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We present a detailed theoretical evaluation forghéactor of a bound electron in hydrogenlike ions up to
Z=94. All quantum electrodynamical corrections of ordes/f) are evaluated in detail and various other
contributions to they; factor are computed and listed for &L A comparison with all existing experiments is
carried out and excellent agreement is found. The present uncertainty in our calculations is discussed. It is not
possible to improve this precision with only minor effort since two-photon bound-state QED terms are uncal-
culated up to now.

PACS numbg(s): 31.30.Jv, 12.26-m, 32.10.Fn

[. INTRODUCTION [28,29. Contributions of order ¢/)? were considered by
Karplus and Kroll[30] and finally evaluated analytically by
Currently, enormous effort is undertaken to investigatePetermann31] and Sommerfield32]. The corrections of
quantum electrodynamicéQED) effects in the strong fields order («/)® comprise already 72 Feynman diagrams which
of highly charged few-electron ions. Experimentally, this im- have all been evaluated analytically since 1988]. The
plies handling and precise spectroscopy of systems up tmost recent overview is given by Hughes and Kinosf8#
U%* . Theoretically, the binding field of the nucleus has towho also present a number of recent theoretical values for
be considered nonperturbatively and must include all orderthe g factor of the free electron, depending on the experimen-
in Za. In hydrogenlike ions, the theoretical evaluation of tally measured value ok which is employed. For example,
many diagrams of ordet? contributing to the Lamb shift from muonium hyperfine structure measuremdr®s] 1/a
has already been performédl] and the current theoretical =137.0359963(80), which leads t0 gjec=2+2
uncertainty amounts to 2 eV in%Y', whereas the most re- x1 159652 216.0(1.2)(67.8)10 '2 where the first error
cent measurement agrees well with theory but still has amesults from the calculations of thex{w)* terms and from
error of =13 eV [2]. For lithiumlike ions, a number of ex- nonelectronic QED and non-QED contributions. The second
cellent measurements in different heavy systems were peerror is due to the uncertainty im employed in this calcu-
formed [3—8], but theoretical predictions still lack a com- lation. The terms of orderda/)* comprise 891 diagrams
plete treatment of two-photon contributiof®-13. Also a  and up to now have only been evaluated numerically.
number of very precise measurements of hyperfine structure The by far most precise experimental measurement to
splittings in heavy hydrogenlike systemi$4—17 and in  date on theg factor of the free electron was performed by
heavy lithiumlike systemg6] were carried out. Unfortu- Van Dyck et al. [36] who obtained a value Ofjjee=2+ 2
nately, due to insufficient knowledge of nuclear parameters< 1159 652 188.4(4.3) 10" 2. Contrary to this outstanding
such as the nuclear magnetization distribution the theoreticaluccess, investigations on the QED bound-state modifica-
precision for hyperfine structure predictions is rather poottions tog; were rather sparse until the mid 1990’s. Grotch
although it coincides with experimeft8-24. and Hegstronj37—-39 as well as Faustop40,41] and Close
Another quantity particularly accessible for high precisionand Osborrj42] performed calculations on the first terms of
experiments is thg; factor of an electron bound in a hydro- a Za expansion for QED and recoil correctionsdp. Ex-
genlike system. Theoretical investigations date back to 192@eriments were carried out on hydrogen and deuterium
when Breit performed his calculations on the relativistic (Refs.[43—-493, and references thergims well as on Hé
spin-orbit coupling for theg factor [25]. The QED correc- [46]. The existing theoretical calculations were then suffi-
tions to theg factor of a free electron have their own famous cient to describe the experimental results.
history. The computation of the leading correction i ) Recently, a new setup was developéd] and tested48]
was already performed by Schwinger in 1928,27), imme-  which allows the storage of a single hydrogenlike ion in a
diately after Kusch and Foleys's legendary experimentrap and the performance gf measurements with a preci-
sion up to a few ppd49]. At the same time, theoretical
results became available which treated the bound-state QED
* Author to whom correspondence should be addressed. Electrongffects nonperturbatively id«. The self-energy diagrams of
address: f3atb@fy.chalmers.se order o were calculated by Blunde#t al. [50] and also by
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Perssoret al. [51]. Perssoret al. [51] investigated also the
vacuum polarization contributions and were thus the first to
publish results which contained the complete QED correc-
tions of ordera for a number ofZ in the range up toZ WV\.>
=92. A detailed presentation of the separate contributions
was given only for &*, S and Ca°" [52], but without a
specific presentation of the theoretical calculations. In this
work we are going to describe the method employed in Refs.
[51,52 in detail. After a short summary on the general FIG. 1. The interaction of a bound electrédouble ling with
theory, we will focus on the QED contributions in particular. the external magnetic fieldriangle depicted as a Feynman dia-
Our method in evaluating the diagrams will be presented agam- The wavy line indicates a photon.

well as the numerical techniques we employ. We will also

list the other known contributions, i.e., the effects of finite - _ |Blay) = ey 13,la,) = 1 B
nuclear size and mass, and discuss their uncertainties. Re- (@n| - Blan) =g, h A@nlJzlan) 2 9iHeb:
sults will be presented for all evehup toZ=94 and also for 3

a few oddZ which are of particular experimental interest due ) .

to the possible determination of tige factor from hyperfine- ~ for an electron with{a,) =[sy;) and magnetic angular quan-
transition lifetime measuremenf§3]. The results will be tum numbem=1/2. This can be also written as
compared to the sparse experimental values available up to

now, and finally we outline what has to be done next to AE=(ay|a eAlay), “)
improve the theoretical precision further. Although we here
present formulas valid for any bound state of an electron, we
restrict ourselves in the numerical calculations to tlsg,,1 A=—(rxB)/2. (5)
state which for high-precision measurements is the most in-
teresting state. It leads to
In this work, we generally employ Aa=e? andfi=c
=m.,=1, except when specified otherwise. The electron _® 5
. o n SP , gj=—(an|z: (rxa)|a,) (6)
mass is explicitly specified in some formulas for clarity. Four B
vectors and their components are given in roman sfgje
and have the form @@p), bold letters indicate three vectors 1+2{1—(Za)?
and italics denote scalars. Four-dimensional space-time co- I S @

ordinates are denoted by x, y, and z witk §, ,x). The

Feynman dagger is employed to indicate #p, , andp  Where the last equal sign is valid only for an electron bound

=pl/|p|. to a pointlike nucleus. Only in this case is the analytical

calculation of all appearing integrals possible. The result is

due to Breit[25]. Detailed evaluations of this last equation

are performed, e.g., in Refi®5] and[56]. Equationg6) and

(7) describe the deviation afj from 2 because of binding
The g factor of a rotating charge with massm, and  only and do not account for any QED effects.

angular momentund is defined by the ratio of angular mo-

mentum and magnetic moment [ll. QED CORRECTIONS TO THE g; FACTOR

Il. g FACTOR OF AN ELECTRON BOUND
IN A HYDROGENLIKE SYSTEM

A. Basic formulas

n=g; 2r:_c‘]' (1) The basic interaction of a bound electron with the external
a magnetic field can be envisaged as in Fig. 1. Note that the
interaction due to the presence of an external homogeneous
magnetic field is always treated as a perturbation because of
the smallness of its influence compared to the nuclear bind-
ing potential. Quantum electrodynamical corrections can be
obtained employing Sucher's symmetrized fgfd7] of the
Gell-Mann-Low level shif{58], presented in detail in Refs.
whereug is the Bohr magneton. Settiny=S and using the [1,59,60 and applied to one- and few-electron QED correc-
Dirac equation with minimal coupling of the electromagnetictions extensively also in Ref$22,50,51,61,6R From the
field, gyee= 2 is readily obtaineda straightforward evalua- formulas for the energy shifts, the corresponding expressions
tion is performed, e.g., in Ref54]). for g; are obtained by the relatidB). In this section, we will
For a bound electron, only the total angular momenfum restrict ourselves to deal with the formulas for the energy
can be observed. The energy shift of a statg due to an  shift.
external magnetic fieldfor simplicity assumed to point In general, the energy shift for a single-electron system is
along thez direction is given by given by

For an electrong= —e, and

= © J= J 2
p= gjﬁec =~ 0jusy, (2
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Jd
AE l |€)\ X <n|S€,)\|n> (8)
" 02 (NS
A—1
with
ss,x=T[exp[—i>\f dxe ™ €ltxH,(x) ] (9)

The basic interaction between the electron-positron field and
the photon field is described by the interaction Hamiltonian
(e.g., Refs[1,59,63),

Hi () =#(0[A LX) +APE(x)] (10)
=HPM+HE. (11)
Here,
1
X)) =- Ee[t//(X) Y (X)] (12

(b)
(d
is the Dirac current operator, AX) is the quantized field 0
photon operator, and P&" denotes the additional magnetic
perturbing potential not considered for binding. In E9), T FIG. 2. The QED contributions of ordew() to the bound-
denotes the time-ordering symbol. To evaluate this expreslectrong; factor depicted as Feynman diagrams.
sion, Wick’s theoren{64] is commonly applied which al-
lows one to rewrite the time-ordered product of a number of ) ) iy B
operators into a sum of normal-ordered products with all S :(_”\)f dxe™ “™TL(H(X)], (14)
possible contractions. The special case of two Fermion op-

erators with equal times requires some care in bound state (—in)2
problems. Contrary to QED of free fermions, these terms S(EZ)ZTJ dyf dxe™ Yle T HAY)HX) T},

()

have to be retained as they lead to the vacuum polarization
: (15
correctiong 59].
Equation(8) is evaluated into powers of, which yields (—in)3
p 8(53):—3I f dzf dyf dxeffltz|eff‘ty|e7 elty]
ox (nlSealn) | B/ Ly A LA Ar A B A
|Imw XT{[HI(Z)Hl(y)Hl(X)]+[HI(Z)HI(y)HI(X)]
A—1 e, \
+[HM@HRYHPO T} (16)

(n|s[n)+2(n[S?|n) +3(n|SE ) + - - - . . .
= Equation (15) yields the well-known expressions for the
1+(n[sM[n)+(n|SP|n)+(n|S|n) + - - - first-order self energy and vacuum polarizat{@9,61]. The
1 2 1 3 three terms in Eq(16) yield all the same result as the con-
=<n|S(E )|n>+2<n|S(E )|n)—<n|S(€ )|n>2+3<n|S(E )|n> tractions can be carried out for each in the same way. Six
—3<n|S(51)|n><n|S(62)|n)+<n|S(El)|n>3+ . (13) different expressions are obtained which can be envisaged by
Fig. 2. In Ref.[59], the mass counterterm is also integrated
Performing all contractions, only those terms of each ordeinto the formalism of Eqs8)—(11). It is sufficient, however,
in A are retained in Eq(13) which describe connected to introduce this term explicitly when needed in order to
graphs, i.e., do not consist of more than one disjunct diakeep the general formulas simpler. A detailed derivation for
gram. In addition, only expressions meaningful to the currenthe mass counterterm in connection with the first-order QED
problem are considered. As we deal with one electron onlyterms is performed in Ref59].
this excludes contraction results with more than one fermion The terms for the diagrams of Fig. 2 read
in the initial and final state. Furthermore, only terms with all

operators A(x) of the quantized photon field contracted will e 3)

be considere@0]. Finally, we keep only terms which are of AEseve I|m§3 E.ver 17)
first order in the perturbing potentialP&! and of ordera, <0

which indicates one virtual photon line in a diagram. There- :

fore, it is sufficient to include summands up 3, where AEge = "m|_€[35(535)wp— 3sWs@)], (18)
the different orders i read ' 02 ’
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In Eq. (22), an additional factor 2 accounts for the two sym-

e
AEyp po= lim 5335/33,p0t, (190 metrical diagrams Figs.(2) and e). In all these equations,
=0 Se(%,Y; E) v denotes the time-independent Green'’s function
of a bound electron
e ‘
AEyp we= lim 5[355/33,%_ 3sWs{], (20) {E—[a-p+Bm+VENYx)]}Se(X,V;E) yo= 83(Xx—Y).
e—0
(24)

where the indices refer to the self-energy vertex term, FigNote that our definition coincides with that of Refs.
2(a), the self-energy wave function correction terms, Figs[13,50,63 and differs from Mohr'§1,59,64 by a minus sign
2(c) and 2e), the vacuum polarization potential term Fig. in the denominator ofSc(x,y;E). The time-independent
2(b), and the vacuum polarization wave function correctionGreen’s function is related to the four-dimensional electron
terms Figs. &) and 2f). The self-energy vertex term and the propagator by

vacuum polarization potential term form irreducible dia-
grams. These diagrams can be evaluated directly by employ-
ing the bound-state Feynman rules as presented, e.g., by
Lindgren[61,62 which can be shown to be equivalent to a
full evaluation in theS matrix formalism. The same holds for i it )E

the irreducible contribution of the wave function corrections, = ZJ dEe "™ WESH(XYE). (29
i.e., the part of the expression where the energy of the inter-

mediate state between magnetic interaction and self-energy | the Fe
loop does not conincide with that of the state under considigg(s
eration. The other part we term “reducible” contribution. In
the Feynman gauge, the irreducible self-energy contributions

D (XD n(y)

i o
Se(xy) = 5 f e

ynman gauge, the photon propagéaey,,(X,y)

e io(tty) gik(x-y)

1
read De,,(Xy)=— ,,—fdkfd
FuY) == B Kty
i (26)
AESE,\,ezeZZJ dxf dyf dz v
= f 5-e “HTYDE, (x Y, 0). (27)

Xf dwan(y)‘y#DF/Lu(y!Xaw)
Note that Mohi{1,59] includes an additiondlin this defini-
tion. For the eigenstates of the Dirac Hamiltonian with the
binding potentialV2" present, the notation®,,, &, etc.,
are employed, wheren,q, etc., are cumulative quantum
numbers. The corresponding energy eigenvalues are denoted
by En, Eq, ... . To separate the state under consideration
clearly from the intermediate states, we denote itdyy
wheren is again a cumulative quantum numbey,=®,,,
anda,(x)=a(x) y°.

The vacuum polarization contributions read

X Se(Y,Z,Ep—w)ey-A(2)
X Sr(zX,En—w) y"an(x), (21)

i _
AEoc e 2675 | o[ ay [ dz [ dwan(y)

XDepu(Y,X, @)
X SF(YlX! En_ w) yy

Dy(x)D(2)7° i
X Eq: qEr1+|quy.A(z)an(z) AEVP,pOt:—eZZJ dxf dyf dzDg,,,(X,y,@=0)
Eq#En
S (an| Y°2(Ep)| @) (P glea-Alay) ><f_ dEay(X) y*an(x) Tr [ ¥*Se(y,zE)
q En—Eq ,
Eq#En

X ey-A(2)Sr(zY;E)]. (28)
(22)

(an|Uyp|Pg)(Pglea-Alay)
AEVP,WF,irred:2 % . - : : .

where the self-energy operatdE,) was introduced, En—Eq
Eq#En

(29

(@l s (®)lb)=e5— | ax [ ay [ doaty)

X DF,uV(yix! w)SF(y’Xv E- w) 7Vb(x) .
(23

Again, the symmetry of two equally contributing diagrams
was taken into account by an additional factor 2 in &9).
The vacuum polarization potential introduced in Eg9)
reads
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i
Uyp(Xx)=— GZEJ dyDggo(X,Y, 0 =0)

D, (y)P(y)

xdeTer.

(30

AFBsg, wi ABLL o AEL o AEBGH
A detailed derivation of the vacuum polarization potential is . . .
P P FIG. 3. The decomposition &S Esg \r ireqinto terms appropri-

given by Refs[66,67, and references therein. ate for removing divergences and for numerical calculation. A pho-

The reducible parts can be treateq in a similar manner at%n line terminated by a cross denotes one interaction with the
for the photon exchange diagrams in few-electron systemg, .., binding potentiad®"d. The labels under the diagrams cor-

i : : e
[61'68._71’ t_akln_g into account that the magr_lenc poter_ltlal respond to the expressions used in the text. For brevity the index
under investigation here replaces the perturbing potential of

h k irred” was omitted on all labels.
another electron in the corresponding formulas. To handle

the additional singularity in one of the electron propagatorsinat employed by Snydermdii4] and has been described in

caused by 1£,—E,), the remaining electron propagator of getajl in Ref.[22] for the QED corrections to the hyperfine
the self-energy diagrams is evaluated aroBRdE,—w. The  strycture splitting.

leading term of this expansion cancels with the correspond- Tphe decomposition of the irreducible part of the self-
ing product of lower order term§")S{. After the transi-  energy wave function correction term is depicted in Fig. 3.
tion e—0 the remaining term formally contains a derivative The divergent terms are these with zero and one interaction
of the self-energy operatd71]. In an equivalent manner, in the binding potential present, below referred to as “zero-
this term can also be obtained as a perturbation of the bindyotential term” and “one-potential term,” respectively. The
ing energy caused by the influence of an external potentiadharge divergences cancel between both terms, as we are
[22,72,73 or by employing the two-times Green’s function going to show. In addition, a mass counter te¥m has to be

method[65]. It reads subtracted to obtain proper mass renormalization similar to
the case of the free self-energb] (for our schemes see also
9 Ref. [76]).
_ 0__ .
AESE’Wvaed_<an Y 2B - an><an|e“ Alan) Throughout our work we employ the Feynman gauge,

which yields for the free self-energy operatd = p, here,

(31) the dependence gmis not explicitly indicated

for states which are only degenerate in their magnetic quan-

tum number, i.e., in particular for thes], state. For the E[O](E):—iezf
vacuum polarization wave function correction, no depen-

dence on the energy of the state under consideration exists, ) _ ) o
except in the electron propagator itself which is mediating(We denote the number of interactions with the binding po-
between the magnetic interaction and the vacuum polarizd€ntial by superscript numbers in brackgt$his operator

tion vertex. Any expansion similar to the self-energy doescontains a mass and a charge divergence which are also
not yield any derivative terms, and the reducible part ofPresent in the expressid@2). The mass renormalized free
S e is completely cancelled by the produgt)s( and ~ Self-energy operator readig4]

has not to be considered further. The index “irred” will s [0] gE)=2[°](E)—5m

therefore be dropped in the following on vacuum polariza- mass re
tion terms. 2

p—k+m, 1
i 2272
(2m)* (p—k)*—mg "k

(32

£
= - (h—me)| A+2
2
B. Divergences (4m)
The expressions$21), (22), (31), (28), and (29) for the n p 14+ Z_Pln
diagrams 2a), 2(c) and Ze), 2(b), and 2Zd) and Zf) are only 1-p 1- p
formal. They contain divergences and therefore require
renormalization. Our way to deal with the divergences of the Mep [, 2-3p
. . + 1 Inp|t, (33
self energy expressions is to evaluate the bound-state elec- 1-p 1-

tron propagators into powers of the nuclear binding potential

and to isolate the mass and charge divergences which ayghere

present in the lowest order terms only. These terms are

treated analytically in momentum space, and after cancelling __ (P—me) (P+me)
the divergences between different diagrams a finite result is mé '
obtained. The finite higher-order terms are evaluated in co-

ordinate space by employing the full yet unrenormalized exBy A =2/e— yg+ In 47 we denote the ultraviolet part of the
pression and subtracting the divergent lower-order parts ikcharge renormalization constant after dimensional regular-
the calculation. The procedure outlined so far coincides wittization wheree denotes the dimensional regularization pa-

(34)
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rameter andyg is Euler's constant. The full expression for , ousbind ) )
the charge renormalization constahtreads(e.g., Ref[63)]) (p— me)a(p):j dp’ ¥ Vae(p,pHap’) (41
J2(E a i inni
7, 1= (E) = Y [A+4+41np] ' the cancellation betwe_en the terms cqntalrzbngw Egs.(36)
ap ; A b0 and (39) becomes obvious when adding these terms. In the
:me d

following, we denote therefore by3[(E)—ém and
I'lSl(p,p)) the expressiori33) and the zeroth component of
where the logarithmic term represents the gauge-dependefifl- (38) with the divergent part due ta omitted (see Ap-
infrared divergence which would be absent in the Fried-Pendix A. The other components &1% (p,p') will be dis-
Yennie gauge but can be shown to cancel in the total expresussed together with Egg ve.

sion for the wave function correction. Therefore, care has to The remaining contributiol\ ESZ3)e |eqis obtained by
be taken comparing our intermediate numerical results witlemploying

other calculations. However, the final value MEsg \wr irreq

(39

is well defined, and we will not consider the infrared diver- SE2(E)y=3bounqE)—[3O(E)+3H(E)], (42
gent term any more in the following. The expression for the
total zero-potential term reads where all3 on the right-hand side denote unrenormalized
operators. The divergences present in the expres2@rare
AEL;O,%,WF, e 2(an| YOS (E)|Sa,), (36)  thus explicitly subtracted and therefore cancelled.
The complete finite expression for the wave function cor-
where rection reads
|say)= >, l(qu(é)qleg Alan) _ (37) AEse wr, ired 2(@n| Y[R (Eq) — om
9 n— a / ’ =
Eq™En +TII(p.p)Ve(p,p) +S22(E,) ]| ay).

To express the one-potential term, it is advantageous to (43

introduce the vertex operator for a free electron, i ]
The reducible part of the self-energy wave function cor-

dk p—K+m rection, Eq.(31), also contains an ultraviolet divergent part
FE?](p,p’)= —ieZJ R 5 e2 which is cancelled by a similar expression present in the
(2m) (p—k)*—mg vertex correction term, Eq21). In addition, an infrared di-

vergence exists which mutually cancels as well. These two
(39) terms are therefore evaluated together. Both contributions
are decomposed into a zero-potential term with the full elec-
tron propagators within the loop replaced by free ones, and
A representation of', in Feynman gauge is presented in the remaining “many-potential” part.
Appendix A. To obtaing= [ . (E)/JE, Eq.(33) is differentiated with
The complete expression related AES] e oqCan be  respect to p=E which yields
expressed as

L Pkem 1
yﬂ(pr_k)Z_mg yvk2'

. 9301 (E) e? p 2—p

AE[SlI%,WF, ired— 2<an|'yOFE)O](pyp,)VEwg(pip,)l5an>1 (39) JE - (477)2 Yo A+2+ ]__p 1+ 1__p In p)
where Vgg‘g(p,p’) den_otes the Fourier transform of the +£ __2%E (3—p+i|np)
nuclear binding potential, m2| (1-p)? 1-p

. Za 8E 1

bind — + +

Vnuc(q) szqz me(l_P) 1 1_p|np ] (44)
n 1 Rod 2 hind oy | _ Za The energy-independent mass renormalization term has not
o2)o O Jo(An)| Viye(r) r to be considered in this differentiation. However, again this

expression contains the ultraviolet part of the renormaliza-
(400 tion constant which can be explicitly separated,

with g=p—p’,q=]q|,r=|r|. Ry denotes the smallest radius

2
value, for which no difference between the employed poten- , g[o] = [a OiE[O] E a.)— € A
tial for an extended nucleus and the Qoulomb potential is SEWFred n Y GE =R (B) ee | ] (4m)?
found. According to the Fourier transform of the Dirac equa- "
tion X(aylea-Ala,). (45
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It is cancelled out by the part of the vertex correction with (an|U\L}SW¢q)(®q|ea~A|an)
the free vertex function present, AEvp =2 2 E_E
quEn " a
AEY = (a,ley°T (p,p)A(p,p")|an) 5 (2| UVS | @g)(Pglea- Alay,)
+
=(ay|eyTR(p.p)A(p,p")ay) g En—Eq
Eq#En
2
e
+ @ )2A<an|ea-A|an>, (46) :<an|U\Lf§h| 5an>+<an|uvg(|5an>
aa
= AEVE et AEVR we- (49)
where A similar expansion is applied faXEyp . Note, that the

terms containing one interaction with the nuclear Coulomb
i field vanish due to Furry’s theoref@0]. The leading term is
A(Q)= Equ\g(q)x B (47 known as the Uehling part of the magnetic loop. In momen-
tum space, it reads

is the Fourier transform of the magnetic potential apelp AESS‘,}OFJ dpf dp’as(p)[ — eI\ |p—p’[?)]
—p’. The terms containing interactions with the binding po-
tential AESE L and AESZ Yk o cONtain no ultraviolet diver- Xey-A(p—p')ay(p') (50)

gences and are evaluated similarly to the irreducible wavghere the (already renormalized polarization function
function correction by subtracting the unrenormalized free_ e2I1Y(|p—p’|?) accounts for the polarization loop in the

qontributions from the also unrenormalized full contribu- photon line[91]. It is given by

tions, Eqs.(21) and(31). ) ) ) )
Techniques for removing the divergences present in the e (* q

vacuum polarization expressiori28) and (29) exist on a e’II"*\(g?) = - mjl dt t2_1<¥+ Q) G2+ 4mat2

broad scale, as the modification of the photon propagator due 6(51)

to a vacuum polarization loop is a rather common feature

within QED. The potentialyp present in Eq(29) is the  \hich reads for smal

same as that appearing in QED calculations related to the

2
Lamb shift and therefore its already renormalized expression 211"\ g2) = — e_2 i q_2 - q_2 +0(q°)
can be taken from other woifl66,67,77,78 The charge di- 47215\ m2) 140\ m? '
vergence is introduced by the leading term of the expansion (52

in the nuclear potential. One standard technique to remove it

is to apply a Pauli-Villars regularization techniqRef.  This leads to a value oiESSf‘pOFO for the case under con-
[79], see also Refl80]). The potential remaining after the sideration here, as becomes clear from the Fourier transform
charge renormalizationJ\L}Sh, is commonly termed Uehling of the potential of a constant external magnetic field, Eq.

potential[81] and reads (47), which leads to

e2 22 o0 0
Ue Pt ’
Uyp r)=—Z(E) §Jo dr'r'p(r )L dt

(2 _ —2(r=r"Dt_ a=2(r+r't
X ( 1+ i) t-1le © , By partial integrationAEyp =0 is obvious, and therefore
2t?) 2 rt also the vanishing contribution @ . The remaining part is
(48) finite except for a spurious gauge dependent piece which also
can be shown to vanish by applying a proper partial wave
decompositior] 78].

i _
AESS',’poFgf dpf dp’as(p)[ —e*1"™\|p—p’|?)]

X ey [V,6%(p—p’) X Blan(p'). (53

Ueh

wherer =|r|,r'=|r'|. Zep(r') represents the charge distri-
bution of a spherically symmetric nucleugdr’p(r')=1.
Numerical evaluations can be found in numerous w82s-
86], and all modern calculations of vacuum polarization con-  After removing all divergences, we present the formulas
tributions to one- [66,67,77,87 and few-electron actually employed in our calculations here. We start with the
[71,78,88,89 Lamb shift calculations employ this form. contributions toAEsg wr,ires Which are closely related to
The remaining part, the Wichmann-Kroll potential, alsothe expressions for the self-energy correction of orden
contains a spurious gauge-dependent pi8Zgwhich can be  the Lamb shift, presented in R€f74]. From Eq.(33), the
easily removed by the partial wave expansion common irtensor structure OE[R?](E)—ém can be expressed @fp)
that evaluatiorf66,67. Equation(29) is decomposed into +pb(p). The wave functiora, reads in momentum space

C. Calculation formulas
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THOMAS BEIER et al. PHYSICAL REVIEW A 62 032510

p (p)Xm(f)) Equation (56) can be evaluated numerically employing a
an(p):;f dre PTa (r)= on “ A Gauss-Legendre quadrature.
(27m)%? Qa (P)X(P) Equation(39) for AES] e reqiS evaluated by
(54

where p=|p|, P(p) and Q(p) depend only on|p|, and

m ~ . . . .
XI(P) I thels coupled spin-anguar unctlon in moment  AEL) =2 [ dpdp’al(p) 1" ofa(p.p' co5?)

+pfo(p,p’,cosd) +p' f5(p,p’,cosd)

+pyop’ f4(p,p’,cosd)

SR, e 2f IPPIC(Rae)+D(PIR(P)] (56 +f5(p,p’,cos9) IVE"(p,p’) San(p’),
(59)

- pxT(p)=—x"(p), (55)

after carrying out the angular integrations. The functions
C(p) andD(p) are given by .
whered denotes the angle betweprandp’ andV2"%(p,p’)
is given by Eq.(40). The f; are abbreviations for the coeffi-
C(p)=Pa (P)Psa, (P)~Qa (P)Qsa, (P) (57 cient functions in Eq(A1) in Appendix A. The spherically
symmetric nuclear potentiMﬁ[j‘cd does not depend on angular

D(p)=E[Pa (P)Psa (P)+Qa (P)Qsa, (P)] variables except co$ and therefore the tensor structure of

Eqg. (59) can be reduced into an expression of functions of

1
an(p) Yol RA(P.P') 82n(p') = 7—(f1(p.p’,COSI)[ Py (P)Psa (P')+Qa (P)Qsa (P')COSH]+ f2(p,p’ cOS)

X{EqPa (P)Psa (P')+PQa (P)Psa (P')+[PPs (P)Qsa (P')
+EnQa,(P)Qsa,(P')]cosd} +f3(p,p’,cOSI){EnPa (P)Psa (P)+P'Pa (P)Qsa (P")
+[P'Qa, (P)Psa (P')+EnQa (P)Qsa (P')1cOS} +4(p.p’,cOSH{EZP, (P)Psa (P')
+PEnQa (P)Psa (P")+P'EnPy (P)Qsa,(P)+ PP’ Qq (P)Qsa (P")

+[PP'Pa (P)Psa, (P) +PENPa (P)Qsa (P') + P EnQq (P)Psa (P')

+EfQa, (P)Qsa,(P)]cOs8} + f5(p,p’,c089) [Py (P)Psa (P')—Qq (P)Qsa, (P')COSH]),

(60)
for the 1s,, state. From Eq60), a numerical integration of E¢59) overp, p’, and cosy is possible employing some variable
transformations suggested by BlundéPR]. For the self-energy contribution to the Lamb shift, a related decomposition was
also recently performed in R€f93].

The remaining contributiorh EESEYZ\,]\,FYi”edis obtained as specified by E@2). Performing the integrations over and the
angular part ok, Eq. (22) reads

(an| e (ky) C'(Y) | D (P p| a,.j(kX)C'(X)| San)
En—Ep—SgnEp)k ’

et
AEce e~ oy 3, (21+1) [ kS (61)
2 =0 P

wherek=[k|,x=|x|,y=|y|. A spherical wave expansion was wherej, denotes a spherical Bessel function aigx) is a

employed according to spherical tensor operat¢e.g., Ref[94]), defined by
sinkly—x)) < ~ ~ .
— =2, (21+1)C'(y)- C'X)ji(ky)j (kx), yp=
Ky = Ch®)=\ oz Y10 63
(62 m (21+1) '
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Ylm()“() denotes a spherical harmonic. The scalar product bd22) is replaced by that for free electrons. In the final result
tween two tensor operato@()?) ) C'(f() reads the sum over the spectrum of the bound state Dirac equation
[

S| Pp)(P,| is replaced by one over the spectrum of the

~ A ~ A Dirac equation without an additional potential ,
CH-CR= 3 (~1CHHIC X (69 q potential| o) (|

= where we use small Greek letters for denoting the eigenfunc-
This scalar product is implicitly assumed in all formulas with ions of the free Dirac Hamiltonian. In the same manner, the
C' present in two matrix elements. contribution for the free vertex patthe one-potential terin

To obtain the unrenormalized contribution from the termiS Obtained by replacing the bound-state propagators in the
due to the free self-energy operator, a similar evaluation i$ull vertex expressioisee formula78) below] by free-state
carried out, but the bound-state electron propaggtdn Eq.  Propagators. The total result for the subtraction scheme reads

_ e < (anlatj(ky)C'(y)| @)@ plj1(kX)C'(X) .| San)
AE{Q,E?\}VF,irred:—ﬁI_EC)(2I+1)fdkk{% n En_E:_Sg;;(Ep)k ul 08n

s (anla®ji (ky)C' (Y| er){@ili1 (k0 C' (%) | 5an)
r En—E;—sgnEpk

B (@n]a*ji(ky)C'()| ¢s)(@sl Vi o) (@il i1 (kX) C'(X) @, | 52p)

F(s,r)¢. 65
[En E.— SOMELKI[E,—E, ~ SO(E, K] (51 (69
The functionF is introduced here to denote part of the energy denominator
k
F(s.r)=1+[sgrE,)—sgnEy) lz—¢ - (66)
r S

If E, represents the lowest positive energy eigenvalue of the bound Dirac spectrum, the further evaluatio66f i5q.
straightforward employing standard methods. In the present work this is the case and we do not have to consider any
singularities caused by zeros of the denominatofaj#|1s;,,), due to positive values dE, with Eq<E,, singularities on
the integration path fok appear. The corresponding principal value integrals can be carried out employing a polynomial
approximation of the numerator for obtaining the real part of the contribution. The imaginary part which is also present in such
a case does not contribute to the energy shift but only to the line width of the excited state in a one-ele¢Ref j60], and
references therejirwhich is not under consideration here. We will therefore omit the corresponding discussion here and also
in the related cases of the otheintegrals of this work.

For the expression in curly braces, we separate radial and angular integrations and carry out the latter utilizing the graphical
angular momentum coupling scheme as presented by Lindgrain[69,94,93. Writing down an explicit formula containing
all details, the wave functioa) also has to be considered. The angular structure is identical for the three sums over the states
present in Eq(65) and yieldsk,= —1. Equation(65) can therefore be written as

_ e’ [eB,| —
AE[STE,z\/]VF, irred:_F(T)l_Eo (2|+1)J dkk Es
i Eq#En
X[ AN, p;DS(N,p,p,a;k, 1)+ Agdn, ;) VE(n,p,p,g;k,1) + AN, p; 1) VZ(n,p,p,g;k,1)
+Adn,p;)V3(n,p.p.a;k, D+ AN, p;)VA(n,p,p.a;k,D]
(free) 1

0
2 ([EEJEE —sgiE kAN

2Kq R(n.q) 2 1
drg— 1D 2 (E CE[E,—E,—sgnEy K]

DS, sk, D+ Asen, Vi r,gik, )

+ AZdn, DV rgk D+ ASnrDV3(nrr,gik, )+ Adgn D VA(nrr,gik, D ]

(freg)

B 2 F(s,r)

0 . .
& (Ey Eg(E, E.- SOUEJKIE, E,—sgrE k] s Ml AmSnaich

+ALdn,r;DWn,sr,q;k 1) +ASLn,r;DW3(n,s,r,g:k, D+ A3dn,r;HWe(n,s,r,q;k,1)
+ AN, DWAn,s,r gk, D]t (67)
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TheT apgular factorsdge are given in Appendix B. For the AE[sOé,ve=<an|970F[£](pyp')'A(p,p’)|an>

radial integralsk, S, 7, V, and)V, expressions are presented

in Appendix C. For the last term containing the additional :esj dpf dp'g(p)

interaction with the nuclear potential, no particular angular "

factor occurs as the spherically symmetric poter\ﬁ%ﬂ‘c" de- X {9,(p,p’,c0s9) + P[Pga(p,p’,cosd)

mands strictly identical angular quantum numbersgdgand B 2

r: +p'gs(p,p’,cosd) ]+ p'[pga(p,p’,cosd)
The sums over intermediate bound and free states are car- ‘o , 9]+ , 9)

ried out by generating a complete set of intermediate states P’0s(p.p’,cos?)]+pge(p,p’,cos

utilizing the space-discretization method of Salomonson and +p’'g7(p,p’,cosd)+ pw’
Oster[96]. The functions obtained by this method are given . , )
on a few finite sets of grid points only. The integrations are X gg(p,p’,cos)}-A(p—p)an(p’), (70

also carried out on the same grids, if the grid sizes prove t?/v
be sufficient for an accurate calculation which is controlledtions in Eq.(AL). However, the evaluation of EG70) is not

by extrapolating the number of grid points to infinity. For as straightforward as that’ of E69) as the angular depen-
highk, the spherical Bessel functions are strongly oscillatingdency is contained in the potentid(p—p’) as well. For-
and thereforg the grid-valued_ functions have to be interpoma"y’ A(p—p') is given by Eq.(47). To obtain an expres-
lated to continuous space using Lagrange polynoniig$  sjon suitable for numerical evaluation, a Gaussian cutoff is

here theg; are again abbreviations for the coefficient func-

to obtain the proper values of the matrix elements. introduced in coordinate space

The outerk integration is handled numerically, using
Gauss-Legendre and Gauss-Laguerre quadrature formulas. r— limre=(elrl2) (71
Finally, the sum ovet is carried out by evaluating a finite e—0

number of summands and performing a polynomial expan- | . L

sion to infinity. For the correction under consideration here,WhICh leads to a smoothing in momentum space

the summands up tb<30 can be evaluated without prob-

lems for most(except very lowy Z. A(q)=
Now the different contributions of AEggye w205

+AEsewrred are analyzed. The term which contains the

derivation of the free self-energy operattx[/(E)/9E, ex-  The value ofg is then chosen to be small enough to guar-

hibits a tensor structure similar to that®!(E) — smitself, ~ antee homogeneity of the magnetic field over the extension

! e (ld/e)’gxB. (72)

of the ion.
The exponential in Eq(72) can also be expressed in
o301 E terms ofp, p’, and cosy (q=p—p’). The complete angular
>k (B) = Ja(p) +p&b(p) +v%b(p). (69) dependency can be separated out by using
JE JE JE
, def
e (P=p'li0” — veRp,p’ cos), (73
This leads to and

o

VeR(p,p’, cosd) =D, (21+1)VE*¥(p,p’)C'(p)-C'(p'),
AE[soé,WF,red:<an|ea"'°\|"31n>f dpp2 PP =0 PP P P

(74
J
X [Pgn(p)—an(p)]% where the evaluation coefficients read
1
+{Enl Pgn(p) + an(p)] V(p,p’)=1% f dcos9VeA(p,p’,cosd)P(cosd).
-1
db(p) (79

+2pP, (P)Qa (P} — =
P, denotes the Legendre polynomial of ordemlhe remain-
ing part of A is linear inp andp’ and enters Eq(70) by
+[P2 (P)+Q2 (p)Ib(p) (69  simple vector multiplication. Thus, Eq70) contains only
E=Eq terms linear inp andp’ and expressions ¢, p’, and cos).
The angular integrations are again carried out employing the
graphical angular momentum coupling scheme mentioned al-
[cf. Eq. (56)], where all angular integrations are carried outready[69,94. A detailed derivation is given in Ref97].
in Eqg. (69). This equation is then numerically evaluated simi- The remaining integrals over, p’, and cos) are evaluated
larly to Eq.(56). AES] . reads numerically.
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The expressmnsAE;El\,]e and AES>E1\,]\,F reqare obtained in (anlyo[aE(E)/aE]E:En|an) is obtained by replacingsa,,)

the same manner aSE[SE,WF,red namely, by subtracting the with |a,) and differentiating with respect to the energy of the
unrenormalized free parts from the corresponding unrenorstate under consideration. This holds true for both the bound
malized bound expressions. From K1), and the free expressions, and therefore

2 (an|a*j(ky) C(Y)|(Dp><q)p|ll(kx)c |an>
[En—Ep—sgnEy)k]?

AESEWFred—<an|ea A|an>>< 2 (2|+1)f dkk|

B <an|a“j|<ky>c'(9>|qor><<pr|j|(kx>c'<i>aﬂlan>] 76

r [En_Er_SQr(Er)k]z

As already mentioned, the first term is infrared divergent o0 andw =0, if the energy of the intermediate stateoincides

with E,,. A similar term with opposite sign occurs from the vertex term which will be discussed next. Therefore the sum of
both terms is infrared finite. In performing their numerical evaluation, we explicitly exclude the termks=adtjp=0 from the
calculation. The detailed decomposition of the matrix elements if{/&yinto radial and angular parts is rather similar to that

of Eqg. (65). A number of simplifications occur, as the magnetic interaction part is totally factorized out. The remaining product
of two matrix elements is identical to that of the self energy of owdevhich has been considered bef¢r&,98. Explicitly
displayed, the first product of the matrix elements in &) reads

(@] a@]1(ky)C' (W) )Pl (kX)C'(X) avlan) = AN, pi)S(N,p,p, K, D + A, p; DV, punik )
+AZdn,p;HVA(n,p,p,nsk, D+ A3, p;1)V3(n,p,p,nik, 1)
+ASn,p;HVH(n,p,p.nik, 1) (77

and the second one accordingly, wiphreplaced byr, and free instead of bound-state functions employed in the radial
expressions fos (C3) andV' (C5—(C8). The angular factors are the same as those inN&&. They are given in Appendix
B. Note, that the sum oveb, in Eq. (67) is replaced by the state under consideratimy) here.

The vertex contribution is obtained by evaluating E2fl) in a manner similar to Eq22),

(anla”ji(ky)C'(y) | @g)(Pglea- Al D )(P|a,ji(kx)C'(X)]an)

[En— Eq_Sgr(Eq)k][En_ Er_Sgr(Er)k]

2 ee)
N (2|+1)f dkk> F(qr), (79
A7 =0 q,r

Replacing the magnetic vector potential by the nuclear Coulomb potential and the sums over the bound state eigenfunctions by
those of free states, the one-potential subtraction term in@).is also obtained. The functidf is given by Eq.(66).

Equation(78) is infrared divergent in the same way as E@6) but with different sign. The two divergences cancel
therefore and the sum of Eq§:6) and(79) is infrared finite. Both terms contain ultraviolet divergences which are removed by
subtracting terms with free electron propagators instead of the bound ones, as discussed in the previous section. The final
expression for evaluating the many-potential part of the vertex correction therefore reads

S i 1% _ . -
( +1)f dkk[E (an|a“ji(ky)C'(Y)| P g){(Pglear AP (P |a,ji(kx)C'(X)|an)

[En—Eq—SQN(Eq)K][E,— E, — Sgr(E, k] F(a,r)

B> (anla“ji(ky)C' (V)| ep){oplea Alos)(@dla,ii(kx)C'(X)an)

[E,—E,— SOrE, K] En— Eo— S EoK] Fp.9)]- (79

In analogy to Eq(67), this expression can be explicitly written as
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_ e’ (1 -
AELGY = - m<§e82)26 (2l +1)f dkk

F(q,r)R(q,r)
quE [En—Eq—SgME,KI[Ey—E,— SgnE, K]

X[AYe(n,q,r;)S(n,q,r,n;k,1)+ALe(n,g,r;)Vi(n,g,r,nk,I)
+A2.(n,q,r;HV3(n,q,r,n;k, D+ A3(n,q,r;HV3(n,q,r,n;k D+ Ade(n,g,r;HV4n,q,r.n;k,1)]

_”29'3) F(P.9R(P.S)
p.s [En_ Ep_Sgr(Ep)k][En_ Es— Sgr{Es)k]

X[ AYe(n,p,s;HS(n,p,s,n;k, N+ AYe(n,p,s;) VN, p,s,nk D)+ AZe(n,p,s;1)V2(n,p,s,nik, 1)

+A3c(n,p,s;HV3(n,p,s,nik, 1)+ AYe(n,p,s; ) VA(n,p,s,nk,1)] (80)

The radial integrals are given by Eq€3)—(C8). The angular coefficients were evaluated by Schnd@erand are presented

in Appendix B. In our numerical calculations, the expressi¢n8) and (79) are computed together within the outler
integration. The partial wave expansion is carried out in the same way as described for the irreducible part of the wave function
correction, taking into account that numerical stability is reached only<&0. ForZ< 20, however, a sufficient precision

could not be reached within thigange. An extension to highérs currently prevented by the numerical accuracy of our code.
Therefore the terms containing one interaction with the nuclear Coulomb potential were also subtracted frof6) Eqsl

(79 and separately evaluated. In terms of Feynman diagrams, this refers to an explicit calculation of the graphs shown in Fig.
4. The expressions for the diagrams under consideration are

2 oo

e ~
AR -2, 2 (2141 f dkie 2, (anla*]i(ky)C'(Y)] ee)(gslea Aler)

X (@i Vanel eu)(@ula,ii (k0 C' ()] a) G(s,t,u) (81)
(taking into account two equally contributing diagrarasd
2 o]

> (2I+1)fdkk
=0

42

w (anla”j(ky)C' ()| @) @5 Vanel e @i i1 (k) C'(X) .| an)
[En—Es—Sgr(Eg)K][E,— E;— sgr(E)k]?

AEL =2(a,|ea-Ala,) x ¢
SE,WF,red” nl €& n

F(st). (82

Equation(82) was obtained by deriving the last term of Eq. intermediate states. Here we employ free spherical waves
(65). The two arising summands are equal and thus wegiven by
present only the second of them multiplied by a factor of 2.

Equation(81) is derived from the last line of Eq.79) by 1 FE,K(pr)XT(F)
inserting one additional interaction with the nuclear Cou- ee(N =+ G o | (83
lomb potential. The structure of the denominator becomes IGe (POX=A(T)

quite complicated for the case of three intermediate states . .
. . . . . . Where « is the Dirac angular momentum quantum number,

and is therefore contained in the functi@{s,t,u) given in E—+ \/W
Appendix D. = NMe TP

The further angular reduction of Eq&1) and (82) is [E[+m
carried out in the same manner as for the corresponding ex- Fe (pr)= /—epr ii(pr), (84)
pressiong70) and(59), respectively, as the additional Cou- ' | E|
lomb interaction does not change the angular structure. In the

evaluation of the radial parts it is advantageous to perform _ /|E|—me .
the necessary integrations on analytically given free-electron Ge,«(Pr)=SgrE)sgrix) m|E| prji(pn), (89
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5 three spherical Bessel functions. Due to the analytical treat-
AE . X — + + ment of most of the matrix elements in E@8) and in the
oOF according expression fax E[le],WF,red the numerical stability
E,

E= is much better for highel which allows the inclusion of
n 1 more terms. With the described separation scheme, a proper
AE, AE ; ; ;
SE, wf, red SE, ve extrapolation can be obtained even in the cases of hydrogen
. _ and helium, where terms up te= 180 have to be considered.
FIG. 4. The terms O Ese,wr, req@Nd AEse vo Which are of first Let us now turn to the vacuum polarization expressions.
order in the nuclear Coulomb.potentlal. I%K?O, these terms are The Uehling potential contained in EG49) also represents
calculated separately to obtain a better partial wave convergencg, o major influence of the vacuum polarization on Lamb shift
AEmag denotes the matrix eleme(d,|ea- Alay). calculations. The first part of Eq49) is straightforward to
evaluate by carrying out the sum over the intermediate states.

| =]1/24 x| - 1/2, (86)  Note that the angular structure of the states has to be the
, same as that df,) (k= —1 herg which simplifies the cal-
I"=11/2—«|=1/2. (87 culation even further.

. . . The remaining part of Eq49) is of similar type. The
The summationss,;, which are due to the grid representa- potential, commonly known as Wichmann-Kroll potential af-

tion of a finite number of intermediate states are thus re-er its first investigators Wichmann and Krd®g], is ob-

placed by integrations. Furthermore, we also expand the StaLSined either in an expansion e which is not applicable
|a,) under consideration into free spherical waves, denote br the problem under consideration héga], or as a differ-

by (@ w). Expression81) therefore reads ence between the unrenormalized full expression and the

Q2 = also unrenormalized Uehling potential by which any diver-
AEH] =-2— > (21+1) gences cancel. This procedure is equal to the technique ap-
' 272 =0 plied for the self energy terms above and was discussed for
the vacuum polarization of order in detail in Ref.[67]. We
% f dkaf dsf dtf duJ dmf do’ present therefore only the final expression which reads
~ ez - . * .
X(an|w)wla i (ky)C'(Dlea(edeaAle)  URX)==—"— 2 (2],+1) fo dkjo(kx)
X Vitsleu){ulauii (k0 C'()|w )

X| 2 sgrE; NP, Jioky)|®, )

I,k

X(m'|an>G(s,t,u), (88)

and a similar expansion can be applied to Bf). The ra- ) bind
dial integration of a,|w) is performed numerically employ- 43 Y (sl 1KY @1, ) @t,l Viue| s,ic)
ESS>0 Ett<0

ing a Lagrange interpolation between the stored values of Es—E;
|a,) on the grid. To have access to all momentaof the

evaluation, the overlap integral is calculated for a grid of (91)
momenta, stored, and interpolated as needed.

The radial parts of the matrix elements containinfgand ~ Only electron-positron pairs contribute to the vacuum polar-
a,, consist now of a product of three spherical Bessel funcization loop, and therefore the sums owemndt can be
tions which can be further evaluated analytically. Employingrestricted to positive and negative energies, respectively, for
the point nucleus Coulomb potentialZa/r, this also holds ~ calculation purposes. An additional factor of 2 accounts for

true for the matrix element containing®™. As the de- this.

nuc - .« . .
scribed additional separation is performed for I@y the A remaining gauge-dependent spurious t¢8¥,99,100

nuclear size effect itself is small and the replacement of th&€an be shown to disappear for each finitg56]. In the same

actual binding potential by that of a point nucleus is reasonanner as for thé expansions for the self-energy contribu-
able. tions, the sum ovek is carried out to a maximum value of

The magnetic potential is treated in parts in momenturd Kma which includes bothkpax @aNd — kmax, and therefore
space, observing that the spurious term causes no Q|ff|cult|es. The. maX|ma}I.va.Iue
of | k| in our calculations permitted by numerical stability is
3 g about 30.
d*qe"a-A(Q)| ¢ (89) The potential correction is handled in a similar manner.
As shown already, the leading Uehling term yields zero for a
homogeneous external magnetic field. The remaining
“f daoPA(A){@s radial 1(A7)| ¢t radiad Wichmann-Kroll term is obtained in the same way as for
(90) Uyp by subtracting the unrenormalized free expression from
Eqg. (28). Carrying out the trace operation as well as the
for A given by Eq.(72). In the inner radial matrix element, angular part of thek integration and employing once more
ther integration can be carried out again over a product othe spherical wave decomposition, E@2), this leads to

<<Ps|a-A(r)|<pt>=<¢s
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2 E <q>q| @, I(kY)CI(9)|¢r><q)r|ea’ A|q)q>
q T

e? & oc _ .
AEylspot: T |Eo (21+1) J;) dk<an|a“]|(kX)C|(X)|an>[ E_E
e l= q r

Eq>0 E;<0

(92

(sl a,ji(ky)C' (V)| @) (@] ea-Algg)
B 2 2 - Es—E, ]

Eg>0 E;<0

Within the loop, the sums are again restricted to electron or positron states, respectively. In the partial wave decomposition
evaluation inx, the vectors ofx matrices present allow the coupling between states of diffexeim particular, x, = — x4

—1,kq,— kq+t1=:Kk_1,K0,x1, and accordingly fors andt. Furthermore, the ternru=0 does not contribute due to the
angular integrations which is also clear from intuitive reasoning. A simple vacuum polarization interaction is not expected to
change a vectorlike interaction into one with a scalar component. The final expression of the partial wave expansion of
AEVE 5ot then reads

e o ;l oo » - R
AEVE o=~ 2 X I2()<2|+1>f0olk<anlcm|<kx>c:'<x>|an>
K =Kk_1

X[ s s (D @1 (KT DD, WP, o|ea-Aldg )
q
E.>

r E _El‘ P
40 E <0 4% :

(93

(s, @1 (KY)C' (Y] @1 W @1, o[ € Al 0, )
a 2 2 : = ]

Es>0 E<0

where the summations over the angular quantum numbkease specified explicitly. From thé summation, onlyl=1
contributes due to the angular momentum summation rules, and the final expression reads

Al

o} K1
po= 3| 2 > 2 3] dkQ[(n,k, ). (n,ka )ik, =1]
rs K=ilK’:K71

AEl

x[ Sy RO fn k=Dl x), gkl =1]
q r Eq,K_Er,K’ "

Eq>0 E,<0

+ Adp(Ka .k 1= 1)Q[(, k), (1K )ik = 1]+ AJp(ka .k 1= 1) Q[(, 1), (1, " )ik, 1 =1]
+ Alp(Ka i,k 31 =1)QL(r, k), (d, k)i K, =1]}

- z > [(SE+E(:K)]{A\1,P(K%,K,K';|:1)Q[(t,,<'),(s,,<);k,|=1]

t
E>0 E(<0

+ Adp(Ka i,k 1= 1) QL(8, 1), (t,k" )K= 1]+ ATp(rq i, k31 =1) Q[ (5,K), (1, k)i K, = 1]

+ AVp(Ka k1= 1) Q(t, k"), (5,k);K, I = 1]} (94)

The angular factors are given in Appendix B and the radiamentioned above, the total Eyp ,, contribution is rather
integralsQ and R are defined in Appendix C. The further small for low Z and thus the total precision of our calcula-

evaluation of all radial integrals is carried out in the samejjgns is hardly influenced by this drawback. We will point
manner as in all other cases. Again, valued«jt<30 are gyt this problem once more in Sec. V.

numerically meaningful for almost all except very |&vFor
Z<20, however, the convergence becomes very poor.
Higher || are prevented by the numerical accuracy of our
present code, and f&<10 almost no meaningful value is Up to now, we have dealt mainly with the QED contribu-
obtained at all. However, contrary to the vertex contributiontions of ordera/ 7 which form the major topic of this work.

IV. OTHER CONTRIBUTIONS
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There are several other contributions beyond the relativistic

spin-orbit interaction which have to be discussed, at least

briefly. These comprise nuclear size, shape, mass, interna + =
structure, and also QED effects of higher order.

A. Nuclear properties

The fini | ize lead deviation f th FIG. 5. Nuclear polarization correction to tige factor in terms

. e '”'te. nuclear size leads 1o a deviation irom the anayy Feynman diagrams. The heavy double line represents the
lytically derlved.formula(7)' for. the g, factor of a bou.nd' nucleus. The nuclear polarization can be envisaged as a modified
electron even without considering other effects. The bmdmgse,f_energy_

potential is slightly altered due to the extended charge distri-

bution W|th|p_ the nucleus. The size of the nucleus is comiiher an infinitely heavy nucleus or to a proper separation
monly specified by into center-of-mass and relative coordinates. Even the latter,
112 however, yields a value of the finite nuclear-mass correction
rrms=<r2>l/2=( f drr"'p(r)/ f drrzp(r)) , (95  wrong by more than 50% in Lamb shift calculations on the
the lowest lying states in heavy hydrogenlike i¢©85,1084.
An equally simple estimate for thg factor can thus not be
expected to yield a higher accuracy. However, up to now
gwere is a lack of calculations beyond expansiong rZ«,

wherep(r) is the charge distribution of a spherically sym-
metric nucleus. From Lamb shift investigations it is known
that not only the size of the nucleus has an effect but also it .
shape[101] which demands a realistic description of the a_nd the mass-r_atlo glectron—_nuclermrg/MN. These expan-
nuclear charge distribution. We employed the two—paramete?‘Ions were obtained in 1970 independently by Gr¢839

Fermi distribution for evaluating the finite size correction to ut_|l|zmg an expansion of the corresponding two-particle
" given by Eq.(7), which reads Dirac equation, and also by Faustgil], who employed an
9 9 y EQLD, effective potential method. Their results were reproduced by

Close and Osborf#2] starting from a group theoretical ap-

e———-. (96)  proach. o
1+4elr-ola The recoil contribution known so far reads

me \ ?

My
1/m,\ 3-2Z[m,)\?
“3lmy T e My |

(99

ZePZpFerm(r) =Z

The index “2p” denotes “two-parameter” & andc), where ,
c is the half-density radius and is a measure for the skin 9j recoi= (Za)

thickness, related tb=4 In 3a. t indicates the radial distance

over which the charge density falls from 90 to 10 % of its o @

value atr =0. N is a properly chosen normalization constant. +(Za) P
To a good approximatiofil02],

i
M_N —(1+2)

7
2_2 2 — —a’q? (97)  This equation is exact to ordersZ¢)? (e/m), and

==r
3™ 3 (me/My)?. The last two expansions are reasonable also for
high-Z systems. For these systems, the expansion into pow-
ers of Za) can only be considered as an approximation
( wzaz) -1 which serves as an order-of-magnitude estimate.

C

and

(98) Another feature of the nucleus is its internal structure. The
nucleus can be envisaged as consisting of protons and neu-
trons which in turn are formed by quarks and gluons. This

hold. Further details are given, e.g., by Ref03]. composite object can undergo a virtual excitation and deexi-

In strong-field QED calculations it can be seen that thectation exchanging two photons with the propagating elec-
effect of nuclear size depends mainly on the radius chosetron as depicted in Fig. 5. The nuclear polarization plays an
and only little on the actual model employgtD1,104. An important role in muonic systems due to the large overlap of
exception is hydrogenlike systems wiZh>100[101]. In this  the muonic wave function with the nucleus and, in addition,
case higher moments of the charge distribution have to belso because the transition energies in a muonic atom are of
considered at least approximatively, see, for instance, theimilar size as the excitation energies of the nucleltg).
evaluations performed by Shabdew?2]. For the present in- In electronic systems, evaluations of the nuclear polariza-
vestigation these considerations are not necessary and tkien effect have been carried out only as corrections to the

QED calculations are thus carried out employing a reasonQED Lamb shift predictions for the lowest-lying states of

able but easy to handle charge distribution such as the hdweavy few-electron iongl,107-110. Here a technique was

mogeneously charged ball as is utilized in the present studyleveloped to envisage the whole process as an additional
Another effect of interest, in particular for lighter ions, is effective self-energy interaction by inserting a nuclear polar-
the finite nuclear mass. In calculations of strong-field QEDization function into the photon propagator present in the
the electromagnetic potential of the nucleus is normally conself-energy operator, Eq23) [111,113. For heavy nuclei,
sidered as time independent and external, thus referring tthe calculation yields an order-of-magnitude value of the

N= 5

4ac c

032510-15



THOMAS BEIER et al. PHYSICAL REVIEW A 62 032510

same size as the QED corrections of ordéyor even less in 1

208 Pl where several nuclear polarization contributions A(lz)zz (Refs.[26,27]),
can be shown to nearly candel09]. However, due to the

uncertainty of nuclear parameters and also due to the restric-

tion to the lowest lying excitations in all calculations carried @197 (1 3
out so far, the nuclear polarization correction is supposed to Al _m+ 7 ~3In2]42)+ 25(3)
have an error margin of up to 50% of its value, thus restrict-
ing the precision of the whole Lamb shift prediction. =—0.328478965 ... (Refs.[31,32)]),

For the QED corrections to the Zeeman effect under con-
sideration here, nuclear polarization calculations were not 3 100 1
yet carried out. Their result is not expected to be larger than A(G)——wzg(a)— §(5)+ as+ —In42)
the bound-state QED contributions of order ¢r)? and also 72 24
to have an influence on the total prediction value of even less 1 239 139 208
than that in Lamb shift calculatio4.13]. Their calculation 547 2In?2|— TGOWM_ l—gg(s)— 97 ’In2
becomes more urgent as soon as there are complete calcula-
tions of all QED effects of orderd/)? to theg factor, at 17101 28259
least for obtaining an order-of-magnitude estimate. At + 810 ™" 5184
present, we are going to neglect completely any nuclear po-
larization contribution in our further discussions. =1.181241456-- (Ref.[33]),

B. QED effects of higher orders A{)=—15098(384) (Ref. [34]), (103

The main goal of this work was to perform a complete
calculation of the QED binding effects of ordef s, corre- ~ where J(k)=X/_ 1(1/nk) and a,=3,_,[1/(2"n%)]. As al-
sponding to one internal photon line in the correspondingeady mentlonedA1 represents 891 Feynman diagrams.
diagrams in Fig 2. However, the sum of these diagramd heir analytical evaluation with modern algebraic computer

forms only the second coefficient in the expansion programs has just begun, and the error specified by Hughes
) 3 and Kinoshita is a rather conservative error margin of the
o o o . . . >
i (2)=2/cO1+c@ &)y cw[ &) fco & numerical calculations carried out so far, according to the
135172 T T T authors.

Additional contributions to the factor of a free electron
(100 result from nonelectronic QED contributions, in particular
vacuum polarization loops containing muons and tauons,

which contribute 5.442 10~ *% vacuum polarization loops

containing hadronic particles, contributing 3.284(54)
whereC(® contains the Dirag factor of the free electron as %1012 and weak interaction effects at a level of 6

well as the relativistic spin orbit coupling contribution, Eq. x 10~ 14 [34] within the standard model.
(7), due to binding and does not comprise any quantum elec- From these representations it is clear that e@e¥ can

4

()]t I
a

trodynamical correction. It is given by be written as
CO=1[1+21=(Za)?. (101) Cc®)=A®) + QED binding effects. (104

Expanding the QED binding effects into a power series of
The notation adopted here is that of RefS0] and[114],  (Za) yields the expression obtained by Grotch as the leading
where QED corrections to the free electrgtiactor are de- term

noted by
c<2>(2)— G (105
_ AT B G R N 12 |
gfree—Z 1+A1 ; +A1 ; +A1 ; +A1 ;
In Fig. 6 we display the QED corrections of ordet/¢r)>.
1., (102 These or corrections of even higher order have not yet been
calculated considering bound state QED. To have a reason-

able starting point for this, at least all QED corrections of

ordera? to the Lamb shift should be known properly, a task
The A, refer to diagrams with only electron lines presentwhich is still pendind 1,115. An estimate for the total order
[114], i.e., no muonic and tauonic lines and no strong andf magnitude of this correction can be obtained by observing
weak interactions. The coefficients read that all coefficientsA(lz') in Eq. (103 are of magnitude 1.
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As pointed out, all calculations were carried out in the
@ Feynman gauge employing the renormalization procedures
1 mentioned above. The error margins specified are purely nu-

merical resulting from the integrations over the photon mo-
{ 3 @: > mentumk and the partial-wave extrapolation ovieor ||,
{M {m - @ respectively. Error propagation is always carried out by lin-
early adding the errors in order not to underestimate any
s overlooked systematic numerical effect.
%w { {@ {:v@ <H:9 {;% {@w The self-energy contributions have also been calculated
s by Blundell et al. for a number ofZ employing a point
nucleus[50]. We include their values in our Tables | and Il

for comparison after multiplying them accordingly by
(2al ), as they were specified in terms 6f(Z«a) in Ref.
[50]. In that work, only up to six significant figures were

displayed.

Table | displays all contributions t9;se wr,ireqfor a few
Z, calculated by utilizing Eqs(56), (59), and (65). The nu-

merical error resulting from the terms with zero and one

s nuclear-potential interaction is rather small for |&vand
b empirically even an anticorrelation between the behavior of
w© both terms is observed, if the number of grid points in phe

integration is altered. Therefore, the error margin of both

o . terms is combined. The remaining tergjsZlye ireq iS cal-
culated employing a partial wave expansion up+80. The
© -0 numerical accuracy is in most cases already sufficient em-

) 5 ] ploying partial waves up tb=20.

F_IG. 6. QED diagrams of_ordehqw) to g; . Only the first row The contributions t@; se.vet jSE.WF. reddre given in Table
of diagrams has to be considered for théactor of the free elec- Il for some Z, where the results of Eq§70), (69), and (76)
tron. and(79) are displayed. Far <20, the separate calculation of
&%]E,WF’@@— 9l&k e according to Eqgs(81) and (82) is also
Qresented. In these separate calculations, pointlike nuclei
were employed as discussed above, due to the smallness of
any finite-size effect on QED corrections in this rangeZof
QED binding effects, ordefa/ )2 For calcium and carbon, calculations @fsglyr red- 9lsere
are also shown. If pointlike nuclei are considered, the calcu-
lation from glSglue eat O} seve @0rees well within its error
margins with the split calculation for Ca. However, for ex-
(106 tended nuclei a small discrepancy shows up which necessi-

tates the scheme of Eq8:6) and(79) for Z=20. For carbon,

Without any full calculation of all diagrams of ordes(7)2,  Eas.(76) and (79 yield the same result for both pointlike
no theoretical value fog;;s , can claim an accuracy better and extended nuclei. It does not agree with the correspond-

h | h . h . f 2 ing one from the split' calculation which is obyiously dge to
::oir':ri?)tutﬁ;sst three times the above estimate of ther} a failure in extrapolating Eq$76) and(79) to higher partial

waves. For carbon, the partial wave contribution changes
sign around =12, which is also indicated by Fig. 7. There-
fore, our separate treatment of thEk e reqt 918k o terms
The results of our calculations are presented in detail iris well justified and improves the theoretical prediction also
Tables 1-11l for someZ. A summary for allZ under investi- in the Z range under current experimental investigation. Fig-
gation is given in Table IV. The grid af we chose is quite ure 7 displays the behavior of the partial waves of
tight throughout the whole range frod=1 to Z=94, in- gl[;zl,]vv':,renfr gl[iEl]\,e over the wholeZ range. The term fof
cluding nearly all everZ (except the unstable P@nd in =0 is not shown. For U, Ba, and Ca all terms except the first
addition also all od&Z <18 as well as those where hyperfine are <0, but for Ca the whole contribution is0. For C, in
structure measurements in hydrogenlike systems were caaddition to the sign change, numerical instability becomes
ried out and also a few more to tighten the calculation aroundisible for higherl, making a proper extrapolation fdr
the heaviest stable odd-nuclei. When comparing a high >20 impossible.
precision experiment with theory, any interpolation of a In general, our values agree within 1Owith those pre-
sparsely given theoretical grid is rather meaningless. For thisented by Blundellet al. for pointlike nuclei. A closer
reason we present a comprehensive tabulation of values. agreeement cannot be expected due to the number of figures

Therefore it is reasonable to assume a scaling by a fact
(al ) also for the bound state contributions, and an estimat
reads

X[ QED binding effects, ordefa/)].

a
aw

V. RESULTS
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TABLE I. The different contributions t@;se wr,ireqin FEYyNMan gauge AII values are absolute contri-
butions tog; (1/a=137.0359895) and displayed in units of £0 For gJSE WF, irreq @Nd g]SEWF e @n
uncertainty is specified for the sum only. Note, that all the values presented here are strictly gauge dependent.
Only the total result(last column is meaningful also beyond our calculations. The results obtained by
Blundell et al. [50] are shown for comparison. Fa@= 90, the result of a point-nucleus calculation is also

shown (9@).
Z gj[%]E,WF,iITEd gj%]E,WF,irred A(g][%]E,WF,irred gJ[;Ez,]\NF,irred ngE,wf,irred.
+ gjlls]E,WF,irre()
1 1.0814 0.3092 (0.0002 0.13863) 1.52924)
5 20.2403 1.5513 (0.0002 3.31583) 25.1075%4)
(Blundell et al. : 25.13
6 27.9866 1.3714 (0.0002 4.706713) 34.06474)
10 68.3632 —1.8975 (0.0002 12.27773) 78.74344)
(Blundell et al. : 78.79
15 135.8677 —11.0525 (0.0002 25.41943) 150.23464)
(Blundell et al. : 150.24
18 183.3569 —18.4170 (0.0002 34.82363) 199.763%4)
20 217.3241 —23.7578 (0.0002 41.6071) 235.1741)
(Blundell et al. : 235.26
30 405.9092 —49.0996 (0.0002 80.37%1) 437.518%1)
(Blundell et al. : 437.39
40 607.4052 —56.7027 (0.0005 125.8361) 676.5382)
(Blundell et al. : 676.69
50 800.1046 —26.0449 (0.0005 178.6041) 952.6642)
(Blundell et al. : 952.03
56 902.9506 19.5921 (0.0005 214.9732) 1137.5163)
60 963.3081 64.5562 (0.0005 241.7982) 1269.6623)
(Blundell et al. : 1270.44
67 1047.8501 177.2739 (0.0005 295.0233) 1520.14713)
70 1073.9206 241.1482 (0.001 320.8273) 1635.8964)
(Blundell et al. : 1638.10
75 1100.507 372.431 (0.005 368.755%4) 1841.6989)
80 1101.872 539.654 (0.005 423.970@5) 2065.501)
(Blundell et al. : 2072.61
81 1098.608 578.046 (0.005 436.0335) 2112.691)
82 1094.053 618.216 (0.005 448.46%5) 2160.731)
83 1088.158 660.218 (0.005 461.2785) 2209.65%1)
90 1004.017 1012.081 (0.005 563.0718) 2579.171)
(Blundellet al.:  2601.93
9200 985.497 1046.324 (0.005 569.40710) 2601.232)
92 963.951 1133.981 (0.005 596.6288) 2694.561)
94 914.862 1268.134 (0.005 632.7568) 2815.7%1)

presented in that work. In the high+ange, stronger devia- merical scheme was employed in that work.

tions are observed in particular for teese we, ireqCONtribu- Let us now turn to the vacuum polarization contributions
tion. This is most probably due to nuclear size effects. Wagu\fQWF (49), gJVP wr (91, andg]VP not (92), which have not
could reproduce Blundell's values pretty well by setting been calculated befor@part from our previously reported
s 25Th)=0, as indicated in Tables | and Il. This yields numbers[51]). The results are presented in Table Il for
also an estimate of the nuclear size effect on the QED consomeZ. The dominant contribution is that gﬁJ\?Q’WF which
tributions which can amount to up to 1% of the value in thecauses no difficulties in the calculation. The higher order
region of highZ. The finite nuclear size should therefore terms tog;yp wr, 9V we. are only about 5% of the Uehling
always be considered in high-precision calculatlons On thgalue even for 8 which is roughly the same amount as in
low Z side, the values obtained in R¢&0] for gJSE wr,ed  Lamb-shift calculation$116]. Their expansion in«| is also
+gJ[§Elvealso suffer from difficulties in the partial wave ex- performed without problems. A value bf|= 15 is sufficient
pansion, as explicitly stated there, although a different nufor aimost everyZ. Considering higher values pt| does not
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TABLE II. The different contributions tod;se wr,redt 9;,seve IN FEYNMan gauge and the calculation schemes as discussed in the text.
All values are absolute contributions tg) (1/a=137.0359895) and displayed in units of 0 The separateg{tk e req + 9}tk 0
calculations for the lowZ region are also shown. Fa@= 20, the results from all calculation schemes are displayed for comparison. For
Z=20, we employ the scheme which allows no separation ogfh‘eterms but a consideration of extended nuclei. Further discussion can
be found in the text. Note, that all the values presented here are strictly gauge dependent. Only the tofalstesnllimn is meaningful
also beyond our calculations. Values presented by Blurdell. [50] are displayed in parentheses. Eor 90, the result of a point-nucleus
calculation is also shown (®).

z gJ[%]E,ve gj[%]E,WF,red (gJ[é]E,WF,red (gj[;zz,]\/\/F,red (gjliEl,]\NF,red (ngE,WF,red
+ gk v +0[sh +0sen +0jsewd
1 —33863.0312(2) 36183.8068 0.5025%1) 0.03311) 0.53562) 2321.311%5)
5 —19024.5377(2) 21315.95p9 6.10311) 0.767Q1) 6.87012) 2298.285%5)
[—19024.54 21315.96 Blundedit al. 6.885)]
6 —17373.1336(2) 19653.87(B 7.79481) 1.07521) 8.869712) 2289.60775)
without separation of thgl" terms: 9.055)
10 —12833.3722(2) 15063.19688 14.34782) 2.61801) 16.96583) 2246.79216)
[—12833.35 15063.07 Blundedit al. 16.82
15 —9380.7864(2) 11535.078B 20.77023) 4.758@5) 25.52828) 2179.8161)
[—9380.75 11534.98 Blundedit al. 25.325)]
18 —7895.6827(2) 10000.979D) 23.34074) 5.86Q1) 29.2011) 2134.4982)
20 24.4979%1) 6.4171) 30.9181)
point nucleus, without separation of tgé] terms: 30.921)
—7062.0775(2) 9133.7981) extended nucleus: 30.619 2102.691)
[—7062.07 9133.70 Blundeét al. 30.61
30 —4068.0521(2) 5967.4789) 29.981) 1929.4@1)
[—4068.04 5967.46 Blundeét al. 29.9¢
40 —2207.8932(2) 3937.4708) 13.2711) 1742.8%1)
[—2207.84 3937.37 Blunde#t al. 13.29
50 —958.1935(4) 2527.60%9) —17.249(5) 1552.168)
[—958.07 2527.38 Blundebt al. —17.24]
56 —398.6146(5) 1878.1178) —40.836(5) 1438.66B)
60 —85.1609(4) 1507.5978) —58.204(5) 1364.238)
[—84.83 1507.14 Blundekt al. —58.21]
67 370.27263) 958.16963) —90.687(5) 1237.756)
70 534.514(3) 756.01303) —105.032(5) 1185.496)
[535.08 755.20 Blundelét al. —104.99]
75 773.015(2) 457.57323) —128.876(5) 1101.718)
80 972.50972) 202.32663) —151.873(5) 1022.968)
[973.35 201.06 Blundekt al. —151.68]
81 1008.168@) 156.02873) —156.287(5) 1007.916)
82 1042.493(®) 111.23943) —160.617(5) 993.116)
83 1075.512@) 67.92982) —164.857(5) 978.585)
90 1272.481Q) —196.0925(2) —191.212(5) 885.171%)
[1273.60 —197.81 Blundellet al. —190.42]
200 1273.60582) —197.8180(1) —190.460(5) 885.32B)
92 1318.510@) —259.6528(1) —197.373(5) 861.485)
94 1360.319(2) —318.2716(1) —202.719(5) 839.328)

change the value of Eq91) within the error margins. Only nucleus. The values are given in Table Il and indicate a
for very low Z, do numerical instabilities cause minor prob- difference at the 10° level for the vacuum polarization con-
lems. However, these problems occur only for total contri-tributions, thus again showing the need for considering the
butions ofg{ys we<10'* where the whole contribution it- size of the nucleus properly.

self is negligible. To obtain an estimate for the finite nuclear Problems occur when evaluating the potential correction
size effects on the vacuum polarization calculations as wellfor small Z, g}’\v,'é,,pot, Eqg.(92). The convergence according to

we have also carried them out for Th, employing a point= « is displayed in Fig. 8 for a number & As can be seen,
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TABLE Ill. The vacuum polarization contributions of order = to theg; factor of an electron bound in a hydrogenlike ion. All values
are absolute contributions 1g; (1/a=137.0359895). The last column indicates their total sum, except for H arid whkere it is
meaningless due to the large errorgpyp por. FOr Z=90, the result of a point-nucleus calculation is also showr@Q0

z ng\?Q,WF gm(v,WF Jjvp,wF Jjvp,pot gjvp, tot

1 —6.944(5)x 1012 0.7(2)x 10 16 —6.944(5)x 1012 0.0(3)x10°°

2 —1.09898(2)x 10 10 0.5(1)x10 4 —1.09893(3) 10 10 0.0(3)x10°°

3 —5.50494(3)x 10" 10 5.4(1)x10 14 —5.50440(4 ) 10" 10 0.0(3)x10°° —5.5(3.0)x10°1°

4 —1.72222(1)x10°° 2.99(3)x 10 *® —1.72192(1x10°° 0.0(3)x10°° —1.7(3)x10°°

5 —4.16369(1)x10°° 1.11(1)x 10 *? —4.16258(2)<10°° 0.0(3)x10°° —4.2(3)x10°°

6 —8.55285(1)x 10°° 3.28(1)x 10 12 —8.54957(2)x 10 ° 0.0(3)x10°° —8.5(3)x10°°

10 —6.37640(1)x 10" 8 6.506(2)x 10" * —6.36989(1)< 1078 0.0(3)x10°° —6.37(3)x10° 8
15 —3.11298(1)x 10"/ 6.8385(3)x 1010 —3.10614(1)x 107 0.21(10)x 1078 —3.09(1)x 10"’
18 —6.33616(1)x10°7 1.9539(2)x 10°° —6.31662(1)x 10’ 0.6(2)x 108 —6.26(2)x 107
20 —9.55031(5)x 1077 3.5769(3)x 10 ° —9.51454(5)K 107 1.0(3)x10°8 —9.41(3)x 107
30 —4.63685(1)x10°8 3.6139(1)x 108 —4.60071(1)x10°© 1.01(2)x 107 —4.499(2)}10°°
40 —1.43630(1)x10°° 1.8501(1)x 107 —1.41780(1)10°° 4.10(2)x 1077 —1.3768(2)x 10 °
50 —3.50887(2)x 10" ° 6.5837(3)x 1077 —3.44303(2)x 10 ° 1.225(4)< 1078 —3.3206(4)x 10
56 —5.57919(3)x 10" ° 1.26030(1)x 10 © —5.45316(4)10°° 2.115(4)x10°© —5.2416(4)x 10 °
60 —7.43603(5) 10°° 1.8772(2)x10°° —7.24831(7x10°° 2.950(5)x 10 —6.9534(6)x10°°
67 —1.18898(1)x 10°4 3.5673(2)<10°© —1.15331(1)x 104 5.007(6)x 10 © —1.10324(7x 104
70 —1.43865(1)x 10 * 4.6158(2)< 10 ¢ —1.39249(1)x 104 6.203(6)x 10 © —1.33047(7x 104
75 —1.95553(1)x 10 * 6.9659(3)< 10 © —1.88587(1)x 10 * 8.665(8)x 10 © —1.79922(9)K 104
80 —2.62673(1)x10°4 1.0286(1)< 10 ° —2.52387(2)Kx 104 1.186(1)x10°° —2.4053(1)x 104
81 —2.78328(1)x 1074 1.1097(1)x10°° —2.67231(2)K10°* 1.260(1)x 10°° —2.5464(1)x 104
82 —2.94805(1)x 10" * 1.1963(1)x10°° —2.82842(2K 104 1.337(1)x10°° —2.6947(1)x 104
83 —3.12138(1)x 10 * 1.2886(1)<10°° —2.99252(2K 104 1.419(1)x10°° —2.8506(1)x 10 4
90 —4.61594(1)x 10 * 2.1304(1)x 1075 —4.40290(2)x 104 2.111(1)x10°° —4.1919(1)x 10
900 —4.84549(1)x 1074 2.3342(1)x10°° —4.61207(2)x 104 2.126(1)x 105 —4.3995(1)x 104
92 —5.15122(1)x 10°4 2.4484(1)<10°° —4.90638(2)x 10 4 2.352(1)x10°° —4.6711(1)x 104
94 —5.75234(1x 1074 2.8155(1)x10°° —5.47079(2)x 104 2.618(1)x10°° —5.2090(1)x 10" 4

the contributions change sign twice in the region of lol,  ferences become visible which amount already 01D’
reach a second maximum on the positive side and thefor C>*. Both curves are also displayed in Fig. 9. In addition,
slowly tend to decrease again. For medium and Higthis  the total QED binding effect of order{ ) was multiplied
process takes part withj|<5 and the further extrapolation by another factor of /=) to obtain the estimate for the
causes no problems. For’G however, the second maxi- pinding correction of orderd/)?, as discussed above. This
mum seems to be reached at abloijt=30 only, leaving no |ast line indicates the present day limit of theoretical preci-
decreasing tail for carrying out any extrapolation, [a$  gjon for gj15,,, which cannot be crossed without evaluating

=30 is also the maximum value of our current calculations, " . . . .
50 additional diagrams. There is no sense in improving the

due to numerical stability. Even foZ as large as 30 the . o :
numerical instability tends to be as much as 5% of the totafa/culation of QED contributions of ordet/a which are

value ofg}’{’,'é oo The reason for not improving our calcula- smaller than thils indicated yalue, and thErefqre we did not
tion at the present stage is the total share of this contributior£Ven Uy to obtain more precise values Q%P,pot in the low-
which is rather small, compared @sewr Jjseve and region. The total numerical uncertainty indicated in col-
, ver ana : 5
gjvpwe. FOr Z=<12, however, the error of the contribution Umn 6 of Table IV is less than the order/(m)" estimate
has to be estimated to be at least B0 1% although the except for very lowZ, and therefore we conclude that our
actual value might be smaller. This is also indicated by théPresent calculation is sufficient as far as precision is con-
data points in Fig. 9. All QED contributions calculated so farcerned.
are displayed in Fig. 9, together with the free QED correc- Our QED calculation of ordew/w is displayed in Table
tions of orders &/m)?, (a/m)3, and (@/7)*, Eq.(103. V together with the result of Eq7). The nuclear size cor-
All QED calculations are summarized in Table IV. By rection to this contribution is obtained by calculating Egj.
subtractinga/ , the total QED effect of binding is obtained with wave functions corresponding to an extended nucleus
(column 7 which can be compared with the term with r,sas specified. In these calculations, a two-parameter
(el ) (Za)?/6 [Eq. (105, in column § obtained by Grotch Fermi distribution witha=0.524 is employed, except for
[39]. For Z=1 andZ=2, our calculation agrees with this uranium, wherea=0.5046 was used, taken from Rgf17]
expansion within the error margins. But already for Li, dif- and thorium 6=0.511 from Ref[118]). The nuclear radii
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TABLE IV. The different QED contributions of ordet/ = to g; of an electron bound in a hydrogenlike ion, their sum, and the amount
due to binding which is obtained after subtracting the teann) of the free electron’g factor. All values are absolute contributionsgp
(1/a=137.0359895) and displayed in units of 0 The binding correction obtained from thix expansion due to Grotcf87] is
presented in the last line for comparison. Numerical uncertainties are indicated in parentheses. No given uncertainty indicates an error
smaller than one digit of the last displayed figure. The uncertainty of the binding éffecspecifiedl is always the same as that of the
corresponding total QED contribution of ordefw. For Z< 14, the last figure was not rounded off in the binding-effect column.

z 9j.se gj.se gj.vp gj.vp Tot. gj oep Effect of binding
ve + WF, red WEF, irred WF pot (order a/ ) (total) (Za exp
1 2321.311%5) 1.52924) —0.0000 0.000() 2322.8401) 0.0208 0.0206
2 2317.6978b) 5.206%4) —0.0001 0.000() 2322.9041) 0.0842 0.0825
3 2312.4908) 10.52324) —0.0006 0.000(B) 2323.0181) 0.1938 0.1855
4 2305.9586b) 17.21624) —0.0017 0.000(B) 2323.1781) 0.3537 0.3298
5 2298.285%) 25.107%4) —0.0042 0.000(B) 2323.3891) 0.5690 0.5154
6 2289.60775) 34.06474) —0.0085 0.000(B) 2323.6641) 0.8442 0.7422
7 2280.0356b) 43.98404) —0.0157 0.000(B) 2324.0041) 1.1846 1.0102
8 2269.66065) 54.781%4) —0.0265 0.000(8) 2324.4161) 1.5959 1.3194
9 2258.55766) 66.387%4) —0.0421 0.000(8) 2324.9081) 2.0836 1.6699
10 2246.792(6) 78.74344) —0.0637 0.000(8) 2325.4721) 2.6522 2.0616
11 2234.423@7) 91.79894) —0.0925 0.0003) 2326.1301) 3.3106 2.4945
12 2221.499(8) 105.51114) —0.1300 0.00041) 2326.8812) 4.0610 2.9686
13 2208.064(B) 119.84244) -0.1777 0.0008) 2327.7292) 4.9098 3.4840
14 2194.158®) 134.75964) —0.2374 0.001410) 2328.6822) 5.8623 4.0406
15 2179.8161) 150.23464) —0.3106 0.0021) 2329.7423) 6.922 4.639
16 2165.078L) 166.24164) —0.3994 0.008L) 2330.9203) 8.101 5.278
17 2149.9501) 182.75764) —0.5057 0.0082) 2332.2163) 9.396 5.958
18 2134.49®) 199.763%4) —0.6317 0.00€2) 2333.6364) 10.816 6.679
20 2102.691) 235.1741) —0.9515 0.01(®B) 2336.921) 14.10 8.25
22 2069.681) 272.355%1) —1.3779 0.018) 2340.621) 17.80 9.98
24 2035.711) 311.2121) —1.9321 0.03®) 2345.021) 22.21 11.87
26 2000.9%1) 351.6721) —2.6369 0.0483) 2350.031) 27.21 13.94
28 1965.491) 393.67711) —3.5175 0.06€8) 2355.721) 32.90 16.16
30 1929.401) 437.18%1) —4.6007 0.1002) 2362.091) 39.27 18.55
32 1892.811) 482.1641) —5.9161 0.13®) 2369.201) 46.38 21.11
34 1855.791) 528.5962) —7.4957 0.18®) 2377.081) 54.26 23.83
36 1818.411) 576.4692) —9.3738 0.24@) 2385.751) 62.93 26.72
38 1780.741) 625.7812) —11.5878(1) 0.32®) 2395.251) 72.43 29.77
40 1742.8%1) 676.5382) —14.1780(1) 0.41@) 2405.621) 82.80 32.98
42 1704.801) 728.75@2) —17.1871(1) 0.52) 2416.891) 94.08 36.37
44 1666.661) 782.4392) —20.6636(1) 0.658) 2429.091) 106.27 39.91
46 1628.4746) 837.6322) —24.6586(1) 0.81®) 2442.271) 119.45 43.62
48 1590.288) 894.3592) —29.2269(2) 1.00@} 2456.421) 133.60 47.50
50 1552.168) 952.6642) —34.4303(2) 1.224) 2471.621) 148.80 51.54
52 1514.1516) 1012.5862) —40.3321(3) 1.48@) 2487.891) 165.07 55.74
54 1476.3015) 1074.185%2) —47.0071(2) 1.776) 2505.261) 182.44 60.11
56 1438.6610) 1137.5163) —54.5316(4) 2.11&) 2523.771) 200.95 64.65
58 1401.298) 1202.6523) —62.9927(6) 2.508) 2543.461) 220.64 69.35
60 1364.23%) 1269.6623) —72.4831(7) 2.95(®) 2564.361) 241.54 74.22
62 1327.548%) 1338.5863) —83.0822(7) 3.454) 2586.501) 263.68 79.25
64 1291.268) 1409.5833) —94.9364(7) 4.02®) 2609.941) 287.12 84.44
66 1255.46%) 1482.7223) —108.154(1) 4.65@) 2634.692) 311.87 89.80
67 1237.7565) 1520.14713) —115.331(1) 5.00(8) 2647.582) 324.76 92.54
68 1220.187) 1558.1343) —122.884(1) 5.39®) 2660.832) 338.01 95.34
70 1185.4965) 1635.8964) —139.249(1) 6.20®) 2688.342) 365.53 101.02
72 1151.447) 1716.18%4) —157.445(1) 7.108) 2717.292) 394.48 106.87
74 1118.1085) 1799.1385) —177.646(1) 8.11®) 2747.702) 424.88 112.89
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z gj.se 0j.se gj.ve gj.vp Tot. gj qep Effect of binding
ve + WF, red WF, irred WF pot (order a/ ) (total) (Za exp
75 1101.71%6) 1841.6939) —188.587(1) 8.66M) 2763.482) 440.66 115.96
76 1085.5276) 1884.87%9) —200.047(1) 9.23®) 2779.6@2) 456.78 119.08
77 1069.54%) 1928.8919) —212.163(2) 9.84®) 2796.123) 473.30 122.23
78 1053.7906) 1973.62%9) —224.886(2) 10.4Q) 2813.013) 490.19 125.43
79 1038.25%%5) 2019.171) —238.298(2) 11.18) 2830.293) 507.47 128.66
80 1022.96%) 2065.5Q1) —252.387(2) 11.84) 2847.933) 525.11 131.94
81 1007.9116) 2112.691) —267.231(2) 12.6Q) 2865.963) 543.14 135.26
82 993.11%6) 2160.731) —282.842(2) 13.3@) 2884.383) 561.56 138.62
83 978.58%b) 2209.6%1) —299.252(2) 14.1Q9) 2903.183) 580.36 142.02
86 936.6875) 2361.991) —353.736(2) 16.88) 2961.833) 639.01 152.47
88 897.3125) 2468.681) —395.028(2) 18.9) 2989.873) 667.05 159.65
90 885.171) 2579.171) —440.290(2) 21.1@) 3045.163) 722.34 166.99
92 861.48%5) 2694.561) —490.638(2) 23.54) 3088.933) 766.11 174.49
94 839.32%) 2815.75%1) —547.079(2) 26.1@) 3134.183) 811.36 182.16

were taken from Refd103,117-119 and the radius of the X (a/w) times the numerical value of thex(w) contribu
most abundant or longest living isotope was employed, agion. Contrary to the Lamb shift situation, however, this error
indicated in Table V. The uncertainty caused by an insuffi-margin is not due to nuclear effects which can hardly be
cient knowledge of the nuclear radius is indicated in Fig. 10 estimated to increase in precisifij but to yet uncalculated

where also all the other contributions ¢y are displayed.
The recoil correction was calculated employing Eg9).

contributions, e.g., from the diagrams shown in Fig. 6. The
error due to the uncertainty in,,s=5.8604+0.0023 fm

Again, the mass of the most abundant isotope was utilizeg 17] js also shown for uranium. It is smaller than the esti-
which causes the wiggles in the curve. Note that this correcy,5ie for the yet uncalculated QED terms of ordef #)2.
tion can be considered as only an order of magnitude esti g jhfuence of nuclear mass and size effects is also dem-

mate for highZ. For carbon, we estimate its accuracy being
1%, decreasing with increasing and amounting to 10%
already for calcium. Due to the rather speculative nature of)
both the uncertainty of this contribution and the estimate o
the higher order QED contributions, an error for the tafal
value is not displayed in Table V. It amounts to at least 7
x 102 for carbon, 1.% 10 7 for calcium and & 10 © for
uranium, where we have estimated the uncertainty from th
uncalculated QED 4/w)? binding corrections by 2.5

)

j SE, ve + wf, red
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onstrated by the difference of the corresponding values for
207,
P

B and 2%t . Values are specified in Table V for

oth nuclei, and although their radii differ only by about
0.1%, this leads to a difference @) of 10" °. The effect of
the nuclear size on the QED correction itself was already
mentioned. For the two different radii employed, the total
QED value is the same within its error margins. When em-
ploying pointlike nuclei, however, the need for consideration

-

3 X terms with positive sign
%10’1 L " .I....--lll'......l.QOQC
o V‘eﬁAAAAA R fRusss
v
% wel o "'vé S8ana,,
s vv"' AAAAAAAAAA
v =~ M Yy
55+ g 1073 L L I ) L YVvvy v
Ba =
5 1
—Ca'™ 2 H v terms with negative sign, multiplied by —1
5+ s . [ ]
c s § 107 ¢ a BT .. e C*
"
-C g v . ° = Ca'™
[ ]
g 10_2 | A BaSﬁ-r
o 4. = 9jvp, por: Partial wave contributions vy
v oy B E 1073 1 L 1 L 1 1
vy 4 (] 5 10 15 20 25 30
%o = partial wave number +x
L
20 FIG. 8. Partial wave contributions ®yp ,o. Each point repre-

sents the sum of contributions fromand — k. The top panel indi-

cates the partial wave contributions with positive sign, the bottom

panel those with negative sign. ForP G the total contribution

FIG. 7. Partial wave contributiong; sg .,
ferentZ.

et gj[,BS}E],WF,redfOr dif-

gjve,pot Was assumed to bex110™*° for calculation purposes.
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o 1 a heavier nucleus, however, could not match a similar theo-
;.10' L retical prediction due to the yet uncalculated higher order
w02k effects of QED and recoil.

total QED, order (o/m) In order to elucidate the experimental capabilities, we dis-
0 F  Yiseve N = play in Fig. 11 the magnitude of various contributions in
10 bourd- ' parts ofg; as well as the experimental precision reached so
iree far for the variouZ. Thus, each theoretical curve crossed by
QED, the line of an experiment is checked by this experiment. It is
@ worth mentioning that the experiment carried out on H by

10

10~

10 free Tiedeman and Robinsd#5] was almost as precise as that of
1080 QED, Quint and co-workers onC, but could just prove the bind-
(o/my . 2 .
] ing effect of order Z«)“ whereas the carbon experiment not
1°_ free only clearly pointed out the difference between this term and

QED, . . .
(ot the full binding correction but also almost reached the cur-

rent theoretical limits due to the already much stronger bind-
ing effects in carbon. These are indicated again by the curve
FIG. 9. The QED contributions tg;, including the contribu- denoted “bound QED, 4/ m)?, estimate.” The area on the
tions from free QED up to orderaf 7r)*. The binding contribution  right under this curve has to be considered as theoretically
of order (/) (see Table IV is indicated separately, as well as the unknown. For comparison, also the first and the lpdsictor
value of theZa expansion due to Grotdi39] [“bound, = (Za)?" ] measurement for a free electron are displayed in Fig. 11.
and the estimate for the bound-state effects of ordérr}?. For
g vewe, the negative value of this contribution is given.

L L
20 30 40 50 60 70 80 90
nuclear charge Z

VIl. CONCLUSION

of nuclear size effects in QED calculations for highis We have presented the first complete calculation scheme
demonstrated impressively. for the g; factor of an electron bound in a hydrogenlike sys-
tem, including all QED corrections of ordet () nonper-
turbatively and thus valid for the wholé range. All values

are listed for a tight lattice oZ, in addition to all contribu-

Up to now, experiments ow; factors in hydrogenlike tions of non-QED origin known so far. Error margins for
systems were carried out only for a fev We present an both the calculated QED corrections as well as for the other
overview of these experiments in Table VI. The experimentsontributions are properly estimated. Comparison with the
carried out on H, D, and He were all performed before existing experimental results exhibits agreement and suffi-
1980 and did not prove any effects beyond thecient precision in all cases. The finite nuclear size effect was
(el ) (Z)?I6 term or the ratio of the recoil predictions for found to be considerable for the QED corrections of order
H and D[44]. On the highZ end of the periodic table, life- (a/m) in high-Z systems. The uncertainty of nuclear size
time measurements of the hyperfine transitions in hydrogenand shape is well under control as it does not affect our
like ions were carried out only for?PB* [17] and  predictions at the current level of precision. For further high
209882+ 114,120, for which also theoretical calculations ex- Precision experiments carried out in systems heavier than
ist [19,20,53,121 As Shabaev pointed o(i63], the transi- C%*, it is desirable to evaluate all QED corrections of order
tion probability 1+ ¢ =we ¢ from the higher hyperfine (a/m)? nonperturbatively as the next step.
niveauF to the lower,F’ is in hydrogenlike ions related to

VI. COMPARISON WITH EXPERIMENTS

9 by ACKNOWLEDGMENTS
@ (AEyre)® | m 2 Valuable discussions with a large number of scholars are
OF, F = 55T J(e'ec”"“)—(—e) (””C'eus)} , gratefully acknowledged, in particular with W. Quint, who
3 fi(mec?)? 2141 Mp provided experimental results with continuously increasing

(107 precision prior to publication, and also with E. E. B. Camp-
bell, H.-J. Kluge, A.-M. Matensson-Pendrill, V. M. Sha-
baev, G. Soff, S. Stahl, J. Verd®. Werth, and V. A. Yer-
okhin, who showed permanent encouraging interest in our
work. Financial support was obtained from the European
Union (Contract No. ERB FMRX CT 97-0144and the
Swedish NFR.

wherel is the nuclear spin and, is the proton mass. The
constantsi, mg, andc are explicitly displayed here.

The only recent experiment primarily designed fgy
measurement$47—-49,122 was carried out on € and
yielded an impressive precision of about 20which is cer-
tainly sufficient to distinguish between the full QED calcu-
lation of ordera and Grotch’s &/)(Za)?/6 term. Within
the specified error margins, the experimental result and our
calculation agree, and both uncertainties are of the same or- The free vertex function, Eq438), can be expressed in the
der of magnitude. An experiment with a similar precision for Feynman gauge as

APPENDIX A: FREE VERTEX FUNCTION TI'[%(p,p")
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TABLE V. Known contributions tog; for a 1s,,, electron bound in a hydrogenlike ion. The employed nuclear rms radius is indicated.
The last column displays the sum of all the others plus the free QED contributions of onder} (to (a/7)* and includes therefore all
contributions known today. The value is not accurate to the digits specified, as yet unknown effects such as bound QED effects of order
(a/)? or the complete recoil correction beyond the expansion are not yet evaluated but might contribute on a level up to a few times
10" 8. A detailed discussion is given in the text. The numerical errors of the finite nuclear size contribution as well as the recoil contribution
are always less than the last figure stated.

I ims Rel. spin- Fin. nucl. size Total QED, Recoil Total

[fm] orbit coupl. correction ordes/ correction g
H 0.862 1.9999644986  <1.x10 2.322840(1x 1073 2.9158<10°8 2.002283853
SHe 1.671 1.9998579888 <1.x10 1 2.322904(1)x 103 2.9178<10°8 2.002177407
ILi 2.410 1.9996804535 #4101 2.323013(1x 103 3.7518<10° 8 2.001999989
‘Be 2.390 1.9994318644 810 2.323173(1x 1073 5.1878< 1078 2.001751575
B 2.370 1.9991121817 1910 10 2.323389(1)x 103 6.6321x 1078 2.001432122
: 2.468 1.9987213542 4210710 2.323664(1)x 103 8.7542x 108 2.001041591
1N 2.560 1.9982593193 8310 10 2.324004(1)x 103 1.0213< 1077 2.000579911
o 2.693 1.9977260027 1.5610°° 2.324416(1x 1073 1.1672x10°7 2.000047022
¥F 2.898 1.9971213189 2.8010°° 2.324903(1)x 1073 1.2441x 1077 1.999442834
2Ne 3.006 1.9964451704 4.7810°° 2.325472(1x 1073 1.4591x 1077 1.998767278
“Na 2.994 1.9956974482 6.8910°° 2.326130(1)x 1073 1.5352<1077 1.998020224
22Mg 3.057 1.9948780313 1.04010°8 2.326881(2)x 103 1.7509x 107 1.997201582
2l 3.063 1.9939867870 1.45110° 8 2.327729(2x 1073 1.8266x 107 1.996311199
2Si 3.123 1.9930235706 2.0470° 8 2.328682(2x 103 2.0427x 1077 1.995348962
3p 3.190 1.9919882250 2.84210°8 2.329742(3x 1073 2.1180< 10"’ 1.994314692
¥s 3.263 1.9908805811 3.88010°8 2.330920(3)x 1073 2.3345<107 7 1.993208259
3l 3.388 1.9897004574 5.46210 8 2.332216(3x 103 2.4096< 107 1.992029453
1oAr 3.427 1.9884476596 7.028L0°8 2.333636(4)x 1073 2.3638<107’ 1.990778087
sca 3.478 1.9857232017 1.13%30 7 2.33692(1)x 103 2.9182<10° 7 1.98805701
5T 3.592 1.9827053968 1.81810° 7 2.34062(1)x 1072 2.9426x<1077 1.98504298
Sxcr 3.645 1.9793922218 2.72840°7 2.34502(1)x 1072 3.2325¢10°7 1.98173433
SFe 3.738 1.9757814341 4.07420°7 2.35003(1) 1072 3.5227x 107/ 1.97812871
SONi 3.776 1.9718705637 5.78410 7 2.35572(1x 1073 3.9446x 107 1.97422374
$97n 3.928 1.9676569044 8.536307 2.36209(1)x 1073 4.1038< 107 1.97001674
Ge 4.072 1.9631375039 1.231240 ° 2.36920(1)x 103 4.0383< 107 1.96550482
80se 4.140 1.9583091529 1.686810 © 2.37708(1)x 1072 4.2169<10°7 1.96068482
8IKr 4.188 1.9531683728 2.260%40 © 2.38575(1)x 1072 4.5025< 107 1.95555332
36
8sr 4.224 1.9477114023 2.981940 © 2.39525(1)x 10 3 4.7886x10 7 1.95010660
907r 4.270 1.9419341826 3.914880°° 2.40562(1)x 1073 5.1880< 10"/ 1.94434072
al
Mo 4.407 1.9358323401 5.301500 © 2.41689(1x 1073 5.2529<10 7 1.93825155
22Ru 4.481 1.9294011690 6.927830°° 2.42909(1)x 1073 5.5390< 10~/ 1.93183423
1%d 4.532 1.9226356104 8.9045@0 © 2.44227(1)x 1073 5.8256< 10 7 1.92508385
3icd 4.610 1.9155302297 1.1502%¥30°° 2.45642(1)x 1073 5.8981x 10~/ 1.91799523
$205n 4.655 1.9080791919 1.45814710°° 2.47162(1x 1073 6.0798x 1077 1.91056249
Bore 4.742 1.9002762337 1.87008710°° 2.48789(1)x 1073 6.0702x 1077 1.90277991
B2%e 4.787 1.8921146327 2.3488830 ° 2.50526(1)x 1073 6.4469< 1077 1.89464051
3%Ba 4.839 1.8835871727 2.9467840°° 2.52377(1)x 1078 6.6318<10° 7 1.88613756
H%ce 4.877 1.8746861060 3.6651280 ° 2.54346(1)x 103 7.0123<10° 7 1.87726340
Nd 4.914 1.8654031102 4.5435%10 ° 2.56436(1)x 103 7.3985< 107 1.86801013
5%sm 5.092 1.8557292402 5.9042800° 2.58650(1) 1073 7.3803x107 7 1.85837201
el 5.159 1.8456548742 7.35232710°° 2.60994(1)x 103 7.5655<10 7 1.84833558
Sipy 5.224 1.8351696537 9.1271800°° 2.63469(2)x 1073 7.7514x10°7 1.83789287
%o 5.210 1.8297695177 1.00058800 * 2.64758(2)x 1073 7.9397x 1077 1.83251443
ooy 5.250 1.8242624144 1.11628330 % 2.66083(2)x 1072 8.1291x 10~/ 1.82703217
b 5.317 1.8129211091 1.38138240 4 2.68834(2)< 103 8.2183x10 / 1.81574490
18t 5.349 1.8011327199 1.68782080 % 2.71729(2) 1073 8.4993x 10~/ 1.80401613
oA 5.373 1.7888831574 2.05491060 * 2.74770(2)x 1073 8.6853x10 / 1.79183371
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TABLE V. (Continued.
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I ims Rel. spin- Fin. nucl. size Total QED, Recoil Total

[fm] orbit coupl. correction ordet/ correction g;
BRe 5.351 1.7825807127 2.24303210°* 2.76348(2) 1073 8.7785< 107 1.78556586
19%0s 5.406 1.7761571469 2.50670870 * 2.77960(2)x 1073 8.7794< 1077 1.77918478
%9r 5.401 1.7696103440 2.74989230 * 2.79612(3)x 1073 8.9652¢ 107 1.77267884
%Pt 5.427 1.7629380960 3.04471200 * 2.81301(3)x 103 9.1053<10° 7 1.76605297
AU 5.437 1.7561380981 3.35425870°* 2.83029(3)x 1073 9.2454x 1077 1.75930122
29%Hg 5.467 1.7492079430 3.71740%30°* 2.84793(3)x 1073 9.2463< 1077 1.75242502
2057] 5.483 1.7421451145 4.10208830°4 2.86596(3)x 1072 9.3402< 1077 1.74541871
2%8pp 5.504 1.7349469812 4.53245400°4 2.88438(3)x 1073 9.4342¢ 1077 1.73828204
2%ph 5.497 1.7349469812 4.52348990 4 2.88438(3)x 1073 9.4797x 1077 1.73828114
209 5.533 1.7276107891 5.01971810 * 2.90318(3)x 1073 9.6194< 107 1.73101338
222Rn 5.632 1.7047443147 6.83573030 * 2.96183(3)<10°° 9.7226<10° 7 1.70838717
22%%Ra 5.662 1.6887529452 8.31470830°* 2.98987(3)x 1073 9.9999< 107 1.69257177
232rh 5.802 1.6721308209 1.04086820°3 3.04516(3)x 1073 1.0189x 1078 1.67621435
25 5.860 1.6548461126 1.27523800 3 3.08893(3)x 1073 1.0379< 10°° 1.65920780
2%y 5.794 1.6368634079 1.51574040° 3 3.13418(3x 1073 1.0568< 10 © 1.64151087

ez
I p,p)= (4m)? {7u[4C24— 2+2m;Co—4pp (Co+ Cyyt+ Cipt Cog) —2P*(Cryt Cop) —2p'*(Cppt Cpp)]

+Pp.[4(C1at Cop) ]+ PP, [4(Co+ Crit+ Crot Cog) [+ P'Pu[4(Co+ Cpy+Ciot Cog)]

+P'PuL4(C1at Coa) I =By, B [2(Co+ Crat Cra) | = P[4Me(Co+2C19) |- p,[4Me(Co+2C1o) 1},

(A1)
where the coefficient function§;; denote Feynman param- 5 1 1 {a+b
eter integrals. These integrals can be writter(raste some meCO:J dyZIn| ——/, (A2)
misprint corrections compared to Rg¢f74] and a slightly 0
different notation in Ref[93])
) 1y b [atb
o 1 meCii=— | dy —=In et (A3)
'_ 10 | _relativistic spin-orbit 0
coupling — total free
1w [ QED,
(0im)
Boat 1 _y b a+b
MeCio=— | dy——|1——In|—| |, (A4)
0 b
2 1oy?[1 b+ b 2| at+b (A5)
2 m = = — = — n| —— ,
I;;u?'nﬁ?éégiu:l)aie free ev~21 0 y al2 a a b
QED,
(@n’
QED, o fld (1-y)?[1 b (b}? [atb
I i i I i I I i1 4 m = -~ — - n——|1|,
2 30 40 50 60 70 80 90 ezzoya 2 a l\a b
nuclear charge Z (AB)
FIG. 10. All known contributions ta; of the 1s,,, state of a
hydrogenlike ion, including recoil and finite nuclear size. Ror 1 (1-y)[1 b b\2 /a+b
=9, the total value 0§; is <2, and therefore “-total” is displayed m2C23:f d AR R In| —| |,
for theseZ. The uncertainty due to the error margins of the uranium ¢ a 2 a \a b
rms radius are also indicated. (A7)
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TABLE VI. Experimental results foig; in hydrogenlike systems. For hydrogen and deuterium, only more recent results are listed,
references to older experiments can be found in Réf3-45. Experimental techniques are abbreviated as SEpM-exchange optical
pumping, HFHM (high-field double mode hydrogen magePT (penning trap, and HFST(hyperfine splitting transition The ratio of
g;(H)/g;(D) is more precisely known as each of thefactors due to the uncertainty in the QED calculations.

Measured quantity gj(expt) gj(theory Method Ref.

H gj(H)/g;(e") =1-17.4(1.0x10°© 2.002 2842) 2.002 283 853 SEOP [43]
H g;(H)/g;(e") =1-17.709(13K 10 © 2.002 283 84826) 2.002 283 853 SEOP [45]
D g;(H)/g;(D) =1+7.22(3)x10°° (1+7.221x10°%)2 HFHM [44]
4He" gj(He")/g;(e") =1-70.87(30)x 10 © 2.002 177 460) 2.002 177 407 SEOP [46]
locs+ g;(C*") 2.001 041 596) 2.001 041 59@)" PT [122]
207t 7e_p (PP =49.5(6.5) ms 1.7@2 1.738281 14 HFST [17,53
209gj82+ e (Bi®) =0.3975(15) ms 1.73435) 1.73101338 HFST  [120]
avalue obtained from the ratio of the recoil contributions.
PEstimate for the total theoretical uncertainty; see text.

1 1 p b [a+b APPENDIX B: ANGULAR FACTORS A

Cop=={A+1— | dy=|1—=In| —
4 o ~a a b The angular factors of Eq$67) and (77) read
1
—fody|n(a+b) (A8) jp dn 1\?
Agnpi)=Qip+D| 1 _1 of ., (BY

In C,4, A denotes again the ultraviolet part of the charge
renormalization constariB5). The auxiliary functions read

b=yp—(1-y)p’, (A9) AiSE(n’p;l):(_1)IS+|p+16(2jp+1); (2k+1)
a+b=1-y(1-y)q?/m?, (A10) K jn I\ /in k |
Xt _1 ol —1 0o
q=p—p’, (A11) 2 22
A=2le— ye+ Ind. (A12) L
V5 1u) 310 5 5[
The prime’ denotes quantities related t6 im Eq. (38).
(B2)
:';— direct g measurements 9 from HFS lifetime
g1 '
S0l el Spin-OrbIt COUPMING o rimomrnerm | """"""""" wherel (i) is the angular momentum related tox,, for i
§ 107} e pex 1752 =1,2 and related ta, for i =3,4. Similarly,| ; is related to
2 10 * Poo : kp for i=2,3 and to—«, for i=1,4. The parentheses and
g w0 bound GED, (¢ 1) curly braces denotej3and § symbols, respectively.
T} z For Eq.(80), the angular factors read
B 10 e
« 4 I .
g 10 F < ED, (« / )%, estimate .AO narD=(-1 T+jntintlg+ic
:g 10::7 free(lED,(ct/n)3 VE( 1q, ' ) ( )
Bl |17 [ 2,1
T 10 C: [122] n . .
%10 [ ./ Hand He: [45) and (46) free QED, (o / m)* X —(Zj +1)(2] +1)
10'11 £ i+ « theoret. prec. for free ™ g factor 2] n(]n+ l) a '
12 free e, [36] ) . )
10 010 20 30 40 50 60 70 80 90 Jr jo L\ [ir dn |
nuclear charge Z X 1 1 1 1
-2 —z 1f{z -2 0

FIG. 11. Precision of-factor experiments compared to the rela-
tive value of different contributions tg; . The curve marked with
an asterisk indicates the difference between thier) (Za)?/6 term
by Grotch[39] and the full bound state QED calculation of order X %
(alm).
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v 1 ko jn |
11|62 (2k+1)(2k' +1) 11

- ]
. . . 2jpt1 i )
Al (n,g,r:l)=(—1)nthtlatioy/=—2 = (2j +1)(2j,+1)| _
jn k' I jr 1 k 1 jq k' jn jn 1 jq jr 1
XIs =2 0]} ) B[00 5 E{]k K If]k K 1 (B4)

As in Eq. (B2), |,(i) is the angular momentum related tox, for i=1,2 and related tac, for i=3,4 andl; to «, for i
=2,3 and to—k, for i=1,4.
The angular factors for Eq94) read
[ L] ot Hl ot 2ley
Avun(k gGk =1 =(—-1 Fhetlertletle —n2K+1 2-K/+1
VP( a, K ) ( ) 2JKan(JKan+1)( J )( J )

N
Nl=

k,k’

jKan 1 k 1 jK k'’ jKan jKan 1 jK/ jK 1
XU i1 3 H[) 1 1 k(] 1K (B5)

[,(i) is the angular momentum related oKy for i=1,2 and related ta, for i=3,4 andl; is related tox for i=2,4 and
to —k for i=1,3. The detailed evaluation of all these factors is presented in[ 8.

P IP% 1 k ]Kan 1 JKan k' 1
x| _1 1]6> (2k+1)(2k'+1) oll 1 0

I

APPENDIX C: RADIAL INTEGRALS Q©,R,S, 7,V W
The radial integral®,R,S,7,V, W from Eqgs.(67), (77), (80), and(94) read

Q@) (b ikl 1= [ drr?t (0 kg (1), D
R(ab)= [ drra gy + g nfu(n) 2

S(ab,cdkl)= f:zodrlri[fam)j.<krl>fb<rl>+ga<rl>j|<krl>gb<r1)1)(f:zodrzré[fcuz)j|<kr2>fd<r2>
+gc(r2)j|(krz)gd(rz)]), (C3

Tta,b,c,d;k,1)= f:_odrlri[fam)j|<krl>fb(rl>+ga<r1>j.<krl>gb<rl>])(f:_odrsr§VEL“§<r3>[fb<r3>fc<r3>
+gb<r3>gc<rg>])( j;odrzré[fcuz)j|<krz>fd<r2>+gc<r2>1.<kr2>gd<r2>]), (o
vl(a,b,c,d;k,n:(f:zodrlrifam)j|<krl>gb<r1>)(f;odrzrégcuz)i|<krz>fd<r2>), (s
vz(a,b,c,d;k.|>=(f:Odrlrifam)j|<krl>gb(rl>)(f:Odrzréfc(rzn|(kr2>gd<rz>), (o
v3(a,b,c,d;k,|>=(f:Odrlrigam)j.(krofb(rl))(f:Odrzr%fc<r2)j|<krz>gd<rz>), )
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Vﬁalxako)=(Jm Jnlﬁgarojmkunbulﬂ(Jm an@gargjmkuﬁduzﬂ, 8
r= 2=
Wi(ab,c.dikl)= JT;OdHTﬁa01”Kkrﬂgdrﬂ)(J?;OdrﬂgvmyUsﬂf&r3“b“3)+gdrﬂgdrﬁ])
X j” Odrzrggc(rz)j|(kr2)fd(r2)), (C9
ry=
wiabedikn=| [ anrdturoitanair || [ oottt -aranran)
X fw Odrzrgfc(rz)j|(kr2)gd(r2)), (C10
ry=
W3(a,b,c,d;k,l)= Jm Jnlﬁgaulnmkrofaro)(szOdraévmfugnfbugﬁcugy+gar@gara])
ry= rg=
X f i Odrzréfcuz)jl(kr2>gd<rz>), (C11)
ry=
W4(a,b,c,d;k,l)= Jm Jnlﬁgaulnmkrofaro)(szOdra%Vﬂfusnfbusﬁcugy+gdr@g&ra])
ri= rg=
X f i Odrzrégcuz)j|<kr2>fd<rz>) (C12
ry=

In these equation$,andg denote large and small radial component of the wave functions

fa,K<r>xTa<?))
(C13

q)a(r): . ~
( i (X" ()

with r=|r|. The indicesa,b,c,d in Egs.(C3)—(C12 have to be considered here as cumulative quantum numbers, i.e., the
angular momentum quantum number is not specified separ@etgpt forQ).
APPENDIX D: THE FUNCTION G(s,t,u)

The denominator of E81) is contained in

G(s,t,u)

=[2k(E,—E<—k)(E,—E,—k)(E,—E,—k)]"' E¢>0,E>0,E,>0,

=[2k(En—Es—K)(En—E—K)(En—Ey+K) ]+ [(E;— EW)(En—Es—K)(E,—Ei—K)(En—Ey+ k)] 7+
—[(E;—EW(Ep—Ey)(En—Es—K)(E,—E,+k)]™t  Es>0, E>0, E,<0,

=[2k(En—Es—K)(En—E(+K)(Eq—Ey—K)] ™'+ [(Ey—E)(En—Es—K)(Eqn—Ey+K)(En—Ey—k)]7*
—[(Ey—E)(Es—E)(E,—Es—K)(E,—E+k)]™! Es>0, E<0, E,>0,

=[2K(Ey—EstK)(En—Ey—K)(En—Ey—K) ]~ "+ [(E;— Eo)(En—Ey—K)(En—E—K)(En—Est+k)] 7+
—[(E{—Eg)(E,—Eg)(En—E,—K)(En—Es+k)]™! Es<O, E>0, E,>0,

=[2K(E,—E¢+K)(En— E{+K)(En—Ey—K) 1 *+[(Ey—E)(En—Es+K)(En—E+K)(E,—E,— k)]t
+[(Ey— E)(Ey—Eg)(En—Es+K)(En—E,—k)]7! E¢<0, E;<0, E,>0,

=[2K(Ep—Es+K)(En—E;—K)(Eq—Ey+ k)] 2+ [(E;—Ey)(Ey—Est+K)(En—E;—K)(E,— E,+ k)] 72
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+[(Er—EW)(Ei— EQ(En—Es+K)(En—Ei—k)] 7+

PHYSICAL REVIEW A 62 032510

E.<0, E>0, E, <O,

=[2K(Eq—Es—K)(En— Et+K)(En—Ey+K) ] +[(Es— E)(En— Es—K)(En— Ei+K)(E,—Ey+K)] 7+

+[(Es_ Et)(Es_ Eu)(En_ Eu+k)(En_ Es_ k)]71
=[2k(E,—Es+K)(En—E{+K)(E,—E,+k)] !

E.<0, E,<0, E,<O0.

E.>0, E,<0, E,<0,
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