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Many-Body Perturbation Theory
A. Non-degenerate (closed-shell) systems.

Single reference function
Partitioning the Hamiltonian:




 ;   


Unperturbed (zeroth-order) function known from the start:





The full wave function can be obtained by st'd techniques





Perturbation theory





Linked-diagram expansion

Coupled-cluster expansion

Variational techniques (MCHF)  etc.
A. Degenerate (open-shell) systems - no degenerate state of the same symmetry. Single reference function

Unperturbed function known from the start and the case can be treated as in A.

C.
 Degenerate (open-shell) system – (quasi-)degenerate states of the same symmetry. Multi-reference function




     (a=1, 2, ..d)
Unperturbed (zeroth-order) functions (

) are not known from the start. 

Example: He fine structure
sp configuration 
in jj-coupling
(s p1/2)
J=0, 1




(s p3/2) 
J=1, 2


in LS-coupling
1P   
J=1




3P
J=0, 1, 2

Two states of J=1. Linear combinations of (s p1/2) and (s p3/2) also in zeroth order (except in extreme jj-coupling).

The quasi-degeneracy leads to poor convergence in st'd perturbation approaches

1s 2p configuration - first order


Z=10 Ne8+
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Z=18 Ar16+
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The Model space
The zeroth-order function is the projection of the full wave function on the model space (intermediate normalization):




   (a=1, 2, ..d)
Full wave function obtained by operating on the zeroth-order function by the wave operator  :
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The model space can contain degenerate and quasi-degenerate unperturbed states.

The Effective Hamiltonian
The Schrödinger equation :





gives
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The zeroth-order functions are the eigenfunctions in the model space of the effective Hamiltonian
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and the eigenvalues are the corresponding full energies. 
Procedure: 

1. Define a model space with (quasi-)degenerate unperturbed states

2.
Construct the wave operator and the effective Hamiltonian

3.
Perform the diagonalization


(Quasi-)degenerate many-body perturbation theory in a nut shell.


The Bloch equation

The wave operator satisfies the "Bloch equation"
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or with  




   and   
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Can be used to generate 


Rayleigh-Schrödinger perturbation expansion


Linked-diagram expansion


Coupled-cluster expansion
depending on the Ansatz made. 


The secular equation

 EMBED Word.Picture.8  



 EMBED Word.Picture.8  

  

  
 EMBED Word.Picture.8  



 EMBED Word.Picture.8  

  

In the case of the He fine structure





Quasi-degenerate states mixed to all orders.

Quantum-Electro Dynamics
Conventional procedure; S-matrix formulation
Perturbation treated as a scattering process,

using time-dependent perturbation theory

Perturbation switched on adiabatically at t = - ∞ and switched off at t = + ∞
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Single-photon exchange:
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In the scattering process energy is conserved.

Initial and final states must have the same energy.

Gell-Mann-Low-Sucher energy formula
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General (quasi-)degenerate systems cannot be 

treated within the S-matrix formulation.

How can the Many-Body  and QED 

procedures be combined?

The traditional procedure is 

1.
first to perform a many-body calculation and

2.
then to add a separate (first-order) QED correction

This is a good procedure

But it cannot be systematically improved

The accuracy cannot be estimated
Question:

Can the procedures be combined in a more "organic" way?
One connecting procedure is 

the time-dependent perturbation theory and

the time-evolution operator in 

the covariant formulation.

Time-dependent Perturbation Theory
Perturbation switched on adiabatically at 

:
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i.e. 

  and  

 as 
 EMBED "Equation" \* mergeformat  


Full interaction at t=0

Interaction picture:
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;   


Time-dependent Schrödinger equation:
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Evolution operator:
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The evolution operator 

 is closely related to 

the many-body wave operator 

:
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Gell-Mann-Low relations

Non-degenerate case
The full wave function given by
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 contains singularities - unlinked diagrams -

which are eliminated by the normalization.
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The wave operator is the linked (open) part of the evolution operator:
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The perturbed energy is given by
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Generalization to the degenerate case
Derived in nucear physics in the early 1970's

[Brown, Kuo, Oberlechner, Jones & Mohling, ..]

The connected part of the evolution operator is a string of

irreducible Q-boxes (non-singular):
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Singularities appear when a model-space state appears as an intermediate state.

The singularities can be factorized out:
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The wave operator is the irreducible, linked (open) part of the evolution operator:  
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The effctive Hamiltonian is:  



Covariant evolution operator
Conventional evolution operator:
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Only forward evolution, 

 .  Not covariant.

Covariant evolution operator includes backwards evolution, 

:
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Intermediate time (t1) integrated from -∞ to +∞

Leads to covariant evolution operator: 


Wave operator:
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Effective Hamiltonian:
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Single-photon exchange:
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C.f. st'd first-order perturbation theory:
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Effective one-photon interaction:
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Valid also for energy non-conservation

Energy conservation:
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st'd interaction in the Feynman gauge.

The effective interaction above is non-hermitean.

Hermitization gives
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which is the Mittleman potential

The non-hermitian potential is simpler to use numerically,

fewer poles in the k-space.

Two-photon exchange
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The ladder interaction has a "reducible" part,

when there is an intermediate time (t") with no photons:
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This can be expressed as two single-photon exchange.

This contains all the singularity of the two-photon exchange. The remaining irreducible interaction is regular.

Normalization leads to counter terms, which cancel the singularity.

Finite contribution remains: Model-Space Contribution,

due to the time-dependence (retardation) of the interaction.

Full two-photon interaction
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All parts regular, no singularities


The second term is the reducible two-photon interaction

with two full single-photon exchanges
This is the main part and has the same structure as st'd 

second-order perturbation theory.

The remaining terms are corrections to the full two-photon interaction
Bethe-Salpeter equation
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Iterated leads to the full Bethe-Salpeter equation 
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Hierarchy of approximations

of the electron-electron interaction

Standard Many-Body Approaches:

A. Coulomb approximation - non.rel. many-body theory
B. Coulomb-Breit approximation 



(Iterated one-photon interactions - no retard., no pairs)


No-Virtual-Pair Approximation - relativistic MBT

Many-Body-QED:

C. Iterated one-photon interactions with retarded, virt. pairs. Ladder approximation of the BS eqn
D. Iterated one- and two-photon interactions
.........
F. Full Bethe-Salpeter equation

Standard Many-Body Approaches:

A. Coulomb approximation:
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B. Coulomb-Breit approximation:
H= +

+
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+ is the projection opeator for positive energy states
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 is the unretarded Breit interaction.
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Results and Conclusions
A. 
QED and Relativistic MBPT can be combined in a systematic way by means of time-dependent perturbation theory and the covariant form of the time-evolution operator.


[This is closely related to the two-timed Green's function approach.]

B. 
The Coulomb-Breit scheme - no retardation, no virtual pairs - is a very good approximation also for heavy elements.


[The first order Breit interaction is vital.]

C. First-order Lamb shift has a comparable effect to the energy levels as the first-order Breit interaction.

Radiative corrections

Radiative corrections can be included in this scheme:
Vacuum polarization can be treated as an external potential:
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Vertex corrections can be included in the irreducible multiphoton interactions:


 EMBED Word.Picture.8  

      
 EMBED Word.Picture.8  


Electron and photon self energy lead to modified propagators:
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Combination of QED and Relativistic Many-Body Theory

Ingvar Lindgren

Kolloqium Relativistische Effekte in der Chemie und Physik schwerer Elemente

Bildungszentrum Kloster Banz, Staffelstein

26-28 April 2000

Relation to two-times Green's function
(Shabaev et al.)
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Green's function
Covariant evolution operator

The covariant evolution operator can be regarded as an operator representation of the Greens function






_1018605234

_1018605273.unknown

_1018605292.unknown

_1018605311.unknown

_1018605320.unknown

_1018605325.unknown

_1018605330.unknown

_1018605333.unknown

_1018605335.unknown

_1018605338.unknown

_1018605339.unknown

_1018605336.unknown

_1018605334.unknown

_1018605331.unknown

_1018605328.unknown

_1018605329.unknown

_1018605326.unknown

_1018605323.unknown

_1018605324.unknown

_1018605322.unknown

_1018605316.unknown

_1018605318.unknown

_1018605319.unknown

_1018605317.unknown

_1018605313.unknown

_1018605314.unknown

_1018605312.unknown

_1018605301.unknown

_1018605306.unknown

_1018605308.unknown

_1018605310.unknown

_1018605307.unknown

_1018605304.unknown

_1018605305.unknown

_1018605302.unknown

_1018605296.unknown

_1018605298.unknown

_1018605300.unknown

_1018605297.unknown

_1018605294.unknown

_1018605295.unknown

_1018605293.unknown

_1018605282.unknown

_1018605287.unknown

_1018605289.unknown

_1018605290.unknown

_1018605288.unknown

_1018605284.unknown

_1018605286.unknown

_1018605283.unknown

_1018605277.unknown

_1018605280.unknown

_1018605281.unknown

_1018605278.unknown

_1018605275.unknown

_1018605276.unknown

_1018605274.unknown

_1018605254.unknown

_1018605264.unknown

_1018605268.unknown

_1018605271.unknown

_1018605272.unknown

_1018605269.unknown

_1018605266.unknown

_1018605267.unknown

_1018605265.unknown

_1018605259.unknown

_1018605261.unknown

_1018605262.unknown

_1018605260.unknown

_1018605257.unknown

_1018605258.unknown

_1018605256.unknown

_1018605244

_1018605250.unknown

_1018605252.unknown

_1018605253.unknown

_1018605251.unknown

_1018605247

_1018605248

_1018605246

_1018605239

_1018605242

_1018605243

_1018605241

_1018605237

_1018605238

_1018605235

_1018605194

_1018605214

_1018605224

_1018605229

_1018605231

_1018605233

_1018605230

_1018605227

_1018605228

_1018605225

_1018605219

_1018605221

_1018605222

_1018605220

_1018605216

_1018605217

_1018605215

_1018605204

_1018605209

_1018605211

_1018605212

_1018605210

_1018605206

_1018605207

_1018605205

_1018605199

_1018605201

_1018605202

_1018605200

_1018605196

_1018605197

_1018605195

_1018605173

_1018605183

_1018605188

_1018605191

_1018605192

_1018605190

_1018605186

_1018605187

_1018605185

_1018605178

_1018605181

_1018605182

_1018605179

_1018605175

_1018605177

_1018605174

_1018605163

_1018605168

_1018605171

_1018605172

_1018605169

_1018605166

_1018605167

_1018605164

_1018605154

_1018605158

_1018605161

_1018605162

_1018605160

_1018605156

_1018605157

_1018605155

_1018605149

_1018605151

_1018605152

_1018605150

_1018605146

_1018605148

_1018605144

_1018605145

_1018605142

