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orders, leads to a Sdbalinger-like equation, equivalent to the Bethe-Salpeter (BS) equation.

A Bloch equation in commutator form that can be used for an "extended” or quasi-degenerate
model space is derived. This is a multi-state equation that has the same relation to the single-
state BS equation as has the standard Bloch equation to the ordinadBger equation. It

can be used to generate a perturbation expansion compatible with the BS equation also for a
guasi-degenerate model space.
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1. Introduction

1.1. General

What is known as the Bethe-Salpeter (BS) equation represents the complete solution of the relativis-
tic two-body problem with important applications in various branches of physics. The equation was
first derived by Bethe and Salpeter in 1951 [1], using the relativistioatrix formalism and the anal-

ogy with Feynman graphs, and at about the same time by Gell-Mann and Low [2], using a rigorous
field-theoretical approach based on Green’s functions. A closely related equation was discussed by
Schwinger in his Harvard lectures already in the late 1940's [3, 4, 5, 6].

In interpreting the solutions of the BS equation, several serious problems were encountered, as
discussed early by Dyson [7], Wick [8] and Goldstein [9]. Dyson was particularly concerned about
the meaning of the wave function in relativistic quantum mechanics, a suliydicof obscurities
and unsolved problems’Solving the BS equation leads to a wave function with individual times for
the two patrticles. This function is manifestly relativistically covariant but not in accordance with the
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standard quantum-mechanical picture. That leads to "spurious” or "abnormal” solutions without phys-
ical significance and with no nonrelativistic counterpart [10]. Another fundamental problem is that
the BS equation does not reduce to the correct "one-body limit”, when one of the particles becomes
infinitely heavy, as discussed by Gross and others [11, 12]. Problems of these kinds are most pro-
nounced in the scattering of strongly interacting particles but less so for bound-state systems in weak-
coupling [13, 14, 15, 16, 17] (see ref. [6] for a review).

The earliest applications of the BS equation appeared in atomic physics and concerned the proton
recoil contribution to the hydrogen fine structure by Salpeter [18] and the positronium energy level
structure by Karplus and Klein [4].

An important goal for the equation has been the studstimingly interacting particleswhich is a
fundamental problem in elementary-particle physics. In recent years there have been numerous appli-
cations in QCD, dealing mainly with the quark-quark, quark-antiquark interactions, quark confinement
and related problems [14, 19, 20, 21]. Here, the problems mentioned above are more serious, as recently
summarized by Namyslowski [6].

There have also been many applications in surface and solid-state physics, ranging from electron-
hole interactions in ion crystals [22] and studies of the two-dimensional Hubbard model [23] and
Cooper pairs [24] to quantum dots [25].

The BS equation has also been applied to three or more particles [26, 27, 28], although serious
problems have been encountered for more than three particles [29].

Various approximation schemes for treating the BS equation have been developed over the time.
The simplest approximation is tfiladder approximation”, where all intermediate states evolve only
in the forward (positive) time direction. This is a useful starting point in the strong-coupling case,
where the standard perturbative or self-consistent approach may not converge, and this approxima-
tion is, for instance, the basis for the Brueckner theory of nuclear matter [30, 31, Sect. 41]. Another
approach is théquasi-potential approximation; which implies that the equation is reduced to an
equivalent 3-dimensional Sattinger equation, which can be done without loosing any rigor [14, 32].
Early numerical calculations in this regime were done particularly by Schwartz and Zemach [33] and
Kaufmann [34].

In atomic physics the BS equation has been applied mainly in treating positronium [35, 36] and
heliumlike ions, and we shall be particularly concerned here with the latter. This is strictly speaking a
three-body problem but can to a good approximation be treated—uwith the first Born approximation—
as a two-body problem with an external potential. The application to heliumlike systems was pioneered
by Sucher [37, 38] and Araki [39] in the late 1950’s for deriving the leading relativistic and QED energy
corrections beyond the Breit interaction. Later these works have been extended—Ilargely along the lines
of Sucher—by Douglas and Kroll in the 1970’s [40] and more recently by Zhang and Drake [41, 42,
43, 44].

The technique developed by Drake and coworkers is presently the most accurate available one in
dealing with heliumlike systems. The wave functions used are very accurate functions of Hylleraas
type, and the QED corrections are evaluated by means of analytical expressions up te>dRyer
(atomic units, orma” in relativistic units), derived from the BS equation. The wave functions used
by Drake et al. are nonrelativistic but certain relativistic effects are treated to all orders urified
model [45, 46]. The analysis of the BS equation are in these works based up@ritleeiin-Wigner
perturbation theory(BWPT).

A different and in some aspects more versatile approach to the many-body problem is the proce-
dure known as thenany-body perturbation theoBPT). This is based upoRayleigh-Schizdinger
perturbation theory(RSPT) [47], which via the Bloch equation can be used to derive various compu-
tational schemes, such as tivked-diagram expansio(LDE) [48, 49, 50]. A particularly powerful
technique is th€oupled-Cluster ApproadtCCA) [51, 52, 53], which is widely used in quantum chem-
istry [54, 55]. This technique is strictly speaking non-perturbative but can also be regardedadls an ”
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Fig. 1. Schematic illustration of the connection between various many-body techniques. The upper right part
represents the Green’'s-function (GF) approach, which is used to derive the Bethe-Salpeter (BS) equation, nor-
mally analyzed in terms of the Brillouin Wigner perturbation theory (BWPT). The lower-left part illustrates the
many-body perturbation theory (MBPT), originating from Rayleigh-8dinger perturbation theory (RSPT). The
combination of quantum-electrodynamics (QED) with MBPT is represented by the covariant-evolution-operator
(CovEvOp) method, and the link to the BS equation and the corresponding Bloch equation—the main subject of
the present paper—is illustrated by the arrows.

order” perturbative expansion, and we shall include it in the MBPT category here. The MBPT tech-
nigues are primarily developed for the weak-coupling case, but might in the non-perturbative (CCA)
form be used also in strong coupling.

The MBPT procedures, based initially upon RSPT, have the great advantage compared to tech-
niques based upon BWPT that they size-extensivia each order, which implies that the energy scales
linearly with the size of the system—a property of vital importance for molecular problems [56, 57].
The MBPT procedures can also be combined withektended-model-space techniquaich is par-
ticularly effective in dealing with problems gfuasi-degeneracp8, 59, 47, 60].

For QED problems th&-matrix techniqudnas been the standard procedure since the days of Feyn-
man and Dyson. (For a review of the application to bound-state problems, see ref. [61].) Being based
upon scattering theory, this technigue has the disadvantage that its structure is quite different from that
of MBPT, which makes it hard to combine the procedures (see, e.g. ref. [62]). The standard proce-
dure for such a combination has been to perform a separate (relativistic) many-body calculation and
adding first-order energy corrections from QED analytically [63]. This procedure gives in many cases
satisfactory results but is hard to improve in any systematic way. In particular, it gives no additional
information about the wave function.

Another disadvantage with th&-matrix formalism is that the energy is conserved between the
initial and the final states. This implies that it cannot be combined with the extended-model-space
technique, successfully applied in MBPT. This technique requires generally elements of the effective
interaction that are nondiagonal in energy. This problem has recently been remedied by means of a new
technique, known as th@ovariant-Evolution-Operator methdq@€ovEvOp), which is a modification of
the standard evolution-operator technique of time-dependent perturbation theory [31] in order to make
it applicable to relativistic problems (for a review, see ref. [64]). This technique has a structure that is
very akin to that of MBPT, and it deals with the key ingredients of MBPT—the wave operator and the
effective interaction. At the same time the method is closely related t6-natrix formalism and the
Green's-function procedure. The technique can therefore be regarded as a merger of MBPT/CCA and
QED [65], and it has recently been successfully applied to the quasi-degenerate fine-structure states of
heliumlike systems [66].
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The quasi-degenerate problem can also be handled wittwthéime Green’s-functioapproach,
developed by Shabaev and coworkers (for a review, see ref. [67]). This technique, however, has no
direct link to MBPT and will therefore not be discussed further here.

The procedure with the Covariant-Evolution-Operator method is now being further developed at
our laboratory in order to combine QED and MBPT in a more complete fashion. This will be based on
the relativistic coupled-cluster approach (CCA) of electron correlation or the so-called Dirac-Coulomb
approximation, corresponding to the (all-order) "ladder approximation” of the Bethe-Salpeter equation.
This is combined with a perturbative (order-by-order) expansion of the remaining (mainly QED) ef-
fects, which in principle leads to the full BS equation. This is along the lines early drawn by Sucher [38]
and followed by many later works [40, 15, 43, 36, 68]. Our approach differs from all the earlier ones
in the sense that all effects are evaluatedhericallyrather than analytically.

Our approach implies that the QED effects are evaluated with highly correlated (relativistic) wave
functions, and for two-electron systems the results will then, in principle, be comparable to those of
Drake’s unified method, with the difference that the relativistic effects are included in a complete way
and that the QED effects are evaluated numerically.

In the diagram in Fig. 1 we have tried to represent the relations between the many-body approaches
described here in a simple and illustrative way. The many-body procedures based upon Rayleigh-
Schibdinger perturbation theory are indicated in the lower-left part and the Green’s-function and Bethe-
Salpeter procedures, more associated to Brillouin-Wigner perturbation theory, in the upper-right part.
The present paper deals particularly with the connection between the two approaches, represented by
the arrows in the diagram.

In addition to deeper insight into the different procedures, the present treatment will make it possi-
ble to analyze a problem based on the BS equation in terms of RS-MBPT—not only in terms of BWPT,
as has previously been the case [40, 44]. The corresponding Bloch equation in commutator form, which
we have derived, has the same relation to the BS equation as has the standard Bloch equation to the or-
dinary Schodinger equation, and it could possibly be used to eliminate the quasi-degeneracy problem
that might appear when the BS equation is treated for a single state at a time.

Since the equivalence of the MBPT-QED-CovEvOp procedure with the BS equation has now
been established for two-electron systems, this new link will probably make it easier to apply the
BS procedure—or its equivalence— also to systems with more electrons. Alternatively, this can be
used to analyze a many-body-QED calculation to find out what is missing in order to represent a com-
plete Bethe-Salpeter treatment. Our main emphasis here is on applications to atoms and other weakly
interacting systems. Since the procedure we have developed, however, is based upon a combination
of perturbative and non-perturbative approaches, the results obtained might be useful also outside this
regime.

The paper will be organized in the following way. Below we shall first conjecture the Bethe-Salpeter
equation in a simple-minded way as an introduction. In section 2 we shall summarize the necessary
ingredients of time-independent and time-dependent perturbation theory and in the following section
briefly review the original derivations of the Bethe-Salpeter equation by Bethe and Salpeter and by
Gell-Mann and Low, based on Green’s functions. The main part of the paper will be devoted to a rigor-
ous derivation of the Bethe-Salpeter equation, starting from the covariant-evolution-operator method.
The basics of the method are summarized in section 4, and the method will in the following section be
used to derive the Bethe-Salpeter equation. A corresponding Bloch equation will also be derived, which
will make it possible to treat the BS equation perturbatively or iteratively also for a quasi-degenerate
(extended) model space. Technical details of the treatment are given in a number of appendices. Ra-
diative effects (self energies and vacuum polarization) are not considered here but can be included by
modifying the electron propagator and photon interactions, as discussed, for instance, by Douglas and
Kroll [40].
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1.2. Bethe-Salpeter equation
An equation of BS type can be conjectured in a very simple way by considering the time-independent
nonrelativistic Schdinger equation

H|V) = E|¥) 1)
with H = Hy+V;, whereH, = hi+hs is the zeroth-order Hamiltonian (sum of single-electron Hamil-
tonians) and/; = e?/ry, is the electron-electron interaction (in relativistic uitsThe Schodinger
equation can then be expressed

(E = Ho)|¥) = W|¥) (2)
with the solution
W) = T(E)|¥) @)
where
I(E) 1 ~rs)(rs| @

T E-Hy E-—¢ —e,
is the "resolvent” operator [47, Ch. 9] ands) is the Dirac notation of the straight (not antisym-
metrized) product of two single-electron functions, satisfying the Dirac equation

hli) = eili) )

We apply the summation convention, implying summation over repeated indices appearing on one side
of the equation. Unless specified otherwise, the summation is performed over positive- (particle) as
well as negative-energy (hole) states.

In the relativistic formalism one should, following Sucher [37, 38], repldcby A, . €% /r12A .,
whereA ., is the projection operator for particle (positive-energy) states. This leads @othlemb-
ladder approximationmentioned above, i.e., a series of Coulomb interactions separated by particle
states. In QEDV; can in the first approximation be replaced by émergy-dependeiriteraction with a
fully covariant photori/; (E), accounting for the instantaneous Coulomb interaction and the (retarded)
Breit interaction. In the next stelg, (E) can be replaced by, (E) + Va(E), whereVs (E) represents
thenon-separabléirreducible) interaction of two photons, i.e., the interaction of two covariant photons
that in the QED description cannot be represented by repeated single-photon interactions (see Fig. 6
below). Continuing this process, summing all non-separable interactions with one, two, ... photons

V(E) =Vi(E) + Va(E) + - - (6)
leads to
|¥) =T(E) V(E)[¥) @)
or
(E—Ho) V) =V(E)|¥) 8)

This is equivalent to the Scbdinger-like form of theBethe-Salpeter equatiaterived by Sucher [38,
Eqg. 1.47] and also used by Douglas and Kroll [40, 3.26] and by Zhang [43, Eq. 15].
The BS equation (8) can be expanded in terms of a Brillouin-Wigner perturbation series [47, Ch.

9]
[¥) = [Wo) + (TQ(E) V(E) + To(B) V(E)Lo(E) V(E) + -+ ) [Wo) ©)
whereV, is the unperturbed wave function and
Po(E) = & fg T (10)

1 Inthis article relativistic units are used, i.e2, = ¢ = h = ¢ = 1, e2 = 4w, wherea is the fine-structure constant.
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is the "reduced” resolvent (4) with the unperturbed state removed. For this sequence to converge prop-
erly, it is required that there be no eigenstaterhf close in energy to that o¥, and of the same
symmetry. A rigorous derivation of the equation will be given in the following sections.

2. Conventional many-body perturbation theory

2.1. Time-independent perturbation theory

In time-independent many-body perturbation theory (MBPT) (see, e.g., ref. [47]) the aim is to solve
the Schodinger equation by successive approximations for a numbiagiet” states

H|T%) = E[0%);  (a=1,2,---d) (11)

(x stands here for all space coordinates, leaving out spin coordinates). The time-independent Hamil-
tonian is partitioned into a zeroth-order Hamiltonian and a perturbation

H=Hy+H' (12)

For each target stai@®) there exists anodel statd ) (corresponding to th&zeroth-order wave
function”, ZOWF) that is confined to a subspace, thedel spacéP), spanned by eigenstates idf.
The model space can be degenerate or non-degenerate (quasi-degenerate). In the latter case the model
states are not necessarily eigenstateHgflt is always assumed that all degenerate statddqohre
either entirely inside or entirely outside the model space.

A wave operatoK) can be defined so that it transfers all model states to the corresponding target
states

) =Qwg);  (a=1,2-d)] (13)

In the following we shall use thimtermediate normalizatio(iN), implying that

(wgle) =1 (14)
The model states are the projections of the target states on the model space

|WG) = PlUe) (15)

which implies
PQP =P (16)

The exact energies as well as the model states are obtained by solving the secular equation
He |W5) = E* W), (17)
within the model space. Herél.¢; is theeffective Hamiltonianin IN given by
H.s = PHQP (18)

The wave operator satisfies theneralized Bloch equatidb8, 47]

[, Ho|P = (H'Q—QHg)P (19a)

whereH/; is theeffective interactiorin IN)
o = Het — PHyP = PH'QP (19Db)
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For a degenerate model space with the endigyhe equation goes over into the original Bloch equa-
tion [69, 70]
(Eog — Hp) QP = (H’Q -Q HgH)P (19c)

The Bloch equation is generallynaulti-state equatiothat contains the information ofsystenof
Schidinger equations (11), corresponding to a number of target states. The equation can conveniently
be used as the starting point for generating various perturbative schemes [58, 47]. It leads directly to a
generalized form of the Rayleigh-S¢idinger perturbation expansion, and it can be used to generate
thelinked-diagram expansiofiLDE). In the iterative form

[Qn, Ho| P = (H'Qu—1 — Q1 Hlg ) P (19d)

the equation can also be used to generate non-perturbatia-order” schemes, such as tieeupled-
cluster approac{CCA). Here 2, andH g, = PH'Q,,—1 P (with Qo = 1) are then:th approxima-

tions of the wave operator and the effective interaction, respectively. The commutator form of the
Bloch equation makes it possible to work with a non-degenerate or "extended” model space, which is
of particular importance for quasi-degenerate problems, as mentioned above.

2.2. Time-dependent perturbation theory
In time-dependent perturbation theory we start from the time-dependeriiddutper equation

.0
i () = H (1) (20)
We are here interested in states thatsiegionary which implies that the state vector has the form
MO (21)

whereF is the energy of the system ahd#l) is the time-independent state vector. The latter is then a
solution of the time-independent Séldinger equation (2)

H|¥) = E[¥) (22)

In theinteraction picture(IP) [31] with the partitioning (12) the wave function is related to that of
the Schodinger picture by .
X)) = et [x(t)) (23)
and the time-dependent Sékiinger equation becomes
. a !
1§ fxl(t)> = H{(t) ‘Xl(t)> (24)

Thetime-evolution operatqmefined by

Ix1(t)) = U(t, to) |x1(to)) (25)
then satisfies the equation
e,
5 Ui(t, to) = H{(t) Ui(t, to) (26)

with the solution [31, Eq. 6.23]

(=1)"

n!

[e%} t t
Urltyto) =1+ Y / iz, - / d'ay To [Hy(@n)Hy(anr) - Hi(z)]  (27)
n=1 to to
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Here,x = (¢, x), Tp is the Dyson time-ordering operator, aHgl(x) is the perturbatiodensity related
to the perturbation (12) by

Hi(t) = / PaH(t, 2) 28)
In applying this formalism to perturbation theory, atiabatic dampinds added [31]
H{(t) — H{, = H{e " Uyt to) — U, (t, to) (29)

where~ is a small, positive number. This implies thattas- +oo the eigenfunctions off tend to
eigenfunctions ofd.
In QED the perturbation density due to the interaction between the electrons and the photon field
is given by [71] R R
Hi(x) = —eif (x)a Ay ()i () (30)

wheree is the absolute value of the electronic char@ﬁ(,x), zﬁl(x) are the electron-field operators in
the interaction pictured,, the photon-field operator and’ are related to the standard Dirac matrices
by o* = (1, ).

3. Green’s function approach

In this section we shall essentially reproduce the derivation of the BS equation by Gell-Mann and Low,
starting from Green'’s functions. We consider a two-particle system for which the Green’s function is
defined by [31, pp 64 and 116]

(0s1 | T [Yha () P () by (w20) ¥ (10)] | Onr )
(Om|Or)

G(z}, 25210, T20) = — (31)

Here, |0y) represents the vacuum state aﬁg(m Ju(z) the electron-field operators, all in the
Heisenberg representatioifhe latter are related to those in the interaction picture by

Yu(t,x) = U(0,t) Yr(t, ) U(t,0) (32)

whereU is the evolution operator (27). Transforming the Green'’s function to the interaction picture
then yields [31, Eq. 8.9], [2, Eq. 16], [64, Eq. 259]

(01| T [1 ()1 () U (00, —00)h] (220)07 (w10)]]01)
(01Ut (00, —00)|0r)

Gz, b x10, 220) = — (33)
Obviously, only fully contracted terms contribute to the vacuum expectation value. By app§eks
theorem[31, p. 83] [47, Sect. 11.5], this can be represented in ternieypiman diagramsThe de-
nominator has the effect of eliminating the singularities of the numerator, in the Feynman picture
represented by unlinked or disconnected diagrams, leading to [31, Eq. 9.5]

G(I/u l”z; T10,T20) = *<01 |TD [1/31(93'1)%/;1(17/2)“(00, *Oo)ﬂ(ffzo)ﬂ(fm) !01>

In contrast to the evolution operator (25), the Green’s function is relativisticalhariantin the
sense that the integrations are performed over all space and time and the electron-field operators can
represent particle (positive-energy) as well as hole (negative-energy) states. This also implies that, in
the energy representation (fourier transform), the energy is conserved at all diagram vertices.

The Green’s function can be expressed

(34)

conn

G($/17$/2; $1079620) = G()(x/px;; 3010,%20) +
/// d*zy d*ze d*ez d* 2y Go(o), 2h; 21, 29) K(21, w25 73, 24) Go(23, 245 210, 20)  (35)
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wherelC represents the interaction kernel of all connected diagramé-aislthe zeroth-order Green'’s
function

Go(z}, 23210, 220) = —(01 ’TD [&I(xﬁ)qﬁl(iﬁ;)iﬂ(5520)1%(5510)] |Or)
= Sp(x,210)Sr(2h, 220) (36)
with Sy being the Feynmaalectron propagatoor zeroth-order single-electron Green’s function, de-

fined by . R
iSk(a',0) = (01| To (2 ) (x0)]0r) (37)

assuming the vacuum state be normalized. This is illustrated in Fig. 2. In operator form the Green’s
function can be expressed
G = Gy + GoKGy (38)

In some cases the kernel of the Green’s function can be separated into two kernels
K = K2GoKy (39)

with no photon-field contractions between them. The kernel is then said segzgable If a kernel
cannot be separated further in this way, it is said tote-separablé. The complete kernel can then
be expressed

K =k + rGor + kGorGor + - - - (40)

wherex represents alion-separablé&ernels. This leads to tHayson equatioffior the Green’s function

G =Gy + GokG (42)
illustrated in Fig. 3.
4 T
G = Go + K
Z10 €20

Fig. 2. Graphical representation of the two-particle Green’s function (8&epresentsil interactions between
the electrons.

Bethe and Salpeter as well as Gell-Mann and Low argue that a related equation can be set up for the
two-electron bound-state wave function. In that case the first (inhomogeneous) term on the rhs does not
contribute, since that is in their formulation composeéteg-electrorpropagators, and the bound-state
wave function does not have any such components. This leads hothegeneousquation

(2, 2h) = //// dzy d'zy dtas dlay Go(ah, b1, x0) (1, To; 23, 24) U (23, 24)
(42)
or in short-hand notations
U =GorU (43)

2 What we here refer to as "separable” and "non-separable” are often referred to as "reducible” and "irreducible”. Since the
latter terms have recently been used also with a different interpretation, we avoid them here.
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/
Ty )

)

Z10 X20

Fig. 3. Graphical representation of the Dyson equation (41) for the two-particle Green'’s functigpresents the
non-separablénteractions between the electons.

This is the original form of the Bethe-Salpeter equation [1, Eq. 11a], [2, Eq. 37]. It should be noted that
this wave function containmdividual times for the two particlesThis reflects one of the problems
referred to in the Introduction. The relative time between the particles does not correspond to any
physical quantity and leads to spurious solutions. There are several ways of eliminating the extra time
dependence in a covariant way. Sucher [38], following Salpeter [18], integrates the fourier transform
over the relative energy, which leads to a $xtinger-like form with a single time/energy dependence
of the type (8) given above. This reduction can be done without loosing any physical content of the
original equation [15, 16, 32, 17]. In the following sections we shall derive an equivalent equation in a
different way.

Our notations here differ from those used by Bethe-Salpeter and Gell-Mann—Low. The Green’s
function (31) is in their works denoted bl (12, 34) and referred to as theafnplitude function for
the propagation of the particlédy Bethe-Salpeter [1] and as théwo-body kernélby Gell-Mann—
Low [2, Eq. 11]. Our "non-separable kernel’is by BS denoted by: and referred to asrreducible
graphs and by GML denoted by~ and referred to as theriteraction functiof.

4. Covariant evolution operator approach

4.1. Definitions

In the following sections we shall derive the Bethe-Salpeter equation, starting from the covariant form
of the evolution operator [64]. This will demonstrate the relation between the BS equation and standard
many-body perturbation theory (MBPT) in a clear way. In the present section we shall first review the
basics of the evolution-operator method and in the next section use that method for deriving the BS
equation. This will directly lead to the Sdidinger-like form (8).

According to the Gell-Mann—Low theorem [2, 31, p. 61] the time-independent state vector (21) can
in the case of a single target state be expressed in intermediate normalization (IN) (14) as

_ = lim UW(O’_OO)|\IIO>
|¢)—WXUD>—§ﬁO<¢dU¢OfﬂmNW®

whereU, is the evolution operator (29) atil) is the time-independent zeroth-order state (15). (From
now on we work in the interaction picture and leave out the subscript|/®))is an eigenvector of the
HamiltonianH, + H’

(44)

(Hyo+ H')|¥) = E|P) (45)
whereH’ is in our case the electron-field interaction density (30), integrated over the space. Since this
perturbation represents amcontractedphoton, the state vect¢®) will generally lie in anextended
Fock spacewhere the number of photons is not conserved.

The GML formula can be generalized to a general multi-dimensional model space [64, Eq. 110]

_ NOU,(0, —00)|®%)
ey = | e :
%) = lim 410, (0, —o0)j@7)

(a=1,2,---d) (46)

NRC Canada



Lindgren 11

where the vectof®) is defined
|®%) = lim lim |x“(¢)) (47)

y—0t——o0

This state is generally distinct from the zeroth-order state (15) in intermediate normalization. Since the
state (47) generally does not satisfy IN, a normalization consténis inserted.

UNoncov(tlatO) =1 +

Fig. 4. Graphical representation of the non-covariant evolution operator (48). The time evolution occurs only in
the positive direction.

I
i

Fig. 5. Graphical representation of the covariant evolution (49) (left). Here, time evolution can occur in the pos-
itive as well as the negative direction. The right part of the figure depicts the relation to the two-time Green'’s
function (50).

For a two-electron system thmon-covariantevolution operator (25) can in analogy with the
Green'’s function (38) be expressed

UNOHCOV(t/7 tO) =1+ "[)i (xll)qﬁk (xé) K 1&_,_ (x20)7&+ (3710) (48)

where agairiC represents the kernel of all fully contracted (separable and non-separable) interactions
and qpl, ¥, the positive-energy part of the electron-field operators. This is illustrated in Fig. 4. In
contrast to the Green’s function above, the evolution operator (27) has a single initialimeand a
single final timet = t’. The time integration is performed frotn= ¢, to t = t' — only in the positive
direction — which implies that the operatorrist relativistically covariant

A fully covariant form of the evolution operator that is applicable to relativistic problems can be
obtained by inserting electron propagators in the non-covariant expression, as indicated in Fig. 5 (left),
corresponding to the expression [66, 64, Sect. 5]

UCov(t/, to) =1+ //// dBScll d3.’13/2 d321310 dg.’I}Qo &T(Z‘Q)JJT(.T&) G()ICGO 1[)(1‘20)1&(1‘10) (49)

leaving out the integrations over the coordinate€afsee Eq. 35). It then follows from relation (38)
that the covariant evolution operator is related totthe-timeGreen’s function (where all initial and
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all final times are equal) by

Ucov(t',t0) = //// APz dBah dPaig dPaan OF (2])P1 () G, 2h; 210, w20) Y(w20)8(210)

(50)
as illustrated in Fig. 5 (right).
From the relations [64, Eq. 193 (note misprints)]
[ aiSi(e z0) Do) = O~ t0) b (&) ~ Ot — )b (2)
/ P 1 (2) iSp(2, 20) = O(t — to) b (20) — O(to — 1) b (o) (51)

it follows directly that the form (49) is equivalent to the non-covariant form (48), when only patrticle
states are involved. That the former in addition is relativistically covariant follows from the fa¢hthat
electron-field operators can represent particle as well as hole states and the internal time integrations
are performed over all times- in the positive as well as the negative direction. From now on we shall
work only with the covariant form of the evolution operator and leave out the sub3ggjpt

In using the evolution operator in perturbation theory, we assume that we operate to the far right
on positive-energy states in the model space. Then, as shown in Appendix B, we can eliminate the
rightmost zeroth-order Green'’s function and set the initial timg te —oo. We shall also assume that
the limit of the adiabatic damping — 0 is taken.

The covariant evolution operator is closely related to the Green’s function—the main difference
being that the Green’s function isfanction while the evolution operator is aperator. The poles of
the Green’s function (in the energy representation) correspond to the energies of the system, while the
procedure gives no direct information about the wave function. The covariant evolution operator, on
the other hand, contains information about the energy as well as the wave function.

4.2. Model-space contributions

Even after eliminating unlinked or disconnected contributions in Eq. (34), the evolution operator may
contain (quasi)singularities, namely when the intermediate state of a separable kernel lies in the model
space and is degenerate or nearly degenerate (quasi-degenerate) with the initial state. As mentioned,
a kernel is said to beeparable if it can be separated into two kernels with no photon contractions
between them. Singularities appear only for separable interactions. In the covariant-evolution-operator
approach these singularities are eliminated by introduciegaced evolution operatdr (¢, —oo) [66,

64, Eq. 116], defined by

U(t,—o0)P = P+ U(t,—o0)P - PU(0, —o0) P (52)

Here, the last term is a product of two operators that evisidependentifrom initial states in the

model spacet(= —oo), which is indicated by the "dot”. Note also that the last factor has the final time

t = 0 and hence is time independent. This situation should be distinguished from the case where two
operators are "coupled” and operate "in succession”

Ult,to) = Ut ") Ut o) (53)

This distinction will be important for the following treatment.
Normally, we shall assume that the initial time in the evolution operatty is —oo, and in cases
where there is no risk for ambiguity we shall leave that out from the operator, so that

U(t) = U(t, —o0)

NRC Canada



Lindgren 13

The definition (52) will then be written

U(t)P = P+ U(t)P - PU(0)P (54)

We also introduce the notatidi' (t) = U(t) — 1, which yields in place of the definition (54)
Ut)P=U'(t)P —U(t)P - PU'(0)P (55)

Here, the last term is theounterterm

C(t)=-U@®)P-PU'(0)P (56)

which removes the (quasi)singularities. This can also be expressed
C(t)y=—-U@)P-PU)P —U(t)P - PU(0)P - PU(O)P — - - - (57)

After removing a singularity, there is normally a non-vanishing remaingtigy, feferred to as the
model-space contributiofMSC), defined by

M@t)=U@)P —U{)P (58)

and further discussed in the Appendices. The new opetaftiu-bar” ) is defined as the evolution op-
erator withall model-space states removéiihe MSC is analogous to theference-state contribution
appearing in the5-matrix formalism, where the effect normally appears only when the intermediate
states is equal to the reference or initial state. In our formalism with an extended model space the effect
can appear also for other model-space states, and we prefer the more general term.) It should be noted
that the counterterms also remove quasi-singularities, due to quasi-degenerate states that are included
in the model space. This can be of vital importance for the convergence of the procedure.

As discussed in Appendix C, the model-space contributions dwecdfinds The first kind appears
for all interactions, even if they are time or energy independent, while the second kind appears only
for time- or energy-dependent interactions. The first kind appears also in standard time-independent
perturbation theory and corresponds to so-cdibddied diagramof MBPT [47, 64, Fig. 5].

4.3. The wave operator and effective interaction

As mentioned previously, the evolution operator (27) with the perturbation density (30) can contain un-
contracted photon operators, which implies that it operates in a gdrmmlaspacewhere the number

of virtual photons is not conserved. We then separate the covariant evolution operator (49) into

U(t) = PU(t) + QU(t) (59)

where@ = 1 — P is operating in the general Fock space, wtilés the projection operator for the
model space, confined to the restricted Hilbert space with no uncontracted photon. This leads with the
definition (54) of the reduced evolution operator for 0 to thefactorization theorenig4, Eq. 121]

U(0)P = [1+QU(0)]P- PU(0)P (60)

where the first factor on rhs is regular. Inserted in the GML formula (46), this yields

| = [1+QU(0)] [¥§) (61)
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where¥g is the zeroth-order wave function (ZOWF) (15) in intermediate normalization

_ N°PU(0)[)

U) = Ploy = — - 1 (62)
Vi) = P = e moen)
The square bracket above is tlvave operator
Q = 1+QU(0)
|w) = Q[¥g) (63)

The result here is a direct consequence of the generalized Gell-Mann—-Low theorem and the definition
of the reduced evolution operator.

As mentioned, with the perturbation (30) the wave functiBfi lies generally in a Fock space
where the number of (virtual) photons is not conserved. But we are interested here in the case where
all photon operators are fully contracted, and for that purpose we project the equation on the restricted
Hilbert space without uncontracted photon operators

Pl®) =P[1+QU(0)]|¥5) (64)
or _
() = [1+QU(0)]|¥) (65)

where|T*) = P|®*) is the projected wave function on the restricted Hilbert spaceiard PQ is
the conventional projection operator for the complementary space (outside the model space). The wave
operator in this space is

Q=PQ=1+QU(0) (66)

In IN (14) the wave operators satisfy in both spaces the relation (16)
PQP = PQP = P. (67)

Theeffective interactiorf19b) is in this formalism given by [64, Eq. 130]

&=Pﬁgﬁw} P (68)

t=0

5. Connection to the Bethe-Salpeter equation

5.1. Expansion of the wave operator

We know from the generalized Gell-Mann—Low relation (46) that the state veEt9rin the extended
Fock space satisfies a Soldinger-like equation (45) with the Hamiltoniagd = Hy, + H’, where
H' is the perturbation (30). We now want to find the corresponding equation for the projected state
[Ty = P|®*) in the restricted space with no uncontracted photons, and we shall see in this section
that this leads to thBethe-Salpeter equation

We shall start with the exchange of a sequence of separable covariant single photons between the
electrons, which can then be generalized to other interactions, leading to the full equation. This will
first be done for a degenerate model space and then extended to the general case.

As shown in Appendix B (Eq. 162), the contribution to the wave operator due the exchange of a
single photon, operating to the right on a state of the enérgy

QWP =QUWM(0,6)P =Tg(E)V(E)P (69)
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and the corresponding contribution to the effective Hamiltonﬁéﬁ (&) =PV (E)P.HereI'g(€) is
the "reduced” resolvent (163) and(€) is the effective single-photon potential (165),

Similarly, it is demonstrated in Appendix C (Eq. 182) that the contribution to the evolution operator
from two separable single-photon interactions is

- 5O
0@ p— QU@)(O)P _ FQVQ(l)P 4 = * Hgf) (70)

where the last term represents thedel-space contributioMSC) (58). The asterisk is introduced
here only to indicate that there is a cancelled singularity at that position, which is of importance for the
further treatment, as discussed in the Appendices.) The contribution to the effective Hamiltonian (184)
due to two-photon exchange is

5H(1)
HY) = pvoWPp ¢ — o HY) (71)

The last term is the MSC to the effective interaction, and if the model space is degenerate with the
energyFE, that term becomes

oH'Y OV (E)
O 98 |k,

This corresponds to the "reference-state contribution”, discussed in connection wtmtatrix treat-
ment of two-photon exchange [72, 73].

The treatment above will now be generalized to all orders as a first step towards deriving the full
BS equation. We start with the covariant evolution operator (4@) = U (¢, —oo) and the reduced
evolution operator (55)

«HY) =P PV(E,)P (72)

Ut)P=U'(t)yP —U(t)P- PU'(0)P (73)

wherelU’ = U — 1. Note that only the first factor in the product is time dependent (see. Eq. 172). Note
also the appearance of the "dots” in this expression. The significance of the dot is discussed in relation
to the definition (52).

In the following we shall leave out the prime @i and normally also the time arguments. The
reduced evolution operator (73) then becomes

UP=UP—-UP.-PUP

where

C=-UP-PUP (74)

is thecounterterm(56). Fort = 0 the evolution operator is with these notations given by

U=TV +TVIV 4+TVIVIV + . (75)

whereI’ = I'(€) is the resolvent (146), and thé&)*bar” operator (58), with all intermediate model-
space states removed, by

U =TV +TVLQV +TVIQVIQV + - (76)

We introduce a special symbol for the time derivative at tirae0

. L0A
A= IE —o (77)
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Since the evolution operator (161, 172) has the time dependence
U(t, &) = e MEHO) 17(0, £)
it follows that the time derivation eliminates the denominator of the first (leftmost) resolvent, so that

U=V +VIV +VIVIV +---
U=V 4+VIoV +VIgVIgV +--- (78)

Theeffective interactiorf/; (68) is with this notation given by

!¢ =PUP (79)

We also introduce the correspondiftdrbar” operator with no intermediate model-space states
!y = PUP (80)
We recall the definition (58) of the model-space contribution (MSC)
UP=UP+M (81)
and can easily derive the identities (valid for arbitrary times)

UP = UP+UPUP=UP+UPUP—MPUP (82)
UP = UP-UPUP+UPUPPUP—--- (83)

Then the reduced evolution operator (73) becomes
UP=UP+C=UP+UPUP—-UP-PUP—MPUP (84)
Here, the last three terms represent the MSC
M=UP-UP=UPUP—-UP-PUP— MPUP (85)
which leads to the series expansion
UP=UP+ (UPUP—UP-PUP)(1—PUP+PUPPUP +---) (86)
With the identity (83) this becomes

UP=UP+ (UPUP-UP-PUP) (87)

which is an exact expression also for a quasi-degenerate model space. It can be expanded as
UP=UP+ (UPUP-UP-PUP)+ (UPUP—-UP-PUP)(PUP—-PUP)+--- (88)

As discussed in Appendix C, the result (87) can be expressed
- _ sU . _ sU -
UP:UPJF%=|<PUP:UP+%>|<HQff (89)

whered€ is the change in the model-space energy, represented by the 3dots, the corresponding
change inJ, andH; is the "H-bar” operator (80). In the case of complete degeneracy this becomes

_ _ U _
UP:UP‘F%SZEO* é{f (90)
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Introducing théOmega-bar” operatorQ) (with no intermediate model-space states) in analogy with
the wave operator (66)

QP =P+ QUP =P+TQVP+TQVIQVP+- - (91)

we can express the relations above as

R T ) -
OP = QP+ 2 s Hly = 0P + 2 / 2
Tog e TR g g, " e (92)

The second term is here consequently an exact expression for the entire model-space contribution to
the wave operator. This is in agreement with the three-photon result (193).
By taking the time derivative of the relation (87), using the relations above, we obtain similarly

OH!4 Y
0E le=E, off

/ rr/ 6Héff 7’ 7/
eff — Hcﬁ' + 5E * Hcﬁ' = Hcﬁ' + (93)

The second term represents here the model-space contribution to the effective interaction. This result
agrees also with the third-order result (195).
From the results above we conjecture that the wave operator can at complete degeneracy alterna-
tively be expressed
~ 09 10%Q 2 10%°Q 3 10" n
n=1

o€

with all derivatives taken af = E,, and we shall now prove this relation by showing that it is com-
patible with the results (92) and (93), which we have rigorously derived. This equation contains elim-
inated singularities, indicated by the asterisks. These expressions are obtained by considering a quasi-
degenerate case, letting the energy separation tend to zero. In order to form a new derivative, it is—as
discussed in the Appendices, particularly Appendix E—necessary first to lift the degeneracy and then
let the separation tend to zero isimglestep. Using the rules developed we find for instance

o 00 500 1020, 00 OH!,
g2 (58 *Hin) = 55 (5p*Hin) = 558w * Hin + 55 * 5 (95)
8 1920 , , 2 5 /820
o2 (5 ger = Hi)) = 55 (5 = (Hla)’)
10 o 10%Q oH
= grges * Hn) + 358 * 5 *Ha (96)

Note that in the second example the t&j, operators have in the quasi-degenerate case different
energy parameters, and therefore only one of them is affected by the derivation.
Generalizing these rules, we can evaluate the derivative of the wave operator (94)

o0 o 10°Q _, 1 93Q ,

2
% = o Taoer et giges  (Her) 4o
00 OHl; 10°Q) O0H!y ., 100 0Hl; .,
T 9e* o Taoet oe Mty g et OD)
or B
o0 _ = 1 o"Q 7 \n—1 8Héff / \n—1
5_25 agn * |:(Heff> + ag *( eff) :| (98)
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We now insert this expression into the equation (92), which yields

(9] 1 0"

3 n=1l 7 OH /s n—1_ f
9 * Hyg = 2:: R TI [( )+ Hig + 9 " (Heg)" ™" % Héff} (99)
or, using the relation (93),
_ =1 9"Q n
QP = QP —— ! 100
+ ; n! OEN * ( eff) ( )

This is identical to the conjectured relation (94) and therefore completes the proof. The sum represents
by definition the model-space contribution (MSC).

Fig. 6. Examples of non-separable two-photon interactions.

5.2. Derivation of the Bethe-Salpeter equation. Degenerate model space.

The previous treatment has been based upon the Hamiltéhian Hy + V (E), whereV (E) is the
potential due to the exchange of a single covariant photon. But the process can be repeated in exactly
the same way, if we includall non-separable multi-photon interaction& non-separable interaction

is defined as an interaction that cannot be represented by two or more simpler interactions in the way
treated here. Two photons—crossing or noncrossing— that overlap in time represent non-separable
two-photon interactions (see Fig. 6, c.f. also Ref. [1, Fig. 1]). These can also include the radiative
self-energy and vertex corrections. In a similar way non-separable three-, four-,... photon interactions
can be defined. Therefore, in the following we replace the single-photon pot&nkiglthe general
potential due to all non-separable interactions

V(E) = V(E) + Va(E) + Va(E) + - (101)

~As discussed in the Appendices, when operating on a state of efietgg energy parameter of
QP is equal to that energy, i.e.,
OF (&) =QE)F(E) (102)

For a degenerate model space of endigythis means that
QP = Q(Eo)P = P+Tg(Eo)V(Ey) + - (103)

The model functions are eigenfunctions of the effective Hamiltonian (17), and for a degenerate
model space (of energl) they are eigenfunctions also of the effective interaction (19b),

ot | VG) = AE|UE) (104)
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whereAE® = E* — E,. Operating with the operator equation (100) directly on the model sigte
then leads to the Taylor expansion
@ a [e% 829 1 [e% ® [e% o
Uy = [UE) + 5z | AB+ 5T | (B 5| [ug) = (B wy)  (105)
This implies thatthe MSC term shifts the energy parameter of the resolvent as well as that of the
potential from the unperturbed enerdy, to the exact energy®. But Q(E~) ¥§ with the energy
parameter equal to the full energy for the stétéis also identical to th8rillouin-Wigner expansion

(9),

) Lo} [ AN Q « Q a Q a a
Q(E*)|Tg) = [1 g VE) + g VE) g VIEY) M\If ) (106)
which represents the full wave function, i.e.,
QB |wg) = )| (107)

This implies that the relation (100) essentially represémslink between the Rayleigh-Sobdinger
and the Brillouin-Wigner expansions for an energy-dependent interaetimhat the same timéne
link between the MBPT approaches and the Bethe-Salpeter equatticated by the arrows in the
diagram of Fig. 1).

The BW expansion (106) can be expressed

QUE) = [¥5) + To(EY)V(E")QVE) (108)

or
(B® = Ho) Q[¥?) = QV(E)[¥7) (109)

From the relation (93) it can be shown in analogy with the relation (100)

1 o"H’ n
ot = Heog + Z 857’75 (Heg) (110

With the definitions (80) and (91) this leads to
Hoq = PV(Eo) Q(Eo) P (111)
and in analogy with the relation (105) to
' = PV(E*)Q(E*)P = PV(E*) QP (112)

This leads together with Eq. (109) to the final equation

(B> — Ho) [0°) = V(E*)|9°)| (113)

This is the Bethe-Salpeter equation for energy-dependent interactions in the Sobdinger-like
form (8). This can be solved iteratively as the standard Bloch equation (19d).

We have now confirmed that the Sathinger equatior{45), obtained directly from the generalized
Gell-Mann—Low relation in the extended Fock space with the perturbation d€B8itycorresponds
in the projected Hilbert space with no uncontracted photons to a&lihger-like equation with the
perturbation(101). Both forms represent the complete interaction between the particles and are exactly
equivalent to the original Bethe-Salpeter equat{dg).
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The main difference between the original form of the BS equation and thé&@nbger-like form
derived here is primarily that the latter has the time dependence reduced to a single time, which makes
the wave function in accord with standard quantum mechanics. Furthermore, thdiBgbr-like form
contains explicitly the resolvent, while the remaining part of the Green’s function (145) is merged with
the kernek to form the potential.

The Schédinger-like equation (113) we have derived is equivalent to the equation derived from the
BS equation by Sucher [38, Eq. 1.47] and rederived by Douglas and Kroll [40, Eq. 3.26] and Zhang [43,
Eqg. 15]. In these works the equation is essentially obtained by integrating over the relative energy of
the particles, thereby transforming the equation to an "equal-time” equation. This equation is then
analyzed in terms of the Brillouin-Wigner perturbation theory. In our presentation the corresponding
equation is obtained by starting from MBPT in the Rayleigh-8dhmger formulation and summing
all relevant perturbations to all orders. The present derivation therefore can serve as a link between the
two approaches.

In the next section we shall extend the treatment to the quasi-degenerate case and derive the corre-
sponding Bloch equation.

5.3. Derivation of the Bethe-Salpeter-Bloch equation. Quasi-degenerate model space.

We have previously assumed that the model spaaegeneratewhich for a two-electron system

implies that the effective interaction édagonalwithin this space (assuming the basis functions have

definite symmetry). Then the relation (104) simplifies the treatment, and the formulas derived in the

previous section lead directly to the standard Bethe-Salpeter equation (113). The treatment above,

however, is more general and can be extended to the case where the model space is non-degenerate

(quasi-degenerate). In the present section we shall show how this can be performed.

The following relation can easily derived by induction, when operating to the right on the model

space, :
a0 " (V) a0y
oen ~ e gen ~Megemy

To prove this we form the next-order derivative

ot L, on(VQ) . ot (YQ) , 0DQ r o0
9EMFL) — T QT ggn QT Hg(n+1) +n Qag(n n " QHgn

(Since no singularities are involved here, ordinary rules of derivation can be used.) Inserting the ex-
pression (114) in the first term, yields
o+ o1 (V) oY)
gEmTL) — QT gt (n+ 1)FQﬁ
From the identity2 = 1 + I'o V) we obtain the first derivative (operating )
o0 o(VQ) ~
— =T -T2
g~ % o€ @

which completes the proof of the relation (114).
The formula above leads together with the expansion (100) to

VQ o 1 o-1Q .
QOP = QQP#—FQZ' 8(5") ') FQZ T 980 o (Hg) (115)

(114)

The first term on the rhs can also be expredsg¥Q P, and the last term is simply ' QH/g;, which

yields

1 0"(VQ)
oEn

Q0P = FQ[VQP+Z (H!g)" QH’] (116)
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We can considey() as a single energy-dependent operator, and if that operates on a particular model
state of a degenerate model space of enéigythe first two terms of the bracket above represents the
Taylor expansion

n

85”

V(Eo) Q(Eo) + i l' (AE®)" = V(E) Q(E). (117)

Ey

Thus, the expansion has the effect of transforming the energy parameter of the piiduoin £, to
the full energyE~, ) B
V(Eo)QUEo)|¥G) — V(E®)QE)|YE) (118)

in analogy with the expansion (106). Using the relation (107), the equation (116) above then becomes
QQ|PF) =T [V(E*)Q — QH 4] |[TF) (119)

or
(Eo — Ho)Q|¥F) = Q[V(E*)Q — QHg][T5) (120)

which is consistent with the Bethe-Salpeter equation (113).
If the model space inon-degeneratéquasi-degenerate), then the relation (104) is no longer valid,
and the expansion (116) can not be expressed by means of a single energy parameter as in the Taylor
expansion (117). Instead, the potential will depend orfulenatrix of the effective Hamiltonian. We
then replace the energy parameter in (103) by the model Hamiltdfian

QP = P +Tq(Ho)V(Ho) + - = Q(H)P
By this notation we understand—in accordance with the rule (102)—
A(Ho)B|®) = A(Eo) B|) (121)

when|®) represents an eigenstatef§ with the eigenvalué”, and B is an arbitrary operator combi-
nation. Together with the linearity condition,

A(Ho)Bla® + b®") = aA(Ey)B|®) + bA(E))B|®’) (122)

where|®’) represents another eigenstatgffwith the eigenvaludZ, this defines the notation fully.
The expansion (116) can now be regarded, in analogy with the energy modification (117), as mod-
ifying the parameteH,, to the full effective HamiltoniatH.z = Ho + H.g

V(Ho) A(Ho) + Z 1 an@gn o) = V(Hegt) U Hesr) (123)
n= 1 !
ie.,
V(Ho)QUHo)P — V(Ho)Q(Her ) P (124)

and Eq. (119) becomes
QQP =T¢(Hy)V(He ) Q(Heg) P — Lo(Ho)QH 4 (125)
The notation here is defined by the relation
A(He)B|¥G) = A(E®)B[Y) (126)

NRC Canada



22 Can. J. Phys. Vol. ,

where|¥§) represents a model state (eigenstatéigf with the eigenvalugZ®, see Eq. 17), which
together with the linearity condition defines the operator when acting on any model space.
Similarly, the expansion (100) yields

QP = Q(Ho)P + fjl % 279 (Hlg)" = Q(Her)P (127)
and we can now express the equation (125) as
QP =T (Ho)V(He) QP — To(Ho)Q Hg (128)
or
[Cq(Ho)] ' QOP = Q[V(He) 2 — Q Hlg] P (129)

We now apply the definition (121) above witt(€) = [T'g(€)] ' = Q(€ — Hy). Then, with|®(Ey))
being an eigenvector df, with the eigenvalud’y, we have

A(Eo) QQ|@(Eo)) = (Eo — Ho) Q®(Eo)) = [, Ho)]|®(Eo))
Thereforethe inverse of the resolvent can be expressed as a commutator
[To(Ho)] "' QQP = [, HlP (130)
which leads to the commutator relation
[, HolP = Q[V(Heg) Q — QHlg| P (131)
The relation (112) can be generalized to
o = PV(Heg) QP (132)

and with the IN relation (67P2P = P we arrive athe BS equation in commutator form

[, Ho| P = V(Hesr) QP — Q Hlg (133)

We refer to this equation as thgethe-Salpeter-Bloch equatiqrand it represents the main result of

the present work. It is a multi-state equationcontrast to the standard BS equati¢hl3) that is

state specificThe BS-Bloch equation has the same relation to the standard BS equation as has the
standard Bloch equatiofil9a)to the ordinary Schidinger equationThe dependence on the effec-

tive Hamiltonian makes it anatrix-operator equatiorand therefore somewhat more complicated to
solve than the standard Bloch equation. Below we shall indicate how also this equation can be solved
perturbatively.

5.4. Perturbative expansion of the Bethe-Salpeter-Bloch equation

We consider now the perturbative expansion of the BS-Bloch equation with a sequence of separable
single-photon exchange (potentid), as illustrated in Fig: 7. In first order the BS-Bloch equation
becomes

(W), Hol|ab) = QV (Hes)|ab) (134)

and here the argumeii.g of the potential is approximated k. In the next order we have
[Q®) Hy)|ab) = QV (Hesr) Q1 |ab) — QW |ed) (cd| HS |ab) (135)
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. M S
Sl 1

Eab Eab Eab Eab

@) (b) (©) (d)
Fig. 7. Exchange of one- and two-photon ladder, starting from the model-spacé$fadéenergyE,;, (a,b). The
diagram (c) is a standarddlded’ diagram with a double denominator, indicated by the double horizontal line.
Diagram (d) is the folded diagram with wave function with uncontracted photon, described in the next section.

and hereHq is approximated byH, + Héflf) The last term is théolded diagram, with summation
over the model-space staties) and represented by the diagram (c) in Fig. 7. The contribution to the
wave-operator matrix elements|Q(?)|cd) becomes

rs|QWed
Tl =

(rs|V|ed){cd|V |ab)
(Eab - E’r’s)(Ecd - Ers)

(136)

with E,, = €, + 4. This represents the part of the model-space contribution (MSC) (182) that is due
to the variation of the resolvent

1) 1
Iy o _
o0& @ - (Eab - Ers)(Ecd - Ers)

with the potential unchanged. The remaining part of the MSC, due to the potential variation, is taken
care of by madifying the parameter of the potentiadlitH .« ). The latter is anatrix operatorimplying
that the resulting second-order wave operator will also be in the form of a matrix opgrator

In practice, the equation is solvératively (se Eg. 19d), which implies that also the parameter
of the potential is successively updated. By continuing this process, a perturbation expansion of the
Bethe-Salpeter-Bloch equation is generated. Thismiti-stateexpansion, valid for the entire model
space. This is in contrast to tietate-specifi@rillouin-Wigner expansion (106) of the ordinary BS
equation (113).

As usual, of course, nothing can generally be said about the convergence condition. In a multi-
state expansion it is expected that so-cailgtuder statesnay cause convergence difficulties, as with
the ordinary Bloch equation. One way to remedy the situation could be to emplogténmediate
Hamiltonian approachsuccessfully applied in several standard MBPT calculations [74, 75, 76, 77].
There should be no principal difficulty in applying this formalism to the Bethe-Salpeter-Bloch equation.

In the next section we shall describe a new procedure for solving the BS-Bloch equation, which au-
tomatically yields the correct model-space contributions, including those due to the energy-dependence
of the interaction.
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—

(a) (b) (©) (d) (e)
Fig. 8. lllustration of the new perturbative procedure for solving the Bethe-Salpeter equation, described in the
text. The horizontal dotted lines represent instantaneous Coulomb(-Breit) interactions and the wavy lines fully
covariant photons.

5.5. New numerical procedure for solving the Bethe-Salpeter-Bloch equation

We shall here briefly describe the numerical procedure we have developed for solving the BS-Bloch
equation [64, Sect. 8]. A more detailed account of the procedure together with numerical results will
appear in a separate publication [78].

The procedure is a combination of perturbative (order-by-order) and non-perturbative ("all-order”)
techniques, and the starting point is the iterative solution of relativistic pair equations [79, 80, 81, 82,
47] with instantaneous Coulomb (or Coulomb/Breit) interactions. This represents the (all-order) "lad-
der” approximation of the BS equation, as indicated in Fig. 8 (a). The pair function is then combined
with the emission of a single (uncontracted) photon (Fig. 8 b), which leads to a new pair function for
each value of the photon momentumThis represents a wave function lying in the extended Fock
space, discussed in section 4.3. The photon is subsequently annihilated on the same or the other elec-
tron, and integration over the photon momentum yields the complete single-photon exchange. Before
the annihilation, the pair function can be iterated further (Fig. 8 c), which yields instantaneous Coulomb
(-Breit) interactions, crossing the photon. The iterations can be continued also after the annihilation,
as indicated in Fig. 8 (d). Annihilating the photon on the same electron line, leads to the radiative
self-energy and vertex corrections (Fig. 8 ), which, of course, have to be properly renormalized.

In the procedure described here, the QED effects are evaluated by meametftedwave func-
tions, in contrast to the conventiongi#matrix procedure, where uncorrelated products of hydrogenic
orbitals are used [61]. Therefore, this numerical technique will be comparable to the analytical "unified
model” of Drake and coworkers [45, 46]. Our method can hardly match the latter in numerical accuracy
but will instead contain many effects not included in the analytical approach. Theretunetanation
of the two approaches might lead to the best result.

For computational reasons it is at present not possible to treat more than one covariant photon
with our new procedure (although there is no principal limit). However, even with a single covariant
photon, the dominating part of the multi-photon exchange will be included, due to the crossings with
the instantaneous interactions (Fig. 8 c). Also single and douiliigal electron-positron pairgan
be included in the intermediate states. Therefore, this procedure will, for instance, correspond to all
effects treated by Zhang [44] in his analysis of the helium fine structure up to erd&rexcept for
the non-separable interaction of two retarded photons (Fig. 6), for which we have at present to use the

3 The concept of anatrix operatorshould not be confused with the matrix representation of an ordinary quantum-mechanical
operator. A matrix operator is a matrix where each element is a distinct operator.
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analytical approximation.

We shall now indicate that the procedure described here automatically leads to the correct model-
space contributions, including the contribution due to the modification of the potential. For that purpose
we return to the situation discussed above in Fig. 7. In the new procedure there will also be a folded
diagram associated with the wave function withuaicontractegohoton. This gives rise to the diagram
in Fig. 7 (d) with a double denominatarsidethe potential. Generally, the emission of a photon in the
forward direction corresponds according to the relation (165) to the expression

/ dk f(k)ﬁlru_k ]m> (137)

if particle states are involved. The folded diagram with an uncontracted photon gives after absorbing
the photon in analogy with the ordinary folds rise to the contribution

(o3| [ 410 o E B ) (138)

which corresponds to the difference ratio

(rs|V(E)|tu) = <rs

oV (&)
o0&
Therefore, this contribution takes care of the potential modification and together with the ordinary
folded diagram (136) represents the entire MSC in the second-order wave operator.

6. Summary and conclusions

Standard many-body perturbation theory (MBPT) is conveniently based upon the Bloch equation,
which is the generating equation for the Rayleigh-8dimger perturbation expansion. The Bloch
equation can also be used to generate various other perturbative schemes, such as the linked-diagram
expansion, and it also leads to non-perturbative (all-order) schemes, such as the Coupled-Cluster Ap-
proach. In the commutator form (19a) the Bloch equation leads to schemes that can handle the quasi-
degenerate problem in an efficient way by means of an "extended” model space.

In this paper we have reviewed the connection between relativistic MBPT and quantum-electrodynamics
(QED) for a two-electron system by means of the recently introduced covariant-evolution-operator
method [64]. The exchange of a single covariant photon is treated to all orders, and this is shown to
lead to an equation of the Bethe-Salpeter (BS) type. Extending the treatment to all non-separable inter-
actions (including radiative corrections) leads to the full BS equation. This establishes a link between
the perturbative schemes, based upon Rayleighé8atger perturbation theory and schemes based
upon the BS equation, which are normally treated by means of the Brillouin-Wigner perturbation pro-
cedure.

In addition, a Bloch equation in commutator form that is compatible with the BS equation is de-
rived. This equation is a multi-state equation, valid for the entire model space—in contrast to the
standard BS equation that is state specific. The BS-Bloch equation has the same relation to the Bethe-
Salpeter equation as has the standard Bloch equation to the ordinaddiBdger equation and repre-
sents a series of BS equations, associated with a model space that need not be degenerate.

It is demonstrated that a multi-state perturbative expansion of the BS-Bloch equation can be gen-
erated, quite similar to the standard MBPT expansions. In principle, this will make it possible to treat
the quasi-degeneracy problem perturbatively also within the BS formalism. Such a scheme is presently
being tested at our laboratory.
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APPENDIX

A. Zeroth-order Green'’s function

t1o t20

Fig. 9. Graphical representation of the zeroth-order Green'’s function (139).

The zeroth-order Green'’s function (36) in Fig. 9 is in coordinate representation
Go(w122; 210T20) = S¥(21;T10) S¥(w2; T20) (139)

whereSk is the electron propagator

S(m7$0) _ / (21“7: S( ) —iw(t—to) (140)
with the fourier transform
(IS (@)wo) = HUZO) _0130) ) (141)

w—&p +1in,
and the corresponding operator form

. A A

S(w):w—h+in+w—h—in (142)

Here, h is the single-electron Dirac Hamiltonian in the field of the nucleus Andare projection
operators for positive and negative-energy single-particle states.
We consider the equal-times Green’s function with= ¢t5 = ¢, which gives

de _. ., (xrxa|rs){rs|eiox
Go(ﬁ,$17w2;$10,$20) = / 271— iet < 1 2€|7>€< ngo 20>
r s

% /diw [ 1 i 1 i|eiwt10 ei(e—td)tzo (143)
21 lw—¢e,+1in, €—w —¢e5+1n,

with = (¢, ), w; = w ande = wy + wo. The fourier transform with respect tas then

Go(e, 501,132,9610,%20 =

12 ’I“S T'S $10$20 dw 1 : e .

< | ‘ hndl + : elwhio el(E w)tao (144)
€—Ep —Eg 2 w—5r+1m €—w— €5+ 175
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or in operator form

d ) .
Go(6) = T(e) [ 52 gn(esw) etm il (145)
wherel'(€) is the resolvent (4)
1
D) =¢= 2R (146)
Hy = hy + hs is the zeroth-order Hamiltonian (30) and
1 1
= A
go(€, ) +[w—h1+in+e—w—h2+in]
1 1
A_ 147
+ [w—hl—in—’—e—w—hg—in} (147)
The inverse transformation is
de —iet
Go(t,z1,22; 710, T20) = o © Gole, @1, T2; 10, T20) (148)
and specifically,
de
Go(t = 0,21, %2; 10, T20) = / o Go(€, 1, T2; 10, T20) (149)

B. Single-photon exchange

(See Ref. [64, Eqg. 312 and App. Al].)
We consider now the covariant evolution operator (49) for the exchange of a single covariant photon,
represented by the diagram in Fig. 10 (left)

U ) =~ [ et Py bt e) [[atedtesiSe(t, o) iSeah ) a2 )
X // P10 320 iSr (21, T10) 1SF (2, T20) (2201 (210) (150)
leaving out the damping factors. More compactly, we express this as
UMt ty) = —%W(ﬂcﬁ)w(ﬂvé)Go(x/px/z;xlm)ﬂ(x%fﬂl)
X Go(w1,2; 10%20) ¥ (20)(710) (151)

with integrations over all variables that do not appear on the left-hand side. Hegez ) represents
the single-photon exchange

dz
e

> —i2t =) 1(5 @y, a) (152)

I(z9,21) = ea Dppy (2 — 1) eay = /

whereDg,,, (x2 — x1) is theFeynman photon propagatofhe electron-field operator is in the interac-
tion picture [31]

d(x) = (t,x) = c;p;(x) et (153)
whereg; are eigenfunctions of the single-electron Hamiltonian in the nuclear field (Furry picture)
ho ¢ () = €;¢;() (154)
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dﬁn r Sn@T

t:t/ - —————— - —

WA ) QA= Eab —w

ag a b

Fig. 10. Graphical representation of the covariant-evolution operator for single-photon exchange in the form (150)
(left) and in the form (155) witlip — —oo.

If we operate with the expression (151) to the right opaasitive-energy stateve can use the
relations (51) to simplify the expression. Furthermore, since in thatigase, t2 and since, t5 run
from —oo to +00, we must have, = —oc, yielding

UMD, —o0) = %1&%’1)1&*(9:’2) Go (], oh; 2122) il (w2, 21) P(22) (1) (155)

We shall always assume that we operate to the right on an unperturbed state, which with the adiabatic
damping (29) corresponds tg = —oco. Therefore, we shall in the following normally suppress this
argument.

We now use the form of the Green’s function derived in the previous Appendix

de —iet’ de —iet’ dw iw ile—w
Go(z, xh; 21, 12) :/%e " Gole) :/%e t F(e)/%go(e,w)e t1 gi(e—w)ta (156)

to evaluate the matrix element of the evolution operator (see Fig. 10, middle), which yields (leaving
out the time integrations)

U(l)(t/) ]ab> = <rs| / ;L; ]_"(e)efit'(efE,,.S

d d . .
X /% go(e,w) / ﬁ iI(z)eﬂtl(Eﬂ*Zﬂ”) e it2(epta—etw) |ab> (157)

Here,|ab) and|rs) represent straight product states (non-antisymmetrized, which eliminates the factor
of 1) of energyE,, = ¢, + €, andE,.; = ¢, + &4, respectively . After integrations this becomes

de _p d dz ,
(U () [ab) = (rs| [ 5 Bn(e) [ SEgniew) [ 57 iT(2)
X 2m0(eq — 2 — w) 2m0(eq + € — €)|ab)

= <7n8|efit’(Eab*s,.*ES)]_—‘(Eab) / g—w 90(Eap,w) il (eq — w)|ab) (158)
™
We can also express this result as
UM (t)|ab) = e Far=H) D (B, ) V(Eq) |ab) (159)
where
dw .
V(Ew) = /% 9o(Eap,w)il (e — w) (160)
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The results above can be generalized to the case where we operate to the right on a state of a general
energy€ (see Fig. 10 right)

U (1) F(E) = e HEHIT(E)V(E) F(E) (161)

The corresponding wave operator, using the definition (66), is

QW(€) = QQUW(0) =To(E)V(€) (162)

where

Q
& — Ho

The effective interaction is obtained from the relation (68) by taking the time derivative &t which
eliminates the resolvent,

Io(€) = QU(E) = (163)

HYE =prPvE)P (164)

With the explicit form of the interaction (152) the matrix elements of the potential for the exchange
of a single covariant photon becomes in Beynman gauggs4, App. A]

1 1
)|t dk t
(rsV(E)[tw) m‘/ f(k —ar—su—(k—iv)r+5—6s—5t—(kz—i7)J Y

where thed, = A sgn(e,.), and the functiory (k) is given by

> (165)

e? sin(kr
£ = = (1 - a1 - ) 012 (166)
The last factor can be expanded as
sin km =k > (20+ 1)y (kr1)i(kro) €D (1) - €O (2) (167)

=0

where j; are spherical Bessel functions aay? spherical tensors, closely related to the spherical
harmonics.
In the Coulomb gaugé¢he potential can be separated into an instantaneous and an retarded part,

V(E)=Vi+W(E)
where only the latter is energy dependent. The instantaneous Coulomb interaction is

62

4’/T7"12

and the retarded part is given by the same expression as in the Feynman gauge (165) with

f(k) = £ — .azw+(al .VI)(%.VZ)M

168
471'2 T12 k‘2 12 ( )

where the nabla operators do not operate beyond the square bracket.
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C. Separable two-photon exchange

(See Ref. [64, Sect.5.2.1 and App.A.2])
Next we consider the separable two-photon exchange for which there is an intermediate=tirtig (
with no free or uncontracted photons, as illustrated in Fig. 11 (left). Operating to the far right on a
state of the energy, the evolution operator can in analogy with the single-photon exchange (161) be
expressed

UA(t) = e #EH) PYTY = ¢ HE-Ho) 7 (0) yM(0) (169)
wherel’ = T'(€) is the resolvent (146) and = V(&) is the single-photon potential (160). Here, the
intermediate states run ovalt states — in th&) as well as the® space — and when the intermediate
state lies in the model spac®), (quasi)singularitiesmay occur. These singularities are removed in
thereduced evolution operatdb4) by thecountertermg56)

Ut)P =U(t)P + C(t) (170)

The counterterm is in the present case given by the product of two single-photon contributions, as

qzjm “’(/]T
t — t/ - —————— - — ) ) R P )
B \ L £—0 Q/JTM m’[ﬂ ¢TAA “ql)T
RN t=t |- S S - t=0
t = t” P P PN - A A i i
W A ; L £E—w Ve SN X TRV NN
1 g 2 ~ ~ ~ ~
A A ¢n A w Q/Jn I\ r(/;
P4 4 P P
P
F(E) F(E) F(E)

Fig. 11. Graphical representation of the separable two-photon-photon ladder diagram (left). This diagram is sep-
arable, if there exists a time (represented by the dotted line) at which there is no uncontracted photon, i.e., a time
after the first photon has been absorbed and before the second has been created. The corresponding counterterm
(right) is a product of two operators, which evolve independently from possibly different states of the model space.

shown in Fig. 11 (right)
cA ()= -uBwyp. pUMY(0)P (171)

The two factors evolve independently from (possibly different) states in the model space, which is
indicated by the "dot”. The counterterm eliminates the singularity, but there mayitieeaemaindey
which we refer to as the model-space contribution (MSC) (58). We shall first consider this part.

We still assume that we operate to the far right on a function of the egrgyd assume that the
intermediate model-space state has the enétggpecifying the energy parameter of the evolution
operators, we can express the second-order evolution operator (169) as

UP(t) = e HEH) (W0, £) UMD (0, E) P (172)
and the counterterm, where the first factor is evolving from the intermediate state, as
CO(t) = —e ME=H) g9 gYP. PUM(0,€)P (173)

(Note that only the first factor of'(?) is time dependent, and that the time derivative eliminates the
denominator of the leftmost resolvent f@ras well agC'.) This yields

U@ 0)p=0D0,&)uM(0,&)P — UM (0,VP - PUNV(0,E)P (174)
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and the evolution operator (76) with no intermediate model-space state
U2 0)P=0D0,)QUuM(0,&)P (175)
Themodel-space contributiofMSC) (58) then becomes
M =UD(0,8) PUD(0,E)P+CP(0)P = (U<1>(0,5)P—U<1>(0,5')P) .PUD(0,€)P (176)
The last factor is

V(E)P = —— 4 PV(E)P = — = « PUD ()P

p
(1) _
PUM(0,6)P 5 o

Se-¢&

with 6€ = £ — &, and with sUM = UM (0,&") — UM (0, E) we have

CON
M = (UU)(o,e)P - U<1>(o,5’)P) - PUM(0,6)P = 5[6]5 « PUV P (177)

(The asterisk is used only for clarity. It notifies the position of a "fold” in the graphical representa-
tion [47], but has no other special significance. It will mainly serve as a reminder of the position of a
cancelled singularity, which—as we shall see—requires certain precautions.) With the definition (79)

PUWP =PU P=Hy which yields

(1)
M = 5(55 « HY (178)

The complete second-order reduced evolution operator (58) then becomes

_ ) (1)
U@ )P =02 (0)P + % « HY) (179)

The result above is exact also for the quasi-degenerate case. The difference ratio can be expanded
as discussed in Appendix E

UM ou®  152UM 193U
5€ o 2 asz T3 g

which in the limit of complete degeneracy yields

6% 4. (180)

_ ) (1)
U@ 0)P =02 0)P + agT « HY) (181)

The second-order contribution to the wave operator (66) then becomes

s _ Q1)
«H = QP p 4 % « H) (182)

QP =QUP ()P =0PP+ 55

where() is the wave operator (91) without intermediate model space states.

The second-order contribution to the effective interaction is obtained by means of the relation (68).
Since the expression (182) is valid only foe= 0, it can not be used to evaluate the time derivative.
Instead, we have to use the original definition (170), and using the expressions (172) and (173), we find

_ sHY
Hyg = PV(E)T(E)V(E)P — PV(E)Tp(E) V()P = HF + ~at « Hy (183)
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wherel'p = PT andHe(ff) = PVIQVPis the H — bar operator (80) with no intermediate model-
space states. The last term is by definition the model-space contribution, which appears in this order
only for energy-dependent interactions. In the case of complete degeneracy the difference ratio tends
to the derivative, as before,

« HY) (184)

€

— 5H(1) — — 3H(1)
2 2 1 2
H(ff) = Héff) + —<f He(ff) = He(ff) +

D. Separable three-photon exchange

The treatment of the exchange of three separable covariant photons is quite analogous to the previous
case. From the expansion (88) we have

vep = U®P4+ (UPpPuMp-0®PpP.PUYP) + (UWPTDP - UV P. PUPP)
+ (UWpuWp-_yWp.pup)(PUMpP - .PUMP) (185)

(Note thaty(") = (1)) By generalizing the result of the preceding Appendix we obtain the relation

AP BP — AP - PBP = % «* PBP (186)

where A is an arbitrary operator anB can beU, U or U. Using this relation, the second and third
terms above become

SU®) SU®)

(U@ puWp - g@p. prp) = = PUMP = T * qY (187)
, _ W . W
(UVPIPp —UuWp. PUPP) = % * PUA P = % « H) (188)

In the last term in Eq. (185) we have to apply the rule (186) twice, yielding
uOprWp-uvWp. pyMp)(PUVP - .PUMP)

sUM : s /sUW . _
= = wpuOp(puLp_.prOPp)= (PO P)x pUDP
=+ PUCP (PU U)65(65*U>*U
§ /oUW
= Q(TS *Héflf))*He(flf) (189)

From the previous Appendix (Eqg. 179) we have

U U 5 UM )
e = oe Tael e 1) (190)
and the complete result then becomes
- _ 2 (CORN
UBPp=0®p+ % « HE + 5[5]7 « HG) (191)

This is an exact expression in this order, also for a quasi-degenerate model space. In the case of com-
plete degeneracy this becomes

B ~ oU @ ou)  _
UOP=UPP+ = s Hi + = < Hy (192)
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In terms of the(? operators the results above then become

_ 503 5O _
Q0P =P+ =+ HY + S a% (193)

In order to obtain the third-order effective interaction, we consider the time derivative of the relation
(185) (only the first factor is time dependent). This yields

5 o OHD oy SHY o 5 6HE .
He(ff) = Héff) + 551'{ * Heff) + 5(;{ * Héff) + E( 551'{ * Heff)) * He(ff) (194)
which using the relation (184) can be expressed
) . sHY g%
Hyg) = Hig) + =0« HE) + =l « H Y (195)

E. Expansions

We have seen above that when there are multiple singularities, it is important to take the difference
ratiosbeforethe singularities are removed. We shall illustrate this here by a simple mathematical ex-

ample.
We consider a functiorf(x) of the variabler. We define the first-order difference ratio
ox ox T — T

which can be expanded in a Taylor series

% - 5$§§f = /($0)+%f”(xo)(x—xo)+%fm(ﬂfo)(l“—$0)2+%flv($o)(l‘—1‘o)3+'" (197)
where 4
fa) =L (198)
etc.

Similarly, we define the second-order difference ratio

Sugref  Ongtd

6 Op'a 5:00 z T x 1 » 1
oL o efmel Tl TR L D) g o) ! — 2m0)
1 /
+ Eflv(ozo) [(x’ — 9:0)2 + (2" — xo)(x — 29) + (x — xo)z] 4. (199)

the third-order difference ratio

63f 69:”1 5:v’:v 5a:g,a:f 1 1 5
@ = §I §I 5;E = 5 ///(.T()) + If‘rv(l’o)(l' + l’/ +x’ — 35130) + - (200)
the fourth-order difference ratio 54
1
= L (o) (201)

and so on.
Generalizing these results, we have in the limit, when the differences tend to zero

§'f 1dvf

ox™ n! dzn (202)

This relation is frequently used in the present paper.
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