally we outline what has to be done next
improve the theoretical precision further. Although w
present formulas valid for any bound state of an electron,
restrict ourselves in the numerical calculations to the 1s1/2
state which for high-precision measurements is the mos
teresting state.

In this work, we generally employ 4pa5e2 and \5c
5me51, except when specified otherwise. The elect
mass is explicitly specified in some formulas for clarity. Fo
vectors and their components are given in roman style~p!
and have the form (p0 ,p), bold letters indicate three vector
and italics denote scalars. Four-dimensional space-time
ordinates are denoted by x, y, and z with x5(tx ,x). The
Feynman dagger is employed to indicate p”5gmpm , and p̂
5p/upu.

II. g FACTOR OF AN ELECTRON BOUND
IN A HYDROGENLIKE SYSTEM

The g factor of a rotating chargeq with massmq and
angular momentumJ is defined by the ratio of angular mo
mentum and magnetic moment

m5gj

q

2mqc
J. ~1!

For an electron,q52e, and

m52gj

e

2mec
J52gjmB

J

\
, ~2!

wheremB is the Bohr magneton. SettingJ5S and using the
Dirac equation with minimal coupling of the electromagne
field, gfree52 is readily obtained~a straightforward evalua
tion is performed, e.g., in Ref.@54#!.

For a bound electron, only the total angular momentumJ
can be observed. The energy shift of a stateuan& due to an
external magnetic field~for simplicity assumed to poin
along thez direction! is given by
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DE52^anum•Buan&5gj

mB

\
Bz^anuJzuan&5

1

2
gjmBBz

~3!

for an electron withuan&5us1/2& and magnetic angular quan
tum numberm51/2. This can be also written as

DE5^anua•eAuan&, ~4!

where

A52~r3B!/2. ~5!

It leads to

gj5
e

mB
^anuẑ•~r3a!uan& ~6!

52F112A12~Za!2

3 G , ~7!

where the last equal sign is valid only for an electron bou
to a pointlike nucleus. Only in this case is the analytic
calculation of all appearing integrals possible. The resul
due to Breit@25#. Detailed evaluations of this last equatio
are performed, e.g., in Refs.@55# and@56#. Equations~6! and
~7! describe the deviation ofgj from 2 because of binding
only and do not account for any QED effects.

III. QED CORRECTIONS TO THE gj FACTOR

A. Basic formulas

The basic interaction of a bound electron with the exter
magnetic field can be envisaged as in Fig. 1. Note that
interaction due to the presence of an external homogene
magnetic field is always treated as a perturbation becaus
the smallness of its influence compared to the nuclear b
ing potential. Quantum electrodynamical corrections can
obtained employing Sucher’s symmetrized form@57# of the
Gell-Mann–Low level shift@58#, presented in detail in Refs
@1,59,60# and applied to one- and few-electron QED corre
tions extensively also in Refs.@22,50,51,61,62#. From the
formulas for the energy shifts, the corresponding express
for gj are obtained by the relation~3!. In this section, we will
restrict ourselves to deal with the formulas for the ene
shift.

In general, the energy shift for a single-electron system
given by

FIG. 1. The interaction of a bound electron~double line! with
the external magnetic field~triangle! depicted as a Feynman dia
gram. The wavy line indicates a photon.
0-2
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DEn5 lim
e→0
l→1

i el

2

]

]l
^nuSe,lun&

^nuSe,lun&
~8!

with

Se,l5THexpF2 ilE dxe2eutxuHI~x!G J . ~9!

The basic interaction between the electron-positron field
the photon field is described by the interaction Hamilton
~e.g., Refs.@1,59,63#!,

HI~x!5 jm~x!@Am~x!1Am
pert~x!# ~10!

5HI
A1HI

B . ~11!

Here,

jm~x!52
1

2
e@c̄~x!gm,c~x!# ~12!

is the Dirac current operator, Am(x) is the quantized field
photon operator, and Apert denotes the additional magnet
perturbing potential not considered for binding. In Eq.~9!, T
denotes the time-ordering symbol. To evaluate this exp
sion, Wick’s theorem@64# is commonly applied which al-
lows one to rewrite the time-ordered product of a number
operators into a sum of normal-ordered products with
possible contractions. The special case of two Fermion
erators with equal times requires some care in bound s
problems. Contrary to QED of free fermions, these ter
have to be retained as they lead to the vacuum polariza
corrections@59#.

Equation~8! is evaluated into powers ofl, which yields

lim
l→1

]

]l
^nuSe,lun&

^nuSe,lun&

5
^nuSe

(1)un&12^nuSe
(2)un&13^nuSe

(3)un&1•••

11^nuSe
(1)un&1^nuSe

(2)un&1^nuSe
(3)un&1•••

5^nuSe
(1)un&12^nuSe

(2)un&2^nuSe
(1)un&213^nuSe

(3)un&

23^nuSe
(1)un&^nuSe

(2)un&1^nuSe
(1)un&31•••. ~13!

Performing all contractions, only those terms of each or
in l are retained in Eq.~13! which describe connecte
graphs, i.e., do not consist of more than one disjunct d
gram. In addition, only expressions meaningful to the curr
problem are considered. As we deal with one electron o
this excludes contraction results with more than one ferm
in the initial and final state. Furthermore, only terms with
operators Am(x) of the quantized photon field contracted w
be considered@60#. Finally, we keep only terms which are o
first order in the perturbing potential Apert and of ordera,
which indicates one virtual photon line in a diagram. The
fore, it is sufficient to include summands up toSe

(3) , where
the different orders inl read
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Se
(1)5~2 il!E dxe2eutxuT@~HI

B~x!#, ~14!

Se
(2)5

~2 il!2

2 E dyE dxe2eutyue2eutxuT$@HI
A~y!HI

A~x!#%,

~15!

Se
(3)5

~2 il!3

3! E dzE dyE dxe2eutzue2eutyue2eutxu

3T$@HI
B~z!HI

A~y!HI
A~x!#1@HI

A~z!HI
B~y!HI

A~x!#

1@HI
A~z!HI

A~y!HI
B~x!#%. ~16!

Equation ~15! yields the well-known expressions for th
first-order self energy and vacuum polarization@59,61#. The
three terms in Eq.~16! yield all the same result as the con
tractions can be carried out for each in the same way.
different expressions are obtained which can be envisage
Fig. 2. In Ref.@59#, the mass counterterm is also integrat
into the formalism of Eqs.~8!–~11!. It is sufficient, however,
to introduce this term explicitly when needed in order
keep the general formulas simpler. A detailed derivation
the mass counterterm in connection with the first-order Q
terms is performed in Ref.@59#.

The terms for the diagrams of Fig. 2 read

DESE,ve5 lim
e→0

i e

2
3SSE,ve

(3) , ~17!

DESE,WF5 lim
e→0

i e

2
@3SSE,WF

(3) 23S(1)SSE
(2)#, ~18!

FIG. 2. The QED contributions of order (a/p) to the bound-
electrongj factor depicted as Feynman diagrams.
0-3
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THOMAS BEIER et al. PHYSICAL REVIEW A 62 032510
DEVP,pot5 lim
e→0

i e

2
3SVP,pot

(3) , ~19!

DEVP,WF5 lim
e→0

i e

2
@3SVP,WF

(3) 23S(1)SVP
(2)#, ~20!

where the indices refer to the self-energy vertex term, F
2~a!, the self-energy wave function correction terms, Fi
2~c! and 2~e!, the vacuum polarization potential term Fi
2~b!, and the vacuum polarization wave function correcti
terms Figs. 2~d! and 2~f!. The self-energy vertex term and th
vacuum polarization potential term form irreducible di
grams. These diagrams can be evaluated directly by emp
ing the bound-state Feynman rules as presented, e.g
Lindgren @61,62# which can be shown to be equivalent to
full evaluation in theSmatrix formalism. The same holds fo
the irreducible contribution of the wave function correction
i.e., the part of the expression where the energy of the in
mediate state between magnetic interaction and self-en
loop does not conincide with that of the state under con
eration. The other part we term ‘‘reducible’’ contribution.
the Feynman gauge, the irreducible self-energy contributi
read

DESE,ve5e2
i

2pE dxE dyE dz

3E dvān~y!gmDFmn~y,x,v!

3SF~y,z,En2v!eg•A~z!

3SF~z,x,En2v!gnan~x!, ~21!

DESE,WF,irred52e2
i

2pE dxE dyE dzE dvān~y!gm

3DFmn~y,x,v!

3SF~y,x,En2v!gn

3 (
q

EqÞEn

Fq~x!Fq
†~z!g0

En2Eq
eg•A~z!an~z!

52 (
q

EqÞEn

^anug0S~En!uFq&^Fquea•Auan&
En2Eq

,

~22!

where the self-energy operatorS(En) was introduced,

^aug0S~E!ub&5e2
i

2pE dxE dyE dvā~y!gm

3DFmn~y,x,v!SF~y,x,E2v!gnb~x!.

~23!
03251
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In Eq. ~22!, an additional factor 2 accounts for the two sym
metrical diagrams Figs. 2~c! and 2~e!. In all these equations
SF(x,y;E)g0 denotes the time-independent Green’s funct
of a bound electron

$E2@a•p1bm1Vnuc
bind~x!#%SF~x,y;E!g05d3~x2y!.

~24!

Note that our definition coincides with that of Ref
@13,50,65# and differs from Mohr’s@1,59,66# by a minus sign
in the denominator ofSF(x,y;E). The time-independen
Green’s function is related to the four-dimensional electr
propagator by

SF~x,y!5
i

2pE dEe2 i (tx2ty)E(
m

Fm~x!F̄m~y!

E2Em~12 ih!

5
i

2pE dEe2 i (tx2ty)ESF~x,y;E!. ~25!

In the Feynman gauge, the photon propagatorDFmn(x,y)
reads

DFmn~x,y!52gmn

1

~2p!4E dkE dv
e2 iv(tx2ty)eik(x2y)

v22k21 ih
~26!

5E dv

2p
e2 iv(tx2ty)DFmn~x,y,v!. ~27!

Note that Mohr@1,59# includes an additionali in this defini-
tion. For the eigenstates of the Dirac Hamiltonian with t
binding potentialVnuc

bind present, the notationsFm ,Fq , etc.,
are employed, wherem,q, etc., are cumulative quantum
numbers. The corresponding energy eigenvalues are den
by Em , Eq , . . . . To separate the state under considerat
clearly from the intermediate states, we denote it byan ,
where n is again a cumulative quantum number,an[Fn,
and ān(x)5an

†(x)g0.
The vacuum polarization contributions read

DEVP,pot52e2
i

2pE dxE dyE dzDFmn~x,y,v50!

3E
2`

`

dEān~x!gman~x! Tr @gnSF~y,z;E!

3eg•A~z!SF~z,y;E!#. ~28!

DEVP,WF,irred52 (
q

EqÞEn

^anuUVPuFq&^Fquea•Auan&
En2Eq

.

~29!

Again, the symmetry of two equally contributing diagram
was taken into account by an additional factor 2 in Eq.~29!.
The vacuum polarization potential introduced in Eq.~29!
reads
0-4
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UVP~x!52e2
i

2pE dyDF00~x,y,v50!

3E dE TrF(
r

F r~y!F r
†~y!

E2Er~12 ih!G . ~30!

A detailed derivation of the vacuum polarization potential
given by Refs.@66,67#, and references therein.

The reducible parts can be treated in a similar manne
for the photon exchange diagrams in few-electron syste
@61,68–71#, taking into account that the magnetic potent
under investigation here replaces the perturbing potentia
another electron in the corresponding formulas. To han
the additional singularity in one of the electron propagato
caused by 1/(En2En), the remaining electron propagator
the self-energy diagrams is evaluated aroundE5En2v. The
leading term of this expansion cancels with the correspo
ing product of lower order termsS(1)SSE

(2) . After the transi-
tion e→0 the remaining term formally contains a derivati
of the self-energy operator@71#. In an equivalent manner
this term can also be obtained as a perturbation of the b
ing energy caused by the influence of an external poten
@22,72,73# or by employing the two-times Green’s functio
method@65#. It reads

DESE,WF,red5K anUg0
]

]E
S~E!U

E5En

UanL ^anuea•Auan&

~31!

for states which are only degenerate in their magnetic qu
tum number, i.e., in particular for the 1s1/2 state. For the
vacuum polarization wave function correction, no depe
dence on the energy of the state under consideration ex
except in the electron propagator itself which is mediat
between the magnetic interaction and the vacuum polar
tion vertex. Any expansion similar to the self-energy do
not yield any derivative terms, and the reducible part
SVP,WF

(3) is completely cancelled by the productS(1)SVP
(2) and

has not to be considered further. The index ‘‘irred’’ w
therefore be dropped in the following on vacuum polariz
tion terms.

B. Divergences

The expressions~21!, ~22!, ~31!, ~28!, and ~29! for the
diagrams 2~a!, 2~c! and 2~e!, 2~b!, and 2~d! and 2~f! are only
formal. They contain divergences and therefore requ
renormalization. Our way to deal with the divergences of
self energy expressions is to evaluate the bound-state
tron propagators into powers of the nuclear binding poten
and to isolate the mass and charge divergences which
present in the lowest order terms only. These terms
treated analytically in momentum space, and after cancel
the divergences between different diagrams a finite resu
obtained. The finite higher-order terms are evaluated in
ordinate space by employing the full yet unrenormalized
pression and subtracting the divergent lower-order part
the calculation. The procedure outlined so far coincides w
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that employed by Snyderman@74# and has been described
detail in Ref.@22# for the QED corrections to the hyperfin
structure splitting.

The decomposition of the irreducible part of the se
energy wave function correction term is depicted in Fig.
The divergent terms are these with zero and one interac
in the binding potential present, below referred to as ‘‘ze
potential term’’ and ‘‘one-potential term,’’ respectively. Th
charge divergences cancel between both terms, as we
going to show. In addition, a mass counter termdm has to be
subtracted to obtain proper mass renormalization simila
the case of the free self-energy@75# ~for our schemes see als
Ref. @76#!.

Throughout our work we employ the Feynman gaug
which yields for the free self-energy operator (E5p0 here,
the dependence onp is not explicitly indicated!

S [0]~E!52 ie2E dk

~2p!4
gm

p”2k”1me

~p2k!22me
2
gm

1

k2
. ~32!

~We denote the number of interactions with the binding p
tential by superscript numbers in brackets.! This operator
contains a mass and a charge divergence which are
present in the expression~22!. The mass renormalized fre
self-energy operator reads@74#

Smass ren
[0] ~E!5S [0]~E!2dm

52
e2

~4p!2 H ~p”2me!FD12

1
r

12r S 11
22r

12r
ln r D G

1
mer

12r S 12
223r

12r
ln r D J , ~33!

where

r52
~p”2me!~p”1me!

me
2

. ~34!

By D52/e2gE1 ln 4p we denote the ultraviolet part of th
charge renormalization constant after dimensional regu
ization wheree denotes the dimensional regularization p

FIG. 3. The decomposition ofDESE,WF,irredinto terms appropri-
ate for removing divergences and for numerical calculation. A p
ton line terminated by a cross denotes one interaction with
nuclear binding potentialVnuc

bind. The labels under the diagrams co
respond to the expressions used in the text. For brevity the in
‘‘irred’’ was omitted on all labels.
0-5
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THOMAS BEIER et al. PHYSICAL REVIEW A 62 032510
rameter andgE is Euler’s constant. The full expression fo
the charge renormalization constantZ2 reads~e.g., Ref.@63#!

Z2215
]S~E!

]p”
U

p”5me

52
a

4p
@D1414 lnr#U

r→0

,

~35!

where the logarithmic term represents the gauge-depen
infrared divergence which would be absent in the Frie
Yennie gauge but can be shown to cancel in the total exp
sion for the wave function correction. Therefore, care has
be taken comparing our intermediate numerical results w
other calculations. However, the final value ofDESE,WF,irred
is well defined, and we will not consider the infrared dive
gent term any more in the following. The expression for t
total zero-potential term reads

DESE,WF, irred
[0] 52^anug0Smass-ren

[0] ~E!udan&, ~36!

where

udan&5 (
q

EqÞEn

uFq&^Fquea•Auan&
En2Eq

. ~37!

To express the one-potential term, it is advantageou
introduce the vertex operator for a free electron,

Gm
[0]~p,p8!52 ie2E dk

~2p!4
gn

p”2k”1me

~p2k!22me
2

3gm

p”82k”1me

~p82k!22me
2
gn

1

k2
. ~38!

A representation ofG0 in Feynman gauge is presented
Appendix A.

The complete expression related toDESE,WF,irred
[1] can be

expressed as

DESE,WF, irred
[1] 52^anug0G0

[0]~p,p8!Vnuc
bind~p,p8!udan&,

~39!

where Vnuc
bind(p,p8) denotes the Fourier transform of th

nuclear binding potential,

Vnuc
bind~q!52

Za

2p2q2

1
1

2p2E0

R0
drr 2 j 0~qr !FVnuc

bind~r !2S 2
Za

r D G
~40!

with q5p2p8,q5uqu,r 5ur u. R0 denotes the smallest radiu
value, for which no difference between the employed pot
tial for an extended nucleus and the 1/r Coulomb potential is
found. According to the Fourier transform of the Dirac equ
tion
03251
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~p”2me!a~p!5E dp8g0Vnuc
bind~p,p8!a~p8! ~41!

the cancellation between the terms containingD in Eqs.~36!
and ~39! becomes obvious when adding these terms. In
following, we denote therefore bySR

[0] (E)2dm and
GR0

[0] (p,p8) the expression~33! and the zeroth component o
Eq. ~38! with the divergent part due toD omitted ~see Ap-
pendix A!. The other components ofGm

[0] (p,p8) will be dis-
cussed together withDESE,ve.

The remaining contributionDESE,WF, irred
[>2] is obtained by

employing

S [>2]~E!5Sbound~E!2@S [0]~E!1S [1]~E!#, ~42!

where all S on the right-hand side denote unrenormaliz
operators. The divergences present in the expression~22! are
thus explicitly subtracted and therefore cancelled.

The complete finite expression for the wave function c
rection reads

DESE,WF,irred52^anug0@SR
[0]~En!2dm

1GR0
[0]~p,p8!VC~p,p8!1S [>2]~En!#udan&.

~43!

The reducible part of the self-energy wave function c
rection, Eq.~31!, also contains an ultraviolet divergent pa
which is cancelled by a similar expression present in
vertex correction term, Eq.~21!. In addition, an infrared di-
vergence exists which mutually cancels as well. These
terms are therefore evaluated together. Both contributi
are decomposed into a zero-potential term with the full el
tron propagators within the loop replaced by free ones,
the remaining ‘‘many-potential’’ part.

To obtain]Smass ren
[0] (E)/]E, Eq.~33! is differentiated with

respect to p05E which yields

]S [0]~E!

]E
52

e2

~4p!2 H g0FD121
r

12r S 11
22r

12r
ln r D G

1
p”

me
2 F2

2E

~12r!2 S 32r1
2

12r
ln r D G

1
8E

me~12r! F11
1

12r
ln rG J ~44!

The energy-independent mass renormalization term has
to be considered in this differentiation. However, again t
expression contains the ultraviolet part of the renormali
tion constant which can be explicitly separated,

DESE,WF,red
[0] 5F K anUg0

]

]E
SR

[0]~E!U
E5En

UanL 2
e2

~4p!2
DG

3^anuea•Auan&. ~45!
0-6
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It is cancelled out by the part of the vertex correction w
the free vertex function present,

DESE,ve
[0] 5^anueg0G[0]~p,p8!A~p,p8!uan&

5^anueg0GR
[0]~p,p8!A~p,p8!uan&

1
e2

~4p!2
D^anuea•Auan&, ~46!

where

A~q!5
i

2
“qd

3~q!3B ~47!

is the Fourier transform of the magnetic potential andq5p
2p8. The terms containing interactions with the binding p
tential DESE,ve

[>1] andDESE,WF,red
[>1] , contain no ultraviolet diver-

gences and are evaluated similarly to the irreducible w
function correction by subtracting the unrenormalized f
contributions from the also unrenormalized full contrib
tions, Eqs.~21! and ~31!.

Techniques for removing the divergences present in
vacuum polarization expressions~28! and ~29! exist on a
broad scale, as the modification of the photon propagator
to a vacuum polarization loop is a rather common feat
within QED. The potentialUVP present in Eq.~29! is the
same as that appearing in QED calculations related to
Lamb shift and therefore its already renormalized express
can be taken from other work@66,67,77,78#. The charge di-
vergence is introduced by the leading term of the expans
in the nuclear potential. One standard technique to remov
is to apply a Pauli-Villars regularization technique~Ref.
@79#, see also Ref.@80#!. The potential remaining after th
charge renormalization,UVP

Ueh, is commonly termed Uehling
potential@81# and reads

UVP
Ueh~r !52ZS e2

4p D 2 2

3E0

`

dr8r 8r~r 8!E
1

`

dt

3S 11
1

2t2DAt221

t2

e22(ur 2r 8u)t2e22(ur 1r 8u)t

rt
,

~48!

wherer 5ur u,r 85ur 8u. Zer(r 8) represents the charge distr
bution of a spherically symmetric nucleus,*dr 8r(r 8)51.
Numerical evaluations can be found in numerous works@82–
86#, and all modern calculations of vacuum polarization co
tributions to one- @66,67,77,87# and few-electron
@71,78,88,89# Lamb shift calculations employ this form.

The remaining part, the Wichmann-Kroll potential, al
contains a spurious gauge-dependent piece@87# which can be
easily removed by the partial wave expansion common
that evaluation@66,67#. Equation~29! is decomposed into
03251
-

e
e

e

ue
e

e
n

n
it

-

n

DEVP,wf52H (
q

EqÞEn

^anuUVP
UehuFq&^Fquea•Auan&

En2Eq

1 (
q

EqÞEn

^anuUVP
WKuFq&^Fquea•Auan&

En2Eq J
5^anuUVP

Uehudan&1^anuUVP
WKudan&

5DEVP,WF
Ueh 1DEVP,WF

WK . ~49!

A similar expansion is applied forDEVP,pot. Note, that the
terms containing one interaction with the nuclear Coulo
field vanish due to Furry’s theorem@90#. The leading term is
known as the Uehling part of the magnetic loop. In mome
tum space, it reads

DEVP,pot
Ueh 5E dpE dp8ān~p!@2e2P ren~ up2p8u2!#

3eg•A~p2p8!an~p8! ~50!

where the ~already renormalized! polarization function
2e2P ren(up2p8u2) accounts for the polarization loop in th
photon line@91#. It is given by

e2P ren~q2!52
e2

4p2E1

`

dtAt221S 2

3t2
1

1

3t4D q2

q214me
2t2

~51!

which reads for smallq

e2P ren~q2!52
e2

4p2 F 1

15S q2

me
2D 2

1

140S q2

me
2D 2

1O~q6!G .

~52!

This leads to a value ofDEVP,pot
Ueh 50 for the case under con

sideration here, as becomes clear from the Fourier transf
of the potential of a constant external magnetic field, E
~47!, which leads to

DEVP,pot
Ueh 5

i

2E dpE dp8ān~p!@2e2P ren~ up2p8u2!#

3eg•@“pd
3~p2p8!3B#an~p8!. ~53!

By partial integration,DEVP,pot
Ueh 50 is obvious, and therefore

also the vanishing contribution togj . The remaining part is
finite except for a spurious gauge dependent piece which
can be shown to vanish by applying a proper partial wa
decomposition@78#.

C. Calculation formulas

After removing all divergences, we present the formu
actually employed in our calculations here. We start with
contributions toDESE,WF,irred, which are closely related to
the expressions for the self-energy correction of ordera to
the Lamb shift, presented in Ref.@74#. From Eq.~33!, the
tensor structure ofSR

[0] (E)2dm can be expressed asa(r)
1p”b(r). The wave functionan reads in momentum space
0-7
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an~p!5
1

~2p!3/2E dre2 ip•ran~r !5S Pan
~p!xk

m~ p̂!

Qan
~p!x2k

m ~ p̂!
D ,

~54!

where p5upu, P(p) and Q(p) depend only onupu, and
xk

m(p̂) is the ls coupled spin-angular function in momentu
space~e.g., Ref.@56#!. Considering

s•p̂xk
m~ p̂!52x2k

m ~ p̂!, ~55!

DESE,WF, irred
[0] 52E dpp2@C~p!a~r!1D~p!b~r!# ~56!

after carrying out the angular integrations. The functio
C(p) andD(p) are given by

C~p!5Pan
~p!Pdan

~p!2Qan
~p!Qdan

~p!, ~57!

D~p!5E@Pan
~p!Pdan

~p!1Qan
~p!Qdan

~p!#

1p@Pan
~p!Qdan

~p!1Pdan
~p!Qan

~p!#. ~58!
s

03251
s

Equation ~56! can be evaluated numerically employing
Gauss-Legendre quadrature.

Equation~39! for DESE,WF, irred
[1] is evaluated by

DESE,WF,irred
[1] 52E dpdp8an

†~p!g0@g0f 1~p,p8,cosq!

1p” f 2~p,p8,cosq!1p”8 f 3~p,p8,cosq!

1p”g0p”8 f 4~p,p8,cosq!

1 f 5~p,p8,cosq!#Vnuc
bind~p,p8!dan~p8!,

~59!

whereq denotes the angle betweenp andp8 andVnuc
bind(p,p8)

is given by Eq.~40!. The f i are abbreviations for the coeffi
cient functions in Eq.~A1! in Appendix A. The spherically
symmetric nuclear potentialVnuc

bind does not depend on angula
variables except cosq and therefore the tensor structure
Eq. ~59! can be reduced into an expression of functions
cosq, p, andp8. This yields
le
was
an
†~p!g0GR,0

[0] ~p,p8!dan~p8!5
1

4p
„f 1~p,p8,cosq!@Pan

~p!Pdan
~p8!1Qan

~p!Qdan
~p8!cosq#1 f 2~p,p8,cosq!

3$EnPan
~p!Pdan

~p8!1pQan
~p!Pdan

~p8!1@pPan
~p!Qdan

~p8!

1EnQan
~p!Qdan

~p8!#cosq%1 f 3~p,p8,cosq!$EnPan
~p!Pdan

~p8!1p8Pan
~p!Qdan

~p8!

1@p8Qan
~p!Pdan

~p8!1EnQan
~p!Qdan

~p8!#cosq%1 f 4~p,p8,cosq!$En
2Pan

~p!Pdan
~p8!

1pEnQan
~p!Pdan

~p8!1p8EnPan
~p!Qdan

~p8!1pp8Qan
~p!Qdan

~p8!

1@pp8Pan
~p!Pdan

~p8!1pEnPan
~p!Qdan

~p8!1p8EnQan
~p!Pdan

~p8!

1En
2Qan

~p!Qdan
~p8!#cosq%1 f 5~p,p8,cosq!@Pan

~p!Pdan
~p8!2Qan

~p!Qdan
~p8!cosq#…,

~60!

for the 1s1/2 state. From Eq.~60!, a numerical integration of Eq.~59! overp, p8, and cosq is possible employing some variab
transformations suggested by Blundell@92#. For the self-energy contribution to the Lamb shift, a related decomposition
also recently performed in Ref.@93#.

The remaining contributionDESE,WF,irred
[>2] is obtained as specified by Eq.~42!. Performing the integrations overv and the

angular part ofk, Eq. ~22! reads

DESE,WF,irred52
e2

2p2 (
l 50

`

~2l 11!E dkk(
p

^anuam j l~ky!Cl~ ŷ!uFp&^Fpuam j l~kx!Cl~ x̂!udan&
En2Ep2sgn~Ep!k

, ~61!
wherek5uku,x5uxu,y5uyu. A spherical wave expansion wa
employed according to

sin~kuy2xu!
kuy2xu

5(
l 50

`

~2l 11!Cl~ ŷ!•Cl~ x̂! j l~ky! j l~kx!,

~62!
where j l denotes a spherical Bessel function andCl( x̂) is a
spherical tensor operator~e.g., Ref.@94#!, defined by

Cm
l ~ x̂!5A 4p

~2l 11!
Yl

m~ x̂!. ~63!
0-8



b

ith

rm

ult
tion
he

nc-
the

the

ads

gj FACTOR OF AN ELECTRON BOUND IN A . . . PHYSICAL REVIEW A 62 032510
Ym
l ( x̂) denotes a spherical harmonic. The scalar product

tween two tensor operatorsCl( ŷ)•Cl( x̂) reads

Cl~ ŷ!•Cl~ x̂!5 (
m52 l

l

~21!mCm
l ~ ŷ!C2m

l ~ x̂!. ~64!

This scalar product is implicitly assumed in all formulas w
Cl present in two matrix elements.

To obtain the unrenormalized contribution from the te
due to the free self-energy operator, a similar evaluation
carried out, but the bound-state electron propagatorSF in Eq.
03251
e-

is

~22! is replaced by that for free electrons. In the final res
the sum over the spectrum of the bound state Dirac equa
(puFp&^Fpu is replaced by one over the spectrum of t
Dirac equation without an additional potential,( r uw r&^w r u,
where we use small Greek letters for denoting the eigenfu
tions of the free Dirac Hamiltonian. In the same manner,
contribution for the free vertex part~the one-potential term!
is obtained by replacing the bound-state propagators in
full vertex expression@see formula~78! below# by free-state
propagators. The total result for the subtraction scheme re
.
ider any

omial
in such

nd also

graphical

e states
DESE,WF, irred
[>2] 52

e2

2p2 (
l 50

`

~2l 11!E dkkH (
p

^anuam j l~ky!Cl~ ŷ!uFp&^Fpu j l~kx!Cl~ x̂!amudan&
En2Ep2sgn~Ep!k

2(
r

^anuam j l~ky!Cl~ ŷ!uw r&^w r u j l~kx!Cl~ x̂!amudan&
En2Er2sgn~Er !k

2(
s,r

^anuam j l~ky!Cl~ ŷ!uws&^wsuVnuc
binduw r&^w r u j l~kx!Cl~ x̂!amudan&

@En2Es2sgn~Es!k#@En2Er2sgn~Er !k#
F~s,r !J . ~65!

The functionF is introduced here to denote part of the energy denominator

F~s,r !511@sgn~Er !2sgn~Es!#
k

Er2Es
. ~66!

If En represents the lowest positive energy eigenvalue of the bound Dirac spectrum, the further evaluation of Eq~65! is
straightforward employing standard methods. In the present work this is the case and we do not have to cons
singularities caused by zeros of the denominator. Ifuan&Þu1s1/2&, due to positive values ofEq with Eq,En , singularities on
the integration path fork appear. The corresponding principal value integrals can be carried out employing a polyn
approximation of the numerator for obtaining the real part of the contribution. The imaginary part which is also present
a case does not contribute to the energy shift but only to the line width of the excited state in a one-electron ion~Ref. @60#, and
references therein! which is not under consideration here. We will therefore omit the corresponding discussion here a
in the related cases of the otherk integrals of this work.

For the expression in curly braces, we separate radial and angular integrations and carry out the latter utilizing the
angular momentum coupling scheme as presented by Lindgrenet al. @69,94,95#. Writing down an explicit formula containing
all details, the wave functionuda& also has to be considered. The angular structure is identical for the three sums over th
present in Eq.~65! and yieldskq521. Equation~65! can therefore be written as

DESE,WF, irred
[>2] 52

e2

2p2 S eBz

2 D(
l 50

`

~2l 11!E dkk (
s

EqÞEn

2kq

4kq21
R~n,q!H(

p

1

~En2Eq!@En2Ep2sgn~Ep!k#

3@A SE
0 ~n,p; l !S~n,p,p,q;k,l !1A SE

1 ~n,p; l !V 1~n,p,p,q;k,l !1A SE
2 ~n,p; l !V 2~n,p,p,q;k,l !

1A SE
3 ~n,p; l !V 3~n,p,p,q;k,l !1A SE

4 ~n,p; l !V 4~n,p,p,q;k,l !#

2 (
r

~ free! 1

~En2Eq!@En2Er2sgn~Er !k#
@A SE

0 ~n,r ; l !S~n,r ,r ,q;k,l !1A SE
1 ~n,r ; l !V 1~n,r ,r ,q;k,l !

1A SE
2 ~n,r ; l !V 2~n,r ,r ,q;k,l !1A SE

3 ~n,r ; l !V 3~n,r ,r ,q;k,l !1A SE
4 ~n,r ; l !V 4~n,r ,r ,q;k,l !#

2 (
s,r

~ free! F~s,r !

~En2Eq!~En2Es2sgn~Es!k!@En2Er2sgn~Er !k#
@A SE

0 ~n,r ; l !T~n,s,r ,q;k,l !

1A SE
1 ~n,r ; l !W 1~n,s,r ,q;k,l !1A SE

2 ~n,r ; l !W 2~n,s,r ,q;k,l !1A SE
3 ~n,r ; l !W 3~n,s,r ,q;k,l !

1A SE
4 ~n,r ; l !W 4~n,s,r ,q;k,l !#J . ~67!
0-9
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The angular factorsASE are given in Appendix B. For the
radial integralsR, S, T, V, andW, expressions are presente
in Appendix C. For the last term containing the addition
interaction with the nuclear potential, no particular angu
factor occurs as the spherically symmetric potentialVnuc

bind de-
mands strictly identical angular quantum numbers forws and
w r .

The sums over intermediate bound and free states are
ried out by generating a complete set of intermediate st
utilizing the space-discretization method of Salomonson
Öster @96#. The functions obtained by this method are giv
on a few finite sets of grid points only. The integrations a
also carried out on the same grids, if the grid sizes prove
be sufficient for an accurate calculation which is control
by extrapolating the number of grid points to infinity. F
high k, the spherical Bessel functions are strongly oscillati
and therefore the grid-valued functions have to be inter
lated to continuous space using Lagrange polynomials@76#
to obtain the proper values of the matrix elements.

The outer k integration is handled numerically, usin
Gauss-Legendre and Gauss-Laguerre quadrature form
Finally, the sum overl is carried out by evaluating a finit
number of summands and performing a polynomial exp
sion to infinity. For the correction under consideration he
the summands up tol<30 can be evaluated without prob
lems for most~except very low! Z.

Now the different contributions of (DESE,ve
1DESE,WF,red) are analyzed. The term which contains t
derivation of the free self-energy operator]SR

[0] (E)/]E, ex-
hibits a tensor structure similar to that ofSR

[0] (E)2dm itself,

]SR
[0]~E!

]E
5

]a~r!

]E
1p”

]b~r!

]E
1g0b~r!. ~68!

This leads to

DESE,WF,red
[0] 5^anuea•Auan&E dpp2

3F @Pan

2 ~p!2Qan

2 ~p!#
]a~r!

]E

1$En@Pan

2 ~p!1Qan

2 ~p!#

12pPan
~p!Qan

~p!%
]b~r!

]E

1@Pan

2 ~p!1Qan

2 ~p!#b~r!G
E5En

~69!

@cf. Eq. ~56!#, where all angular integrations are carried o
in Eq. ~69!. This equation is then numerically evaluated sim
larly to Eq. ~56!. DESE,ve

[0] reads
03251
l
r

ar-
es
d

e
to

,
-

as.

-
,

t
-

DESE,ve
[0] 5^anueg0GR

[0]~p,p8!•A~p,p8!uan&

5e3E dpE dp8ān~p!

3$gg1~p,p8,cosq!1p”@pg2~p,p8,cosq!

1p8g3~p,p8,cosq!#1p”8@pg4~p,p8,cosq!

1p8g5~p,p8,cosq!#1pg6~p,p8,cosq!

1p8g7~p,p8,cosq!1p”gp”8

3g8~p,p8,cosq!%•A~p2p8!an~p8!, ~70!

where thegi are again abbreviations for the coefficient fun
tions in Eq.~A1!. However, the evaluation of Eq.~70! is not
as straightforward as that of Eq.~59! as the angular depen
dency is contained in the potentialA(p2p8) as well. For-
mally, A(p2p8) is given by Eq.~47!. To obtain an expres-
sion suitable for numerical evaluation, a Gaussian cutof
introduced in coordinate space

r→ lim
%→0

re2(%ur u/2) ~71!

which leads to a smoothing in momentum space

A~q!5
i

p3/2%5
e2(uqu/%)2

q3B. ~72!

The value of% is then chosen to be small enough to gu
antee homogeneity of the magnetic field over the extens
of the ion.

The exponential in Eq.~72! can also be expressed i
terms ofp, p8, and cosq (q5p2p8). The complete angula
dependency can be separated out by using

e2(up2p8u/%)2
5
def

Vexp~p,p8,cosq!, ~73!

and

Vexp~p,p8, cosq!5(
l 50

`

~2l 11!Vl
exp~p,p8!Cl~ p̂!•Cl~ p̂8!,

~74!

where the evaluation coefficients read

Vl
exp~p,p8!5 1

2 E
21

1

dcosqVexp~p,p8,cosq!Pl~cosq!.

~75!

Pl denotes the Legendre polynomial of orderl. The remain-
ing part of A is linear in p and p8 and enters Eq.~70! by
simple vector multiplication. Thus, Eq.~70! contains only
terms linear inp andp8 and expressions ofp, p8, and cosq.
The angular integrations are again carried out employing
graphical angular momentum coupling scheme mentioned
ready @69,94#. A detailed derivation is given in Ref.@97#.
The remaining integrals overp, p8, and cosq are evaluated
numerically.
0-10
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The expressionsDESE,ve
[>1] and DESE,WF,red

[>1] are obtained in

the same manner asDESE,WF,red
[>2] , namely, by subtracting the

unrenormalized free parts from the corresponding unren
malized bound expressions. From Eq.~61!,
03251
r-

^anug0@]S(E)/]E#E5En
uan& is obtained by replacingudan&

with uan& and differentiating with respect to the energy of t
state under consideration. This holds true for both the bo
and the free expressions, and therefore
um of

at
roduct

dial

ctions by

el
d by
The final
DESE,WF,red
[>1] 5^anuea•Auan&3

e2

4p2 (
l 50

`

~2l 11!E dkkH (
p

^anuam j l~ky!Cl~ ŷ!uFp&^Fpu j l~kx!Cl~ x̂!amuan&

@En2Ep2sgn~Ep!k#2

2(
r

^anuam j l~ky!Cl~ ŷ!uw r&^w r u j l~kx!Cl~ x̂!amuan&

@En2Er2sgn~Er !k#2 J ~76!

As already mentioned, the first term is infrared divergent forl 50 andm50, if the energy of the intermediate statep coincides
with En . A similar term with opposite sign occurs from the vertex term which will be discussed next. Therefore the s
both terms is infrared finite. In performing their numerical evaluation, we explicitly exclude the terms withl 50,m50 from the
calculation. The detailed decomposition of the matrix elements in Eq.~76! into radial and angular parts is rather similar to th
of Eq. ~65!. A number of simplifications occur, as the magnetic interaction part is totally factorized out. The remaining p
of two matrix elements is identical to that of the self energy of ordera which has been considered before@76,98#. Explicitly
displayed, the first product of the matrix elements in Eq.~76! reads

^anuam j l~ky!Cl~ ŷ!uFp&^Fpu j l~kx!Cl~ x̂!amuan&5A SE
0 ~n,p; l !S~n,p,p,n;k,l !1A SE

1 ~n,p; l !V 1~n,p,p,n;k,l !

1A SE
2 ~n,p; l !V 2~n,p,p,n;k,l !1A SE

3 ~n,p; l !V 3~n,p,p,n;k,l !

1A SE
4 ~n,p; l !V 4~n,p,p,n;k,l ! ~77!

and the second one accordingly, withp replaced byr, and free instead of bound-state functions employed in the ra
expressions forS ~C3! andV i ~C5!–~C8!. The angular factors are the same as those in Eq.~67!. They are given in Appendix
B. Note, that the sum overFq in Eq. ~67! is replaced by the state under considerationuan& here.

The vertex contribution is obtained by evaluating Eq.~21! in a manner similar to Eq.~22!,

DESE,ve52
e2

4p2 (
l 50

`

~2l 11!E dkk(
q,r

^anuam j l~ky!Cl~ ŷ!uFq&^Fquea•AuF r&^F r uam j l~kx!Cl~ x̂!uan&
@En2Eq2sgn~Eq!k#@En2Er2sgn~Er !k#

F~q,r !, ~78!

Replacing the magnetic vector potential by the nuclear Coulomb potential and the sums over the bound state eigenfun
those of free states, the one-potential subtraction term in Eq.~65! is also obtained. The functionF is given by Eq.~66!.

Equation ~78! is infrared divergent in the same way as Eq.~76! but with different sign. The two divergences canc
therefore and the sum of Eqs.~76! and~78! is infrared finite. Both terms contain ultraviolet divergences which are remove
subtracting terms with free electron propagators instead of the bound ones, as discussed in the previous section.
expression for evaluating the many-potential part of the vertex correction therefore reads

DESE,ve
[>1]52

e2

4p2 (
l 50

`

~2l 11!E dkkH (
q,r

^anuam j l~ky!Cl~ ŷ!uFq&^Fquea•AuF r&^F r uam j l~kx!Cl~ x̂!uan&
@En2Eq2sgn~Eq!k#@En2Er2sgn~Er !k#

F~q,r !

2(
p,s

^anuam j l~ky!Cl~ ŷ!uwp&^wpuea•Auws&^wsuam j l~kx!Cl~ x̂!uan&
@En2Ep2sgn~Ep!k#@En2Es2sgn~Es!k#

F~p,s!J . ~79!

In analogy to Eq.~67!, this expression can be explicitly written as
0-11
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DESE,ve
[>1]52

e2

4p2 S 1

2
eBzD(

l 50

`

~2l 11!E dkk

3H(
q,r

F~q,r !R~q,r !

@En2Eq2sgn~Eq!k#@En2Er2sgn~Er !k#

3@A VE
0 ~n,q,r ; l !S~n,q,r ,n;k,l !1A VE

1 ~n,q,r ; l !V 1~n,q,r ,n;k,l !

1A VE
2 ~n,q,r ; l !V 2~n,q,r ,n;k,l !1A VE

3 ~n,q,r ; l !V 3~n,q,r ,n;k,l !1A VE
4 ~n,q,r ; l !V 4~n,q,r ,n;k,l !#

2 (
p,s

~ free! F~p,s!R~p,s!

@En2Ep2sgn~Ep!k#@En2Es2sgn~Es!k#

3@A VE
0 ~n,p,s; l !S~n,p,s,n;k,l !1A VE

1 ~n,p,s; l !V 1~n,p,s,n;k,l !1A VE
2 ~n,p,s; l !V 2~n,p,s,n;k,l !

1A VE
3 ~n,p,s; l !V 3~n,p,s,n;k,l !1A VE

4 ~n,p,s; l !V 4~n,p,s,n;k,l !#J ~80!

The radial integrals are given by Eqs.~C3!–~C8!. The angular coefficients were evaluated by Schneider@95# and are presented
in Appendix B. In our numerical calculations, the expressions~76! and ~79! are computed together within the outerk
integration. The partial wave expansion is carried out in the same way as described for the irreducible part of the wave
correction, taking into account that numerical stability is reached only forl<20. ForZ,20, however, a sufficient precisio
could not be reached within thisl range. An extension to higherl is currently prevented by the numerical accuracy of our co
Therefore the terms containing one interaction with the nuclear Coulomb potential were also subtracted from Eqs.~76! and
~79! and separately evaluated. In terms of Feynman diagrams, this refers to an explicit calculation of the graphs show
4. The expressions for the diagrams under consideration are

DESE,ve
[1] 522

e2

2p2 (
l 50

`

~2l 11!E dkk2(
s,t,u

^anuam j l~ky!Cl~ ŷ!uws&^wsuea•Auw t&

3^w tuVnuc
binduwu&^wuuam j l~kx!Cl~ x̂!uan&G~s,t,u! ~81!

~taking into account two equally contributing diagrams! and

DESE,WF,red
[1] 52^anuea•Auan&3

e2

4p2 (
l 50

`

~2l 11!E dkk

3(
s,t

^anuam j l~ky!Cl~ ŷ!uws&^wsuVnuc
binduw t&^w tu j l~kx!Cl~ x̂!amuan&

@En2Es2sgn~Es!k#@En2Et2sgn~Et!k#2
F~s,t !. ~82!
q.
w
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u
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Equation~82! was obtained by deriving the last term of E
~65!. The two arising summands are equal and thus
present only the second of them multiplied by a factor of
Equation~81! is derived from the last line of Eq.~79! by
inserting one additional interaction with the nuclear Co
lomb potential. The structure of the denominator becom
quite complicated for the case of three intermediate st
and is therefore contained in the functionG(s,t,u) given in
Appendix D.

The further angular reduction of Eqs.~81! and ~82! is
carried out in the same manner as for the corresponding
pressions~70! and ~59!, respectively, as the additional Cou
lomb interaction does not change the angular structure. In
evaluation of the radial parts it is advantageous to perfo
the necessary integrations on analytically given free-elec
03251
e
.

-
s

es

x-

he

n

intermediate states. Here we employ free spherical wa
given by

wE~r !5
1

r S FE,k~pr !xk
m~ r̂ !

iGE,k~pr !x2k
m ~ r̂ !

D , ~83!

wherek is the Dirac angular momentum quantum numb
E56Ame

21p2,

FE,k~pr !5AuEu1me

puEu
pr j l~pr !, ~84!

GE,k~pr !5sgn~E!sgn~k!AuEu2me

puEu
pr j l 8~pr !, ~85!
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l 5u1/21ku21/2, ~86!

l 85u1/22ku21/2. ~87!

The summations(s,t,u which are due to the grid represent
tion of a finite number of intermediate states are thus
placed by integrations. Furthermore, we also expand the s
uan& under consideration into free spherical waves, deno
by ^anuÃ&. Expression~81! therefore reads

DESE,ve
[1] 522

e2

2p2 (
l 50

`

~2l 11!

3E dkk2E dsE dtE duE dÃE dÃ8

3^anuÃ&^Ãuam j l~ky!Cl~ ŷ!uws&^wsuea•Auw t&

3^w tuVnuc
binduwu&^wuuam j l~kx!Cl~ x̂!uÃ8&

3^Ã8uan&G~s,t,u!, ~88!

and a similar expansion can be applied to Eq.~82!. The ra-
dial integration of̂ anuÃ& is performed numerically employ
ing a Lagrange interpolation between the stored values
uan& on the grid. To have access to all momentaÃ of the
evaluation, the overlap integral is calculated for a grid
momenta, stored, and interpolated as needed.

The radial parts of the matrix elements containingam and
am consist now of a product of three spherical Bessel fu
tions which can be further evaluated analytically. Employi
the point nucleus Coulomb potential2Za/r , this also holds
true for the matrix element containingVnuc

bind. As the de-
scribed additional separation is performed for lowZ, the
nuclear size effect itself is small and the replacement of
actual binding potential by that of a point nucleus is reas
able.

The magnetic potential is treated in parts in moment
space, observing that

^wsua•A~r !uw t&5 K wsU E d3qeiq•ra•A~q!Uw tL ~89!

}E dqq2A~q!^ws radialu j 1~qr !uw t radial&

~90!

for A given by Eq.~72!. In the inner radial matrix elemen
the r integration can be carried out again over a product

FIG. 4. The terms ofDESE,WF,redandDESE,vewhich are of first
order in the nuclear Coulomb potential. ForZ,20, these terms are
calculated separately to obtain a better partial wave converge
DEmag denotes the matrix element^anuea•Auan&.
03251
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three spherical Bessel functions. Due to the analytical tre
ment of most of the matrix elements in Eq.~88! and in the
according expression forDESE,WF,red

[1] , the numerical stability
is much better for higherl which allows the inclusion of
more terms. With the described separation scheme, a pr
extrapolation can be obtained even in the cases of hydro
and helium, where terms up tol<180 have to be considered

Let us now turn to the vacuum polarization expressio
The Uehling potential contained in Eq.~49! also represents
the major influence of the vacuum polarization on Lamb sh
calculations. The first part of Eq.~49! is straightforward to
evaluate by carrying out the sum over the intermediate sta
Note that the angular structure of the states has to be
same as that ofuan& (k521 here! which simplifies the cal-
culation even further.

The remaining part of Eq.~49! is of similar type. The
potential, commonly known as Wichmann-Kroll potential a
ter its first investigators Wichmann and Kroll@99#, is ob-
tained either in an expansion inZa which is not applicable
for the problem under consideration here@83#, or as a differ-
ence between the unrenormalized full expression and
also unrenormalized Uehling potential by which any dive
gences cancel. This procedure is equal to the technique
plied for the self energy terms above and was discussed
the vacuum polarization of ordera in detail in Ref.@67#. We
present therefore only the final expression which reads

UVP
WK~x!52

e2

4p2 (
k561

6`

~2 j k11!E
0

`

dk j0~kx!

3F(r ,k
sgn~Er ,k!^F r ,ku j 0~ky!uF r ,k&

24 (
s

Es.0

(
t

Et,0

^ws,ku j l~ky!uw t,k&^w t,kuVnuc
binduws,k&

Es2Et G .

~91!

Only electron-positron pairs contribute to the vacuum pol
ization loop, and therefore the sums overs and t can be
restricted to positive and negative energies, respectively,
calculation purposes. An additional factor of 2 accounts
this.

A remaining gauge-dependent spurious term@87,99,100#
can be shown to disappear for each finitek @66#. In the same
manner as for thel expansions for the self-energy contrib
tions, the sum overk is carried out to a maximum value o
ukmaxu which includes bothkmax and 2kmax, and therefore
the spurious term causes no difficulties. The maximal va
of uku in our calculations permitted by numerical stability
about 30.

The potential correction is handled in a similar mann
As shown already, the leading Uehling term yields zero fo
homogeneous external magnetic field. The remain
Wichmann-Kroll term is obtained in the same way as
UVP by subtracting the unrenormalized free expression fr
Eq. ~28!. Carrying out the trace operation as well as t
angular part of thek integration and employing once mor
the spherical wave decomposition, Eq.~62!, this leads to

ce.
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DEVP,pot
WK 52

e2

p2 (
l 50

`

~2l 11!E
0

`

dk^anuam j l~kx!Cl~ x̂!uan&H (
q

Eq.0

(
r

Er,0

^Fquam j l~ky!Cl~ ŷ!uF r&^F r uea•AuFq&
Eq2Er

2 (
s

Es.0

(
t

Et,0

^wsuam j l~ky!Cl~ ŷ!uw t&^w tuea•Auws&
Es2Et J . ~92!

Within the loop, the sums are again restricted to electron or positron states, respectively. In the partial wave decom
evaluation ink, the vectors ofa matrices present allow the coupling between states of differentk, in particular,k r52kq

21,kq ,2kq115:k̃21 ,k̃0 ,k̃1 , and accordingly fors and t. Furthermore, the termm50 does not contribute due to th
angular integrations which is also clear from intuitive reasoning. A simple vacuum polarization interaction is not expe
change a vectorlike interaction into one with a scalar component. The final expression of the partial wave expa
DEVP,pot

WK then reads

DEVP,pot
WK 52

e2

p2 (
k561

`

(
k85k̃21

k̃1

(
l 50

`

~2l 11!E
0

`

dk^anuam j l~kx!Cl~ x̂!uan&

3H (
q

Eq.0

(
r

Er,0

^Fq,kuam j l~ky!Cl~ ŷ!uF r ,k8&^F r ,k8uea•AuFq,k&

Eq,k2Er ,k8

2 (
s

Es.0

(
t

Et,0

^ws,kuam j l~ky!Cl~ ŷ!uw t,k8&^w t,k8uea•Auws,k&
Es2Et J , ~93!

where the summations over the angular quantum numbersk are specified explicitly. From thel summation, onlyl 51
contributes due to the angular momentum summation rules, and the final expression reads

DEVP,pot
WK 5

e2

p2 S eBz

2 D (
k561

`

(
k85k̃21

k̃1

3E dkQ@~n,kan
!,~n,kan

!;k,l 51#

3H (
q

Eq.0

(
r

Er,0

R@~r ,k8!,~q,k!#

Eq,k2Er ,k8

$A VP
1 ~kan

,k,k8; l 5 l !Q@~r ,k8!,~q,k!;k,l 51#

1A VP
2 ~kan

,k,k8; l 51!Q@~q,k!,~r ,k8!;k,l 51#1A VP
3 ~kan

,k,k8; l 51!Q@~q,k!,~r ,k8!;k,l 51#

1A VP
4 ~kan

,k,k8; l 51!Q@~r ,k8!,~q,k!;k,l 51#%

2 (
s

Es.0

(
t

Et,0

R@~s,k8!,~ t,k!#

Es2Et
$A VP

1 ~kan
,k,k8; l 51!Q@~ t,k8!,~s,k!;k,l 51#

1A VP
2 ~kan

,k,k8; l 51!Q@~s,k!,~ t,k8!;k,l 51#1A VP
3 ~kan

,k,k8; l 51!Q@~s,k!,~ t,k8!;k,l 51#

1A VP
4 ~kan

,k,k8; l 51!Q@~ t,k8!,~s,k!;k,l 51#%J ~94!
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The angular factors are given in Appendix B and the rad
integralsQ and R are defined in Appendix C. The furthe
evaluation of all radial integrals is carried out in the sa
manner as in all other cases. Again, values ofuku<30 are
numerically meaningful for almost all except very lowZ. For
Z<20, however, the convergence becomes very po
Higher uku are prevented by the numerical accuracy of o
present code, and forZ<10 almost no meaningful value i
obtained at all. However, contrary to the vertex contribut
03251
l

e

r.
r

mentioned above, the totalDEVP,pot contribution is rather
small for low Z and thus the total precision of our calcul
tions is hardly influenced by this drawback. We will poi
out this problem once more in Sec. V.

IV. OTHER CONTRIBUTIONS

Up to now, we have dealt mainly with the QED contrib
tions of ordera/p which form the major topic of this work.
0-14



st
a
rn

na

in
tr
m

-
n
i

e
et
to

e
its
nt

th
se

b
th

o
h
d

is
D

on
g

ion
tter,
ion
he

ow

le

by
-

for
ow-
on

he
neu-
his
exi-
ec-
an
of
n,
e of

za-
the
of

onal
ar-
the

he

the
ified

gj FACTOR OF AN ELECTRON BOUND IN A . . . PHYSICAL REVIEW A 62 032510
There are several other contributions beyond the relativi
spin-orbit interaction which have to be discussed, at le
briefly. These comprise nuclear size, shape, mass, inte
structure, and also QED effects of higher order.

A. Nuclear properties

The finite nuclear size leads to a deviation from the a
lytically derived formula~7! for the gJ factor of a bound
electron even without considering other effects. The bind
potential is slightly altered due to the extended charge dis
bution within the nucleus. The size of the nucleus is co
monly specified by

r rms5^r 2&1/25S E drr 4r~r !Y E drr 2r~r ! D 1/2

, ~95!

wherer(r ) is the charge distribution of a spherically sym
metric nucleus. From Lamb shift investigations it is know
that not only the size of the nucleus has an effect but also
shape@101# which demands a realistic description of th
nuclear charge distribution. We employed the two-param
Fermi distribution for evaluating the finite size correction
gj given by Eq.~7!, which reads

Zer2pFermi~r !5Ze
N

11e(r 2c)/a
. ~96!

The index ‘‘2p’’ denotes ‘‘two-parameter’’ (a andc), where
c is the half-density radius anda is a measure for the skin
thickness, related tot54 ln 3a. t indicates the radial distanc
over which the charge density falls from 90 to 10 % of
value atr 50. N is a properly chosen normalization consta
To a good approximation@102#,

c25
5

3
r rms

2 2
7

3
a2p2 ~97!

and

N5
3

4pc3 S 11
p2a2

c2 D 21

~98!

hold. Further details are given, e.g., by Ref.@103#.
In strong-field QED calculations it can be seen that

effect of nuclear size depends mainly on the radius cho
and only little on the actual model employed@101,104#. An
exception is hydrogenlike systems withZ.100@101#. In this
case higher moments of the charge distribution have to
considered at least approximatively, see, for instance,
evaluations performed by Shabaev@102#. For the present in-
vestigation these considerations are not necessary and
QED calculations are thus carried out employing a reas
able but easy to handle charge distribution such as the
mogeneously charged ball as is utilized in the present stu

Another effect of interest, in particular for lighter ions,
the finite nuclear mass. In calculations of strong-field QE
the electromagnetic potential of the nucleus is normally c
sidered as time independent and external, thus referrin
03251
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either an infinitely heavy nucleus or to a proper separat
into center-of-mass and relative coordinates. Even the la
however, yields a value of the finite nuclear-mass correct
wrong by more than 50% in Lamb shift calculations on t
the lowest lying states in heavy hydrogenlike ions@105,106#.
An equally simple estimate for theg factor can thus not be
expected to yield a higher accuracy. However, up to n
there is a lack of calculations beyond expansions ina, Za,
and the mass-ratio electron-nucleusme /MN . These expan-
sions were obtained in 1970 independently by Grotch@38,39#
utilizing an expansion of the corresponding two-partic
Dirac equation, and also by Faustov@41#, who employed an
effective potential method. Their results were reproduced
Close and Osborn@42# starting from a group theoretical ap
proach.

The recoil contribution known so far reads

gj recoil5~Za!2F S me

MN
D2~11Z!S me

MN
D 2G

1~Za!2S a

p D F2
1

3 S me

MN
D1

322Z

6 S me

MN
D 2G .

~99!

This equation is exact to orders (Za)2, (a/p), and
(me /MN)2. The last two expansions are reasonable also
high-Z systems. For these systems, the expansion into p
ers of (Za) can only be considered as an approximati
which serves as an order-of-magnitude estimate.

Another feature of the nucleus is its internal structure. T
nucleus can be envisaged as consisting of protons and
trons which in turn are formed by quarks and gluons. T
composite object can undergo a virtual excitation and de
ctation exchanging two photons with the propagating el
tron as depicted in Fig. 5. The nuclear polarization plays
important role in muonic systems due to the large overlap
the muonic wave function with the nucleus and, in additio
also because the transition energies in a muonic atom ar
similar size as the excitation energies of the nucleus@100#.

In electronic systems, evaluations of the nuclear polari
tion effect have been carried out only as corrections to
QED Lamb shift predictions for the lowest-lying states
heavy few-electron ions@1,107–110#. Here a technique was
developed to envisage the whole process as an additi
effective self-energy interaction by inserting a nuclear pol
ization function into the photon propagator present in
self-energy operator, Eq.~23! @111,112#. For heavy nuclei,
the calculation yields an order-of-magnitude value of t

FIG. 5. Nuclear polarization correction to thegj factor in terms
of Feynman diagrams. The heavy double line represents
nucleus. The nuclear polarization can be envisaged as a mod
self-energy.
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THOMAS BEIER et al. PHYSICAL REVIEW A 62 032510
same size as the QED corrections of ordera2, or even less in
208Pb811 where several nuclear polarization contributio
can be shown to nearly cancel@109#. However, due to the
uncertainty of nuclear parameters and also due to the res
tion to the lowest lying excitations in all calculations carri
out so far, the nuclear polarization correction is suppose
have an error margin of up to 50% of its value, thus restr
ing the precision of the whole Lamb shift prediction.

For the QED corrections to the Zeeman effect under c
sideration here, nuclear polarization calculations were
yet carried out. Their result is not expected to be larger t
the bound-state QED contributions of order (a/p)2 and also
to have an influence on the total prediction value of even
than that in Lamb shift calculations@113#. Their calculation
becomes more urgent as soon as there are complete ca
tions of all QED effects of order (a/p)2 to theg factor, at
least for obtaining an order-of-magnitude estimate.
present, we are going to neglect completely any nuclear
larization contribution in our further discussions.

B. QED effects of higher orders

The main goal of this work was to perform a comple
calculation of the QED binding effects of ordera/p, corre-
sponding to one internal photon line in the correspond
diagrams in Fig 2. However, the sum of these diagra
forms only the second coefficient in the expansion

gj 1s1/2
~Z!52FC(0)1C(2)S a

p D1C(4)S a

p D 2

1C(6)S a

p D 3

1C(8)S a

p D 4

1•••G , ~100!

whereC(0) contains the Diracg factor of the free electron a
well as the relativistic spin orbit coupling contribution, E
~7!, due to binding and does not comprise any quantum e
trodynamical correction. It is given by

C(0)5 1
3 @112A12~Za!2#. ~101!

The notation adopted here is that of Refs.@50# and @114#,
where QED corrections to the free electrong factor are de-
noted by

gfree52F11A1
(2)S a

p D1A1
(4)S a

p D 2

1A1
(6)S a

p D 3

1A1
(8)S a

p D 4

1•••G . ~102!

The A1 refer to diagrams with only electron lines prese
@114#, i.e., no muonic and tauonic lines and no strong a
weak interactions. The coefficients read
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A1
(2)5

1

2
~Refs.@26,27# !,

A1
(4)5

197

144
1S 1

2
23 ln 2D z~2!1

3

4
z~3!

520.328 478 965 . . . ~Refs.@31,32# !,

A1
(6)5

83

72
p2z~3!2

215

24
z~5!1

100

3 F S a41
1

24
ln4 2D

2
1

24
p2 ln2 2G2

239

2160
p41

139

18
z~3!2

298

9
p2 ln 2

1
17101

810
p21

28259

5184

51.181 241 456••• ~Ref. @33# !,

A1
(8)521.509 8~384! ~Ref. @34#!, ~103!

where z(k)5(n51
` (1/nk) and a45(n51

` @1/(2nn4)#. As al-
ready mentioned,A1

(8) represents 891 Feynman diagram
Their analytical evaluation with modern algebraic compu
programs has just begun, and the error specified by Hug
and Kinoshita is a rather conservative error margin of
numerical calculations carried out so far, according to
authors.

Additional contributions to theg factor of a free electron
result from nonelectronic QED contributions, in particul
vacuum polarization loops containing muons and tauo
which contribute 5.442310212; vacuum polarization loops
containing hadronic particles, contributing 3.284(5
310212; and weak interaction effects at a level of
310214 @34# within the standard model.

From these representations it is clear that eachC(2i ) can
be written as

C(2i )5A1
(2i )1QED binding effects. ~104!

Expanding the QED binding effects into a power series
(Za) yields the expression obtained by Grotch as the lead
term

C(2)~Z!5
1

2
1

~Za!2

12
1•••. ~105!

In Fig. 6 we display the QED corrections of order (a/p)2.
These or corrections of even higher order have not yet b
calculated considering bound state QED. To have a rea
able starting point for this, at least all QED corrections
ordera2 to the Lamb shift should be known properly, a ta
which is still pending@1,115#. An estimate for the total orde
of magnitude of this correction can be obtained by observ
that all coefficientsA1

(2i ) in Eq. ~103! are of magnitude 1.
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Therefore it is reasonable to assume a scaling by a fa
(a/p) also for the bound state contributions, and an estim
reads

QED binding effects, order~a/p!2

5S a

p D3@QED binding effects, order~a/p!#.

~106!

Without any full calculation of all diagrams of order (a/p)2,
no theoretical value forgj 1s1/2

can claim an accuracy bette

than at least three times the above estimate of the (a/p)2

contributions.

V. RESULTS

The results of our calculations are presented in detai
Tables I–III for someZ. A summary for allZ under investi-
gation is given in Table IV. The grid ofZ we chose is quite
tight throughout the whole range fromZ51 to Z594, in-
cluding nearly all evenZ ~except the unstable Po! and in
addition also all oddZ,18 as well as those where hyperfin
structure measurements in hydrogenlike systems were
ried out and also a few more to tighten the calculation aro
the heaviest stable odd-Z nuclei. When comparing a high
precision experiment with theory, any interpolation of
sparsely given theoretical grid is rather meaningless. For
reason we present a comprehensive tabulation of values

FIG. 6. QED diagrams of order (a/p)2 to gj . Only the first row
of diagrams has to be considered for theg factor of the free elec-
tron.
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As pointed out, all calculations were carried out in t
Feynman gauge employing the renormalization procedu
mentioned above. The error margins specified are purely
merical resulting from the integrations over the photon m
mentumk and the partial-wave extrapolation overl or uku,
respectively. Error propagation is always carried out by l
early adding the errors in order not to underestimate
overlooked systematic numerical effect.

The self-energy contributions have also been calcula
by Blundell et al. for a number ofZ employing a point
nucleus@50#. We include their values in our Tables I and
for comparison after multiplying them accordingly b
(2a/p), as they were specified in terms ofC2(Za) in Ref.
@50#. In that work, only up to six significant figures wer
displayed.

Table I displays all contributions togj SE,WF,irredfor a few
Z, calculated by utilizing Eqs.~56!, ~59!, and ~65!. The nu-
merical error resulting from the terms with zero and o
nuclear-potential interaction is rather small for lowZ and
empirically even an anticorrelation between the behavior
both terms is observed, if the number of grid points in thep
integration is altered. Therefore, the error margin of bo
terms is combined. The remaining term,gj SE,WF,irred

[>2] , is cal-
culated employing a partial wave expansion up tol 530. The
numerical accuracy is in most cases already sufficient
ploying partial waves up tol 520.

The contributions togj SE,ve1gj SE,WF,redare given in Table
II for someZ, where the results of Eqs.~70!, ~69!, and~76!
and~79! are displayed. ForZ<20, the separate calculation o
gj SE,WF,red

[1] 1gj SE,ve
[1] according to Eqs.~81! and ~82! is also

presented. In these separate calculations, pointlike nu
were employed as discussed above, due to the smallne
any finite-size effect on QED corrections in this range ofZ.
For calcium and carbon, calculations ofgj SE,WF,red

[>1] 1gj SE,ve
[>1]

are also shown. If pointlike nuclei are considered, the cal
lation from gj SE,WF,red

[>1] 1gj SE,ve
[>1] agrees well within its error

margins with the split calculation for Ca. However, for e
tended nuclei a small discrepancy shows up which nece
tates the scheme of Eqs.~76! and~79! for Z>20. For carbon,
Eqs. ~76! and ~79! yield the same result for both pointlik
and extended nuclei. It does not agree with the correspo
ing one from the split calculation which is obviously due
a failure in extrapolating Eqs.~76! and~79! to higher partial
waves. For carbon, the partial wave contribution chan
sign aroundl 512, which is also indicated by Fig. 7. There
fore, our separate treatment of thegj SE,WF,red

[1] 1gj SE,ve
[1] terms

is well justified and improves the theoretical prediction a
in theZ range under current experimental investigation. F
ure 7 displays the behavior of the partial waves
gj SE,WF,red

[>1] 1gj SE,ve
[>1] over the wholeZ range. The term forl

50 is not shown. For U, Ba, and Ca all terms except the fi
are,0, but for Ca the whole contribution is.0. For C, in
addition to the sign change, numerical instability becom
visible for higher l, making a proper extrapolation forl
.20 impossible.

In general, our values agree within 1026 with those pre-
sented by Blundellet al. for pointlike nuclei. A closer
agreeement cannot be expected due to the number of fig
0-17
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THOMAS BEIER et al. PHYSICAL REVIEW A 62 032510
TABLE I. The different contributions togj SE,WF,irred in Feynman gauge. All values are absolute con
butions togj (1/a5137.035 989 5) and displayed in units of 1026. For gj SE,WF,irred

[0] and gj SE,WF,irred
[1] , an

uncertainty is specified for the sum only. Note, that all the values presented here are strictly gauge dep
Only the total result~last column! is meaningful also beyond our calculations. The results obtained
Blundell et al. @50# are shown for comparison. ForZ590, the result of a point-nucleus calculation is al
shown (90d).

Z gj SE,WF,irred
[0] gj SE,WF,irred

[1] D(gj SE,WF,irred
[0] gj SE,WF,irred

[>2] gj SE,wf,irred.

1gj SE,WF,irred
[1] )

1 1.0814 0.3092 ~0.0001! 0.1386~3! 1.5292~4!

5 20.2403 1.5513 ~0.0001! 3.3158~3! 25.1075~4!

~Blundell et al. : 25.13!
6 27.9866 1.3714 ~0.0001! 4.7067~3! 34.0647~4!

10 68.3632 21.8975 ~0.0001! 12.2777~3! 78.7434~4!

~Blundell et al. : 78.74!
15 135.8677 211.0525 ~0.0001! 25.4194~3! 150.2346~4!

~Blundell et al. : 150.24!
18 183.3569 218.4170 ~0.0001! 34.8236~3! 199.7635~4!

20 217.3241 223.7578 ~0.0002! 41.607~1! 235.174~1!

~Blundell et al. : 235.26!
30 405.9092 249.0996 ~0.0002! 80.375~1! 437.5185~1!

~Blundell et al. : 437.39!
40 607.4052 256.7027 ~0.0005! 125.836~1! 676.538~2!

~Blundell et al. : 676.64!
50 800.1046 226.0449 ~0.0005! 178.604~1! 952.664~2!

~Blundell et al. : 952.03!
56 902.9506 19.5921 ~0.0005! 214.973~2! 1137.516~3!

60 963.3081 64.5562 ~0.0005! 241.798~2! 1269.662~3!

~Blundell et al. : 1270.44!
67 1047.8501 177.2739 ~0.0005! 295.023~3! 1520.147~3!

70 1073.9206 241.1482 ~0.001! 320.827~3! 1635.896~4!

~Blundell et al. : 1638.10!
75 1100.507 372.431 ~0.005! 368.755~4! 1841.693~9!

80 1101.872 539.654 ~0.005! 423.970~5! 2065.50~1!

~Blundell et al. : 2072.61!
81 1098.608 578.046 ~0.005! 436.033~5! 2112.69~1!

82 1094.053 618.216 ~0.005! 448.465~5! 2160.73~1!

83 1088.158 660.218 ~0.005! 461.278~5! 2209.65~1!

90 1004.017 1012.081 ~0.005! 563.071~8! 2579.17~1!

~Blundell et al. : 2601.93!
90d 985.497 1046.324 ~0.005! 569.407~10! 2601.23~2!

92 963.951 1133.981 ~0.005! 596.628~8! 2694.56~1!

94 914.862 1268.134 ~0.005! 632.756~8! 2815.75~1!
-
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presented in that work. In the high-Z range, stronger devia
tions are observed in particular for thegj SE,WF,irredcontribu-
tion. This is most probably due to nuclear size effects.
could reproduce Blundell’s values pretty well by setti
r rms(90

232Th)50, as indicated in Tables I and II. This yield
also an estimate of the nuclear size effect on the QED c
tributions which can amount to up to 1% of the value in t
region of highZ. The finite nuclear size should therefo
always be considered in high-precision calculations. On
low Z side, the values obtained in Ref.@50# for gj SE,WF,red

[>1]

1gj SE,ve
[>1] also suffer from difficulties in the partial wave ex

pansion, as explicitly stated there, although a different
03251
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merical scheme was employed in that work.
Let us now turn to the vacuum polarization contributio

gj VP,WF
Ueh ~49!, gj VP,WF

WK ~91!, andgj VP,pot
WK ~92!, which have not

been calculated before~apart from our previously reporte
numbers@51#!. The results are presented in Table III fo
someZ. The dominant contribution is that ofgj VP,WF

Ueh which
causes no difficulties in the calculation. The higher ord
terms togj VP,WF,gj VP,WF

WK , are only about 5% of the Uehling
value even for U911 which is roughly the same amount as
Lamb-shift calculations@116#. Their expansion inuku is also
performed without problems. A value ofuku515 is sufficient
for almost everyZ. Considering higher values ofuku does not
0-18
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gj FACTOR OF AN ELECTRON BOUND IN A . . . PHYSICAL REVIEW A 62 032510
TABLE II. The different contributions to (gj SE,WF,red1gj ,SE,ve) in Feynman gauge and the calculation schemes as discussed in the
All values are absolute contributions togj (1/a5137.035 989 5) and displayed in units of 1026. The separate (gj SE,WF,red

[1] 1gj SE,ve
[1] )

calculations for the low-Z region are also shown. ForZ520, the results from all calculation schemes are displayed for comparison
Z>20, we employ the scheme which allows no separation of thegj

[1] terms but a consideration of extended nuclei. Further discussion
be found in the text. Note, that all the values presented here are strictly gauge dependent. Only the total result~last column! is meaningful
also beyond our calculations. Values presented by Blundellet al. @50# are displayed in parentheses. ForZ590, the result of a point-nucleu
calculation is also shown (90d).

Z gj SE,ve
[0] gj SE,WF,red

[0] (gj SE,WF,red
[1] (gj SE,WF,red

[>2] (gj SE,WF,red
[>1] (gj SE,WF,red

1gj SE,ve
[1] ) 1gj SE,ve

[>2] ) 1gj SE,ve
[>1] ) 1gj SE,ve)

1 233863.0312(2) 36183.8068~1! 0.5025~1! 0.0331~1! 0.5356~2! 2321.3112~5!

5 219024.5377(2) 21315.9529~1! 6.1031~1! 0.7670~1! 6.8701~2! 2298.2853~5!

@219024.54 21315.96 Blundellet al. 6.88~5!#

6 217373.1336(2) 19653.8716~1! 7.7945~1! 1.0752~1! 8.8697~2! 2289.6077~5!

without separation of thegj
[1] terms: 9.05~5!

10 212833.3722(2) 15063.1985~1! 14.3478~2! 2.6180~1! 16.9658~3! 2246.7921~6!

@212833.35 15063.07 Blundellet al. 16.82#
15 29380.7864(2) 11535.0738~1! 20.7702~3! 4.7580~5! 25.5282~8! 2179.816~1!

@29380.75 11534.98 Blundellet al. 25.32~5!#

18 27895.6827(2) 10000.9797~1! 23.3407~4! 5.860~1! 29.201~1! 2134.498~2!

20 24.4979~4! 6.417~1! 30.915~1!

point nucleus, without separation of thegj
[1] terms: 30.92~1!

27062.0775(2) 9133.7931~1! extended nucleus: 30.97~1! 2102.69~1!

@27062.07 9133.70 Blundellet al. 30.61#
30 24068.0521(2) 5967.4785~1! 29.98~1! 1929.40~1!

@24068.04 5967.46 Blundellet al. 29.96#
40 22207.8932(2) 3937.4706~2! 13.27~1! 1742.85~1!

@22207.84 3937.37 Blundellet al. 13.29#
50 2958.1935(4) 2527.6059~4! 217.249(5) 1552.163~6!

@2958.07 2527.38 Blundellet al. 217.24]
56 2398.6146(5) 1878.1174~5! 240.836(5) 1438.667~6!

60 285.1609(4) 1507.5978~5! 258.204(5) 1364.233~6!

@284.83 1507.14 Blundellet al. 258.21]
67 370.2726~3! 958.1696~3! 290.687(5) 1237.756~6!

70 534.5147~3! 756.0130~3! 2105.032(5) 1185.496~6!

@535.08 755.20 Blundellet al. 2104.99]
75 773.0151~2! 457.5732~3! 2128.876(5) 1101.712~6!

80 972.5097~2! 202.3266~3! 2151.873(5) 1022.963~6!

@973.35 201.06 Blundellet al. 2151.68]
81 1008.1688~2! 156.0287~3! 2156.287(5) 1007.911~6!

82 1042.4930~2! 111.2394~3! 2160.617(5) 993.115~6!

83 1075.5125~2! 67.9298~2! 2164.857(5) 978.585~5!

90 1272.4811~2! 2196.0925(2) 2191.212(5) 885.177~5!

@1273.60 2197.81 Blundellet al. 2190.42]
90d 1273.6053~2! 2197.8180(1) 2190.460(5) 885.327~5!

92 1318.5106~2! 2259.6528(1) 2197.373(5) 861.485~5!

94 1360.3190~2! 2318.2716(1) 2202.719(5) 839.328~5!
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change the value of Eq.~91! within the error margins. Only
for very low Z, do numerical instabilities cause minor pro
lems. However, these problems occur only for total con
butions ofgj VP,WF

WK ,10211 where the whole contribution it
self is negligible. To obtain an estimate for the finite nucle
size effects on the vacuum polarization calculations as w
we have also carried them out for Th, employing a po
03251
-

r
ll,
t

nucleus. The values are given in Table III and indicate
difference at the 1025 level for the vacuum polarization con
tributions, thus again showing the need for considering
size of the nucleus properly.

Problems occur when evaluating the potential correct
for smallZ, gj VP,pot

WK , Eq. ~92!. The convergence according t
6k is displayed in Fig. 8 for a number ofZ. As can be seen
0-19
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TABLE III. The vacuum polarization contributions of ordera/p to thegj factor of an electron bound in a hydrogenlike ion. All valu
are absolute contributions togj (1/a5137.035 989 5). The last column indicates their total sum, except for H and He1, where it is
meaningless due to the large error ingj VP,pot. For Z590, the result of a point-nucleus calculation is also shown (90d).

Z gj VP,WF
Ueh gj VP,WF

WK gj VP,WF gj VP,pot gj VP, tot

1 26.944(5)310212 0.7(2)310216 26.944(5)310212 0.0(3)31029

2 21.09898(2)310210 0.5(1)310214 21.09893(3)310210 0.0(3)31029

3 25.50494(3)310210 5.4(1)310214 25.50440(4)310210 0.0(3)31029 25.5(3.0)310210

4 21.72222(1)31029 2.99(3)310213 21.72192(1)31029 0.0(3)31029 21.7(3)31029

5 24.16369(1)31029 1.11(1)310212 24.16258(2)31029 0.0(3)31029 24.2(3)31029

6 28.55285(1)31029 3.28(1)310212 28.54957(2)31029 0.0(3)31029 28.5(3)31029

10 26.37640(1)31028 6.506(2)310211 26.36989(1)31028 0.0(3)31029 26.37(3)31028

15 23.11298(1)31027 6.8385(3)310210 23.10614(1)31027 0.21(10)31028 23.09(1)31027

18 26.33616(1)31027 1.9539(2)31029 26.31662(1)31027 0.6(2)31028 26.26(2)31027

20 29.55031(5)31027 3.5769(3)31029 29.51454(5)31027 1.0(3)31028 29.41(3)31027

30 24.63685(1)31026 3.6139(1)31028 24.60071(1)31026 1.01(2)31027 24.499(2)31026

40 21.43630(1)31025 1.8501(1)31027 21.41780(1)31025 4.10(2)31027 21.3768(2)31025

50 23.50887(2)31025 6.5837(3)31027 23.44303(2)31025 1.225(4)31026 23.3206(4)31025

56 25.57919(3)31025 1.26030(1)31026 25.45316(4)31025 2.115(4)31026 25.2416(4)31025

60 27.43603(5)31025 1.8772(2)31026 27.24831(7)31025 2.950(5)31026 26.9534(6)31025

67 21.18898(1)31024 3.5673(2)31026 21.15331(1)31024 5.007(6)31026 21.10324(7)31024

70 21.43865(1)31024 4.6158(2)31026 21.39249(1)31024 6.203(6)31026 21.33047(7)31024

75 21.95553(1)31024 6.9659(3)31026 21.88587(1)31024 8.665(8)31026 21.79922(9)31024

80 22.62673(1)31024 1.0286(1)31025 22.52387(2)31024 1.186(1)31025 22.4053(1)31024

81 22.78328(1)31024 1.1097(1)31025 22.67231(2)31024 1.260(1)31025 22.5464(1)31024

82 22.94805(1)31024 1.1963(1)31025 22.82842(2)31024 1.337(1)31025 22.6947(1)31024

83 23.12138(1)31024 1.2886(1)31025 22.99252(2)31024 1.419(1)31025 22.8506(1)31024

90 24.61594(1)31024 2.1304(1)31025 24.40290(2)31024 2.111(1)31025 24.1919(1)31024

90d 24.84549(1)31024 2.3342(1)31025 24.61207(2)31024 2.126(1)31025 24.3995(1)31024

92 25.15122(1)31024 2.4484(1)31025 24.90638(2)31024 2.352(1)31025 24.6711(1)31024

94 25.75234(1)31024 2.8155(1)31025 25.47079(2)31024 2.618(1)31025 25.2090(1)31024
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the contributions change sign twice in the region of lowuku,
reach a second maximum on the positive side and t
slowly tend to decrease again. For medium and highZ, this
process takes part withinuku<5 and the further extrapolatio
causes no problems. For C51, however, the second max
mum seems to be reached at aboutuku530 only, leaving no
decreasing tail for carrying out any extrapolation, asuku
530 is also the maximum value of our current calculatio
due to numerical stability. Even forZ as large as 30 the
numerical instability tends to be as much as 5% of the to
value ofgj VP,pot

WK . The reason for not improving our calcula
tion at the present stage is the total share of this contribut
which is rather small, compared togj SE,WF, gj SE,ve, and
gj VP,WF. For Z<12, however, the error of the contributio
has to be estimated to be at least 3310210, although the
actual value might be smaller. This is also indicated by
data points in Fig. 9. All QED contributions calculated so
are displayed in Fig. 9, together with the free QED corr
tions of orders (a/p)2, (a/p)3, and (a/p)4, Eq. ~103!.

All QED calculations are summarized in Table IV. B
subtractinga/p, the total QED effect of binding is obtaine
~column 7! which can be compared with the ter
(a/p)(Za)2/6 @Eq. ~105!, in column 8# obtained by Grotch
@39#. For Z51 and Z52, our calculation agrees with thi
expansion within the error margins. But already for Li, d
03251
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ferences become visible which amount already to 131027

for C51. Both curves are also displayed in Fig. 9. In additio
the total QED binding effect of order (a/p) was multiplied
by another factor of (a/p) to obtain the estimate for the
binding correction of order (a/p)2, as discussed above. Th
last line indicates the present day limit of theoretical pre
sion for gj 1s1/2

which cannot be crossed without evaluatin

50 additional diagrams. There is no sense in improving
calculation of QED contributions of ordera/p which are
smaller than this indicated value, and therefore we did
even try to obtain more precise values forgj VP,pot

WK in the low-
Z region. The total numerical uncertainty indicated in co
umn 6 of Table IV is less than the order (a/p)2 estimate
except for very lowZ, and therefore we conclude that ou
present calculation is sufficient as far as precision is c
cerned.

Our QED calculation of ordera/p is displayed in Table
V together with the result of Eq.~7!. The nuclear size cor-
rection to this contribution is obtained by calculating Eq.~6!
with wave functions corresponding to an extended nucl
with r rms as specified. In these calculations, a two-parame
Fermi distribution witha50.524 is employed, except fo
uranium, wherea50.5046 was used, taken from Ref.@117#
and thorium (a50.511 from Ref.@118#!. The nuclear radii
0-20
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TABLE IV. The different QED contributions of ordera/p to gj of an electron bound in a hydrogenlike ion, their sum, and the amo
due to binding which is obtained after subtracting the term (a/p) of the free electron’sg factor. All values are absolute contributions togj

(1/a5137.035 989 5) and displayed in units of 1026. The binding correction obtained from theZa expansion due to Grotch@37# is
presented in the last line for comparison. Numerical uncertainties are indicated in parentheses. No given uncertainty indicates
smaller than one digit of the last displayed figure. The uncertainty of the binding effect~not specified! is always the same as that of th
corresponding total QED contribution of ordera/p. For Z<14, the last figure was not rounded off in the binding-effect column.

Z gj ,SE gj ,SE gj ,VP gj ,VP Tot. gj ,QED Effect of binding
ve 1 WF, red WF, irred WF pot ~ordera/p) ~total! (Za exp!

1 2321.3112~5! 1.5292~4! 20.0000 0.0000~3! 2322.840~1! 0.0208 0.0206
2 2317.6975~5! 5.2065~4! 20.0001 0.0000~3! 2322.904~1! 0.0842 0.0825
3 2312.4908~5! 10.5232~4! 20.0006 0.0000~3! 2323.013~1! 0.1938 0.1855
4 2305.9589~5! 17.2162~4! 20.0017 0.0000~3! 2323.173~1! 0.3537 0.3298
5 2298.2853~5! 25.1075~4! 20.0042 0.0000~3! 2323.389~1! 0.5690 0.5154
6 2289.6077~5! 34.0647~4! 20.0085 0.0000~3! 2323.664~1! 0.8442 0.7422
7 2280.0359~5! 43.9840~4! 20.0157 0.0000~3! 2324.004~1! 1.1846 1.0102
8 2269.6606~6! 54.7815~4! 20.0265 0.0000~3! 2324.416~1! 1.5959 1.3194
9 2258.5579~6! 66.3875~4! 20.0421 0.0000~3! 2324.903~1! 2.0836 1.6699

10 2246.7921~6! 78.7434~4! 20.0637 0.0000~3! 2325.472~1! 2.6522 2.0616
11 2234.4236~7! 91.7989~4! 20.0925 0.0003~3! 2326.130~1! 3.3106 2.4945
12 2221.4992~8! 105.5111~4! 20.1300 0.0004~4! 2326.881~2! 4.0610 2.9686
13 2208.0640~8! 119.8424~4! 20.1777 0.0008~5! 2327.729~2! 4.9098 3.4840
14 2194.1583~9! 134.7596~4! 20.2374 0.0014~10! 2328.682~2! 5.8623 4.0406
15 2179.816~1! 150.2346~4! 20.3106 0.002~1! 2329.742~3! 6.922 4.639
16 2165.075~1! 166.2416~4! 20.3994 0.003~1! 2330.920~3! 8.101 5.278
17 2149.959~1! 182.7576~4! 20.5057 0.005~2! 2332.216~3! 9.396 5.958
18 2134.498~2! 199.7635~4! 20.6317 0.006~2! 2333.636~4! 10.816 6.679
20 2102.69~1! 235.174~1! 20.9515 0.010~3! 2336.92~1! 14.10 8.25
22 2069.63~1! 272.355~1! 21.3779 0.018~3! 2340.62~1! 17.80 9.98
24 2035.71~1! 311.212~1! 21.9321 0.033~3! 2345.02~1! 22.21 11.87
26 2000.95~1! 351.672~1! 22.6369 0.045~3! 2350.03~1! 27.21 13.94
28 1965.49~1! 393.677~1! 23.5175 0.069~3! 2355.72~1! 32.90 16.16
30 1929.40~1! 437.185~1! 24.6007 0.101~2! 2362.09~1! 39.27 18.55
32 1892.81~1! 482.164~1! 25.9161 0.138~2! 2369.20~1! 46.38 21.11
34 1855.79~1! 528.596~2! 27.4957 0.188~2! 2377.08~1! 54.26 23.83
36 1818.41~1! 576.469~2! 29.3738 0.249~2! 2385.75~1! 62.93 26.72
38 1780.74~1! 625.781~2! 211.5878(1) 0.324~2! 2395.25~1! 72.43 29.77
40 1742.85~1! 676.538~2! 214.1780(1) 0.410~2! 2405.62~1! 82.80 32.98
42 1704.80~1! 728.750~2! 217.1871(1) 0.527~2! 2416.89~1! 94.08 36.37
44 1666.66~1! 782.439~2! 220.6636(1) 0.658~3! 2429.09~1! 106.27 39.91
46 1628.474~6! 837.632~2! 224.6586(1) 0.819~3! 2442.27~1! 119.45 43.62
48 1590.283~6! 894.359~2! 229.2269(2) 1.006~4! 2456.42~1! 133.60 47.50
50 1552.163~6! 952.664~2! 234.4303(2) 1.225~4! 2471.62~1! 148.80 51.54
52 1514.152~6! 1012.586~2! 240.3321(3) 1.480~4! 2487.89~1! 165.07 55.74
54 1476.302~6! 1074.185~2! 247.0071(2) 1.775~4! 2505.26~1! 182.44 60.11
56 1438.667~6! 1137.516~3! 254.5316(4) 2.115~4! 2523.77~1! 200.95 64.65
58 1401.293~6! 1202.652~3! 262.9927(6) 2.505~5! 2543.46~1! 220.64 69.35
60 1364.233~6! 1269.662~3! 272.4831(7) 2.950~5! 2564.36~1! 241.54 74.22
62 1327.543~6! 1338.586~3! 283.0822(7) 3.454~6! 2586.50~1! 263.68 79.25
64 1291.268~6! 1409.583~3! 294.9364(7) 4.025~6! 2609.94~1! 287.12 84.44
66 1255.465~6! 1482.722~3! 2108.154(1) 4.656~6! 2634.69~2! 311.87 89.80
67 1237.756~6! 1520.147~3! 2115.331(1) 5.007~6! 2647.58~2! 324.76 92.54
68 1220.187~6! 1558.134~3! 2122.884(1) 5.392~6! 2660.83~2! 338.01 95.34
70 1185.496~6! 1635.896~4! 2139.249(1) 6.203~6! 2688.34~2! 365.53 101.02
72 1151.447~6! 1716.185~4! 2157.445(1) 7.108~6! 2717.29~2! 394.48 106.87
74 1118.102~6! 1799.133~5! 2177.646(1) 8.115~8! 2747.70~2! 424.88 112.89
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TABLE IV. ~Continued!.

Z gj ,SE gj ,SE gj ,VP gj ,VP Tot. gj ,QED Effect of binding
ve 1 WF, red WF, irred WF pot ~ordera/p) ~total! (Za exp!

75 1101.712~6! 1841.693~9! 2188.587(1) 8.665~8! 2763.48~2! 440.66 115.96
76 1085.527~6! 1884.879~9! 2200.047(1) 9.239~9! 2779.60~2! 456.78 119.08
77 1069.549~6! 1928.891~9! 2212.163(2) 9.845~9! 2796.12~3! 473.30 122.23
78 1053.790~6! 1973.625~9! 2224.886(2) 10.48~1! 2813.01~3! 490.19 125.43
79 1038.259~6! 2019.17~1! 2238.298(2) 11.15~1! 2830.29~3! 507.47 128.66
80 1022.963~6! 2065.50~1! 2252.387(2) 11.86~1! 2847.93~3! 525.11 131.94
81 1007.911~6! 2112.69~1! 2267.231(2) 12.60~1! 2865.96~3! 543.14 135.26
82 993.115~6! 2160.73~1! 2282.842(2) 13.37~1! 2884.38~3! 561.56 138.62
83 978.585~5! 2209.65~1! 2299.252(2) 14.19~1! 2903.18~3! 580.36 142.02
86 936.687~5! 2361.99~1! 2353.736(2) 16.88~1! 2961.83~3! 639.01 152.47
88 897.312~5! 2468.68~1! 2395.028(2) 18.90~1! 2989.87~3! 667.05 159.65
90 885.177~5! 2579.17~1! 2440.290(2) 21.11~1! 3045.16~3! 722.34 166.99
92 861.485~5! 2694.56~1! 2490.638(2) 23.52~1! 3088.93~3! 766.11 174.49
94 839.328~5! 2815.75~1! 2547.079(2) 26.18~1! 3134.18~3! 811.36 182.16
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were taken from Refs.@103,117–119#, and the radius of the
most abundant or longest living isotope was employed
indicated in Table V. The uncertainty caused by an insu
cient knowledge of the nuclear radius is indicated in Fig.
where also all the other contributions togj are displayed.
The recoil correction was calculated employing Eq.~99!.
Again, the mass of the most abundant isotope was utili
which causes the wiggles in the curve. Note that this corr
tion can be considered as only an order of magnitude e
mate for highZ. For carbon, we estimate its accuracy bei
1%, decreasing with increasingZ and amounting to 10%
already for calcium. Due to the rather speculative nature
both the uncertainty of this contribution and the estimate
the higher order QED contributions, an error for the totalgj
value is not displayed in Table V. It amounts to at leas
31029 for carbon, 1.331027 for calcium and 731026 for
uranium, where we have estimated the uncertainty from
uncalculated QED (a/p)2 binding corrections by 2.5

FIG. 7. Partial wave contributionsgj ,SE,ve
[>1] 1gj ,SE,WF,red

[>1] for dif-
ferentZ.
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3(a/p) times the numerical value of the (a/p) contribu
tion. Contrary to the Lamb shift situation, however, this err
margin is not due to nuclear effects which can hardly
estimated to increase in precision@1# but to yet uncalculated
contributions, e.g., from the diagrams shown in Fig. 6. T
error due to the uncertainty inr rms55.860460.0023 fm
@117# is also shown for uranium. It is smaller than the es
mate for the yet uncalculated QED terms of order (a/p)2.
The influence of nuclear mass and size effects is also d
onstrated by the difference of the corresponding values
207Pb811 and 208Pb811. Values are specified in Table V fo
both nuclei, and although their radii differ only by abo
0.1%, this leads to a difference ingj of 1026. The effect of
the nuclear size on the QED correction itself was alrea
mentioned. For the two different radii employed, the to
QED value is the same within its error margins. When e
ploying pointlike nuclei, however, the need for considerati

FIG. 8. Partial wave contributions togj VP,pot. Each point repre-
sents the sum of contributions fromk and2k. The top panel indi-
cates the partial wave contributions with positive sign, the bott
panel those with negative sign. For C51, the total contribution
gj VP,pot was assumed to be 1310210 for calculation purposes.
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of nuclear size effects in QED calculations for highZ is
demonstrated impressively.

VI. COMPARISON WITH EXPERIMENTS

Up to now, experiments ongj factors in hydrogenlike
systems were carried out only for a fewZ. We present an
overview of these experiments in Table VI. The experime
carried out on H, D, and He1 were all performed before
1980 and did not prove any effects beyond t
(a/p)(Za)2/6 term or the ratio of the recoil predictions fo
H and D @44#. On the high-Z end of the periodic table, life-
time measurements of the hyperfine transitions in hydrog
like ions were carried out only for207Pb811 @17# and
209Bi821 @14,120#, for which also theoretical calculations ex
ist @19,20,53,121#. As Shabaev pointed out@53#, the transi-
tion probability 1/tF→F85vF→F8 from the higher hyperfine
niveauF to the lower,F8 is in hydrogenlike ions related to
gj by

vF2→F1
5

a

3

~DEHFS!
3

\~mec
2!2

I

2I 11 Fgj
(electron)2S me

mp
DgI

(nucleus)G2

,

~107!

whereI is the nuclear spin andmp is the proton mass. The
constants\, me , andc are explicitly displayed here.

The only recent experiment primarily designed forgj
measurements@47–49,122# was carried out on C51 and
yielded an impressive precision of about 1029 which is cer-
tainly sufficient to distinguish between the full QED calc
lation of ordera and Grotch’s (a/p)(Za)2/6 term. Within
the specified error margins, the experimental result and
calculation agree, and both uncertainties are of the same
der of magnitude. An experiment with a similar precision f

FIG. 9. The QED contributions togj , including the contribu-
tions from free QED up to order (a/p)4. The binding contribution
of order (a/p) ~see Table IV! is indicated separately, as well as th
value of theZa expansion due to Grotch@39# @‘‘bound, }(Za)2’’ #
and the estimate for the bound-state effects of order (a/p)2. For
gj ,VP,WF, the negative value of this contribution is given.
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a heavier nucleus, however, could not match a similar th
retical prediction due to the yet uncalculated higher or
effects of QED and recoil.

In order to elucidate the experimental capabilities, we d
play in Fig. 11 the magnitude of various contributions
parts ofgj as well as the experimental precision reached
far for the variousZ. Thus, each theoretical curve crossed
the line of an experiment is checked by this experiment. I
worth mentioning that the experiment carried out on H
Tiedeman and Robinson@45# was almost as precise as that
Quint and co-workers on C51, but could just prove the bind
ing effect of order (Za)2 whereas the carbon experiment n
only clearly pointed out the difference between this term a
the full binding correction but also almost reached the c
rent theoretical limits due to the already much stronger bi
ing effects in carbon. These are indicated again by the cu
denoted ‘‘bound QED, (a/p)2, estimate.’’ The area on the
right under this curve has to be considered as theoretic
unknown. For comparison, also the first and the bestg factor
measurement for a free electron are displayed in Fig. 11

VII. CONCLUSION

We have presented the first complete calculation sche
for the gj factor of an electron bound in a hydrogenlike sy
tem, including all QED corrections of order (a/p) nonper-
turbatively and thus valid for the wholeZ range. All values
are listed for a tight lattice ofZ, in addition to all contribu-
tions of non-QED origin known so far. Error margins fo
both the calculated QED corrections as well as for the ot
contributions are properly estimated. Comparison with
existing experimental results exhibits agreement and su
cient precision in all cases. The finite nuclear size effect w
found to be considerable for the QED corrections of ord
(a/p) in high-Z systems. The uncertainty of nuclear si
and shape is well under control as it does not affect
predictions at the current level of precision. For further hi
precision experiments carried out in systems heavier t
C51, it is desirable to evaluate all QED corrections of ord
(a/p)2 nonperturbatively as the next step.
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APPENDIX A: FREE VERTEX FUNCTION G †0‡
„p,p8…

The free vertex function, Eq.~38!, can be expressed in th
Feynman gauge as
0-23
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TABLE V. Known contributions togj for a 1s1/2 electron bound in a hydrogenlike ion. The employed nuclear rms radius is indic
The last column displays the sum of all the others plus the free QED contributions of orders (a/p)2 to (a/p)4 and includes therefore al
contributions known today. The value is not accurate to the digits specified, as yet unknown effects such as bound QED effects
(a/p)2 or the complete recoil correction beyond theZa expansion are not yet evaluated but might contribute on a level up to a few t
1026. A detailed discussion is given in the text. The numerical errors of the finite nuclear size contribution as well as the recoil con
are always less than the last figure stated.

r rms Rel. spin- Fin. nucl. size Total QED, Recoil Total
@fm# orbit coupl. correction ordera/p correction gj

1
1H 0.862 1.9999644986 ,1.310211 2.322840(1)31023 2.915831028 2.002283853

2
4He 1.671 1.9998579888 ,1.310211 2.322904(1)31023 2.917831028 2.002177407

3
7Li 2.410 1.9996804535 4.310211 2.323013(1)31023 3.751831028 2.001999989

4
9Be 2.390 1.9994318644 9.310211 2.323173(1)31023 5.187831028 2.001751575

5
11B 2.370 1.9991121817 1.9310210 2.323389(1)31023 6.632131028 2.001432122

6
12C 2.468 1.9987213542 4.2310210 2.323664(1)31023 8.754231028 2.001041591

7
14N 2.560 1.9982593193 8.3310210 2.324004(1)31023 1.021331027 2.000579911

8
16O 2.693 1.9977260027 1.5631029 2.324416(1)31023 1.167231027 2.000047022

9
19F 2.898 1.9971213189 2.9031029 2.324903(1)31023 1.244131027 1.999442834

10
20Ne 3.006 1.9964451704 4.7831029 2.325472(1)31023 1.459131027 1.998767278

11
23Na 2.994 1.9956974482 6.9931029 2.326130(1)31023 1.535231027 1.998020224

12
24Mg 3.057 1.9948780313 1.04031028 2.326881(2)31023 1.750931027 1.997201582

13
27Al 3.063 1.9939867870 1.45131028 2.327729(2)31023 1.826631027 1.996311199

14
28Si 3.123 1.9930235706 2.04731028 2.328682(2)31023 2.042731027 1.995348962

15
31P 3.190 1.9919882250 2.84231028 2.329742(3)31023 2.118031027 1.994314692

16
32S 3.263 1.9908805811 3.89031028 2.330920(3)31023 2.334531027 1.993208259

17
35Cl 3.388 1.9897004574 5.40231028 2.332216(3)31023 2.409631027 1.992029453

18
40Ar 3.427 1.9884476596 7.02831028 2.333636(4)31023 2.363831027 1.990778087

20
40Ca 3.478 1.9857232017 1.131531027 2.33692(1)31023 2.918231027 1.98805701

22
48Ti 3.592 1.9827053968 1.815131027 2.34062(1)31023 2.942631027 1.98504298

24
52Cr 3.645 1.9793922218 2.726431027 2.34502(1)31023 3.232531027 1.98173433

26
56Fe 3.738 1.9757814341 4.074231027 2.35003(1)31023 3.522731027 1.97812871

28
58Ni 3.776 1.9718705637 5.784131027 2.35572(1)31023 3.944631027 1.97422374

30
64Zn 3.928 1.9676569044 8.536331027 2.36209(1)31023 4.103831027 1.97001674

32
74Ge 4.072 1.9631375039 1.2312631026 2.36920(1)31023 4.038331027 1.96550482

34
80Se 4.140 1.9583091529 1.6866131026 2.37708(1)31023 4.216931027 1.96068482

36
84Kr 4.188 1.9531683728 2.2607931026 2.38575(1)31023 4.502531027 1.95555332

38
88Sr 4.224 1.9477114023 2.9819631026 2.39525(1)31023 4.788631027 1.95010660

40
90Zr 4.270 1.9419341826 3.9143531026 2.40562(1)31023 5.188031027 1.94434072

42
98Mo 4.407 1.9358323401 5.3015031026 2.41689(1)31023 5.252931027 1.93825155

44
102Ru 4.481 1.9294011690 6.9278331026 2.42909(1)31023 5.539031027 1.93183423

46
106Pd 4.532 1.9226356104 8.9045631026 2.44227(1)31023 5.825631027 1.92508385

48
114Cd 4.610 1.9155302297 1.15027331025 2.45642(1)31023 5.898131027 1.91799523

50
120Sn 4.655 1.9080791919 1.45811731025 2.47162(1)31023 6.079831027 1.91056249

52
130Te 4.742 1.9002762337 1.87005731025 2.48789(1)31023 6.070231027 1.90277991

54
132Xe 4.787 1.8921146327 2.34883531025 2.50526(1)31023 6.446931027 1.89464051

56
138Ba 4.839 1.8835871727 2.94678431025 2.52377(1)31023 6.631831027 1.88613756

58
140Ce 4.877 1.8746861060 3.66512831025 2.54346(1)31023 7.012331027 1.87726340

60
142Nd 4.914 1.8654031102 4.54351131025 2.56436(1)31023 7.398531027 1.86801013

62
152Sm 5.092 1.8557292402 5.90425031025 2.58650(1)31023 7.380331027 1.85837201

64
158Gd 5.159 1.8456548742 7.35232731025 2.60994(1)31023 7.565531027 1.84833558

66
164Dy 5.224 1.8351696537 9.12715031025 2.63469(2)31023 7.751431027 1.83789287

67
165Ho 5.210 1.8297695177 1.000588031024 2.64758(2)31023 7.939731027 1.83251443

68
166Er 5.250 1.8242624144 1.116283331024 2.66083(2)31023 8.129131027 1.82703217

70
174Yb 5.317 1.8129211091 1.381382531024 2.68834(2)31023 8.218331027 1.81574490

72
178Hf 5.349 1.8011327199 1.687820831024 2.71729(2)31023 8.499331027 1.80401613

74
184W 5.373 1.7888831574 2.054910631024 2.74770(2)31023 8.685331027 1.79183371
032510-24
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TABLE V. ~Continued!.

r rms Rel. spin- Fin. nucl. size Total QED, Recoil Total
@fm# orbit coupl. correction ordera/p correction gj

75
187Re 5.351 1.7825807127 2.243032131024 2.76348(2)31023 8.778531027 1.78556586

76
192Os 5.406 1.7761571469 2.506703731024 2.77960(2)31023 8.779431027 1.77918478

77
193Ir 5.401 1.7696103440 2.749892531024 2.79612(3)31023 8.965231027 1.77267884

78
195Pt 5.427 1.7629380960 3.044712031024 2.81301(3)31023 9.105331027 1.76605297

79
197Au 5.437 1.7561380981 3.354255731024 2.83029(3)31023 9.245431027 1.75930122

80
202Hg 5.467 1.7492079430 3.717401331024 2.84793(3)31023 9.246331027 1.75242502

81
205Tl 5.483 1.7421451145 4.102088331024 2.86596(3)31023 9.340231027 1.74541871

82
208Pb 5.504 1.7349469812 4.532454031024 2.88438(3)31023 9.434231027 1.73828204

82
207Pb 5.497 1.7349469812 4.523489931024 2.88438(3)31023 9.479731027 1.73828114

83
209Bi 5.533 1.7276107891 5.019718731024 2.90318(3)31023 9.619431027 1.73101338

86
222Rn 5.632 1.7047443147 6.835730331024 2.96183(3)31023 9.722631027 1.70838717

88
226Ra 5.662 1.6887529452 8.314708331024 2.98987(3)31023 9.999931027 1.69257177

90
232Th 5.802 1.6721308209 1.040865231023 3.04516(3)31023 1.018931026 1.67621435

92
238U 5.860 1.6548461126 1.275238031023 3.08893(3)31023 1.037931026 1.65920780

94
244Pu 5.794 1.6368634079 1.515740431023 3.13418(3)31023 1.056831026 1.64151087
-

um
where the coefficient functionsCi j denote Feynman param
eter integrals. These integrals can be written as~note some
misprint corrections compared to Ref.@74# and a slightly
different notation in Ref.@93#!

FIG. 10. All known contributions togj of the 1s1/2 state of a
hydrogenlike ion, including recoil and finite nuclear size. ForZ
>9, the total value ofgj is ,2, and therefore ‘‘-total’’ is displayed
for theseZ. The uncertainty due to the error margins of the urani
rms radius are also indicated.
03251
me
2C05E

0

1

dy
1

a
lnS a1b

b D , ~A2!

me
2C1152E

0

1

dy
y

a F12
b

a
lnS a1b

b D G , ~A3!

me
2C1252E

0

1

dy
12y

a F12
b

a
lnS a1b

b D G , ~A4!

me
2C215E

0

1

dy
y2

a F1

2
2

b

a
1S b

aD 2

lnS a1b

b D G , ~A5!

me
2C225E

0

1

dy
~12y!2

a F1

2
2

b

a
1S b

aD 2

lnS a1b

b D G ,
~A6!

me
2C235E

0

1

dy
y~12y!

a F1

2
2

b

a
1S b

aD 2

lnS a1b

b D G ,
~A7!
0-25



listed,
l

THOMAS BEIER et al. PHYSICAL REVIEW A 62 032510
TABLE VI. Experimental results forgj in hydrogenlike systems. For hydrogen and deuterium, only more recent results are
references to older experiments can be found in Refs.@43–45#. Experimental techniques are abbreviated as SEOP~spin-exchange optica
pumping!, HFHM ~high-field double mode hydrogen maser!, PT ~penning trap!, and HFST~hyperfine splitting transition!. The ratio of
gj (H)/gj (D) is more precisely known as each of thegj factors due to the uncertainty in the QED calculations.

Measured quantity gj ~expt.! gj ~theory! Method Ref.

1H gj (H)/gj (e
2) 51217.4(1.0)31026 2.002 284~2! 2.002 283 853 SEOP @43#

1H gj (H)/gj (e
2) 51217.709(13)31026 2.002 283 845~26! 2.002 283 853 SEOP @45#

2D gj (H)/gj (D) 5117.22(3)31029 (117.22131029)a HFHM @44#
4He1 gj (He1)/gj (e

2) 51270.87(30)31026 2.002 177 4~60! 2.002 177 407 SEOP @46#
12C51 gj (C

51) 2.001 042~2! 2.001 041 591~7!b PT @49#
12C51 gj (C

51) 2.001 041 596~5! 2.001 041 591~7!b PT @122#
207Pb811 tF→F8(Pb811) 549.5(6.5) ms 1.78~12! 1.738 281 14 HFST @17,53#
209Bi821 tF→F8(Bi821) 50.3975(15) ms 1.7341~35! 1.731 013 38 HFST @120#

aValue obtained from the ratio of the recoil contributions.
bEstimate for the total theoretical uncertainty; see text.
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In C24, D denotes again the ultraviolet part of the char
renormalization constant~35!. The auxiliary functions read

b5yr2~12y!r8, ~A9!

a1b512y~12y!q2/me
2 , ~A10!

q5p2p8, ~A11!

D52/e2gE1 ln 4p. ~A12!

The prime 8 denotes quantities related to p8 in Eq. ~38!.

FIG. 11. Precision ofg-factor experiments compared to the rel
tive value of different contributions togj . The curve marked with
an asterisk indicates the difference between the (a/p)(Za)2/6 term
by Grotch@39# and the full bound state QED calculation of ord
(a/p).
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APPENDIX B: ANGULAR FACTORS A
The angular factors of Eqs.~67! and ~77! read

A SE
0 ~n,p; l !5~2 j p11!S j p j n l

1
2 2 1

2 0D 2

, ~B1!

A SE
i ~n,p; l !5~21! l s1 l p116~2 j p11!(

k
~2k11!

3S k jn l

1
2 2 1

2 0D S j n k l

1
2 2 1

2 0D
3H j p 1 k

1
2 l a~ i ! 1

2 J H 1 j p k

l b~ i ! 1
2

1
2 J ,

~B2!

where l a( i ) is the angular momentum related to2kp for i
51,2 and related tokp for i 53,4. Similarly, l b is related to
kp for i 52,3 and to2kp for i 51,4. The parentheses an
curly braces denote 3j and 6j symbols, respectively.

For Eq.~80!, the angular factors read

A VE
0 ~n,q,r ; l !5~21!11 j n1 l n1 l q1 j r

3A 2 j n11

2 j n~ j n11!
~2 j q11!~2 j r11!

3S j r j q 1

2 1
2 2 1

2 1D S j r j n l

1
2 2 1

2 0D
3S j n j q l

1
2 2 1

2 0D H j n j r l

j q j n 1J , ~B3!
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A VE
i ~n,q,r ; l !5~21! j n1 l n1 l q1 j qA 2 j n11

2 j n~ j n11!
~2 j q11!~2 j r11!S j q j r 1

2 1
2 2 1

2 1D 6(
k,k8

~2k11!~2k811!S k jn l

1
2 2 1

2 0D
3S j n k8 l

1
2 2 1

2 0D H j r 1 k

1
2 l a~ i ! 1

2 J H 1 j q k8

l b~ i ! 1
2

1
2 J H j n j n 1

k k8 l J H j q j r 1

k k8 1J . ~B4!

As in Eq. ~B2!, l a( i ) is the angular momentum related to2kq for i 51,2 and related tokq for i 53,4 andl b to kq for i
52,3 and to2kq for i 51,4.

The angular factors for Eq.~94! read

A VP
i ~kan

,k,k8; l 51!5~21!11 j k1 j k81 l k1 l k8A 2 j kan

2 j kan
~ j kan

11!
~2 j k11!~2 j k811!

3S j k j k8 1

2 1
2 2 1

2 1D 6(
k,k8

~2k11!~2k811!S k j kan
1

1
2 2 1

2 0D S j kan
k8 1

1
2 2 1

2 0D
3H j kan

1 k

1
2 l a~ i ! 1

2
J H 1 j k k8

l b~ i ! 1
2

1
2 J H j kan

j kan
1

1 1 kJ H j k8 j k 1

1 1 k8J . ~B5!

l a( i ) is the angular momentum related to2kan
for i 51,2 and related tokan

for i 53,4 andl b is related tok for i 52,4 and

to 2k for i 51,3. The detailed evaluation of all these factors is presented in Ref.@95#.

APPENDIX C: RADIAL INTEGRALS Q,R,S,T,V,W
The radial integralsQ,R,S,T,V,W from Eqs.~67!, ~77!, ~80!, and~94! read

Q@~a,k!,~b,k8!;k,l #5E
r 50

`

drr 2f a,k~r ! j l~kr !gb,k8~r !, ~C1!

R~a,b!5E
r 50

`

drr 3@ f a~r !gb~r !1ga~r ! f b~r !#, ~C2!

S~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2@ f a~r 1! j l~kr1! f b~r 1!1ga~r 1! j l~kr1!gb~r 1!# D S E

r 250

`

dr2r 2
2@ f c~r 2! j l~kr2! f d~r 2!

1gc~r 2! j l~kr2!gd~r 2!# D , ~C3!

T~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2@ f a~r 1! j l~kr1! f b~r 1!1ga~r 1! j l~kr1!gb~r 1!# D S E

r 350

`

dr3r 3
2Vnuc

bind~r 3!@ f b~r 3! f c~r 3!

1gb~r 3!gc~r 3!# D S E
r 250

`

dr2r 2
2@ f c~r 2! j l~kr2! f d~r 2!1gc~r 2! j l~kr2!gd~r 2!# D , ~C4!

V 1~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2f a~r 1! j l~kr1!gb~r 1! D S E

r 250

`

dr2r 2
2gc~r 2! j l~kr2! f d~r 2! D , ~C5!

V 2~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2f a~r 1! j l~kr1!gb~r 1! D S E

r 250

`

dr2r 2
2f c~r 2! j l~kr2!gd~r 2! D , ~C6!

V 3~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2ga~r 1! j l~kr1! f b~r 1! D S E

r 250

`

dr2r 2
2f c~r 2! j l~kr2!gd~r 2! D , ~C7!
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V 4~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2ga~r 1! j l~kr1! f b~r 1! D S E

r 250

`

dr2r 2
2gc~r 2! j l~kr2! f d~r 2! D , ~C8!

W 1~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2f a~r 1! j l~kr1!gb~r 1! D S E

r 350

`

dr3r 3
2Vnuc

bind~r 3!@ f b~r 3! f b~r 3!1gc~r 3!gc~r 3!# D
3S E

r 250

`

dr2r 2
2gc~r 2! j l~kr2! f d~r 2! D , ~C9!

W 2~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2f a~r 1! j l~kr1!gb~r 1! D S E

r 350

`

dr3r 3
2Vnuc

bind~r 3!@ f b~r 3! f c~r 3!1gb~r 3!gc~r 3!# D
3S E

r 250

`

dr2r 2
2f c~r 2! j l~kr2!gd~r 2! D , ~C10!

W 3~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2ga~r 1! j l~kr1! f b~r 1! D S E

r 350

`

dr3r 3
2Vnuc

bind~r 3!@ f b~r 3! f c~r 3!1gb~r 3!gc~r 3!# D
3S E

r 250

`

dr2r 2
2f c~r 2! j l~kr2!gd~r 2! D , ~C11!

W 4~a,b,c,d;k,l !5S E
r 150

`

dr1r 1
2ga~r 1! j l~kr1! f b~r 1! D S E

r 350

`

dr3r 3
2Vnuc

bind~r 3!@ f b~r 3! f c~r 3!1gb~r 3!gc~r 3!# D
3S E

r 250

`

dr2r 2
2gc~r 2! j l~kr2! f d~r 2! D ~C12!

In these equations,f andg denote large and small radial component of the wave functions

Fa~r !5S f a,k~r !xka

m ~ r̂ !

iga,k~r !x2ka

m ~ r̂ !
D ~C13!

with r 5ur u. The indicesa,b,c,d in Eqs. ~C3!–~C12! have to be considered here as cumulative quantum numbers, i.e
angular momentum quantum number is not specified separately~except forQ).

APPENDIX D: THE FUNCTION G„s,t,u…

The denominator of Eq.~81! is contained in

G~s,t,u!

5@2k~En2Es2k!~En2Et2k!~En2Eu2k!#21 Es.0, Et.0, Eu.0,

5@2k~En2Es2k!~En2Et2k!~En2Eu1k!#211@~Et2Eu!~En2Es2k!~En2Et2k!~En2Eu1k!#21

2@~Et2Eu!~Ep2Eu!~En2Es2k!~En2Eu1k!#21 Es.0, Et.0, Eu,0,

5@2k~En2Es2k!~En2Et1k!~En2Eu2k!#211@~Eu2Et!~En2Es2k!~En2Et1k!~En2Eu2k!#21

2@~Eu2Et!~Es2Et!~En2Es2k!~En2Et1k!#21 Es.0, Et,0, Eu.0,

5@2k~En2Es1k!~En2Et2k!~En2Eu2k!#211@~Et2Es!~En2Eu2k!~En2Et2k!~En2Es1k!#21

2@~Et2Es!~Eu2Es!~En2Eu2k!~En2Es1k!#21 Es,0, Et.0, Eu.0,

5@2k~En2Es1k!~En2Et1k!~En2Eu2k!#211@~Eu2Et!~En2Es1k!~En2Et1k!~En2Eu2k!#21

1@~Eu2Et!~Eu2Es!~En2Es1k!~En2Eu2k!#21 Es,0, Et,0, Eu.0,

5@2k~En2Es1k!~En2Et2k!~En2Eu1k!#211@~Et2Eu!~En2Es1k!~En2Et2k!~En2Eu1k!#21
032510-28
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1@~Et2Eu!~Et2Es!~En2Es1k!~En2Et2k!#21 Es,0, Et.0, Eu,0,

5@2k~En2Es2k!~En2Et1k!~En2Eu1k!#211@~Es2Et!~En2Es2k!~En2Et1k!~En2Eu1k!#21

1@~Es2Et!~Es2Eu!~En2Eu1k!~En2Es2k!#21 Es.0, Et,0, Eu,0,

5@2k~En2Es1k!~En2Et1k!~En2Eu1k!#21 Es,0, Et,0, Eu,0. ~D1!
,

B.
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D.

p

P.
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