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1. Introduction

1.1. General

What is known as the Bethe-Salpeter (BS) equation represents the complete solution of the relativis-
tic two-body problem with important applications in various branches of physics. The equation was
first derived by Bethe and Salpeter in 1951 [1], using the relativisticS-matrix formalism and the anal-
ogy with Feynman graphs, and at about the same time by Gell-Mann and Low [2], using a rigorous
field-theoretical approach based on Green’s functions. A closely related equation was discussed by
Schwinger in his Harvard lectures already in the late 1940’s [3, 4, 5, 6].

In interpreting the solutions of the BS equation, several serious problems were encountered, as
discussed early by Dyson [7], Wick [8] and Goldstein [9]. Dyson was particularly concerned about
the meaning of the wave function in relativistic quantum mechanics, a subject”full of obscurities
and unsolved problems”. Solving the BS equation leads to a wave function with individual times for
the two particles. This function is manifestly relativistically covariant but not in accordance with the
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standard quantum-mechanical picture. That leads to ”spurious” or ”abnormal” solutions without phys-
ical significance and with no nonrelativistic counterpart [10]. Another fundamental problem is that
the BS equation does not reduce to the correct ”one-body limit”, when one of the particles becomes
infinitely heavy, as discussed by Gross and others [11, 12]. Problems of these kinds are most pro-
nounced in the scattering of strongly interacting particles but less so for bound-state systems in weak-
coupling [13, 14, 15, 16, 17] (see ref. [6] for a review).

The earliest applications of the BS equation appeared in atomic physics and concerned the proton
recoil contribution to the hydrogen fine structure by Salpeter [18] and the positronium energy level
structure by Karplus and Klein [4].

An important goal for the equation has been the study ofstrongly interacting particles, which is a
fundamental problem in elementary-particle physics. In recent years there have been numerous appli-
cations in QCD, dealing mainly with the quark-quark, quark-antiquark interactions, quark confinement
and related problems [14, 19, 20, 21]. Here, the problems mentioned above are more serious, as recently
summarized by Namyslowski [6].

There have also been many applications in surface and solid-state physics, ranging from electron-
hole interactions in ion crystals [22] and studies of the two-dimensional Hubbard model [23] and
Cooper pairs [24] to quantum dots [25].

The BS equation has also been applied to three or more particles [26, 27, 28], although serious
problems have been encountered for more than three particles [29].

Various approximation schemes for treating the BS equation have been developed over the time.
The simplest approximation is the”ladder approximation”, where all intermediate states evolve only
in the forward (positive) time direction. This is a useful starting point in the strong-coupling case,
where the standard perturbative or self-consistent approach may not converge, and this approxima-
tion is, for instance, the basis for the Brueckner theory of nuclear matter [30, 31, Sect. 41]. Another
approach is the”quasi-potential approximation”, which implies that the equation is reduced to an
equivalent 3-dimensional Schrödinger equation, which can be done without loosing any rigor [14, 32].
Early numerical calculations in this regime were done particularly by Schwartz and Zemach [33] and
Kaufmann [34].

In atomic physics the BS equation has been applied mainly in treating positronium [35, 36] and
heliumlike ions, and we shall be particularly concerned here with the latter. This is strictly speaking a
three-body problem but can to a good approximation be treated—with the first Born approximation—
as a two-body problem with an external potential. The application to heliumlike systems was pioneered
by Sucher [37, 38] and Araki [39] in the late 1950’s for deriving the leading relativistic and QED energy
corrections beyond the Breit interaction. Later these works have been extended—largely along the lines
of Sucher—by Douglas and Kroll in the 1970’s [40] and more recently by Zhang and Drake [41, 42,
43, 44].

The technique developed by Drake and coworkers is presently the most accurate available one in
dealing with heliumlike systems. The wave functions used are very accurate functions of Hylleraas
type, and the QED corrections are evaluated by means of analytical expressions up to orderα5 Ry
(atomic units, ormα7 in relativistic units), derived from the BS equation. The wave functions used
by Drake et al. are nonrelativistic but certain relativistic effects are treated to all orders in the ”unified
model” [45, 46]. The analysis of the BS equation are in these works based upon theBrillouin-Wigner
perturbation theory(BWPT).

A different and in some aspects more versatile approach to the many-body problem is the proce-
dure known as themany-body perturbation theory(MBPT). This is based uponRayleigh-Schr̈odinger
perturbation theory(RSPT) [47], which via the Bloch equation can be used to derive various compu-
tational schemes, such as thelinked-diagram expansion(LDE) [48, 49, 50]. A particularly powerful
technique is theCoupled-Cluster Approach(CCA) [51, 52, 53], which is widely used in quantum chem-
istry [54, 55]. This technique is strictly speaking non-perturbative but can also be regarded as an ”all-
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Fig. 1. Schematic illustration of the connection between various many-body techniques. The upper right part
represents the Green’s-function (GF) approach, which is used to derive the Bethe-Salpeter (BS) equation, nor-
mally analyzed in terms of the Brillouin Wigner perturbation theory (BWPT). The lower-left part illustrates the
many-body perturbation theory (MBPT), originating from Rayleigh-Schrödinger perturbation theory (RSPT). The
combination of quantum-electrodynamics (QED) with MBPT is represented by the covariant-evolution-operator
(CovEvOp) method, and the link to the BS equation and the corresponding Bloch equation—the main subject of
the present paper—is illustrated by the arrows.

order” perturbative expansion, and we shall include it in the MBPT category here. The MBPT tech-
niques are primarily developed for the weak-coupling case, but might in the non-perturbative (CCA)
form be used also in strong coupling.

The MBPT procedures, based initially upon RSPT, have the great advantage compared to tech-
niques based upon BWPT that they aresize-extensivein each order, which implies that the energy scales
linearly with the size of the system—a property of vital importance for molecular problems [56, 57].
The MBPT procedures can also be combined with theextended-model-space technique, which is par-
ticularly effective in dealing with problems ofquasi-degeneracy[58, 59, 47, 60].

For QED problems theS-matrix techniquehas been the standard procedure since the days of Feyn-
man and Dyson. (For a review of the application to bound-state problems, see ref. [61].) Being based
upon scattering theory, this technique has the disadvantage that its structure is quite different from that
of MBPT, which makes it hard to combine the procedures (see, e.g. ref. [62]). The standard proce-
dure for such a combination has been to perform a separate (relativistic) many-body calculation and
adding first-order energy corrections from QED analytically [63]. This procedure gives in many cases
satisfactory results but is hard to improve in any systematic way. In particular, it gives no additional
information about the wave function.

Another disadvantage with theS-matrix formalism is that the energy is conserved between the
initial and the final states. This implies that it cannot be combined with the extended-model-space
technique, successfully applied in MBPT. This technique requires generally elements of the effective
interaction that are nondiagonal in energy. This problem has recently been remedied by means of a new
technique, known as theCovariant-Evolution-Operator method(CovEvOp), which is a modification of
the standard evolution-operator technique of time-dependent perturbation theory [31] in order to make
it applicable to relativistic problems (for a review, see ref. [64]). This technique has a structure that is
very akin to that of MBPT, and it deals with the key ingredients of MBPT—the wave operator and the
effective interaction. At the same time the method is closely related to theS-matrix formalism and the
Green’s-function procedure. The technique can therefore be regarded as a merger of MBPT/CCA and
QED [65], and it has recently been successfully applied to the quasi-degenerate fine-structure states of
heliumlike systems [66].
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The quasi-degenerate problem can also be handled with thetwo-time Green’s-functionapproach,
developed by Shabaev and coworkers (for a review, see ref. [67]). This technique, however, has no
direct link to MBPT and will therefore not be discussed further here.

The procedure with the Covariant-Evolution-Operator method is now being further developed at
our laboratory in order to combine QED and MBPT in a more complete fashion. This will be based on
the relativistic coupled-cluster approach (CCA) of electron correlation or the so-called Dirac-Coulomb
approximation, corresponding to the (all-order) ”ladder approximation” of the Bethe-Salpeter equation.
This is combined with a perturbative (order-by-order) expansion of the remaining (mainly QED) ef-
fects, which in principle leads to the full BS equation. This is along the lines early drawn by Sucher [38]
and followed by many later works [40, 15, 43, 36, 68]. Our approach differs from all the earlier ones
in the sense that all effects are evaluatednumericallyrather than analytically.

Our approach implies that the QED effects are evaluated with highly correlated (relativistic) wave
functions, and for two-electron systems the results will then, in principle, be comparable to those of
Drake’s unified method, with the difference that the relativistic effects are included in a complete way
and that the QED effects are evaluated numerically.

In the diagram in Fig. 1 we have tried to represent the relations between the many-body approaches
described here in a simple and illustrative way. The many-body procedures based upon Rayleigh-
Schr̈odinger perturbation theory are indicated in the lower-left part and the Green’s-function and Bethe-
Salpeter procedures, more associated to Brillouin-Wigner perturbation theory, in the upper-right part.
The present paper deals particularly with the connection between the two approaches, represented by
the arrows in the diagram.

In addition to deeper insight into the different procedures, the present treatment will make it possi-
ble to analyze a problem based on the BS equation in terms of RS-MBPT—not only in terms of BWPT,
as has previously been the case [40, 44]. The corresponding Bloch equation in commutator form, which
we have derived, has the same relation to the BS equation as has the standard Bloch equation to the or-
dinary Schr̈odinger equation, and it could possibly be used to eliminate the quasi-degeneracy problem
that might appear when the BS equation is treated for a single state at a time.

Since the equivalence of the MBPT-QED-CovEvOp procedure with the BS equation has now
been established for two-electron systems, this new link will probably make it easier to apply the
BS procedure—or its equivalence— also to systems with more electrons. Alternatively, this can be
used to analyze a many-body-QED calculation to find out what is missing in order to represent a com-
plete Bethe-Salpeter treatment. Our main emphasis here is on applications to atoms and other weakly
interacting systems. Since the procedure we have developed, however, is based upon a combination
of perturbative and non-perturbative approaches, the results obtained might be useful also outside this
regime.

The paper will be organized in the following way. Below we shall first conjecture the Bethe-Salpeter
equation in a simple-minded way as an introduction. In section 2 we shall summarize the necessary
ingredients of time-independent and time-dependent perturbation theory and in the following section
briefly review the original derivations of the Bethe-Salpeter equation by Bethe and Salpeter and by
Gell-Mann and Low, based on Green’s functions. The main part of the paper will be devoted to a rigor-
ous derivation of the Bethe-Salpeter equation, starting from the covariant-evolution-operator method.
The basics of the method are summarized in section 4, and the method will in the following section be
used to derive the Bethe-Salpeter equation. A corresponding Bloch equation will also be derived, which
will make it possible to treat the BS equation perturbatively or iteratively also for a quasi-degenerate
(extended) model space. Technical details of the treatment are given in a number of appendices. Ra-
diative effects (self energies and vacuum polarization) are not considered here but can be included by
modifying the electron propagator and photon interactions, as discussed, for instance, by Douglas and
Kroll [40].
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1.2. Bethe-Salpeter equation
An equation of BS type can be conjectured in a very simple way by considering the time-independent
nonrelativistic Schr̈odinger equation

H|Ψ〉 = E|Ψ〉 (1)

with H = H0+V1, whereH0 = h1+h2 is the zeroth-order Hamiltonian (sum of single-electron Hamil-
tonians) andV1 = e2/r12 is the electron-electron interaction (in relativistic units1). The Schr̈odinger
equation can then be expressed

(E −H0)|Ψ〉 = V1|Ψ〉 (2)

with the solution
|Ψ〉 = Γ(E)V1|Ψ〉 (3)

where

Γ(E) =
1

E −H0
=

|rs〉〈rs|
E − εr − εs

(4)

is the ”resolvent” operator [47, Ch. 9] and|rs〉 is the Dirac notation of the straight (not antisym-
metrized) product of two single-electron functions, satisfying the Dirac equation

h|i〉 = εi|i〉 (5)

We apply the summation convention, implying summation over repeated indices appearing on one side
of the equation. Unless specified otherwise, the summation is performed over positive- (particle) as
well as negative-energy (hole) states.

In the relativistic formalism one should, following Sucher [37, 38], replaceV1 by Λ++e2/r12Λ++,
whereΛ++ is the projection operator for particle (positive-energy) states. This leads to theCoulomb-
ladder approximation, mentioned above, i.e., a series of Coulomb interactions separated by particle
states. In QED,V1 can in the first approximation be replaced by theenergy-dependentinteraction with a
fully covariant photonV1(E), accounting for the instantaneous Coulomb interaction and the (retarded)
Breit interaction. In the next stepV1(E) can be replaced byV1(E) + V2(E), whereV2(E) represents
thenon-separable(irreducible) interaction of two photons, i.e., the interaction of two covariant photons
that in the QED description cannot be represented by repeated single-photon interactions (see Fig. 6
below). Continuing this process, summing all non-separable interactions with one, two, ... photons

V(E) = V1(E) + V2(E) + · · · (6)

leads to
|Ψ〉 = Γ(E)V(E)|Ψ〉 (7)

or
(E −H0) |Ψ〉 = V(E)|Ψ〉 (8)

This is equivalent to the Schrödinger-like form of theBethe-Salpeter equationderived by Sucher [38,
Eq. 1.47] and also used by Douglas and Kroll [40, 3.26] and by Zhang [43, Eq. 15].

The BS equation (8) can be expanded in terms of a Brillouin-Wigner perturbation series [47, Ch.
9]

|Ψ〉 = |Ψ0〉+
(
ΓQ(E)V(E) + ΓQ(E)V(E)ΓQ(E)V(E) + · · ·

)∣∣Ψ0

〉
(9)

whereΨ0 is the unperturbed wave function and

ΓQ(E) =
Q

E −H0
(10)

1 In this article relativistic units are used, i.e.,m = c = ~ = ε0 = 1, e2 = 4πα, whereα is the fine-structure constant.
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is the ”reduced” resolvent (4) with the unperturbed state removed. For this sequence to converge prop-
erly, it is required that there be no eigenstate ofH0 close in energy to that ofΨ0 and of the same
symmetry. A rigorous derivation of the equation will be given in the following sections.

2. Conventional many-body perturbation theory

2.1. Time-independent perturbation theory
In time-independent many-body perturbation theory (MBPT) (see, e.g., ref. [47]) the aim is to solve
the Schr̈odinger equation by successive approximations for a number of”target” states

H |Ψα〉 = Eα |Ψα〉 ; (α = 1, 2, · · · d) (11)

(x stands here for all space coordinates, leaving out spin coordinates). The time-independent Hamil-
tonian is partitioned into a zeroth-order Hamiltonian and a perturbation

H = H0 + H ′ (12)

For each target state|Ψα〉 there exists amodel state|Ψα
0 〉 (corresponding to the”zeroth-order wave

function”, ZOWF) that is confined to a subspace, themodel space(P ), spanned by eigenstates ofH0.
The model space can be degenerate or non-degenerate (quasi-degenerate). In the latter case the model
states are not necessarily eigenstates ofH0. It is always assumed that all degenerate states ofH0 are
either entirely inside or entirely outside the model space.

A wave operatorΩ can be defined so that it transfers all model states to the corresponding target
states

|Ψα〉 = Ω |Ψα
0 〉 ; (α = 1, 2, · · · d) (13)

In the following we shall use theintermediate normalization(IN), implying that

〈
Ψα

0

∣∣Ψα
〉

= 1 (14)

The model states are the projections of the target states on the model space

|Ψα
0 〉 = P |Ψα〉 (15)

which implies
PΩP = P (16)

The exact energies as well as the model states are obtained by solving the secular equation

Heff |Ψα
0 〉 = Eα |Ψα

0 〉, (17)

within the model space. Here,Heff is theeffective Hamiltonian, in IN given by

Heff = PHΩP (18)

The wave operator satisfies thegeneralized Bloch equation[58, 47]

[
Ω,H0

]
P =

(
H ′Ω− ΩH ′

eff

)
P (19a)

whereH ′
eff is theeffective interaction(in IN)

H ′
eff = Heff − PH0P = PH ′ΩP (19b)

NRC Canada



Lindgren 7

For a degenerate model space with the energyE0 the equation goes over into the original Bloch equa-
tion [69, 70]

(E0 −H0)ΩP =
(
H ′Ω− Ω H ′

eff

)
P (19c)

The Bloch equation is generally amulti-state equationthat contains the information of asystemof
Schr̈odinger equations (11), corresponding to a number of target states. The equation can conveniently
be used as the starting point for generating various perturbative schemes [58, 47]. It leads directly to a
generalized form of the Rayleigh-Schrödinger perturbation expansion, and it can be used to generate
the linked-diagram expansion(LDE). In the iterative form

[
Ωn,H0

]
P =

(
H ′Ωn−1 − Ωn−1 H ′

eff,n

)
P (19d)

the equation can also be used to generate non-perturbative or ”all-order” schemes, such as thecoupled-
cluster approach(CCA). Here,Ωn andH ′

eff,n = PH ′Ωn−1P (with Ω0 = 1) are then:th approxima-
tions of the wave operator and the effective interaction, respectively. The commutator form of the
Bloch equation makes it possible to work with a non-degenerate or ”extended” model space, which is
of particular importance for quasi-degenerate problems, as mentioned above.

2.2. Time-dependent perturbation theory
In time-dependent perturbation theory we start from the time-dependent Schrödinger equation

i
∂

∂t

∣∣χ(t)
〉

= H
∣∣χ(t)

〉
(20)

We are here interested in states that arestationary, which implies that the state vector has the form
∣∣χ(t)

〉
=

∣∣Ψ〉
e−iEt (21)

whereE is the energy of the system and|Ψ〉 is the time-independent state vector. The latter is then a
solution of the time-independent Schrödinger equation (2)

H |Ψ〉 = E|Ψ〉 (22)

In the interaction picture(IP) [31] with the partitioning (12) the wave function is related to that of
the Schr̈odinger picture by ∣∣χI(t)

〉
= eiH0t

∣∣χ(t)
〉

(23)

and the time-dependent Schrödinger equation becomes

i
∂

∂t

∣∣χI(t)
〉

= H ′
I(t)

∣∣χI(t)
〉

(24)

Thetime-evolution operator, defined by
∣∣χI(t)

〉
= UI(t, t0)

∣∣χI(t0)
〉

(25)

then satisfies the equation

i
∂

∂t
UI(t, t0) = H ′

I(t) UI(t, t0) (26)

with the solution [31, Eq. 6.23]

UI(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

d4xn · · ·
∫ t

t0

d4x1 TD

[H′I(xn)H′I(xn−1) · · ·H′I(x1)
]

(27)
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Here,x = (t,x), TD is the Dyson time-ordering operator, andH′I(x) is the perturbationdensity, related
to the perturbation (12) by

H ′
I(t) =

∫
d3xH′I(t,x) (28)

In applying this formalism to perturbation theory, anadiabatic dampingis added [31]

H ′
I(t) → H ′

Iγ = H ′
I e−γ|t| ; UI(t, t0) → UIγ(t, t0) (29)

whereγ is a small, positive number. This implies that ast → ±∞ the eigenfunctions ofH tend to
eigenfunctions ofH0.

In QED the perturbation density due to the interaction between the electrons and the photon field
is given by [71]

H′I(x) = −eψ̂†I (x)αµAµ(x)ψ̂I(x) (30)

wheree is the absolute value of the electronic charge,ψ̂†I (x), ψ̂I(x) are the electron-field operators in
the interaction picture,Aµ the photon-field operator andαµ are related to the standard Dirac matrices
by αµ = (1,α).

3. Green’s function approach

In this section we shall essentially reproduce the derivation of the BS equation by Gell-Mann and Low,
starting from Green’s functions. We consider a two-particle system for which the Green’s function is
defined by [31, pp 64 and 116]

G(x′1, x
′
2; x10, x20) = −

〈
0H

∣∣TD[ψ̂H(x′1)ψ̂H(x′2)ψ̂
†
H(x20)ψ̂

†
H(x10)]

∣∣0H

〉

〈0H|0H〉 (31)

Here, |0H〉 represents the vacuum state andψ̂†H(x), ψ̂H(x) the electron-field operators, all in the
Heisenberg representation. The latter are related to those in the interaction picture by

ψ̂H(t,x) = U(0, t) ψ̂I(t, x)U(t, 0) (32)

whereU is the evolution operator (27). Transforming the Green’s function to the interaction picture
then yields [31, Eq. 8.9], [2, Eq. 16], [64, Eq. 259]

G(x′1, x
′
2;x10, x20) = −

〈
0I

∣∣TD[ψ̂I(x′1)ψ̂I(x′2)UI(∞,−∞)ψ̂†I (x20)ψ̂
†
I (x10)]

∣∣0I

〉

〈0I|UI(∞,−∞)|0I〉 (33)

Obviously, only fully contracted terms contribute to the vacuum expectation value. By applyingWick’s
theorem[31, p. 83] [47, Sect. 11.5], this can be represented in terms ofFeynman diagrams. The de-
nominator has the effect of eliminating the singularities of the numerator, in the Feynman picture
represented by unlinked or disconnected diagrams, leading to [31, Eq. 9.5]

G(x′1, x
′
2; x10, x20) = −〈

0I

∣∣TD[ψ̂I(x′1)ψ̂I(x′2)UI(∞,−∞)ψ̂†I (x20)ψ̂
†
I (x10)

∣∣0I

〉
conn

(34)

In contrast to the evolution operator (25), the Green’s function is relativisticallycovariant in the
sense that the integrations are performed over all space and time and the electron-field operators can
represent particle (positive-energy) as well as hole (negative-energy) states. This also implies that, in
the energy representation (fourier transform), the energy is conserved at all diagram vertices.

The Green’s function can be expressed

G(x′1, x
′
2;x10, x20) = G0(x′1, x

′
2; x10, x20) +∫∫∫∫

d4x1 d4x2 d4x3 d4 x4 G0(x′1, x
′
2;x1, x2)K(x1, x2;x3, x4) G0(x3, x4;x10, x20) (35)
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whereK represents the interaction kernel of all connected diagrams andG0 is the zeroth-order Green’s
function

G0(x′1, x
′
2; x10, x20) = −〈

0I

∣∣TD[ψ̂I(x′1)ψ̂I(x′2)ψ̂
†
I (x20)ψ̂

†
I (x10)]

∣∣0I

〉

= SF(x′1, x10)SF(x′2, x20) (36)

with SF being the Feynmanelectron propagatoror zeroth-order single-electron Green’s function, de-
fined by

iSF(x′, x0) =
〈
0I

∣∣TD[ψ̂I(x′)ψ̂
†
I (x0)]

∣∣0I

〉
(37)

assuming the vacuum state be normalized. This is illustrated in Fig. 2. In operator form the Green’s
function can be expressed

G = G0 + G0KG0 (38)

In some cases the kernel of the Green’s function can be separated into two kernels

K = K2G0K1 (39)

with no photon-field contractions between them. The kernel is then said to beseparable. If a kernel
cannot be separated further in this way, it is said to benon-separable2. The complete kernel can then
be expressed

K = κ + κG0κ + κG0κG0κ + · · · (40)

whereκ represents allnon-separablekernels. This leads to theDyson equationfor the Green’s function

G = G0 + G0κG (41)

illustrated in Fig. 3.

r rG
r r

=

x′1 x′2r r

6 6G0

r rx10 x20

+

r r

6 6
K

6 6
r r

Fig. 2. Graphical representation of the two-particle Green’s function (38).K representsall interactions between
the electrons.

Bethe and Salpeter as well as Gell-Mann and Low argue that a related equation can be set up for the
two-electron bound-state wave function. In that case the first (inhomogeneous) term on the rhs does not
contribute, since that is in their formulation composed offree-electronpropagators, and the bound-state
wave function does not have any such components. This leads to thehomogeneousequation

Ψ(x′1, x
′
2) =

∫∫∫∫
d4x1 d4x2 d4x3 d4x4 G0(x′1, x

′
2;x1, x2)κ(x1, x2; x3, x4)Ψ(x3, x4)

(42)
or in short-hand notations

Ψ = G0 κΨ (43)

2 What we here refer to as ”separable” and ”non-separable” are often referred to as ”reducible” and ”irreducible”. Since the
latter terms have recently been used also with a different interpretation, we avoid them here.
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r rG
r r

=

x′1 x′2r r

6 6G0

r rx10 x20

+

r r
6 6G0r r κ
r r

Gr r

Fig. 3. Graphical representation of the Dyson equation (41) for the two-particle Green’s function.κ represents the
non-separableinteractions between the electons.

This is the original form of the Bethe-Salpeter equation [1, Eq. 11a], [2, Eq. 37]. It should be noted that
this wave function containsindividual times for the two particles. This reflects one of the problems
referred to in the Introduction. The relative time between the particles does not correspond to any
physical quantity and leads to spurious solutions. There are several ways of eliminating the extra time
dependence in a covariant way. Sucher [38], following Salpeter [18], integrates the fourier transform
over the relative energy, which leads to a Schrödinger-like form with a single time/energy dependence
of the type (8) given above. This reduction can be done without loosing any physical content of the
original equation [15, 16, 32, 17]. In the following sections we shall derive an equivalent equation in a
different way.

Our notations here differ from those used by Bethe-Salpeter and Gell-Mann–Low. The Green’s
function (31) is in their works denoted byK(12, 34) and referred to as the ”amplitude function for
the propagation of the particles” by Bethe-Salpeter [1] and as the ”two-body kernel” by Gell-Mann–
Low [2, Eq. 11]. Our ”non-separable kernel”κ is by BS denoted bȳG and referred to as ”irreducible
graphs” and by GML denoted byG and referred to as the ”interaction function”.

4. Covariant evolution operator approach

4.1. Definitions
In the following sections we shall derive the Bethe-Salpeter equation, starting from the covariant form
of the evolution operator [64]. This will demonstrate the relation between the BS equation and standard
many-body perturbation theory (MBPT) in a clear way. In the present section we shall first review the
basics of the evolution-operator method and in the next section use that method for deriving the BS
equation. This will directly lead to the Schrödinger-like form (8).

According to the Gell-Mann–Low theorem [2, 31, p. 61] the time-independent state vector (21) can
in the case of a single target state be expressed in intermediate normalization (IN) (14) as

|Ψ〉 = |χ(0)〉 = lim
γ→0

Uγ(0,−∞)
∣∣Ψ0

〉

〈Ψ0|Uγ(0,−∞)|Ψ0〉 (44)

whereUγ is the evolution operator (29) and|Ψ0〉 is the time-independent zeroth-order state (15). (From
now on we work in the interaction picture and leave out the subscript ”I”.)|Ψ〉 is an eigenvector of the
HamiltonianH0 + H ′

(H0 + H ′) |Ψ〉 = E |Ψ〉 (45)

whereH ′ is in our case the electron-field interaction density (30), integrated over the space. Since this
perturbation represents anuncontractedphoton, the state vector|Ψ〉 will generally lie in anextended
Fock space, where the number of photons is not conserved.

The GML formula can be generalized to a general multi-dimensional model space [64, Eq. 110]

|Ψα〉 = lim
γ→0

NαUγ(0,−∞)|Φα〉
〈Φα|Uγ(0,−∞)|Φα〉 ; (α = 1, 2, · · · d) (46)
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where the vector|Φα〉 is defined
|Φα〉 = lim

γ→0
lim

t→−∞
|χα(t)〉 (47)

This state is generally distinct from the zeroth-order state (15) in intermediate normalization. Since the
state (47) generally does not satisfy IN, a normalization constantNα is inserted.

UNoncov(t
′, t0) = 1 +

t = t’

6ψ̂†+ 6̂ψ
†
+

K
6ψ̂+ 6̂ψ+

t = t0

Fig. 4. Graphical representation of the non-covariant evolution operator (48). The time evolution occurs only in
the positive direction.

UCov(t
′, t0) = 1 +

t = t’ r r6ψ† 6ψ
†

6 6G0

K
G06 6

6ψ 6ψ

r rt = t0

=
t = t’

6ψ† 6ψ
†

r r
G

r r

6ψ 6ψ

r rt = t0

Fig. 5. Graphical representation of the covariant evolution (49) (left). Here, time evolution can occur in the pos-
itive as well as the negative direction. The right part of the figure depicts the relation to the two-time Green’s
function (50).

For a two-electron system thenon-covariantevolution operator (25) can in analogy with the
Green’s function (38) be expressed

UNoncov(t′, t0) = 1 + ψ̂†+(x′1)ψ̂
†
+(x′2)K ψ̂+(x20)ψ̂+(x10) (48)

where againK represents the kernel of all fully contracted (separable and non-separable) interactions
and ψ̂†+, ψ̂+ the positive-energy part of the electron-field operators. This is illustrated in Fig. 4. In
contrast to the Green’s function above, the evolution operator (27) has a single initial timet = t0 and a
single final timet = t′. The time integration is performed fromt = t0 to t = t′ — only in the positive
direction — which implies that the operator isnot relativistically covariant.

A fully covariant form of the evolution operator that is applicable to relativistic problems can be
obtained by inserting electron propagators in the non-covariant expression, as indicated in Fig. 5 (left),
corresponding to the expression [66, 64, Sect. 5]

UCov(t′, t0) = 1 +
∫∫∫∫

d3x′1 d3x′2 d3x10 d3x20 ψ̂†(x′1)ψ̂
†(x′2)G0KG0 ψ̂(x20)ψ̂(x10) (49)

leaving out the integrations over the coordinates ofK (see Eq. 35). It then follows from relation (38)
that the covariant evolution operator is related to thetwo-timeGreen’s function (where all initial and
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all final times are equal) by

UCov(t′, t0) =
∫∫∫∫

d3x′1 d3x′2 d3x10 d3x20 ψ̂†(x′1)ψ̂
†(x′2) G(x′1, x

′
2;x10, x20) ψ̂(x20)ψ̂(x10)

(50)
as illustrated in Fig. 5 (right).

From the relations [64, Eq. 193 (note misprints)]
∫

d3x0 iSF(x, x0) ψ̂(x0) = Θ(t− t0) ψ̂+(x)−Θ(t0 − t) ψ̂−(x)
∫

d3x ψ̂†(x) iSF(x, x0) = Θ(t− t0) ψ̂†+(x0)−Θ(t0 − t) ψ̂†−(x0) (51)

it follows directly that the form (49) is equivalent to the non-covariant form (48), when only particle
states are involved. That the former in addition is relativistically covariant follows from the fact thatthe
electron-field operators can represent particle as well as hole states and the internal time integrations
are performed over all times— in the positive as well as the negative direction. From now on we shall
work only with the covariant form of the evolution operator and leave out the subscript”Cov”.

In using the evolution operator in perturbation theory, we assume that we operate to the far right
on positive-energy states in the model space. Then, as shown in Appendix B, we can eliminate the
rightmost zeroth-order Green’s function and set the initial time tot0 = −∞. We shall also assume that
the limit of the adiabatic dampingγ → 0 is taken.

The covariant evolution operator is closely related to the Green’s function—the main difference
being that the Green’s function is afunction, while the evolution operator is anoperator. The poles of
the Green’s function (in the energy representation) correspond to the energies of the system, while the
procedure gives no direct information about the wave function. The covariant evolution operator, on
the other hand, contains information about the energy as well as the wave function.

4.2. Model-space contributions
Even after eliminating unlinked or disconnected contributions in Eq. (34), the evolution operator may
contain (quasi)singularities, namely when the intermediate state of a separable kernel lies in the model
space and is degenerate or nearly degenerate (quasi-degenerate) with the initial state. As mentioned,
a kernel is said to beseparable, if it can be separated into two kernels with no photon contractions
between them. Singularities appear only for separable interactions. In the covariant-evolution-operator
approach these singularities are eliminated by introducing areduced evolution operator̃U(t,−∞) [66,
64, Eq. 116], defined by

U(t,−∞)P = P + Ũ(t,−∞)P · PU(0,−∞)P (52)

Here, the last term is a product of two operators that evolveindependentlyfrom initial states in the
model space (t = −∞), which is indicated by the ”dot”. Note also that the last factor has the final time
t = 0 and hence is time independent. This situation should be distinguished from the case where two
operators are ”coupled” and operate ”in succession”

U(t, t0) = U(t, t”)U(t”, t0) (53)

This distinction will be important for the following treatment.
Normally, we shall assume that the initial time in the evolution operator ist0 = −∞, and in cases

where there is no risk for ambiguity we shall leave that out from the operator, so that

U(t) = U(t,−∞)
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The definition (52) will then be written

U(t)P = P + Ũ(t)P · PU(0)P (54)

We also introduce the notationU ′(t) = U(t)− 1, which yields in place of the definition (54)

Ũ(t)P = U ′(t)P − Ũ(t)P · PU ′(0)P (55)

Here, the last term is thecounterterm

C(t) = −Ũ(t)P · PU ′(0)P (56)

which removes the (quasi)singularities. This can also be expressed

C(t) = −Ũ(t)P · PŨ(0)P − Ũ(t)P · PŨ(0)P · PŨ(0)P − · · · (57)

After removing a singularity, there is normally a non-vanishing remainder (M ), referred to as the
model-space contribution(MSC), defined by

M(t) = Ũ(t)P − Ū(t)P (58)

and further discussed in the Appendices. The new operatorŪ (”U-bar” ) is defined as the evolution op-
erator withall model-space states removed. (The MSC is analogous to thereference-state contribution,
appearing in theS-matrix formalism, where the effect normally appears only when the intermediate
states is equal to the reference or initial state. In our formalism with an extended model space the effect
can appear also for other model-space states, and we prefer the more general term.) It should be noted
that the counterterms also remove quasi-singularities, due to quasi-degenerate states that are included
in the model space. This can be of vital importance for the convergence of the procedure.

As discussed in Appendix C, the model-space contributions are oftwo kinds. The first kind appears
for all interactions, even if they are time or energy independent, while the second kind appears only
for time- or energy-dependent interactions. The first kind appears also in standard time-independent
perturbation theory and corresponds to so-calledfolded diagramsof MBPT [47, 64, Fig. 5].

4.3. The wave operator and effective interaction
As mentioned previously, the evolution operator (27) with the perturbation density (30) can contain un-
contracted photon operators, which implies that it operates in a generalFock space,where the number
of virtual photons is not conserved. We then separate the covariant evolution operator (49) into

U(t) = PU(t) + QU(t) (59)

whereQ = 1 − P is operating in the general Fock space, whileP is the projection operator for the
model space, confined to the restricted Hilbert space with no uncontracted photon. This leads with the
definition (54) of the reduced evolution operator fort = 0 to thefactorization theorem[64, Eq. 121]

U(0)P =
[
1 + QŨ(0)

]
P · PU(0)P (60)

where the first factor on rhs is regular. Inserted in the GML formula (46), this yields

|Ψα〉 =
[
1 + QŨ(0)

] |Ψα
0 〉 (61)
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whereΨα
0 is the zeroth-order wave function (ZOWF) (15) in intermediate normalization

|Ψα
0 〉 = P |Ψα〉 =

NαPU(0)|Φα〉
〈Φα|U(0)|Φα〉 (62)

The square bracket above is thewave operator

Ω = 1 + QŨ(0)
|Ψα〉 = Ω |Ψα

0 〉 (63)

The result here is a direct consequence of the generalized Gell-Mann–Low theorem and the definition
of the reduced evolution operator.

As mentioned, with the perturbation (30) the wave functionΨα lies generally in a Fock space
where the number of (virtual) photons is not conserved. But we are interested here in the case where
all photon operators are fully contracted, and for that purpose we project the equation on the restricted
Hilbert space without uncontracted photon operators

P|Ψ〉 = P[
1 + QŨ(0)

]|Ψα
0 〉 (64)

or
|Ψα〉 =

[
1 + QŨ(0)

]|Ψα
0 〉 (65)

where|Ψα〉 = P|Ψα〉 is the projected wave function on the restricted Hilbert space andQ = PQ is
the conventional projection operator for the complementary space (outside the model space). The wave
operator in this space is

Ω = PΩ = 1 + QŨ(0) (66)

In IN (14) the wave operators satisfy in both spaces the relation (16)

PΩP = PΩP = P. (67)

Theeffective interaction(19b) is in this formalism given by [64, Eq. 130]

H ′
eff = P

[
i
∂

∂t
Ũ(t)

]
t=0

P (68)

5. Connection to the Bethe-Salpeter equation

5.1. Expansion of the wave operator

We know from the generalized Gell-Mann–Low relation (46) that the state vector|Ψα〉 in the extended
Fock space satisfies a Schrödinger-like equation (45) with the HamiltonianH = H0 + H ′, where
H ′ is the perturbation (30). We now want to find the corresponding equation for the projected state
|Ψα〉 = P|Ψα〉 in the restricted space with no uncontracted photons, and we shall see in this section
that this leads to theBethe-Salpeter equation.

We shall start with the exchange of a sequence of separable covariant single photons between the
electrons, which can then be generalized to other interactions, leading to the full equation. This will
first be done for a degenerate model space and then extended to the general case.

As shown in Appendix B (Eq. 162), the contribution to the wave operator due the exchange of a
single photon, operating to the right on a state of the energyE , is

Ω(1)P = QŨ (1)(0, E)P = ΓQ(E)V (E)P (69)
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and the corresponding contribution to the effective HamiltonianH
(1)
eff (E) = PV (E)P . Here,ΓQ(E) is

the ”reduced” resolvent (163) andV (E) is the effective single-photon potential (165),
Similarly, it is demonstrated in Appendix C (Eq. 182) that the contribution to the evolution operator

from twoseparable single-photon interactions is

Ω(2)P = QŨ (2)(0)P = ΓQV Ω(1)P +
δΩ(1)

δE ∗H
(1)
eff (70)

where the last term represents themodel-space contribution(MSC) (58). The asterisk is introduced
here only to indicate that there is a cancelled singularity at that position, which is of importance for the
further treatment, as discussed in the Appendices.) The contribution to the effective Hamiltonian (184)
due to two-photon exchange is

H
(2)
eff = PV Ω(1)P +

δH
(1)
eff

δE ∗H
(1)
eff (71)

The last term is the MSC to the effective interaction, and if the model space is degenerate with the
energyE0 that term becomes

∂H
(1)
eff

∂E ∗H
(1)
eff = P

∂V (E)
∂E

∣∣∣
E0

PV (E0)P (72)

This corresponds to the ”reference-state contribution”, discussed in connection with theS-matrix treat-
ment of two-photon exchange [72, 73].

The treatment above will now be generalized to all orders as a first step towards deriving the full
BS equation. We start with the covariant evolution operator (49)U(t) = U(t,−∞) and the reduced
evolution operator (55)

Ũ(t)P = U ′(t)P − Ũ(t)P · PU ′(0)P (73)

whereU ′ = U − 1. Note that only the first factor in the product is time dependent (see. Eq. 172). Note
also the appearance of the ”dots” in this expression. The significance of the dot is discussed in relation
to the definition (52).

In the following we shall leave out the prime onU ′ and normally also the time arguments. The
reduced evolution operator (73) then becomes

ŨP = UP − ŨP · PUP

where

C = −ŨP · PUP (74)

is thecounterterm(56). Fort = 0 the evolution operator is with these notations given by

U = ΓV + ΓV ΓV + ΓV ΓV ΓV + · · · (75)

whereΓ = Γ(E) is the resolvent (146), and the ”U-bar” operator (58), with all intermediate model-
space states removed, by

Ū = ΓV + ΓV ΓQV + ΓV ΓQV ΓQV + · · · (76)

We introduce a special symbol for the time derivative at timet = 0

Ȧ = i
∂A

∂t

∣∣∣
t=0

(77)
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Since the evolution operator (161, 172) has the time dependence

U(t, E) = e−it(E−H0) U(0, E)

it follows that the time derivation eliminates the denominator of the first (leftmost) resolvent, so that

U̇ = V + V ΓV + V ΓV ΓV + · · ·
˙̄U = V + V ΓQV + V ΓQV ΓQV + · · · (78)

Theeffective interactionH ′
eff (68) is with this notation given by

H ′
eff = P

˙̃
UP (79)

We also introduce the corresponding”H-bar” operator with no intermediate model-space states

H̄ ′
eff = P ˙̄UP (80)

We recall the definition (58) of the model-space contribution (MSC)

ŨP = ŪP + M (81)

and can easily derive the identities (valid for arbitrary times)

UP = ŪP + Ū PUP = ŪP + Ũ PUP −M PUP (82)

ŪP = UP − U PUP + U PUP PUP − · · · (83)

Then the reduced evolution operator (73) becomes

ŨP = UP + C = ŪP + Ũ PUP − ŨP · PUP −M PUP (84)

Here, the last three terms represent the MSC

M = ŨP − ŪP = Ũ PUP − ŨP · PUP −M PUP (85)

which leads to the series expansion

ŨP = ŪP +
(
Ũ PUP − ŨP · PUP

)(
1− PUP + PUP PUP + · · · ) (86)

With the identity (83) this becomes

ŨP = ŪP +
(
Ũ P ŪP − ŨP · PŪP

)
(87)

which is an exact expression also for a quasi-degenerate model space. It can be expanded as

ŨP = ŪP +
(
Ū P ŪP − ŪP · PŪP

)
+

(
Ū P ŪP − ŪP · PŪP

)(
PŪP − ·PŪP

)
+ · · · (88)

As discussed in Appendix C, the result (87) can be expressed

ŨP = ŪP +
δŨ

δE ∗ P ˙̄UP = ŪP +
δŨ

δE ∗ H̄ ′
eff (89)

whereδE is the change in the model-space energy, represented by the ”dot”,δŨ is the corresponding
change inŨ , andH̄ ′

eff is the ”H-bar” operator (80). In the case of complete degeneracy this becomes

ŨP = ŪP +
∂Ũ

∂E
∣∣∣
E=E0

∗ H̄ ′
eff (90)
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Introducing the”Omega-bar” operatorΩ̄ (with no intermediate model-space states) in analogy with
the wave operator (66)

Ω̄P = P + QŪP = P + ΓQV P + ΓQV ΓQV P + · · · (91)

we can express the relations above as

ΩP = Ω̄P +
δΩ
δE ∗ H̄ ′

eff ⇒ Ω̄P +
∂Ω
∂E

∣∣∣
E=E0

∗ H̄ ′
eff (92)

The second term is here consequently an exact expression for the entire model-space contribution to
the wave operator. This is in agreement with the three-photon result (193).

By taking the time derivative of the relation (87), using the relations above, we obtain similarly

H ′
eff = H̄ ′

eff +
δH ′

eff

δE ∗ H̄ ′
eff ⇒ H̄ ′

eff +
∂H ′

eff

∂E
∣∣∣
E=E0

∗ H̄ ′
eff (93)

The second term represents here the model-space contribution to the effective interaction. This result
agrees also with the third-order result (195).

From the results above we conjecture that the wave operator can at complete degeneracy alterna-
tively be expressed

ΩP = Ω̄P+
∂Ω̄
∂E ∗H

′
eff+

1
2

∂2Ω̄
∂E2

∗(H ′
eff

)2+
1
3!

∂3Ω̄
∂E3

∗(H ′
eff

)3+· · · = Ω̄P+
∞∑

n=1

1
n!

∂nΩ̄
∂En

∗(H ′
eff

)n
(94)

with all derivatives taken atE = E0, and we shall now prove this relation by showing that it is com-
patible with the results (92) and (93), which we have rigorously derived. This equation contains elim-
inated singularities, indicated by the asterisks. These expressions are obtained by considering a quasi-
degenerate case, letting the energy separation tend to zero. In order to form a new derivative, it is—as
discussed in the Appendices, particularly Appendix E—necessary first to lift the degeneracy and then
let the separation tend to zero in asinglestep. Using the rules developed we find for instance

∂

∂E
(∂Ω̄

∂E ∗H ′
eff

)
⇒ δ

δE
(δΩ̄

δE ∗H ′
eff

)
⇒ 1

2
∂2Ω̄
∂E2

∗H ′
eff +

∂Ω̄
∂E ∗

∂H ′
eff

∂E (95)

∂

∂E
(1

2
∂2Ω̄
∂E2

∗ (
H ′

eff

)2
)

⇒ δ

δE
(δ2Ω̄

δE2
∗ (

H ′
eff

)2
)

⇒ 1
3!

∂3Ω̄
∂E3

∗ (
H ′

eff

)2 +
1
2

∂2Ω̄
∂E2

∗ ∂H ′
eff

∂E ∗H ′
eff (96)

Note that in the second example the twoH ′
eff operators have in the quasi-degenerate case different

energy parameters, and therefore only one of them is affected by the derivation.
Generalizing these rules, we can evaluate the derivative of the wave operator (94)

∂Ω
∂E =

∂Ω̄
∂E +

1
2

∂2Ω̄
∂E2

∗H ′
eff +

1
3!

∂3Ω̄
∂E3

∗ (
H ′

eff

)2 + · · ·

+
∂Ω̄
∂E ∗

∂H ′
eff

∂E +
1
2

∂2Ω̄
∂E2

∗ ∂H ′
eff

∂E ∗H ′
eff +

1
3!

∂3Ω̄
∂E3

∗ ∂H ′
eff

∂E ∗ (H ′
eff)2 + · · · (97)

or
∂Ω
∂E =

∞∑
n=1

1
n!

∂nΩ̄
∂En

∗
[(

H ′
eff

)n−1 +
∂H ′

eff

∂E ∗ (H ′
eff)n−1

]
(98)
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We now insert this expression into the equation (92), which yields

∂Ω
∂E ∗ H̄ ′

eff =
∞∑

n=1

1
n!

∂nΩ̄
∂En

∗
[(

H ′
eff

)n−1 ∗ H̄ ′
eff +

∂H ′
eff

∂E ∗ (H ′
eff)n−1 ∗ H̄ ′

eff

]
(99)

or, using the relation (93),

ΩP = Ω̄P +
∞∑

n=1

1
n!

∂nΩ̄
∂En

∗ (
H ′

eff

)n
(100)

This is identical to the conjectured relation (94) and therefore completes the proof. The sum represents
by definition the model-space contribution (MSC).
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Fig. 6. Examples of non-separable two-photon interactions.

5.2. Derivation of the Bethe-Salpeter equation. Degenerate model space.
The previous treatment has been based upon the HamiltonianH = H0 + V (E), whereV (E) is the
potential due to the exchange of a single covariant photon. But the process can be repeated in exactly
the same way, if we includeall non-separable multi-photon interactions. A non-separable interaction
is defined as an interaction that cannot be represented by two or more simpler interactions in the way
treated here. Two photons—crossing or noncrossing— that overlap in time represent non-separable
two-photon interactions (see Fig. 6, c.f. also Ref. [1, Fig. 1]). These can also include the radiative
self-energy and vertex corrections. In a similar way non-separable three-, four-,... photon interactions
can be defined. Therefore, in the following we replace the single-photon potentialV by the general
potential due to all non-separable interactions

V(E) = V (E) + V2(E) + V3(E) + · · · (101)

As discussed in the Appendices, when operating on a state of energyE , the energy parameter of
Ω̄P is equal to that energy, i.e.,

Ω̄F (E) = Ω̄(E)F (E) (102)

For a degenerate model space of energyE0 this means that

Ω̄P = Ω̄(E0)P = P + ΓQ(E0)V(E0) + · · · (103)

The model functions are eigenfunctions of the effective Hamiltonian (17), and for a degenerate
model space (of energyE0) they are eigenfunctions also of the effective interaction (19b),

H ′
eff |Ψα

0 〉 = ∆Eα|Ψα
0 〉 (104)
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where∆Eα = Eα −E0. Operating with the operator equation (100) directly on the model state|Ψα
0 〉

then leads to the Taylor expansion

Ω|Ψα
0 〉 =

[
Ω̄(E0) +

∂Ω̄
∂E

∣∣∣
E0

∆Eα +
1
2

∂2Ω̄
∂E2

∣∣∣
E0

(∆Eα)2 +
1
3!
· · ·

]∣∣Ψα
0

〉
= Ω̄(Eα)|Ψα

0 〉 (105)

This implies thatthe MSC term shifts the energy parameter of the resolvent as well as that of the
potential from the unperturbed energyE0 to the exact energyEα. But Ω̄(Eα)Ψα

0 with the energy
parameter equal to the full energy for the stateΨα is also identical to theBrillouin-Wigner expansion
(9),

Ω̄(Eα)|Ψα
0 〉 =

[
1 +

Q

Eα −H0
V(Eα) +

Q

Eα −H0
V(Eα)

Q

Eα −H0
V(Eα) + · · ·

]∣∣Ψα
0

〉
(106)

which represents the full wave function, i.e.,

Ω̄(Eα)|Ψα
0 〉 = Ω|Ψα

0 〉 (107)

This implies that the relation (100) essentially representsthe link between the Rayleigh-Schrödinger
and the Brillouin-Wigner expansions for an energy-dependent interactionand at the same timethe
link between the MBPT approaches and the Bethe-Salpeter equation(indicated by the arrows in the
diagram of Fig. 1).

The BW expansion (106) can be expressed

Ω|Ψα
0 〉 = |Ψα

0 〉+ ΓQ(Eα)V(Eα)Ω|Ψα
0 〉 (108)

or
(Eα −H0) Q|Ψα〉 = QV(Eα)|Ψα〉 (109)

From the relation (93) it can be shown in analogy with the relation (100)

H ′
eff = H̄ ′

eff +
∞∑

n=1

1
n!

∂nH̄ ′
eff

∂En
∗ (

H ′
eff

)n
(110)

With the definitions (80) and (91) this leads to

H̄ ′
eff = PV(E0) Ω̄(E0)P (111)

and in analogy with the relation (105) to

H ′
eff = PV(Eα) Ω̄(Eα)P = PV(Eα) ΩP (112)

This leads together with Eq. (109) to the final equation

(Eα −H0) |Ψα〉 = V(Eα) |Ψα〉 (113)

This is the Bethe-Salpeter equation for energy-dependent interactions in the Schrödinger-like
form (8). This can be solved iteratively as the standard Bloch equation (19d).

We have now confirmed that the Schrödinger equation(45), obtained directly from the generalized
Gell-Mann–Low relation in the extended Fock space with the perturbation density(30), corresponds
in the projected Hilbert space with no uncontracted photons to a Schrödinger-like equation with the
perturbation(101). Both forms represent the complete interaction between the particles and are exactly
equivalent to the original Bethe-Salpeter equation(42).
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The main difference between the original form of the BS equation and the Schrödinger-like form
derived here is primarily that the latter has the time dependence reduced to a single time, which makes
the wave function in accord with standard quantum mechanics. Furthermore, the Schrödinger-like form
contains explicitly the resolvent, while the remaining part of the Green’s function (145) is merged with
the kernelκ to form the potentialV.

The Schr̈odinger-like equation (113) we have derived is equivalent to the equation derived from the
BS equation by Sucher [38, Eq. 1.47] and rederived by Douglas and Kroll [40, Eq. 3.26] and Zhang [43,
Eq. 15]. In these works the equation is essentially obtained by integrating over the relative energy of
the particles, thereby transforming the equation to an ”equal-time” equation. This equation is then
analyzed in terms of the Brillouin-Wigner perturbation theory. In our presentation the corresponding
equation is obtained by starting from MBPT in the Rayleigh-Schrödinger formulation and summing
all relevant perturbations to all orders. The present derivation therefore can serve as a link between the
two approaches.

In the next section we shall extend the treatment to the quasi-degenerate case and derive the corre-
sponding Bloch equation.

5.3. Derivation of the Bethe-Salpeter-Bloch equation. Quasi-degenerate model space.
We have previously assumed that the model space isdegenerate, which for a two-electron system
implies that the effective interaction isdiagonalwithin this space (assuming the basis functions have
definite symmetry). Then the relation (104) simplifies the treatment, and the formulas derived in the
previous section lead directly to the standard Bethe-Salpeter equation (113). The treatment above,
however, is more general and can be extended to the case where the model space is non-degenerate
(quasi-degenerate). In the present section we shall show how this can be performed.

The following relation can easily derived by induction, when operating to the right on the model
space,

∂nΩ̄
∂En

= ΓQ
∂n(VΩ̄)

∂En
− nΓQ

∂(n−1)Ω̄
∂E(n−1)

(114)

To prove this we form the next-order derivative

∂(n+1)Ω̄
∂E(n+1)

= −Γ2
Q

∂n(VΩ̄)
∂En

+ ΓQ
∂(n+1)(VΩ̄)

∂E(n+1)
+ nΓ2

Q

∂(n−1)Ω̄
∂E(n−1)

− nΓQ
∂nΩ̄
∂En

(Since no singularities are involved here, ordinary rules of derivation can be used.) Inserting the ex-
pression (114) in the first term, yields

∂(n+1)Ω̄
∂E(n+1)

= ΓQ
∂(n+1)(VΩ̄)

∂E(n+1)
− (n + 1)ΓQ

∂nΩ̄
∂En

From the identitȳΩ = 1 + ΓQVΩ̄ we obtain the first derivative (operating onP )

∂Ω̄
∂E = ΓQ

∂(VΩ̄)
∂E − ΓQΩ̄

which completes the proof of the relation (114).
The formula above leads together with the expansion (100) to

QΩP = QΩ̄P + ΓQ

∞∑
n=1

1
n!

∂n(VΩ̄)
∂En

(H ′
eff)n − ΓQ

∞∑
n=1

1
(n− 1)!

∂(n−1)Ω̄
∂E(n−1)

(H ′
eff)n (115)

The first term on the rhs can also be expressedΓQVΩ̄P , and the last term is simply−ΓQΩH ′
eff , which

yields

QΩP = ΓQ

[
VΩ̄P +

∞∑
n=1

1
n!

∂n(VΩ̄)
∂En

(H ′
eff)n − ΩH ′

eff

]
(116)
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We can considerVΩ̄ as a single energy-dependent operator, and if that operates on a particular model
state of a degenerate model space of energyE0, the first two terms of the bracket above represents the
Taylor expansion

V(E0) Ω̄(E0) +
∞∑

n=1

1
n!

∂n(VΩ̄)
∂En

∣∣∣
E0

(∆Eα)n = V(Eα) Ω̄(Eα). (117)

Thus, the expansion has the effect of transforming the energy parameter of the productVΩ̄ from E0 to
the full energyEα,

V(E0)Ω̄(E0)|Ψα
0 〉 → V(Eα)Ω̄(Eα)|Ψα

0 〉 (118)

in analogy with the expansion (106). Using the relation (107), the equation (116) above then becomes

QΩ|Ψα
0 〉 = ΓQ

[V(Eα)Ω− ΩH ′
eff

]|Ψα
0 〉 (119)

or
(E0 −H0)Ω|Ψα

0 〉 = Q
[V(Eα)Ω− ΩH ′

eff

]|Ψα
0 〉 (120)

which is consistent with the Bethe-Salpeter equation (113).
If the model space isnon-degenerate(quasi-degenerate), then the relation (104) is no longer valid,

and the expansion (116) can not be expressed by means of a single energy parameter as in the Taylor
expansion (117). Instead, the potential will depend on thefull matrix of the effective Hamiltonian. We
then replace the energy parameter in (103) by the model HamiltonianH0,

Ω̄P = P + ΓQ(H0)V(H0) + · · · = Ω̄(H0)P

By this notation we understand—in accordance with the rule (102)—

A(H0)B|Φ〉 = A(E0)B|Φ〉 (121)

when|Φ〉 represents an eigenstate ofH0 with the eigenvalueE0 andB is an arbitrary operator combi-
nation. Together with the linearity condition,

A(H0)B
∣∣aΦ + bΦ′

〉
= aA(E0)B|Φ〉+ bA(E′

0)B|Φ′〉 (122)

where|Φ′〉 represents another eigenstate ofH0 with the eigenvalueE′
0, this defines the notation fully.

The expansion (116) can now be regarded, in analogy with the energy modification (117), as mod-
ifying the parameterH0 to the full effective HamiltonianHeff = H0 + H ′

eff

V(H0) Ω̄(H0) +
∞∑

n=1

1
n!

∂n(VΩ̄)
∂En

(H ′
eff)n = V(Heff) Ω̄(Heff) (123)

i.e.,
V(H0)Ω̄(H0)P → V(Heff)Ω̄(Heff)P (124)

and Eq. (119) becomes

QΩP = ΓQ(H0)V(Heff)Ω̄(Heff)P − ΓQ(H0)ΩH ′
eff (125)

The notation here is defined by the relation

A(Heff)B|Ψα
0 〉 = A(Eα)B|Ψα

0 〉 (126)
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where|Ψα
0 〉 represents a model state (eigenstate ofHeff with the eigenvalueEα, see Eq. 17), which

together with the linearity condition defines the operator when acting on any model space.
Similarly, the expansion (100) yields

ΩP = Ω̄(H0)P +
∞∑

n=1

1
n!

∂nΩ̄
∂En

(
H ′

eff

)n = Ω̄(Heff)P (127)

and we can now express the equation (125) as

QΩP = ΓQ(H0)V(Heff)ΩP − ΓQ(H0)Ω H ′
eff (128)

or [
ΓQ(H0)

]−1
QΩP = Q

[V(Heff)Ω− ΩH ′
eff

]
P (129)

We now apply the definition (121) above withA(E) =
[
ΓQ(E)

]−1 = Q(E −H0). Then, with|Φ(E0)〉
being an eigenvector ofH0 with the eigenvalueE0, we have

A(E0)QΩ
∣∣Φ(E0)

〉
= (E0 −H0)Ω

∣∣Φ(E0)
〉

=
[
Ω,H0)

]∣∣Φ(E0)
〉

Therefore,the inverse of the resolvent can be expressed as a commutator

[
ΓQ(H0)

]−1
QΩP ≡ [Ω,H0]P (130)

which leads to the commutator relation

[Ω,H0]P = Q
[V(Heff) Ω− Ω H ′

eff

]
P (131)

The relation (112) can be generalized to

H ′
eff = PV(Heff)ΩP (132)

and with the IN relation (67)PΩP = P we arrive atthe BS equation in commutator form

[
Ω, H0

]
P = V(Heff)ΩP − ΩH ′

eff (133)

We refer to this equation as theBethe-Salpeter-Bloch equation, and it represents the main result of
the present work. It is a multi-state equationin contrast to the standard BS equation(113) that is
state specific. The BS-Bloch equation has the same relation to the standard BS equation as has the
standard Bloch equation(19a) to the ordinary Schr̈odinger equation.The dependence on the effec-
tive Hamiltonian makes it amatrix-operator equationand therefore somewhat more complicated to
solve than the standard Bloch equation. Below we shall indicate how also this equation can be solved
perturbatively.

5.4. Perturbative expansion of the Bethe-Salpeter-Bloch equation
We consider now the perturbative expansion of the BS-Bloch equation with a sequence of separable
single-photon exchange (potentialV ), as illustrated in Fig: 7. In first order the BS-Bloch equation
becomes [

Ω(1),H0

]|ab〉 = QV (Heff)|ab〉 (134)

and here the argumentHeff of the potential is approximated byH0. In the next order we have

[
Ω(2), H0

]|ab〉 = QV (Heff)Ω(1)|ab〉 − Ω(1)|cd〉〈cd|H(1)
eff |ab〉 (135)
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Fig. 7. Exchange of one- and two-photon ladder, starting from the model-space state|ab〉 of energyEab (a,b). The
diagram (c) is a standard ”folded” diagram with a double denominator, indicated by the double horizontal line.
Diagram (d) is the folded diagram with wave function with uncontracted photon, described in the next section.

and hereHeff is approximated byH0 + H
(1)
eff . The last term is thefoldeddiagram, with summation

over the model-space states|cd〉 and represented by the diagram (c) in Fig. 7. The contribution to the
wave-operator matrix element〈rs|Ω(2)|cd〉 becomes

−〈rs|Ω
(1)|cd〉

(Eab − Ers)
〈cd|H(1)

eff |ab〉 = − 〈rs|V |cd〉〈cd|V |ab〉
(Eab − Ers)(Ecd − Ers)

(136)

with Exy = εx + εy. This represents the part of the model-space contribution (MSC) (182) that is due
to the variation of the resolvent

δ

δE ΓQ ⇒ − 1
(Eab − Ers)(Ecd − Ers)

with the potential unchanged. The remaining part of the MSC, due to the potential variation, is taken
care of by modifying the parameter of the potential inV (Heff). The latter is amatrix operator, implying
that the resulting second-order wave operator will also be in the form of a matrix operator3.

In practice, the equation is solvediteratively (se Eq. 19d), which implies that also the parameter
of the potential is successively updated. By continuing this process, a perturbation expansion of the
Bethe-Salpeter-Bloch equation is generated. This is amulti-stateexpansion, valid for the entire model
space. This is in contrast to thestate-specificBrillouin-Wigner expansion (106) of the ordinary BS
equation (113).

As usual, of course, nothing can generally be said about the convergence condition. In a multi-
state expansion it is expected that so-calledintruder statesmay cause convergence difficulties, as with
the ordinary Bloch equation. One way to remedy the situation could be to employ theintermediate
Hamiltonian approach, successfully applied in several standard MBPT calculations [74, 75, 76, 77].
There should be no principal difficulty in applying this formalism to the Bethe-Salpeter-Bloch equation.

In the next section we shall describe a new procedure for solving the BS-Bloch equation, which au-
tomatically yields the correct model-space contributions, including those due to the energy-dependence
of the interaction.
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Fig. 8. Illustration of the new perturbative procedure for solving the Bethe-Salpeter equation, described in the
text. The horizontal dotted lines represent instantaneous Coulomb(-Breit) interactions and the wavy lines fully
covariant photons.

5.5. New numerical procedure for solving the Bethe-Salpeter-Bloch equation

We shall here briefly describe the numerical procedure we have developed for solving the BS-Bloch
equation [64, Sect. 8]. A more detailed account of the procedure together with numerical results will
appear in a separate publication [78].

The procedure is a combination of perturbative (order-by-order) and non-perturbative (”all-order”)
techniques, and the starting point is the iterative solution of relativistic pair equations [79, 80, 81, 82,
47] with instantaneous Coulomb (or Coulomb/Breit) interactions. This represents the (all-order) ”lad-
der” approximation of the BS equation, as indicated in Fig. 8 (a). The pair function is then combined
with the emission of a single (uncontracted) photon (Fig. 8 b), which leads to a new pair function for
each value of the photon momentumk. This represents a wave function lying in the extended Fock
space, discussed in section 4.3. The photon is subsequently annihilated on the same or the other elec-
tron, and integration over the photon momentum yields the complete single-photon exchange. Before
the annihilation, the pair function can be iterated further (Fig. 8 c), which yields instantaneous Coulomb
(-Breit) interactions, crossing the photon. The iterations can be continued also after the annihilation,
as indicated in Fig. 8 (d). Annihilating the photon on the same electron line, leads to the radiative
self-energy and vertex corrections (Fig. 8 e), which, of course, have to be properly renormalized.

In the procedure described here, the QED effects are evaluated by means ofcorrelatedwave func-
tions, in contrast to the conventionalS-matrix procedure, where uncorrelated products of hydrogenic
orbitals are used [61]. Therefore, this numerical technique will be comparable to the analytical ”unified
model” of Drake and coworkers [45, 46]. Our method can hardly match the latter in numerical accuracy
but will instead contain many effects not included in the analytical approach. Therefore, acombination
of the two approaches might lead to the best result.

For computational reasons it is at present not possible to treat more than one covariant photon
with our new procedure (although there is no principal limit). However, even with a single covariant
photon, the dominating part of the multi-photon exchange will be included, due to the crossings with
the instantaneous interactions (Fig. 8 c). Also single and doublevirtual electron-positron pairscan
be included in the intermediate states. Therefore, this procedure will, for instance, correspond to all
effects treated by Zhang [44] in his analysis of the helium fine structure up to ordermα7, except for
the non-separable interaction of two retarded photons (Fig. 6), for which we have at present to use the

3 The concept of amatrix operatorshould not be confused with the matrix representation of an ordinary quantum-mechanical
operator. A matrix operator is a matrix where each element is a distinct operator.
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analytical approximation.
We shall now indicate that the procedure described here automatically leads to the correct model-

space contributions, including the contribution due to the modification of the potential. For that purpose
we return to the situation discussed above in Fig. 7. In the new procedure there will also be a folded
diagram associated with the wave function with anuncontractedphoton. This gives rise to the diagram
in Fig. 7 (d) with a double denominatorinsidethe potential. Generally, the emission of a photon in the
forward direction corresponds according to the relation (165) to the expression

〈rs|V (E)|tu〉 =
〈
rs

∣∣∣
∫

dk f(k)
1

E − Eru − k

∣∣∣tu
〉

(137)

if particle states are involved. The folded diagram with an uncontracted photon gives after absorbing
the photon in analogy with the ordinary folds rise to the contribution

−
〈
rs

∣∣∣
∫

dk f(k)
1

(Eab − Erd − k)(Ecd − Erd − k)

∣∣∣cd
〉

(138)

which corresponds to the difference ratio
δV (E)

δE
Therefore, this contribution takes care of the potential modification and together with the ordinary
folded diagram (136) represents the entire MSC in the second-order wave operator.

6. Summary and conclusions

Standard many-body perturbation theory (MBPT) is conveniently based upon the Bloch equation,
which is the generating equation for the Rayleigh-Schrödinger perturbation expansion. The Bloch
equation can also be used to generate various other perturbative schemes, such as the linked-diagram
expansion, and it also leads to non-perturbative (all-order) schemes, such as the Coupled-Cluster Ap-
proach. In the commutator form (19a) the Bloch equation leads to schemes that can handle the quasi-
degenerate problem in an efficient way by means of an ”extended” model space.

In this paper we have reviewed the connection between relativistic MBPT and quantum-electrodynamics
(QED) for a two-electron system by means of the recently introduced covariant-evolution-operator
method [64]. The exchange of a single covariant photon is treated to all orders, and this is shown to
lead to an equation of the Bethe-Salpeter (BS) type. Extending the treatment to all non-separable inter-
actions (including radiative corrections) leads to the full BS equation. This establishes a link between
the perturbative schemes, based upon Rayleigh-Schrödinger perturbation theory and schemes based
upon the BS equation, which are normally treated by means of the Brillouin-Wigner perturbation pro-
cedure.

In addition, a Bloch equation in commutator form that is compatible with the BS equation is de-
rived. This equation is a multi-state equation, valid for the entire model space—in contrast to the
standard BS equation that is state specific. The BS-Bloch equation has the same relation to the Bethe-
Salpeter equation as has the standard Bloch equation to the ordinary Schrödinger equation and repre-
sents a series of BS equations, associated with a model space that need not be degenerate.

It is demonstrated that a multi-state perturbative expansion of the BS-Bloch equation can be gen-
erated, quite similar to the standard MBPT expansions. In principle, this will make it possible to treat
the quasi-degeneracy problem perturbatively also within the BS formalism. Such a scheme is presently
being tested at our laboratory.
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APPENDIX

A. Zeroth-order Green’s function

t r r

6ω1 = ω r 6s ω2 = E − ω

r rt10 t20

Fig. 9. Graphical representation of the zeroth-order Green’s function (139).

The zeroth-order Green’s function (36) in Fig. 9 is in coordinate representation

G0(x1x2; x10x20) = SF(x1; x10)SF(x2; x20) (139)

whereSF is the electron propagator

S(x, x0) =
∫

dω

2π
S(ω) e−iω(t−t0) (140)

with the fourier transform

〈x|S(ω)|x0〉 =
〈x|r〉〈r|x0〉
ω − εr + iηr

= 〈x|Ŝ(ω)|x0〉 (141)

and the corresponding operator form

Ŝ(ω) =
Λ+

ω − h + iη
+

Λ−
ω − h− iη

(142)

Here,h is the single-electron Dirac Hamiltonian in the field of the nucleus andΛ± are projection
operators for positive and negative-energy single-particle states.

We consider the equal-times Green’s function witht1 = t2 = t, which gives

G0(t,x1,x2; x10, x20) =
∫

dε

2π
e−iεt 〈x1x2|rs〉〈rs|x10x20〉

ε− εr − εs

×
∫

dω

2π

[ 1
ω − εr + iηr

+
1

ε− ω − εs + iηs

]
eiωt10 ei(ε−ω)t20 (143)

with x = (t,x), ω1 = ω andε = ω1 + ω2. The fourier transform with respect tot is then

G0(ε, x1,x2;x10, x20) =
〈x1x2|rs〉〈rs|x10x20〉

ε− εr − εs

∫
dω

2π

[ 1
ω − εr + iηr

+
1

ε− ω − εs + iηs

]
eiωt10 ei(ε−ω)t20 (144)

NRC Canada



Lindgren 27

or in operator form

G0(ε) = Γ(ε)
∫

dω

2π
g0(ε, ω) eiωt10 ei(ε−ω)t20 (145)

whereΓ(E) is the resolvent (4)

Γ(E) =
1

E −H0
(146)

H0 = h1 + h2 is the zeroth-order Hamiltonian (30) and

g0(ε, ω) = Λ+

[ 1
ω − h1 + iη

+
1

ε− ω − h2 + iη

]

+ Λ−
[ 1
ω − h1 − iη

+
1

ε− ω − h2 − iη

]
(147)

The inverse transformation is

G0(t,x1, x2; x10, x20) =
∫

dε

2π
e−iεt G0(ε, x1,x2;x10, x20) (148)

and specifically,

G0(t = 0, x1, x2; x10, x20) =
∫

dε

2π
G0(ε, x1, x2; x10, x20) (149)

B. Single-photon exchange

(See Ref. [64, Eq. 312 and App. A1].)
We consider now the covariant evolution operator (49) for the exchange of a single covariant photon,
represented by the diagram in Fig. 10 (left)

U (1)(t′, t0) = −1
2

∫∫
d3x′1 d3x′2 ψ̂†(x′1)ψ̂

†(x′2)
∫∫

d4x1 d4x2 iSF(x′1, x1) iSF(x′2, x2) iI(x2, x1)

×
∫∫

d3x10 d3x20 iSF(x1, x10) iSF(x2, x20) ψ̂(x20)ψ̂(x10) (150)

leaving out the damping factors. More compactly, we express this as

U (1)(t′, t0) = −1
2
ψ̂†(x′1)ψ̂

†(x′2) G0(x′1, x
′
2;x1x2) iI(x2, x1)

× G0(x1, x2;x10x20) ψ̂(x20)ψ̂(x10) (151)

with integrations over all variables that do not appear on the left-hand side. Here,I(x2, x1) represents
the single-photon exchange

I(x2, x1) = eαµ
1DFµν(x2 − x1) eαν

2 =
∫

dz

2π
e−iz(t2−t1) I(z, x2,x1) (152)

whereDFµν(x2− x1) is theFeynman photon propagator. The electron-field operator is in the interac-
tion picture [31]

ψ̂(x) = ψ̂(t, x) = cjφj(x) e−iεjt (153)

whereφj are eigenfunctions of the single-electron Hamiltonian in the nuclear field (Furry picture)

h0 φj(x) = εjφj(x) (154)
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t = t′
6ψ̂† r 6s ψ̂†

6 6

-zr r1 2
6 6

r r

t = t0 r r
6ψ̂ 6̂ψ

t = t′
6ψ̂† r 6s ψ̂†

6a ψ̂ 6ψ̂ b

-zr r1 2
6ω 6ω′ = Eab − ω

r r

Eab

6r 6s

6t 6u

-zr r1 2

6 6

q qq q

6ω r 6s ω′ = E − ω

r r

E

Fig. 10. Graphical representation of the covariant-evolution operator for single-photon exchange in the form (150)
(left) and in the form (155) witht0 → −∞.

If we operate with the expression (151) to the right on apositive-energy state, we can use the
relations (51) to simplify the expression. Furthermore, since in that caset0 ≤ t1, t2 and sincet1, t2 run
from−∞ to +∞, we must havet0 = −∞, yielding

U (1)(t′,−∞) =
1
2
ψ̂†(x′1)ψ̂

†(x′2)G0(x′1, x
′
2; x1x2) iI(x2, x1) ψ̂(x2)ψ̂(x1) (155)

We shall always assume that we operate to the right on an unperturbed state, which with the adiabatic
damping (29) corresponds tot0 = −∞. Therefore, we shall in the following normally suppress this
argument.

We now use the form of the Green’s function derived in the previous Appendix

G0(x′1, x
′
2; x1, x2) =

∫
dε

2π
e−iεt′ G0(ε) =

∫
dε

2π
e−iεt′ Γ(ε)

∫
dω

2π
g0(ε, ω) eiωt1 ei(ε−ω)t2 (156)

to evaluate the matrix element of the evolution operator (see Fig. 10, middle), which yields (leaving
out the time integrations)

U (1)(t′)
∣∣ab

〉
=

〈
rs

∣∣
∫

dε

2π
Γ(ε) e−it′(ε−Ers

×
∫

dω

2π
g0(ε, ω)

∫
dz

2π
iI(z)e−it1(εa−z−ω) e−it2(εb+z−ε+ω)

∣∣ab
〉

(157)

Here,|ab〉 and|rs〉 represent straight product states (non-antisymmetrized, which eliminates the factor
of 1

2 ) of energyEab = εa + εb andErs = εr + εs, respectively . After integrations this becomes

〈
rs

∣∣U (1)(t′)
∣∣ab

〉
=

〈
rs

∣∣
∫

dε

2π
e−it′(ε−Ers)Γ(ε)

∫
dω

2π
g0(ε, ω)

∫
dz

2π
iI(z)

× 2πδ(εa − z − ω) 2πδ(εa + εb − ε)
∣∣ab

〉

=
〈
rs

∣∣e−it′(Eab−εr−εs)Γ(Eab)
∫

dω

2π
g0(Eab, ω) iI(εa − ω)

∣∣ab
〉

(158)

We can also express this result as

U (1)(t)
∣∣ab

〉
= e−it(Eab−H0) Γ(Eab)V (Eab)

∣∣ab
〉

(159)

where

V (Eab) =
∫

dω

2π
g0(Eab, ω) iI(εa − ω) (160)
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The results above can be generalized to the case where we operate to the right on a state of a general
energyE (see Fig. 10 right)

U (1)(t) F (E) = e−it(E−H0) Γ(E)V (E)F (E) (161)

The corresponding wave operator, using the definition (66), is

Ω(1)(E) = QŨ (1)(0) = ΓQ(E)V (E) (162)

where

ΓQ(E) = QΓ(E) =
Q

E −H0
(163)

The effective interaction is obtained from the relation (68) by taking the time derivative att = 0, which
eliminates the resolvent,

H
(1)
eff (E) = PV (E)P (164)

With the explicit form of the interaction (152) the matrix elements of the potential for the exchange
of a single covariant photon becomes in theFeynman gauge[64, App. A]

〈rs|V (E)|tu〉 =
〈
rs

∣∣∣
∫

dk f(k)
[ 1
E − εr − εu − (k − iγ)r

+
1

E − εs − εt − (k − iγ)s

]∣∣∣tu
〉

(165)

where theAr = A sgn(εr), and the functionf(k) is given by

f(k) = − e2

4π2
(1−α1 · α2)

sin(kr12)
r12

(166)

The last factor can be expanded as

sin(kr12)
r12

= k

∞∑

l=0

(2l + 1)jl(kr1)jl(kr2)C(l)(1) · C(l)(2) (167)

wherejl are spherical Bessel functions andC(l) spherical tensors, closely related to the spherical
harmonics.

In theCoulomb gaugethe potential can be separated into an instantaneous and an retarded part,

V (E) = VI + VR(E)

where only the latter is energy dependent. The instantaneous Coulomb interaction is

VI =
e2

4πr12

and the retarded part is given by the same expression as in the Feynman gauge (165) with

f(k) =
e2

4π2

[
−α1 · α2

sin(kr12)
r12

+ (α1 · ∇1) (α2 · ∇2)
sin(kr12)

k2 r12

]
(168)

where the nabla operators do not operate beyond the square bracket.
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C. Separable two-photon exchange

(See Ref. [64, Sect.5.2.1 and App.A.2])
Next we consider the separable two-photon exchange for which there is an intermediate time (t = t′′)
with no free or uncontracted photons, as illustrated in Fig. 11 (left). Operating to the far right on a
state of the energyE , the evolution operator can in analogy with the single-photon exchange (161) be
expressed

U (2)(t) = e−it(E−H0) ΓV ΓV = e−it(E−H0) U (1)(0) U (1)(0) (169)

whereΓ = Γ(E) is the resolvent (146) andV = V (E) is the single-photon potential (160). Here, the
intermediate states run overall states — in theQ as well as theP space — and when the intermediate
state lies in the model space (P ), (quasi)singularitiesmay occur. These singularities are removed in
thereduced evolution operator(54) by thecounterterms(56)

Ũ(t)P = U(t)P + C(t) (170)

The counterterm is in the present case given by the product of two single-photon contributions, as

..............................

t = t′

t = t”

6ψ̂† 6̂ψ
†

6ω′ 6E − ω′

6ψ̂ 6̂ψ

-zr r1 2

-z
′r r

6ω 6E − ω

r r

P
F (E)

-
t = t′

6ψ̂† 6̂ψ
†

6 6

6ψ̂ 6̂ψ

-r r

P

×

F (E ′)

P
6ψ̂† 6̂ψ

†
t = 0

6 6

6ψ̂ 6̂ψ

-r r

P

F (E)

Fig. 11. Graphical representation of the separable two-photon-photon ladder diagram (left). This diagram is sep-
arable, if there exists a time (represented by the dotted line) at which there is no uncontracted photon, i.e., a time
after the first photon has been absorbed and before the second has been created. The corresponding counterterm
(right) is a product of two operators, which evolve independently from possibly different states of the model space.

shown in Fig. 11 (right)
C(2)(t) = −U (1)(t)P · PU (1)(0)P (171)

The two factors evolve independently from (possibly different) states in the model space, which is
indicated by the ”dot”. The counterterm eliminates the singularity, but there may be afinite remainder,
which we refer to as the model-space contribution (MSC) (58). We shall first consider this part.

We still assume that we operate to the far right on a function of the energyE , and assume that the
intermediate model-space state has the energyE ′. Specifying the energy parameter of the evolution
operators, we can express the second-order evolution operator (169) as

U (2)(t) = e−it(E−H0) U (1)(0, E) U (1)(0, E)P (172)

and the counterterm, where the first factor is evolving from the intermediate state, as

C(2)(t) = −e−it(E′−H0) U (1)(0, E ′)P · PU (1)(0, E)P (173)

(Note that only the first factor ofC(2) is time dependent, and that the time derivative eliminates the
denominator of the leftmost resolvent forU as well asC.) This yields

Ũ (2)(0)P = U (1)(0, E)U (1)(0, E)P − U (1)(0, E ′)P · PU (1)(0, E)P (174)
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and the evolution operator (76) with no intermediate model-space state

Ū (2)(0)P = U (1)(0, E)QU (1)(0, E)P (175)

Themodel-space contribution(MSC) (58) then becomes

M = U (1)(0, E)P U (1)(0, E)P +C(2)(0)P =
(
U (1)(0, E)P −U (1)(0, E ′)P

)
·PU (1)(0, E)P (176)

The last factor is

PU (1)(0, E)P =
P

E − E ′ V (E)P = − 1
δE ∗ PV (E)P = − 1

δE ∗ PU̇ (1)(E)P

with δE = E ′ − E , and with δU (1) = U (1)(0, E ′)− U (1)(0, E) we have

M =
(
U (1)(0, E)P − U (1)(0, E ′)P

)
· PU (1)(0, E)P =

δU (1)

δE ∗ PU̇ (1)P (177)

(The asterisk is used only for clarity. It notifies the position of a ”fold” in the graphical representa-
tion [47], but has no other special significance. It will mainly serve as a reminder of the position of a
cancelled singularity, which—as we shall see—requires certain precautions.) With the definition (79)

PU̇ (1)P = P
˙̃
U

(1)

P = H
(1)
eff , which yields

M =
δU (1)

δE ∗H
(1)
eff (178)

The complete second-order reduced evolution operator (58) then becomes

Ũ (2)(0)P = Ū (2)(0)P +
δU (1)

δE ∗H
(1)
eff (179)

The result above is exact also for the quasi-degenerate case. The difference ratio can be expanded
as discussed in Appendix E

δU (1)

δE =
∂U (1)

∂E +
1
2

∂2U (1)

∂E2
δE +

1
3!

∂3U (1)

∂E3
δE2 + · · · (180)

which in the limit of complete degeneracy yields

Ũ (2)(0)P = Ū (2)(0)P +
∂U (1)

∂E ∗H
(1)
eff (181)

The second-order contribution to the wave operator (66) then becomes

Ω(2)P = QŨ (2)(0)P = Ω̄(2)P +
δΩ(1)

δE ∗H
(1)
eff ⇒ Ω̄(2)P +

∂Ω(1)

∂E ∗H
(1)
eff (182)

whereΩ̄ is the wave operator (91) without intermediate model space states.
The second-order contribution to the effective interaction is obtained by means of the relation (68).

Since the expression (182) is valid only fort = 0, it can not be used to evaluate the time derivative.
Instead, we have to use the original definition (170), and using the expressions (172) and (173), we find

H
(2)
eff = PV (E) Γ(E)V (E)P − PV (E ′) ΓP (E)V (E)P = H̄

(2)
eff +

δH
(1)
eff

δE ∗ H̄
(1)
eff (183)
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whereΓP = PΓ andH̄
(2)
eff = PV ΓQV P is theH − bar operator (80) with no intermediate model-

space states. The last term is by definition the model-space contribution, which appears in this order
only for energy-dependent interactions. In the case of complete degeneracy the difference ratio tends
to the derivative, as before,

H
(2)
eff = H̄

(2)
eff +

δH
(1)
eff

δE ∗ H̄
(1)
eff ⇒ H̄

(2)
eff +

∂H
(1)
eff

∂E ∗ H̄
(1)
eff (184)

D. Separable three-photon exchange

The treatment of the exchange of three separable covariant photons is quite analogous to the previous
case. From the expansion (88) we have

Ũ (3)P = Ū (3)P +
(
Ū (2)PU (1)P − Ū (2)P · PU (1)P

)
+

(
U (1)PŪ (2)P − U (1)P · PŪ (2)P

)

+
(
U (1)PU (1)P − U (1)P · PU (1)P

)(
PU (1)P − ·PU (1)P

)
(185)

(Note thatU (1) = Ū (1).) By generalizing the result of the preceding Appendix we obtain the relation

AP BP −AP · PBP =
δA

δE ∗ PḂP (186)

whereA is an arbitrary operator andB can beU , Ū or Ũ . Using this relation, the second and third
terms above become

(
Ū (2)PU (1)P − Ū (2)P · PU (1)P

)
=

δŪ (2)

δE ∗ PU̇ (1)P =
δŪ (2)

δE ∗H
(1)
eff (187)

(
U (1)PŪ (2)P − U (1)P · PŪ (2)P

)
=

δU (1)

δE ∗ P ˙̄U (2)P =
δU (1)

δE ∗ H̄
(2)
eff (188)

In the last term in Eq. (185) we have to apply the rule (186) twice, yielding
(
U (1)PU (1)P − U (1)P · PU (1)P

)(
PU (1)P − ·PU (1)P

)

=
δU (1)

δE ∗ PU̇ (1)P
(
PU (1)P − ·PU (1)P

)
=

δ

δE
(δU (1)

δE ∗ PU̇ (1)P
)
∗ PU̇ (1)P

=
δ

δE
(δU (1)

δE ∗H
(1)
eff

)
∗H

(1)
eff (189)

From the previous Appendix (Eq. 179) we have

δŨ (2)

δE =
δŪ (2)

δE +
δ

δE
(δU (1)

δE ∗H
(1)
eff

)
(190)

and the complete result then becomes

Ũ (3)P = Ū (3)P +
δŨ (2)

δE ∗H
(1)
eff +

δU (1)

δE ∗ H̄
(2)
eff (191)

This is an exact expression in this order, also for a quasi-degenerate model space. In the case of com-
plete degeneracy this becomes

Ũ (3)P = Ū (3)P +
∂Ũ (2)

∂E ∗H
(1)
eff +

∂U (1)

∂E ∗ H̄
(2)
eff (192)
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In terms of theΩ operators the results above then become

Ω(3)P = Ω̄(3)P +
δΩ(2)

δE ∗H
(1)
eff +

δΩ(1)

δE ∗ H̄
(2)
eff (193)

In order to obtain the third-order effective interaction, we consider the time derivative of the relation
(185) (only the first factor is time dependent). This yields

H
(3)
eff = H̄

(3)
eff +

δH̄
(2)
eff

δE ∗H
(1)
eff +

δH
(1)
eff

δE ∗ H̄
(2)
eff +

δ

δE
(δH

(1)
eff

δE ∗H
(1)
eff

)
∗H

(1)
eff (194)

which using the relation (184) can be expressed

H
(3)
eff = H̄

(3)
eff +

δH
(1)
eff

δE ∗ H̄
(2)
eff +

δH
(2)
eff

δE ∗ H̄
(1)
eff (195)

E. Expansions

We have seen above that when there are multiple singularities, it is important to take the difference
ratiosbeforethe singularities are removed. We shall illustrate this here by a simple mathematical ex-
ample.

We consider a functionf(x) of the variablex. We define the first-order difference ratio

δf

δx
=

δx0,xf

δx
=

f(x)− f(x0)
x− x0

(196)

which can be expanded in a Taylor series

δf

δx
=

δx0,xf

δx
= f ′(x0)+

1
2
f”(x0)(x−x0)+

1
3!

f ′′′(x0)(x−x0)2+
1
4!

f IV (x0)(x−x0)3+ · · · (197)

where

f ′(x0) =
df

dx

∣∣∣
x=x0

(198)

etc.
Similarly, we define the second-order difference ratio

δ2f

δx2
=

δx′x

δx

δx0,xf

δx
=

δx0,xf

δx − δx0,x′f
δx

x− x′
=

1
2
f”(x0) +

1
3!

f ′′′(x0)(x + x′ − 2x0)

+
1
4!

f IV (x0)
[
(x′ − x0)2 + (x′ − x0)(x− x0) + (x− x0)2

]
+ · · · (199)

the third-order difference ratio

δ3f

δx3
=

δx”x

δx

δx′x

δx

δx0,xf

δx
=

1
3!

f ′′′(x0) +
1
4!

f IV (x0)(x + x′ + x”− 3x0) + · · · (200)

the fourth-order difference ratio
δ4f

δx4
=

1
4!

f IV (x0) + · · · (201)

and so on.
Generalizing these results, we have in the limit, when the differences tend to zero

δnf

δxn
⇒ 1

n!
dnf

dxn
(202)

This relation is frequently used in the present paper.
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64. I. Lindgren, S. Salomonson, and B.Åsén, Physics Reports389, 161 (2004).
65. I. Lindgren, Mol. Phys.98, 1159 (2000).
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