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Abstract

The methods of quantum-electrodynamical (QED) calculations on bound atomic
systems are reviewed with emphasis on the newly developed covariant-evolution-
operator method. The aim is to compare that method with other available methods
and also to point out possibilities to combine that with standard many-body pertur-
bation theory (MBPT) in order to perform accurate numerical QED calculations,
including quasi-degeneracy, also for light elements, where the electron correlation is
relatively strong.

As a background, the time-independent many-body perturbation theory (MBPT)
is briefly reviewed, particularly the method with extended model space. Time-
dependent perturbation theory is discussed in some detail, introducing the time-
evolution operator and the Gell-Mann—Low relation, generalized to an arbitrary
model space. Three methods of treating the bound-state QED problem are dis-
cussed. The standard S-matrix formulation, which is restricted to a degenerate
model space, is discussed only briefly. Two methods applicable also to the quasi-
degenerate problem are treated in more detail, the two-times Green’s-function and
the covariant-evolution-operator techniques. The treatment is concentrated on the
latter technique, which has been developed more recently and which has not been
discussed in more detail before. A comparison of the two-times Green’s-function and
the covariant-evolution-operator techniques, which have great similarities, is per-
formed. In the Appendix a simple procedure is derived for expressing the evolution-
operator diagrams of arbitrary order.

The possibilities of merging QED in the covariant evolution-operator formula-
tion with MBPT in a systematic way is indicated. With such a technique it might
be feasible to perform accurate QED calculations also on light elements, which is
presently not possible with the techniques available.
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sec:intro

1 Introduction

The theory of quantum electrodynamics (QED), i.e., the theory of interactions
between electrons and electromagnetic radiation, was developed largely in the
1940’s, but it is only during the last two decades or so that it has been possible
to test the theory to a high degree of accuracy. The theory has been extremely
successful for the simplest systems that are free from strong interaction, like
the free electron and the exotic systems positronium and muonium. For the
g-factor of the free electron the QED contribution has been experimentally
verified with the amazing accuracy of a few ppb (parts per billion), and for
positronium and muonium the agreement between theory and experiment is
of the order of ppm (parts per million). The same order of agreement is also
obtained for the fine structure of neutral helium. In these cases the analytical
approach is used in the theoretical evaluation, i.e., a double power expansion
in a and Za, starting from free particles.

The QED theory is less well tested in strong fields, for instance, in the neigh-
borhood of a highly charged nucleus. During the last decade particularly in-
teresting information has been accumulated concerning very highly charged
few-electron systems — up to hydrogenlike uranium — mainly from the SIS/ESR
facility at GSI in Darmstadt and the SuperEBIT ion trap at the Lawrence Liv-
ermore Nat. Lab. This has stimulated further development of the numerical
QFED approach, which starts from electrons generated in the field of the nucleus
(Furry picture), thereby eliminating the Za part of the expansion. This tech-
nique has now reached a high degree of sophistication, and g o% ghssapent
with experimental data have been attained in a number of cases%@the
QED effects increase rapidly with the nuclear charge, the heavy few-electron
systems are of particular interest in testing the theory. One big difficulty in
the theoretical treatment is here the nuclear effect, which in many cases is at
least comparable to the QED effect. This effect can to some extent be elimi-
nated by comparing, for instance, hydrogenlike and lithiumlike systems with
the same nucleus. In the heaviest systems also new ﬁb%al phenomena may
occur, when the field reaches the 'supercritical’ level [[7).

Also the intermediate region, with nuclear charges in the range Z=>5-30, say, is
of great interest. Here, very accurate data is now appearing from laser and X-
ray experiments, but so far there has been only limited comparison with QED
theory. The most accurate test has been performed for the atomic g-factor
of hydrogenlike carbon, where the bound-QED contribution is verified to the
order of one part in 1000. Accurate experimental information is available also
for heliumlike ions, but a major problem here is to treat the electron correlation
properly within the QED formalism. This problem will be of major concern
in the present article.



For atomic and molecular problems in general the many-body perturbation the-
ory (MBPT) has proven to be q%ecessful, particularly in the form known
as the linked-diagram expansion (7). By means of various iterative techniques,
such as the coupled-cluster approach (CCA), the electron correlation can be
treated essentially to all orders of perturbation theory, and this is widely used
in quantum chemistry. This scheme can be used sgoin the relativistic case,
using the so-called no-virtual-pair approximation (7). However, as higher ac-
curacy is required, it is necessary to take also QED effects more properly into
account.

According to present knowledge, iterative procedures used in MBPT cannot be
used in QED calculations, and therefore correlation effects have to be treated
perturbatively order by order. Since the complication of a QED calculation
increases very rapidly with the order of perturbation, a strict QED treatment
of strong electron correlation is presently not feasible. Mainly two techniques
have so far been applied to QED calculations of few-electron systems in the
intermediate Z region. One technique is the application of (relativistic) MBPT
with the QEDP(j%rgrfctions added 11.1 the lovsfest.orfie:f, i.e., lowest order in «
as well as Za Whe other technique, which is limited to two-electron sys-
tems, is the use of correlated, nonrelativistic wavefunctions of Hylleraas type
with ]c:}gxé-order relativity as well as QED corrections from the power expan-
sion 5 7). These techniques work relatively well in the intermediate region, but
the restriction to low-order corrections limits the accuracy.

Particularly in the low-intermediate region, Z=5-10, say, it will be necessary
to develop new numerical techniques in order to match the accuracy of the
experimental data that is presently becoming available. Here, the new ex-
perimental techniques can determine, for instance, fine-structure splittings to
ppm accuracy — an accuracy that seems out of reach for the presently avail-
able numerical as well as analytical techniques. An approach to improve the
situation might be to 'merge’ the MBPT and numerical QED techniques in
some systematic fashion, as will be discussed in the present article.

Another serious problem in bound-state QED is the treatment of the quasi-
degeneracy, appearing, for instance, in evaluating the fine-structure separa-
tions of light elements in the relativistic formalism. In MBPT this problem
can readily be handled by means of an extended model space, which is not
possible with the standard S-matrix procedure. Two techniques for handling
this problem in QED are available and will be discussed in the present work
— the two-times Green’s function and the more recently developed covariant-
evolution-operator method. Particularly the latter has a structure which largely
resembles MBPT, and for that reason it is likely that this new technique may
form the ground for merging the MBPT and QED procedures in a more sys-
tematic way than what has previously been possible. The vision is that it
would then be possible to combine the QED and MBPT effects in such a way
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that — in addition to important MBPT effects to all orders of perturbation
theory — also QED effects would be included and combined with MBPT effects
to all orders. Some ideas in that direction will be presented.

The outline of this paper is as follows. In the first chapter we summarize the
time-independent MBPT — including relativistic MBPT — as an introduction,
emphasizing the method with extended model space. In the next chapter we
treat time-dependent MBPT in some detail, since this forms a natural link be-
tween MBPT and QED. In that chapter we introduce the field-theoretical form
of the interaction between electrons and photons, which makes it possible to
work also with time-dependent (retarded) interactions between the electrons.
We derive the Gell-Mann-Low theorem for the energy shift for an arbitrary
model space, and show that it is valid also for interactions of field-theoretical
type. In the following chapters we treat the current methods for bound-state
QED calculations, starting with the standard S — matrix formulation. Next,
we treat the recently developed covariant-evolution-operator method and the
two-times Green’s-function method, which are capable of treating also quasi-
degenerate states. A comparison of these two methods is also made. A simple
procedure for expressing the covariant-evolution diagrams of arbitrary order
is derived in the Appendix. In the final chapter we sketch an extension of
the covariant-evolution-operator method to include also instantaneous inter-
actions to arbitrary order, thereby making it possible to evaluate QED effects
with correlated wavefunctions. When developed, this may hopefully improve
the accuracy of numerical QED calculations significantly, particularly in the
low-intermediate Z region.

2 Time-independent Many-Body Perturbation Theory

2.1 (General

As an introduction to the general bound-state problem, we shall briefly re-
view the time-independent many-body perturbation t . This is well doc-
umented in the literature, and we refer to the book of [7) for further details. !

The time-dependent Schrodinger wavefunction for an N-electron system sat-
isfies the time-dependent Schriodinger equation >

iaat\lfs(x) = Hg(x), (1)

L The book is now out of print, but a number of copies is available and can be
obtained upon request from the senior author: ingvar.lindgren@fy.chalmers.se
2 Throughout this article we use relativistic units: h=m = c = ¢y = 1, €% = 4na.

TDSE




where © = (t,x,...xy) is the space-time coordinate, x; being the space
coordinate of the individual electron, and H is the Hamiltonian of the system.
This representation is known as the Schrédinger picture (SP).

We assume here that the Hamiltonian is time independent, which means that
there are stationary solutions of the form3

Ug(z) = U(x, ... zy) e F (2)

WFStat

The space part of the wavefunction then satisfies the time-independent Schrodinger
equation

HVU(x ...zy)=EV(x ...zyN). (3) SEtind
The eigenfunctions of the Hamiltonian
H\I/z == Ez\Ijz (4) Eigenf
define a Hilbert space, where the number of particles (electrons and photons)
is a constant of the motion *
In nonrelativistic MBPT for atomic and molecular systems we start from the
N-electron Hamiltonian
N
= Z ( V2 + Vext (T4 ) + Z (5) Hamiltonian
=1 1<J 47T TU
where vey (1) is the external (normally nuclear) potential. As usual, we parti-
tion the Hamiltonian into a zeroth-order Hamiltonian and a perturbation,
H = Hy+ H', (6) Partition

where we assume that the eigenfunctions and eigenvalues of H, are known.
The modifications due to the perturbation are in standard p gﬁkﬁtiigﬁl theory
treated order by order. We assume here that the operators (gi are of the form

N N

Ho=3hsi) =3 (= §V2 + vea(r) + u(r)
i=1 i=1
N N2
H == u(r;) + Z (7) HOH
i=1 i<j Amry;

The additional single-electron potential, u(r), is hermitian but otherwise op-
tional and can be chosen to improve the convergence rate. The perturbation

3 We do not consider the spontaneous decay of excited states here.
4 Later, in the field-theoretical approach we shall work in t Jpere general space,
where these numbers are not necessarily conserved (see e.g.,
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H' may also contain other (time-independent) interactions, such as interaction
with a static magnetic field.

The eigenstates of Hy form our spectrum of basis functions,
Hy®y = EM @), (8)

Since Hj is assumed to be of single-particle type, the basis functions can be
expressed in the form of antisymmetrized products of single-electron functions
— or Slater determinants —

1
=~ det { @1(@1) dul@2) - on(aw) |- (9)

The single-electron functions satisfy the single-electron Schrodinger equation

hs ¢i(x) = €; pi(x). (10)
2.2 Perturbation theory. Extended model space

In MBPT we are interested in one or several eigenstates of the Hamiltonian
H with the eigenfunctions W<,

HU = B0 (a=1,2,---d), (11)

which we refer to as target functions, representing target states. For each tar-
get function, U®, we assume that there exists a zeroth-order approximation
— or model function — U§, which, for instance, can be a wavefunction of the
independent-particle type. If there are no states with the same or nearly the
same energy that can be mixed by the perturbation, then a perturbation ex-
pansion can easily be generated in the standard way. In the more general case,
on the other hand, the situation can be more complicated. Closely lying — or
quasi-degenerate — states can lead to serious convergence problems. This can
be the case, for instance, when studying the atomic fine-structure of light el-
ements in the relativistic formalism. This problem can usually be remedied
by extending the model space and including closely lying states in that sub-
space. Also completely degenerate states that are mixed by the perturbation
are conveniently treated with this formali 6which we shall briefly review.
(For more details, we refer to the book by F';%&

The model functions define a model space, which can contain an arbitrary num-
ber of eigenvalues of the unperturbed Hamiltonian. All unperturbed functions
of the same energy must be either completely inside or completely outside the
model space. In other words, no degeneracy is allowed between states in the
model space and states in the complementary space.

BasisFcns

SlaterDet

SingElEq

SchrEq




In the general case, we cannot find directly an expansion for the wavefunction
as in the nondegenerate case, since the zeroth-order or model function is not

generally known from the Sta&{&%“i%@? it is convenient to introduce a wave

operator or Muyller operator [(77), which transforms all model functions into
the corresponding target functions

U =QUg (a=1,2,---d). (12)
The model functions are solutions of a secular equation
HogU8 = EU2, (13)

where Hg is an effective Hamiltonian, operating wit ‘c ’cr‘tte model space. The
eigenvalues of this operator are the exact energies ( of the target states.
Also this operator is in general unknown at the start of the calculation.

WaveOp

EffHam

B158a73158b,Li74,KV77,LM86

The wave operator satisfies the generalized Bloch equation (77777)
|, Ho| P = H'QP — QH /P, (14) | Bloch
H!g is here the effective interaction, defined by
Hey = PHoP + Hlg, (15) Heff
and P is the projection operator for the model space. A condition for the
theory to work is that the model states are linearly independent and, thus,
span the entire model space.
We assume now that the model functions are the projections of the target
functions onto model space,
Uy = PV, (16) PsiO
which we refer to as the intermediate normalization (IN). The wave operator
then satisfies the condition
PQP =P, (17) IN
and the effective Hamiltonian and the effective interaction have the forms
Heg = PHQP; Hl;=PH'QP. (18) EffInt
Then the Bloch equation assumes the frequently used form
|, Ho| P = Q(H'Q— QPH'Q)P. (19) | Bloch2
Here,
Q=1—-P (20) Qoper
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is the projection operator for the complementary space and I is the identity
operator for the Hilbert space we operate in.

By expanding the wave operator perturbatively
Q=1+00 40 4 ... (21)

the Bloch equation can be solved order by order. This leads to the generalized
Rayleigh-Schrodinger expansion, valid also in the quasi-degenerate case,

[Q(l), HO} P=QH'P
[Q<2>, HO] P=Q (H’Q<1> - Q<1>PH’)P
Q¥ Hy| P=Q (H'Q® — QW PH'QY — Q) PH')P. (22)

We note that with the intermediate normalization all components of the wave

operator - beyond the trivial zeroth order - have their final state%gl the com-
plementary space, which is also a consequence of the condition (II7).

The general procedure of MBPT with an extended model space can be sum-
marized in the following rules:

FEvaluate the wave operator to the desired accuracy, using the Bloch equation;
Evaluate the matrix elements of the effective Hamiltonian;

Diagonalize the matriz of the effective Hamiltonian to obtain the exact en-
ergies of the target states and the model functions;

FEvaluate the wavefunction of the target states if needed.

2.8 Second quantization. The electron-field operators

In many- c(ilr‘é 1theory i &%gonvenient to work in second quantization (see, for
instance, (7, Ch.5) or [7, Ch.11). A quantum-mechanical operator, O, can
then be expanded as®

A 1 1 . . . N
O = O+dei7j0j+§CIC;[dij7lele+§"' = Oo+01+02+03+"' N (23)
where the terms on the right-hand side represent the zero-, one-, two-,... body
parts of the operator. ¢; and c} are electron annihilation/creation operators,
which satisfy the usual anti-commutation relations

 We shall use a ’hat’ to indicate operators in second quantization, apart from the
creation/annihilation operators. We employ the summation convention with implicit
summations over repeated indices that appear only on the r.h.s.

10

OmegaExp

OmegaExp2

SecQuant




{cl e ]} —cTcT + cTcT =0
{ci,cj}=cic; + chZ =0
{c],e;} =cle; + e5cl = 645, (24)

AntiComm

SecQuant
where ¢;; is the Kronecker delta factor. The coefficients in the expansion (23)

can be expressed as

d; ;= (i|O:]5) = /dgwl o1 (x1) Oy (1)

d;;, kl—<Z]’02’kl // P’z d’xy ¢T($1)¢ (952)02 Gr(w1)Pr(2)
etc. (25)

{¢;(x)} is gsetafsingle-electron functions, which are solutions to the Schrodinger

equation (H)i i thie field of the nuclelké %qd possibly other electrons. This is

usually referred to as the Furry picture [7), although in his original work Furry
only considered the potential from the (point) nucleus.

It should be noted that we here let the bras and kets represent straight prod-
ucts of single-particle functions. 68 Aagearlatéi,gymmetric product of single-particle

functions (Slater determinant) (b: can be expressed
o = clch - iyl0), (26)
where |0) represents the vacuum state.

L . . Hamiltonian
The nonrelativistic Hamiltonian (%) has one- and two-body parts and can be

expressed in second quantization as

H=cl |Hilj) ¢; + 3 ! ;<2J’H2V<l> CiCr, (27)
where e?
H, = —%VQ + Vext(r) and Hy = )
471'7”12

We define the electron field operators in the Schrodinger representation by

Us(@) = ¢; ¢;(@); (@) = o ol(=), (28)

. o ) . . N b%uu SecQuant
which are time independent in this representation. The Hamiltonian (27) can

6 The true two-body matrix elements, using antisymmetric wavefunctions, then
becomes R
({ij}O2|{kl}) = <0\c¢g cy c dl]/kq/CVCk/ckclKD
= 5 (dijm + djian — djipr — dij,lk:) = dij k1 — dij i,
assuming the operator to be symmetric with respect to interchange of the coordi-
nates 1 < 2, etc.

11
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then be expressed

i = [ @y i) Hids@)+} [[ @ dms dli@) di@s) H ds(s) ds(@).

(29)
In an alternative to the Schrodinger picture, the Heisenberg picture (HP), the
wavefunctions are time independent and the time-dependence is transferred
to the operators,

Uy = Ug(t = 0) = 7Wg(x); Oy = O0g e, (30)

In perturbation theory it is often convenient to work in an intermediate pic-
ture, known as the interaction picture (IP). Here, the operators and wavefunc-
tions are related to those in the Schrodinger picture by

\I[I(t) — eiI:IOt \Ifs<t), OI(t) — eif{ot OS e—if{ot7 (31>

Partition
partitioning the Hamiltonian in the same way as before (%) ['he relation
between the Heisenberg and the interaction pictures is

Uy = e 1(t); Og(t) = e Ope ", (32)

The wavefunction of time-independent MBPT corresponds in all pictures con-
sidered here to the time-dependent wavefunction with ¢ = 0,

U = Uy = Ug(0) = Ty (0). (33)
HP ElFieldO
In the Heisenberg picture (%U) the electron-field operators (bS;lﬁeecome
dule) = M ds(@) e dlia) = M Pl@) e (34)

P
and in the interaction picture (IP) (%I)

di(x) = efotyjg (@) et = ¢Hlote, g (2) e 0l = ¢; ¢ (2) e = ¢; ¢, (x)

U (2) = cf gl(x) € = cf o). (35)

We now introduce the time-dependent creation/annihilations operators in the

IP by
ci(t) =¢e™ gt = e, (36)
which gives

dix) = () ds(@); Pi(w) = (1) ¢} (). (37)

The creation/annihilation operators are said to be in normal order, if all cre-
ation operators appear to the left of the annihilation operators. A contraction of

12

HamFieldOp

HP

IP

HPIP

TimeIndWF

ElFieldHP

ElFieldIP

TimeDepSQ

E1FieldTD




sec:LDE

the operators is defined as the difference between the ordinary (time-ordered)
product and the normal-ordered product,

vy =y — {oy}, (38)

where we use the curly brackets to denote the normal product. From this defi-
nition it follows that
[ [ (. [

Tel=cicj=cle; =0 and ¢ c} = 0jj. (39)

(]

Normal order and Wick’s theorem

The handling of Qhegators in second quantization is greatly simplified by
Wick’s theorem [7), which states that a product of creation and annihila-
tion operators A can be written as the normal product plus all single, double
.. contractions with the uncontracted operators in normal form, or symboli-
cally
-
A= {A} + {4} (40)
A particularly useful form of Wick’s theorem is the following. If A and B are
operators in normal form, then the product is equal to the normal product plus
all normal-ordered contractions between A and B or formally
m

AB={AB}+{AB}. (41)

This forms the basic rule for constructing the MBPT diagrams.

2.4 The linked-diagram expansion

By using second quantization and Wick’s theorem, the perturbation exp

sion can conveniently be expressed in terms of éa rms — see, for instance

Ch.12). By means of the theorem in the form (AT), the Rayleigh-Schrodinger
expansion can easily be transformed into normal-ordered products. Each such
product is represented by a (Goldstone) diagram, and this leads to the di-
agrammatic expansion of the many-body wavefunction. The corresponding
energy diagrams are obtained by ’closing’ the wavefunction diagram by a final
perturbation, so that the final state lies in the model space. It is then found
that such an expansion can contain diagrams that are referred to as unlinked,
i.e., contain one or several disconnected, closed parts (with the initial and the
final state in the model space). The remaining diagrams are known as linked.
It can be shown that all unlinked terms cancel in the Rayleigh-Schrodinger
perturbation expansion, provided the model space is complete, i.e., contains
all configurations that can be formed from the valence electrons. This is the

13
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Fig. 1. Diagrammatic representation of the two lowest orders of the wave operator
for a two-electron §gsﬁceﬂEThe heavy vertical lines represent electron states in the
nuclear potential (%T%ﬂ%e dotted horizontal lines the Coulomb int fgtcil(l)ﬁli&he
last diagram, originating from the second term in the Bloch equation (%Wpe
of model-space contribution (MSC) with the intermediate state in the model space.
This is also referred to as folded and often drawn in a folded way.

as well as to quasi-degenerate model

later %@degs‘%o open-shell syst s I
space % 77). The Bloch equation (:%) can then be written

[, 5| P = (H’Q _ QHgH> P, (42)

linked

, , 55 (G057
linked-diagram theorem, first shown f%rglpsed—shell systems by ;) and [7) and

where Hlz = PH'QQP in the intermediate normalization (%) The second
term on the r.h.s. is referred to as folded and is usually interpreted in a special
way. The denominators of the two parts, 2 and H.g, are independent. For that
reason the corresponding time-ordered (Goldstone) diagrams are often drawn
as 'folded’ with all possible time orderings between the interactions of the two

parts. By using the standard Goldstone evaluation rules and the ’facto%%g_l;'@?ﬁ

theorem’, the denominators of the two parts can then be factorized [(7),
Ch.13).

In the formalism we shall develop, the 'folded” diagrams need not be drawn
in a folded way. The factorization of the denominators follows directly from
the Bloch equation. If drawn in a ’stretched’ way, the folded diagrams have an
intermediate state in the model space, and we shall refer to such contributions
as Model-Space Contributions (MSC). Later, in dealing with time-dependent
interactions, we shall find that there is an additional type of MSC.

BlochlLink
In second order, the linked-diagram form of the Bloch equation (h2o) Clealaré

14
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OmegaExp2
instead of the Rayleigh-Schrodinger expression (b?) to

FW%EJP:Q(HQm—QmPH? P (43)

linked

As an illustration we consider a two-electron system, where the electron or-

dtals are solutions of the Schrodinger equation in an external (nuclear) field
(T0). The solution to the equations for Q) and Q) can then be expressed
(rs|H'|ab)
Ea T+ Ep— & — &
(rs|H'|[tu)(tu|H'|ab)
(catep—er—es)(€atep—er—ey)

<rs‘Q(1)‘ab> =

<7’S‘Q(2)‘ab> = ( Z

[tuyeQ

3 (rs|H'|tu)(tu|H'|ab) (44)
ep (o t+ep—er—es)(er+ey —er — ) hnked'

Fig:0Omegal?2
This is illustrated in Fig.%ﬁ%ﬁ%ﬂsﬂ%mm of Q@ P represents QH'QW P,
It follows from Wick’s theorem ( at only the fully contracted term can
contribute in this case. Here, the intermediate state (tu) lies in the comple-
mentary space, ). The second diagram represents the term QW PH'P, and
this is a model-space contribution with the intermediate state in the model

space, P. This diagram is here drawn in the conventional way as folded, so
that the Goldstone evaluation rules can be used.

2.5 All-order procedures. The coupled-cluster approach

A great advantage of the many-body procedure of the type presented here is
that important perturbative effects — i.e., most of the electron correlation —
can be treated iteratively to essentially all orders of perturbation theory. This

can be achieved by separat'ggc he wave operator in second quantization into
one-, two-, ... body effects (23,

Q=1+ + D+ (45)

OmegaEx
— which should not be confused with the perturbative e ion (bl ). Here,

the n-body effects can be expanded as (see, for instance, (7, Ch.15))
= c;r x; c;
Qy = % c}c} Ty C1Ck
etc. (46)

% ’L] 3 : ) N ) .
where T, Tjy - .- are the expansion c9eﬂ3101egts or amplltudes forBtﬂ)ecgﬁ{Bllgu—
lar ’excitation’. The Bloch equation in the linked-diagram form (h?i can then
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be separated into a set of equations forn =1,2,---

(Q, Ho| P = Q(H'Q — QHj) (47)

n, linked

The equations for different orders n are coupled and have to be solved itera-
tively. The most in ROLtant gomponent is normally n = 2, which corresponds
to pair correlation %’f’ﬁmpen—shell systems also n = 1 can be quite impor-
tant, but less so for closed-shell systems. The latter contributions represent
one-body effects that can be included in the single-electron orbitals. With
such orbitals there are no single excitations in a configuration-interaction (CI)
expansion, and the zeroth-order wavefunction has maximum overlap with the
' ﬁ]%aiel ggown as Brueckner orbitals or mazimum overlap

orbitals

2.5.1 Coupled-cluster approach

An improved iterative technique can be obtained by expressing the wave op-
erator in exponential form,

Q=expS=14+5+15%+---, (48)

ClusterEq

ExpOmega

hnique first developed i 1 hvsics in the late 1950’ ub7,Co58,CK60,KL.Z78
a technique first developed 1n nuclear physics in the late s (77 10'16& 75 .BP78. PKSBTS

later further developed and extensivgl% [%)eplged in quantum chemistry (7777

For open-shell systems the form ( eads to ’'spurious’ terms, 17%1 e

eliminated by choosing the normal-ordered form of the exponential [777
Q={expS}=1+5+1{S* +---. (49)

The normal-ordering, denoted by curly brackets, implies that there are no
‘contractions’ between the clusterEC})( grators, which eliminates the spurious
terms of the straight exponential (hS} [t can be shown that with a complete

model space the cluster terms are connected, which is a stronger condition
than linked 7.

. . Cluster
In analogy with the wave-operator expansion (&IS), we expand the cluster op-
erator .S in terms of one-, two, ... body clusters

S=54+5+--- (50)
with

7 A disconnected diagram is still termed ’linked’, if all the separate pieces are open.
If the model space is incomplete, then disconnected cluster diagrams may appear
with the formalism described here. By modifying the procedure, it is possible to
ma@%ﬁ%e connectivity also for incomplete model space, as discussed particularly
by I7),17).
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Si=cl s ¢j

S W O K ¥

etc.

. . Bloch . )
Inserted in the Bloch equation (T4), this leads to the coupled-cluster equations

S, Ho| P=Q(H'Q—QHlg) P, (51)
where “conn’ stands for terms/diagrams that are connected. As before, this
leads to a set of coupled equations for n = 1,2,---, which are solved itera-
tively. One essential vantage of this approach over the simpler approach of
the previous section (E&i 1S fﬁa% important four-body effects are automatically
included in the pair-correlation approach via the {S?} term. For quantum-
chemistry applications the ap é)g,?g furthermore has the advantage of satisfy-
ing the separability conditian%hich implies that the wavefunction of the
system separates correctly upon fragmentation.

2.5.2 Pair correlation

As before, the pair term, So, in the cluster expansion (Egsgzls the most im-
portant, followed by the S; term. A frequently used approximation is the
‘coupled-cluster-singles-and-doubles approximation’ (CCS 2Where the cou-
pled equations for S; and S, %%olved to self-consistency (7). Here, the wave
operator is approximated by (7, Ch.15)

1 1
Q0= 1+51+52+§{51}2+{5152}+§{52}2+%{5352}+§{51}%I{Sl}ﬂa (52)

(The effect of the last three terms with three or more disconnected clusters

ig,usually quite small and often omitted.) Inserted into the cluster equation
(T), the pair approximation yields the equations

Sy, Ho| P=(H'Q— QH/g) P

1, conn

[So, Ho| P=(H'Q— QHlg) P (53)

2, conn

with Hlgz = PH'QP in the intermediate normalization. The CCSD approxi-
mation normally represents 95-98% of the electron correlation. In more elabo-

rate calculations also conne}gﬁgz‘c&ple and quadruple excitations are (partially)

included (see, for instance, [[7) for a review).

As a simple illustration of the pair equation we shall consider a two-electron
system (He-like system) with the zeroth-order Hamiltonian and the perturba-
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Fig. 2. The pair function for a two-electron system (with no core electrons) is equiv-
alent to an infinite sequence of ladder diagrams (including the folded diagrams).

HOH
tion (
2 A 2 2
HO=Z<—§V?+ e); H = (54)
s1 i—1 41 T 47 T12
The pair equation (%35 %hen becomes
[Sa, Ho| P = Q(H'(1+ Sy) — S2Heﬁ)2 P (55)

Since there are djo core electrons in this case, there are no Sy clusters. With
the expansion ( his becomes

(ca+ e — & — &) sty = (rs|H'|ab) + (rs|H'[tu) sty — 575 (ab| Hig|ab) , (56)

where the last folded term should also include an exchange contribution. The
pair (r,s) is here 1ghffeﬁemt from the pair (a,b). This equation is graphically
illustrated in Fig. y infroducing the pair function

|Pab) = s55|7°5) (57)

we obtain the following pair equation

(€0 + 0 = o(1) = ho(2) ) lpas) =

|7} (rs|H'|ab) + [rs)(rs|H'|pas) — |pab) (ab] Heglab). (58)

Solving this equation self-consistently, is equivalent to generating an infinite
sequence of ladder diagrams — in addition to the folded diagrams — as indicated
in the second row of the figure. This corresponds to solving the two-particle
equation exactly.
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Fig. 3. Closing the pair function by a final interaction yields the contribution to the
energy — or generally the effective interaction. The final state (c, d) lies here in the
model space.

The corres Q iﬁ g contribution to the energy — or generally the effective in-

teraction ( — is then obtained by ’closing’ the pair function by a final
interaction
(cd|Heglab) = (cd|H{g|rs) sy, = (cd|Heglpav) (59)
. . . ig:ClosPf .
depicted in Fig. B. Here, the final state (cd) lies in the model space.

2.5.8 Numerical evaluation

For atomic problems we primarily consider here, it is convenient to separate
the MBPT diagrams into spin-angular and ial parts. This is based upon
the standard expansion of the perturbation (b4) in spherical waves, using the
relation

0

7“< I !
— = cC'(1)-C'(2), 60
SR ) (60)

where C' is a spherical tensor, closely related to the spherical harmonics %‘}’%ﬁ
The spin-angular part can be evaluated using angular-momentum diagrams,
and only the radial part has to be evaluated numerically. For the numerical
evaluation essentially two schemes have been developed. One scheme is b 5188
upon the use of B splines and used particularly by the Notre Dame group [(7).
The other scheme is based upon 8 Qjcgﬁgggtz’on of the radial space and matrix
inversion. This is devel Qy 7 ;; and used mainly by the Géteborg group.
(See also the review by [7].
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2.6 Relativistic MBPT

2.6.1 The Dirac equation

According to Dirac’s relativistic electron theory, the equation for a single elec-
tron in an external (nuclear) potential vy is

.0
io 6() = (a-p+ B+ vewt) B(a). (61)
Here, ¢(x) represents a four-component wavefunction, p = —iV is the mo-

mentum operator and «, ( are the 4 x 4 Dirac matrices. The stationary states
are of the form ¢;(z) = ¢;(x) e, where the space part satisfies the corre-
sponding time-independent equation

hp i(x) = ;. i(x);  hp = P+ + Ve (62)

2.6.2 No-Virtual-Pair Approzimation

Formally, relativistic many-body problems have to be treated in the frame-

work of QED. Ther%I exiitbs no relativistic Hamiltonian corresponding to the
v amiltonian ] . )

nonrelativistic one (b). However, various approximations can be constructed,

which have been found to work quite well.

The first natural choice for a relativistic many-body Hamiltonian might be to

replace the ISl(:%lgg{iailgger single-ele Lon operator of the nonrelativistic Hamil-
tonian (b) by the Dirac operator (62), which leads to the Hamiltonian
N N 2
Hoc = ho(i)+ > —, (63)
i—1 i<j XM Tij

known as the Dirac-Coulomb Hamiltonian. Due to the negative-energy contin-
uum of the Dirac equation, the eigenvalues of this Hamiltonian are not bound
from below, and it is therefore, as it stands, not suitable f R]g]fmy—body cal-
culations. This is known as the Brown-Ravenhall disease [7). Nevertheless,
the Hamiltonian has been used for a long time in practical works, particu-
larly in %1;Bconsistent Dirac-Fock and multi-configurational Dirac-Fock calcu-
lations %ﬁlt turns out that by choosing appropriate boundary conditions,
the appearance of negative energy states can be strongly suppresse%@rmaﬂy,
this can be expressed as a projected Dirac-Coulomb Hamiltonian (7

Hpyojpc = Ay < i hp (i) + i\’: 62) Ay, (64)

i=1 i<y AT
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where A, is the projection operator for the positive energy spectrum of the
Dirac equation.

When relativity is considered, there is, in addition to the electrostatic interac-
tion between the electrons, a magnetic interaction of order o, where « is the
fine-structure constant (o &~ 1/137,060Q), This leads to an addltlonal term
in the Hamiltonian, first formulated by [7), and the so-called Coulomb-Gaunt
interaction,

N2

HCG = Z (1 — Qe aj>. (65)
i<j 47 Tij

The Coulo&qb % tQ taéalt interactions above are instantaneous. It was first

shown by 77) that also the retardation of the Coulomb interaction gives rise

to effects of the same order. This leads together with the magnetic interaction

to the so-called Breit interaction and the Coulomb-Breit interaction

N 2
€ (s - 735) (- 735)
HCB: (1—104--04»— . 66

; 4T 1 27 2r; (66)
Replacing the instantaneous Coulomb interaction in the projected Hamil-
tonian by this operator, leads to

Hyvpa = A—',—(ZhD + HCB) Ay, (67)

=1

80
known as the No-Virtual-Pair Approzimation (NVPA) 2 7.

The Breit interaction is instantaneous, although it compensates for the lead-
ing effect of the retardation of the Coulomb interaction. In a proper QED
treatment, there is an additional retardation effect of the Breit interaction
of order a®. The Coulomb interaction, on the other hand, is strictly instan-
taneous in this model, which is the Coulomb gauge. In an alternative gauge,
frequently used in QED, the Feynman gauge, the instantaneous interaction is
identical to the Coulomb-Gaunt interaction. This interaction does not contain
any retardation, and therefore the retardation correction to this interaction
is of the order o?, i.e., an order of 1/« larger than in the Coulomb gauge.
This implies that when the Feynman-gauge is w@% %M%lge sNé/gPé 581" heavy
elements, considerable errors may be introduced [[7777 calculations,
on the other hand, when the retardation is properly taken care of, this error
is eliminated, and the Feynman gauge is often used due to its simplicity.

The NVPA in the Coulomb gauge is normally a very good st 3%1%% &%iglt for
relativistic MBPT. The Hamiltonian is partitioned as before (%) with

Hy = é (hD( ) + u(n)> H = —iu(m) + Hes.
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Then the linked-diagram expansion an 6@@ coupled-cluster approach can be
generated in a straightforward manner [7). This yields very good results also
for quite heavy elements.

3 Time-dependent MBPT
3.1 General

In this section we shall consider the time-dependent form of MBPT, which will
form a link between time-independent MBPT and quantum electrodynamics
(QED) for bound states to be discussed in the following chapters. In QED the
interaction of electrons /positrons with the photon field is in the interaction
picture (IP) (%I) represented by

A1) = [ @z (), (68)

where

Hy(z) = —ebt (z) ot A, (2)9)(x)

61 A A
is the interaction Hamiltonﬁ%fleqzdsliﬁy ; 7 % Here, 1(x), 1 (z) are the electron-

field operators in the IP (B7), and a* represents t ifglé]ﬁfomponent Dirac
matrices, related to the standard Dirac v matrices ( y

ot = (1, ).
(These are related to the Dirac vy matrices by a* = v%y.) A# are the electro-
magnetic field operators

A, o g,;(k) (aT»(k:) " + a;(k) ei’“), (69)

J

where ¢,;(k) are the four-component polarization vectors, a}(k) and a;(k)
the photon creation and annihilation operators, respectively, and = = (¢, x)
and k = (w, k) the four-component k vector. With the metric we use, the
four-component scalar product is kx = wt — k - &, he only nonvanishing
commutation relation for the photon operators is (7, Eq. 5.28)

T] = Q; CL;- — CL} a; = j:éi,j, (70)

[as, a;
where the upper (lower) sign is for the space (time) part of the operators.

. IntHam .
The perturbation (%Si commutes with the number operator for the electrons,

N = ZCICi, (71)
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which means that the electronic charge (number of electrons minus positrons)
is conserved. The electromagnetic-field operator, on the other hand, contains
unpaired creation and annihilation photon operators, which implies that the
number of photons in not conserved by the perturbati, ghsr{herefore, this per-
turbation operates in a more general space (see, e.g., [7, Ch.6), which we can
write as

H = Ho ® H+1 ® Hfl. (72)
‘H . represents here a 'restricted’ Hilbert space, where the number of photons
is conserved. H is the ’central’ space, where the model functions are located,

while H,, and H_; represent the corresponding spaces with oni %Bp?}ﬁgﬂnore

and less, respectively. This will be further discussed in chapter .

) . IntHam . .
With a perturbation of the type (%8 ), the interaction between the electrons is
formegl b§é ta%%]?eetrturbations with contracted photon operators. This contrac-

tion (£380i areﬁnes a photon propagator, Dy,,, by
1
1Dy (w2 — 1) = Ay(w2) Ay (1) = (O|Tp[Ay (22) Au(21)]0) . (73)

Tp is here the Dyson time-ordering operator,

A(JIl)B(SCQ) (tl > t2>
D A T To)| =
Tp[A(x1)B(x2)] Bl Ale) (6 <), (74)

and |0) represents the vacuum state. Since the vacuum-expectation value of the
normal-ordered product vanishes, the contraction is given by the time-ordered
product.

The Fourier transform of the photon propagator is defined by

DFuu(wQ — Il'l) = % DFVM(:B2 — &y, Z) e_iz(tQ_tl), (75)

which in the Feynman gauge becomes

Do ) / Bk ok (@—=z1) Gon / < kdk sin(krys)
v\ L2—L1,2) = —Gy = — T 75 .
2 vm (2m)3 22 — k2 +in 212r9 Jo 22— K2 +1in
(76)
where k = |k|. The interaction between the electrons then becomes
. < 2kdk f(k
(w9, @, 2) = *afal Drpyu(2 — @1, 2) = /0 22—162—(1-377’ (77)
h ¢’
where f(k) = —m (1 — a2) Sin(kT12>.
Performing the k integration yields
e? ;
I(z2, 21, 2) = pr— (1 —ay - ay)elFmz, (78)
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This is the retarded Gaunt interactio Ccyl\l/'llbea{lll &= = 0, this becomes the cor-
responding instantaneous interaction (65). e Coulomb gauge the corre-

sponding interaction becomes

62 1 ei‘z|r12 ei|z‘7’12 -1
IC(w%wa):{_al'aZ + al'V17|:a2'V27 :| )

4 T12 12 227’12
(79)

Breit
which is the retarded form of the Coulomb-Breit interaction (

. L. . . . Interact
For numerical work it is often convenient to exgﬁ the interaction ([77) in

spherical waves, in analogy with the expansion (60),

sin k’?"lg

Fre S (21 Diilhra)ilhrs) €'(1) - C'(2), (30)

where j;(kr) are spherical Bessel functions, and to perform the radial integra-
tions before the k integrations.

3.2 The time-evolution operator

We consider n W3 a%eneral time-dependent perturbation, of which the QED
perturbation (%S)Tone example. We assume further that the operators in-
volved are expressed in second quantization and th e states are repre-
sented by state vectors in the generalized Fock space ([72). A state represented
by the function W(xz) will then be represented by the vector |¥(t)). The time-
dependent Schrédinger equation ( h%en takes the form

19, N
1@"1’(’5» = H(t) [W(t)) (81)
and in the interaction picture (%%

1;\@1@» = Hi(t) |Wi(t)). (82)

Schrint
The Schrodinger equation (%2) has the solution

(1)) = |wilto)) - 1/: at’ Hy(¥)

(), (83)
and we introduce the time-evolution operator in the IP, defined by ®

(1)) = Ut to) Wi (to) ), (84)

IN
8 This operator does not preserve the intermediate normalization (E?)
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which satisfies the equation

LD o
iUt 1) = Hi() Ut to). (85)

W71 780
This leads to the expansion % 7, Eq. 6.23), 1 7, Eq. 4-56)

. o t tn to ~ A
Ult, tg) =1+ Z(—i)”/ dt, [ dtu_y... [ dt H{(t,)...H{(t;) =1+
n=1 to

to to

n!

. . . TimeQOrdering2 . . .
“i}%l%]i?amTD is the time-ordering operator (?ZL;. Using fEe interaction density
(%8), the evolution operator can then be expressed

S CV M [ anmo ) ) = Toexp| i [ de i), (s0)

R 00 (__\n t . .
Ult,t)) =14 (=) d*z,, ... t d*z; Tp [H{(xn) . Hi(xl)}

n' to

: (87)

where the space integration is performed over all space and the time integra-
tion as indicated.

3.3 Adiabatic damping. The Gell-Mann—Low relation

3.3.1 Nondegenerate case

In time-dependent perturbation theory for bound-state problems an ’adiabatic
damping factor’ is normally added to the perturbation,

Hi(t) — Hi(t,y) = H{(t) e, (88)

where v is a small, positive number. We assume that the damping is the
only time dependence of the perturbation in the Schréc@?cﬁe{,])picture. With
the damping, the time-dependent Schrodinger equation (8T) is still valid, but
there are no stationary solutions for finite . In order to return to the original
problem, the damping factor is adiabatically ’switched off’ at the end of the
calculation, and we shall now study this limiting process.

We consider fi et%qe case with a single target function, which in the IP evolves
according to (

W1, (1)) = Uy (t, 1) [ Wy (o) )- (89)
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UE
The evolution operator satisfies now the equation (%531 with the damped per-
turbation,

0 ~ A : A

i:Us(t,to) = Hi(t) e T, (8, ), (90)
E

which leads to the expansion (%6)

A

U,(t, to) =1+

(e%¢] _\n t t R

Z ( 1') dtn.../ at, Tp {HI( a) .. H’(tl)} —y([ta|+t2]-.+ltn]) (91)
n—1 n: to to

. D in
The damped perturbation (%%; vanmishes, when vt — o0, and the perturbed

(target) wavefunction approaches in these limits an eigenfunction of I:Ig,

(1)) = [Wo). (92)

We can expect this function to be identical to the unperturbed model function
of time-independent MBPT,

Hy|Wo) = Ep W), (93)

Th( targel aIfnunction in the IP at arbitrary time for finite v is then according
to EQ)

1)) = Uv(At, —00) [Wp)

" I (1, —o0) W)
using intermediate normalization (&7) This function will depend on the pa-
rameter vy, but we shall show that |V, (0)) satisfies the time-independent
Schrodinger equation in the limit Aol B Note that it is not possible to let
v — 0 in the unnormalized form (%Q)chpthe evolution operator will then

be singular. er to s X the li 1%6fy1—> 0, we shall follow essentially the
treatment of [7) (see also (7, p. 61), (7, p. 336))

(94)

Dam
We consider one term in the expansion (El )

N —1)" rt 3 A A
U’sn) (t7 —OO) — ( 1) /_ dtn /_ dtnfl - Tp {H{(th)HI'(tnil) .. } e’Y(t1+t2...+tn)_

n!
(95)
(As long as t does not approach +oo, we can leave out the absolute signs in
the damping factor.) Using the identity

[Hy, ABC'---] = [Hy, A|BC ---+ A[Hy, B|]C'-- -+ - --
we obtain
(Ao, Hitn) Hi(tn) - | = ,<a * a0 +"')ﬁ'<f Vi (tar) . (96)
y I\ I\*n— ot at,hl 1Un 1WUn—
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(We note that H’ is assumed to be time independent in the SP.) This gives

R . n+1
[HO,U§”)(t,—oo)] _ (=0 / dt,, / dt, ;-

0 o , , N
- TDK@t + Ot T ')Hl(tn)HI(tn_l) . } oYttt Atn)

When integrating by parts, each term yields the same contribution, and the
result can be expressed

[Ho, UM (t, —00)| = —Hi(t) U V(t, —00) + iny U(t, —00).  (97)
Introducing an order parameter, A,
H = Hy+ ) Hj(t), (98)

the result can be expressed

[, 0, ~00)] = ~H{(6) U5 (1, ~00) + 19 £ 06, —00). | (99)

npertWF
By operating with this commutator on the unperturbed function (BZ;, we
obtain for t =0

(1510 - E0+ﬁ’> 0,(0,—00) [ ) = iy 8‘1 L(0.—00)[W0),  (100)

. A fIN
where H' = H{(0), and using (leavj his yields

A~

A 20,0, —00) | W
(Ho+ H' - Ey) |0,) = iy) -2 (0, ~00) %) : (101)
(Wo|Uy(0, —00)[Wo)
where ’\117> = ’\I/IV(O)>. The r.h.s. is here
)
20,0, —00)| W) N
1)\‘”7(’ =AE,|U.) +iy\ = |V
! (Wo|U, (0, —00)|Wq) ”‘ ”> 7 8)\‘ ’Y>
ith v 0 v
b AE, =i\ ol301(0, o) o) (102)
<‘IJO’U’Y( , —00 )’\I]0>
which yields
. .0
(Ho+ H' — By — AE,) |¥,) = ma\m. (103)

Provided that the perturbation expansion of |¥.,) converges, the r.h.s. will
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vanish as v — 0. Then

A

U,(0, —00)|Wy)

lim (104)
=0 (Wo|U,(0, —00) [Wo)

o) =ty -

will be an eigenfunction of the original, undamped Hamz'é nian of the system
and satisfy the time-independent Schrédinger equation (

(Ho+ H')|V) = E|W) (105)

with the energy eigenvalue E = Ey + AFE. The energy shift due to the per-
turbation is given by

N\ 0, N4
AE—hmry)\< 0|‘9)‘ 10, —o0)| 0)

. 106
A g 07,0, —o0) o) (106)

GML GMLShift
The relations (HM) and (I()G; rlepresent the Gell-Mann-Low theorem, which

is the basis for time-dependent perturbation theory.

Generally, the evolution operator contains singularities, due to unlinked terms

— in the graphical representation ¢ Espondl u%zémked diagrams. These
terms do not appear in the mtzos ) and %%G%H%are reqular. Thi 185
the linked-diagram theorem, mentloned in sectlon first shown by 7
using t% depen ﬁ){efgurbatlon theory. Goldstone thereby showed that the
limits (T04) and ( : 06% do exist and are represented by linked diagrams only. In
its original formulation the relation is valid only for a single reference function,
Uy, i.e., for a one-dimensional model space, but it can be extended to more
general cases, as we shall demonstrate below.

We have assumed here that ‘i_}le perturbation is of general time-dependent
form. If it is of the form (68), then the photon number is not a constant of
the motion. This implies that the eigenfunctions are superpositions of func-
tions with different photon numbers. This is necessary in order to be able to
handle time-dependent interactions between the electrons, which are formed
by contracting the field-theoretical perturbation at different times. We shall
discuss that further in the following chapters.

In the nondegenerate case, singularities of the evolution operator appear when
the initial or reference state appears as an intermediate state. HE 'gg]tﬂarities
are eliminated in the Gell-Mann-Low expressions, such as (51)6; When the
perturbation is time or energy dependent, the elimination of such a contribu-
tion is incomplete, and there is a residual contribution, usually known as the
reference-state contribution. In the more general situation we shall consider
below, we shall refer to this contribution as the Model-Space Contribution
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GenGellMann

(MSC). To determine this contribution, the limiting process v — 0 has to be
carried out.

3.3.2  Extended model space. The generalized Gell-Mann—Low relation

The time—depend%&}g[ﬁ&%ﬁfﬁ&i’rﬁ, écéa& }@98’%6)}{%]}&%9’? further developed

by several groups [(7777777), mainly in connection with nuclear calculations.
We shall summarize and extend this treatment here. In particular, we shall
prove a generalization of the Gell-Mann—Low theorem for an arbitrary model
space.

. 069 .
Fﬁ)\y&wfﬂlﬁl 5; ), we choose the parent states to be the limits of the target states

(%9) for finite v as t — —o0,
\xya>h = [e%)  (a=1,2---d) (107)
The parent functions are then eigenfunctions of Hy,
Hy |0™) = B |0%), (108)

but we cannot say which eigenvalue a specific target state will converge to in
the general case.

avefIN
In analogy with (gzﬂ we construct the states

 N°O,(0,—o00) [&7)

o) = 00, —o0) 8] Ne|Bg). (109)

The states ’\Tl‘j> are normalized to the parent states, é;l)ad \ff?/) =1, and hence
regular as v — 0. In the intermediate normalization (II6) we normalize against

the projection of the target functions on the model space, ‘\If(j‘“> = P’\IJO‘> , and
then an additional normalization constant, N¢, is generally needed. Below we
shall show that

[0 = lim al 07(0’ —o) |2°)
=0 (DU, (0, —00)| D)

(110)

is an eigenfunction of the original Hamiltonian of the system for all values of

(Ho+ H')[w") = E°|w~) (a=1,2,---d). (111)
This is a generalization of the Gell-Mann—Low relation (HOZI), and it holds for

an arbitrary model space, i.e., also when this is quasi-degenerate with several
energy levels.

In the one-dimensional model space, singularities appear in U for unlinked
terms. In the general multi-dimensional case, singularities can appear also
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for linked diagrams, which have an intermediate state in the model space.
We refer to such diagrams as reducible? . The remaining irreducible diagrams
are regular. In addition, so-called quasi-singularities can appear — i.e., very
large, but finite, contributions — when an intermediate state is quasi-degenerate
with the initi _state. All singularities and quasi-singularities are eliminated
in the ratio (; [0) — in analogy with the original Gell-Mann-Low theorem.
The elimination of these quasi-singularities represent the major advantage of
the procedure using an extended model space. In the next section we shall
see that this procedure can be applied also in QED, thus eliminating a major
shortcoming of the standard S-matrix formulation.

. GenGML . ) ..
In order to show that the functions (I10) are eigenfunctions of the original
Hamiltonian, we shall mainl ggnll}n%w the procedure used in the previous case.
We start from the identity (ggi at t =0

A

(1) U,(0,—00)|®%)  T,(0, —00) Hy| @) ) 20,(0, —00)| )
0 Lo - N N )
(U5 (0, —00)[®) (U, (0, —00)|®) (@=|U(0, —OO()1|<11>2“>>
EigenvEq2 £IN2
and in analogy with (l(lif%ei ;n Ylsmg (i(aivge), we obtain
N d| 217 (0. —o0)| P N U0, —00) Hy | D™
(i i BT 008y g N U0, o) a2 1y
(©2|U,(0, —00)|®%) (@]U,(0, —00)[| D) 1”

. . . . N Pargen]t?l‘:':)i env
Since the parent functions are assumed to be eigenfunctions of Hy (W

see that the first term on the r.h.s. becomes E(‘)l’\lla>, and we retrieve the
EigenvEq2 v

relation ( or a general model space,
2 agl « «a «a : 9 «a
<H0+H — ES —AE7>‘1117> = 7Aoo |T5). (114)

As before, we can assume that the secon Ler on the r.h.s. vanishes as v — 0,
which demonstrates that the functions (: [0) are eigenfunctions of the original
Hamiltonian. An i Dokfnt observation is here that a necessary condition for
the wavefunction (IFTUW) satisfy the time-independent Schrodinger equation
is that the parent state is an eigenfunction of Hy'?.

The energy of the target states are given by

(0,00l
(©|U,(0, —00)[@*)
9 . . |sec:TimeDepInt
See footnote in section B.4.3. R71
10 This observation is in conflict with the assumption of gﬁﬁo state that — for the
ground state — the parent state can be any state in the model space with nonzero
overlap with the final wave function. If the model space contains several energies,
the results are conflicting.

E* = lim [Eg +iyh (115)
’y—)
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sec:RedEv0Op

This expression is not very useful for evaluating the energy, since the eigenvalue
E§ of the parent state is generally not known. The procedure is here used
mainly to demonstrate that the functions satisfy the Schrb'dingerEef\ ﬂg}:ﬂion.
Instead we shall derive an expression for the effective Hamiltonian (%ieh
is the natural tool for a multi-level model space.

3.4 The reduced time-evolution operator

In order to find more useful expressions for actual evaluations, we %‘%Jlduce
a new operator, the reduced evolution operator, UW, by the relation : 7)

U, (t,—00)P = P + U, (t, —00) PU. (0, —00)P. (116)

(We leave out the 'hat’ on the evolution operator.) This leads to the expansion
Ut)P=P+U{t)P+U{)PUP+U({t)PUPUP + - ,

where we temporarily leave out the initial time ¢, = —oo and the final time
t' = 0 in the factors PU P as well as the subscript . This can also be expressed

Ut)P=U(t)P—P—U{t)PUP —U(t)PUPUP — - | (117)

which is a very useful expression that we shall use frequently in the following.
Expanding this operator perturbatively

Ut)y=0Y)+0P) + U @#) +---,

we obtain in the lowest orders

[sec:All orxrd
These relations will be used below (section 3. T 1) to show that the ’ open’ part

of the reduced evolution operator is reqular — or, in other words — that the
counterterms UPUP, UPUPUP - - -, eliminate the single, double- - - (quasi)-

singularities.

IntHam
We recall that with the field-theoretical perturbation (%8),—556 evolution op-
erator does not conserve t%e%)&umber of photons and therefore operates in the
extended Fock space, H (Ir2). The P operator is the projection operator for
the model space, which is a part of the Hilbert space Hy, where the photon
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WOEH

number is conserved. The ) o erator is the projection operator for the com-
plementary part of this space (SU) We now introduce a generalized projection
operator Q

Q=I1-P (119)

for the extended space H, where the number of photons is not necessarily
conserved. The general evolution operator can now be expressed

U,(0, —00) P = PU,(0, —00) P + QU.,(0, —c0) P, (120)

tildet
which with ([T l6% leads to the generalized factorization theorem,

U,(0, —00) P = [1 4 QU(0, —00)| PU,(0, —00) P. (121)

We shall demonstrate below that the first factor on the r.h.s. is regular in
the limit v — 0, and consequently all (quasi)singularities are contained j the
second factor. This is a generalization to the more general ll'fj 0&1)( - $BR6°

GenQ

Identity

krr71

the factorization theorem, demonstrated in nuclear theory [(7777.

The fact that the reduced evolution operator is regular has important impli-
cations. This implies that in that part each adiabatic-damping factor v can
be turned off individually, in contrast to the situation with the original Gell-
Mann—Low relation, as discussed above. The sign of the v term, though, is
normally important, since that determines the position of the pole in the in-

tegration p CESS g{h% model-space contribution is obtained by means of the
expansion (; 18£= f[%out the need of any limiting process.

3.4.1 Wawve operator and effective Hamiltonian

. enGML
The model states corresponding to the target states ( I I(H areJ Hltermedlate
normalization given by the projection onto the model space ( IG;

§ . N°PUL(0,~c0)|@®
5) = PIV) =1 o, s 2

. GenGML . L
and the VecﬁPﬁlCthD (TT0) can then be expressed, using the factorization

YF
theorem (Il i ),

o) = [14 QU(0, —00)] |¥5). (123)

aveO
This leads to a generalized wave operator (i?)

Q=1+QU(0, ), (124)
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operating in the extended space H. In a 'restricted’ Hilbert space Hy, where
the number of photons j ag,(%laserved, this operator is identical to the standard
MBPT wave operator (i,2)

EffH
The effective Hamiltonian is defined by (13% =

~

Heff

wE) = B |wg), (125)

which in the extended space leads to

Hee = PHQP = PH|1+ QU(0, —o0)| P (126)
EffInt
and to the effective interaction (IS% .
Hly = PH'QP = PH'[1 + QU(0,~o0)| P. (127)

H and H’ are the Hamiltonian and the perturbation, respectively, at ¢ = 0.

An alternati Eform of the effective interaction can be obtained in the following
way. From (85] we have

0 N
iEUw(ta —o00)P = H'(t) U,(t, —00) P, (128)
tildet FactTh
and using the definition ( 67 and the factorization theorem ( 51 this yields

fort=0

{igth(t, —oo)] ~ PU,(0,—00)P = H’ [14+QU (0, —00)| PU,(0,—00) P (129)

t=0

H = P{iﬁﬁ(t, —oo)} P. (130)
ot =0

8 is a generalization of the energy-shift formula given by Jones and Mohling
77, and it is the form we shall mainly use in the following.

EffInt2
The form ( of the effective interaction can also be derived in an %‘gﬁgnative

way. We start now from the time-dependent Schrédinger equation (IT) at ¢t = 0,

i51050)

The eigenfunctions of the SG%%tGe}?ﬁ at t =0, ’\If >, are given by the generalized

= H|w"). (131)

t=0

Gell-Manng, 2relation ( and satisfy the time-independent Schrodinger
equation ( . This gives

[i;\@g(m] = E°[we) (132)

t=0
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:TimeIndInt

and P{j;’\pg(x»]t:o = E°[05), (133)

Psi03 P
where P“If"‘> = ‘\118“> is the model function (IZSZ1 ). With the relation (%I) this
leads to

PHy |0°) + P {i;\qfﬂ] = E*|wg), (134)

t=

where ’\Ila> is the wavefunction in the IP.

. GenGML . .
From the Gell-Mann-Low relation (I10) we can also obtain the wave function
in the interaction picture at arbitrary (finite) time

X NeUL(t, —o0) @0
2°0) =1 e o —oo>’\<1>a>>’ 5

Psi03 tildet
and using the relations (122) and ( we find that

[ii’\l}a(t»]tzo = [igtﬁ(t, —OO)LZO‘\P8‘>. (136)

TDSE3
This leads with the relation (ISZIi o the secular equation

A

Heff

Uy) = B°| ),
where the operator

. . 9 ~
Ao — PHP + P[iU(t, —oo)} p (137)
ot =0
: : 0. JEffHam : o
is theﬁiq;g%ae Hamiltonian (II3) and the second term is the effective interac-

tion (

We recall that we have assumed here that the perturbations can be of general
time-dependent form. All forms of the effective Hamiltonian /interaction given
here are therefore valid for interaction between the electrons th La%e artﬂime— or
energy dependent, including the field-theoretical perturbation (%8 ).

3.4.2  Time-independent interactions

We shall now apply the formalism presented here to atomic systems with
interactions that are time independent in the Schodinger picture, like the in-
stantaneous Coulomb interaction. Time- or energy dependent interactions will
be treated in the following section.

When using the field-theoretical perturbation, the time-independent interac-
tions between the electrons correspond to contractions at equal time. There-
fore, only perturbations of even order of the evolution operator will appear.
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Ta L S
0(2) (t/’ —OO) = t u
a b

Fig. 4. The second-order evolution-operator diagram for the Coulomb interaction
between two electrons.

. . . Fock
We can now work in the restricted Hilbert space Hy ([72) and replace the gen-
eral projection operator @Q by the traditional operator (). The wave operator
then becomes

Q=1+ QU(0,—o0) (138)

and the effective interaction

1l = PH'QP = PH' [1+ QU(0, —00)| P. (139)

Fig:E1Sec0Ord

WaveOpTind

EffIntTind

As a first illustration of the evolution-operator technique, we consider t%% .ElSecOrd

second-order Coulomb i eral(ﬁi%n between two electrons illustrated in Fig.
( VO al X

The evolution operator en be expressed

t/ to
Ut —00) = — / dt, / dty Vilts) Vi(ty) e7tt), (140)

where V7 is the Coulomb interaction in the interaction picture,

Vi(t) = ety ettt (141)

e2

and V' = ;=—
This gives

is the time-independent interaction in the Schrédinger picture.

t/ t
<TS’U(2)(t/’—OO)’a,b> = _/ dtQ/ 2 dtl <7”3“/1<t2)‘tu> <tu|‘/1<t1)‘ab> e’y(t1+t2)

(142)
after inserting a complete set of intermediate states ', which leads to the time
integral

1 As before, we employ the summation convention with implicit summation over
repeated indices that do not appear on the Lh.s.
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t . . to . .
/ dt, e it2(etteu—er—es+iv) / dt, e~ it1(eater—er—eutiv)
—0o0 —0o0

e—it’ (eatep—er—es+2iy)

(o +ep—&r —s+2iY)(ea +6p — &t —Eu +17)

The result then becomes

(rs|V]tu)(tu|V]ab) —it! (B~ Eoui+2)

(B — Eout + 217) (B — Eint +17) ’
(143) U2E13

using the notations Ei, = ¢, + €5, Eout = &, + €5 and Fyyy = €4 + €. In the
limit v — 0, this becomes (quasi)singular, when Fiy ~ Fi, or Eoy ~ Fiy,. In

the former case we i lidg the guasi-degenerate state(s) in the model space.
l 18'! we th

From the expansion ( en have

(rs|U(2)(t', —00)|ab) =

t=t -4----—--1 __
r 8 t=t -~y S R - t=0
———————— r B t u
4 P Ru - X F-----
******** t U a b
ag b
p P P

Fig. 5. For time-independent interactions the open, reducible two-photon-photon

l%go(i%regiagram with the correspondﬁg Goiaterterm corresponds to a folded diagram

( in standard MBPT, c.f. Fig. [. The nitermediate state |tu) lies in the model

space. Fig:FoldDiag

v@p=v®p_yWpyhp, (144) | Utilded

. . Lo . . [Fig:FoldDiag
where the second term is the counterterm. This case is illustrated in Fig. b.
This is a model-space contribution with the intermediate state in the model
space, and such a diagram is also referred to as reducible.
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In the same way as before we obtain for the counterterm

(TS’U(l)PU lab) = / dtg/ dty (rs|Vi(ts) [tu) (tu|Vi(t1)|ab) €7 t1+t2)
(145)
which yields
(rs|V|tu)(tu|V|ab)

7it/(Eint7Eout+i'Y) .
(Eint - Eout + 17) (Ein - Eint + 17)

(rs|lUD PUW |ab) =

146)
U2E13 (
Subtracting this from the main term ( , gives for the reducible or MSC
part of evolution operator U at time ¢’ = 0
~ V|tu) (tulV |ab
(rs|T)(0, —00)|ab) irslV]tu)itulV]ab) (147)

Red T (Ein - Eout + 217)(E1nt - Eout + 17) .
(\@g\;;&%e outgoing state lies in the () space, this is according to the definition

a contribution to the wave operator. We see that the (quasi)singularity
for Eit ~ Ej, is here eliminated. This model-space COHtrlbU.thIlFlS 1d8n c t%
the folded diagram obtained in time-independent MBPT (Fig. q.
EffIntTind
The effective interaction ( 39=Iis i second order
H'S = PH{(0) QU™ (0, —00) P, (148)
and this yields for the example considered here

<TS|V|tu>(tu|V|ab>'

H'Qaby =
(rs|H' gy |ab) E - B

(149)

The intermediate state is here confined to the () space, and there is no
(quasi)singularity and no MSC or folded diagram in the second-order effective
Hamiltonian. In third order we have

'Y = PH' QU®(0, —c0) P, (150)

Folded -~
and here there is a contribution from the folded diagram (IZIOF ) Sh U

We have now shown that the reducible part of QU® is regular, and since the
irreducible part is always regular, it follows that QU® is completely reqular for
time-independent interactions. We shall generalize this proof to higher orders
in the next section in connection with time-dependent interactions.

3.4.3 Time-dependent interactions

We have seen that when the interactions between the electrons are time inde-
pendent, there is a model-space contribution to the effective interaction and
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the wave operator, normally represented by so-called folded diagrams, which
appear in the energy and effective interaction of third and higher orders. We
shall now consider time or energy dependent interactions and show that this
leads to an additional form of MSC, appearing also in the second-order energy
or effective interaction.

. . . . . . Fig:Sec0rdTD
As an illustration we consider the second-order diagram shown in Fig. % %Ve

assume that the interaction is of the form

dz

V(tz —tl) - %

V(z) e =2t (151)

where V(z) is the Fourier transform and z is the energy parameter. In the
interaction picture this becomes

d . . . . . .
Vi(tQ _ tl) — ﬁ V(Z) (€1H0t2 6—1zt2 e—lHotQ) (elHotl elztl 6_1H0t1>. (152)
t=¢t -4------] - —
S
4
r o it
/)/ Uu
3 /
2
t /Z /’
1 /
a b

Fig. 6. Second-order diagram with time-dependent interactions

We assume the time orderings to be t' > t3 > t; and t' > t4 > t, and the ma-
trix ele 2of the evolution operator, corresponding to the time-independent
result (142), is then

(rs|lUP (', —o0)|ab) =
t/ ta t! t3
/ dt4/ dtg/ dt3/ dt, (rs|Vi(ts — ta)|tu) (tulVi(ts — t1)|ab).  (153)
The time dependence is here (in the limit v — 0)
e

ita(es—eu—2") eitg(sTfstJrz’) eitQ(Eu*Eb*Z) eit1(5u75a+z)

or
3 ! oo/ ! 3 ! 3 ! 3 _
eitald —p'+2") —its(q—p—2') ,—it2(p'+2) —ita(p Z),

using the notations p =¢, — ¢, p' = ey —€u, ¢ = €4 — &, ¢ =€p — 5. The
time integrations then yield
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e~ it'(a+4")

(@ +z4+2)p+2)(q—2—2)p—2)

(154)

. . o . . Fi%:SecOrdTD . .
If the interactions do not overlap in time, as in Fig. 16, The diagram is said to
be separable. > We can then have the time orderings t, > t3 > t1, to, which
leads to the integration ordering

t/ t4 t3 to t3 11
/ dt4/ dt3</ dtg/ dt1+/ dtl/ dtg). (155)

Considering also the time ordering t3 > t4 > t1, t9, the integral becomes

et (atd) 1 1 1 1 1
== ey )
qt+q \gt+p -z ¢+p+d/p+tp\p—z Ptz
, U2T
The matrix element ( 53% can then be expressed

I '
(rs| U (', —00) | ab)sep = (rs|V(g+p',q + p)|tw) (tu|V (p,p’)|ab) o it ata),

(¢+4q)p+p)
(156)

dz 1 1
where V(A,B :/—V ( )
(4,B) 3(2) A—z+B+z
Using the previous notations ( , this becomes

(rs|V(qg+p',q +p)ltu) (tu|V(p, p')|ab) —it! (Ein—Eout)

rs|UP (t', —c0)|ab)ge, = e
el o) |ablser (B — Eou) (B — Eim)

(157)

When Ej, — Eiy = 0 we have a (quasi)singu @iictgu%ggra corresponding coun-

terterm in analogy with the previous result (

V(g —p,q —p)ltu) (tu|V(p,p')|ab) .. -
0 pr®igpy — ¢ ) : i (Bini— Fout)
(sl PUab) (Fowe — Bon) (B — Em) ¢

(158)
With the notations
V(Q +p/7 q/ +p) = V(El —&r — Eu, Ein — & — gs) = %(Eln)
V(q 2 q/ - p/) = V(Eint — & — &y, Eint — & — 55) = ‘/2<Eint)7

12 A diagram is here said to be separable, if it can be separated into two legitimate
diagrams by c%ﬁg all orbital lines at a certain time. In the older literature (see,
for instance, [7)] the term reducible was normally used for this type of diagram.
We have, however, adopted the terminology developed mainly in recent years, where
the term ’reducible’ is used for separable diagrams with the intermediate state is
in the model space. We have thergfi ggf’ntroduced the term separable for the wider
group in order to avoid confusion %ote that a reducible diagram must always be
separable.
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2TDSe
the main 'ladder’ term ( écomes

(rs|Va(Eim)|tu) (tulV (p, p)|ab) _iv (5, Bou)
(Ein - Eout)(Ein - Eint)

E1TDCounter
and the counterterm (

(rs|Va(Bin)[tu) (¢ulV (9, )|ab) (5~ Boue)
(Eint - Eout)(Ein — Eint)

(rs|U(2)(t', —00)|ab)aa = (159)

(rs|UY PUD |ab) counter =
(160)

EffInt2
Applying the relation (T30 %’n the time derivative eliminates the last (leftmost)

denominator, and the corresponding reducible contribution to the effective
interaction becomes

E) — E )t t ,p)|ab
<7’S|H/g?|ab>Red — <TS|‘/2( ) ‘/2; _t)‘|E'U’> < U|V(p p )|CL > . (161)
in int
With AE = E}, — Ej,; this becomes in the limit AE — 0
0
(rs|H'?) |ab)peq = <7"3 s (VQ(E))E:E tu> <tu‘V(p,p’) ab>. (162)

This shows that the (quasi)singularity is eliminated also when the interac-
tions are time dependent, but that there is an additional finite Model-Space
Contribution also in second order due to the time dependence.

. . . . WavefTD
In order to obtain the corresponding contrib 19 gl VAN QRgLator (1237,
%gg) Al (

we set the time t' = 0, and the expressions (
bution

yie e contri-

(rs|Va(Ein) [tu) (tulV (p, p)[ab)  (rs|Va(Ein — AE)|tu) (tulV (p, p')|ab)
(E Eout) AFE (Ein —AFE - Eout) AFE ’

which we can write as

AlE {<rs|ﬂz(Ein)ltu> — (rs|Qy(Eym — AE)|tu>] (tu|V (p, p')|ab)
= [< 9 <Q2(E))E:Ein tu> + - Mzﬁu‘v ‘ab> (163)

by including the last denominator in {25. This shows that the (quasi)singularity
is eliminated also in the second-order wave operator. The remaining part is the
model-space contribution, which in this case contains a folded part, present
also for time-independent interactions, as well as an additional part due to
the time dependence.
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:All orders

Fig. 7. Reducible diagram of higher order and the corresponding counterterm.

3.4.4 Generalization to all orders

The previous treatment can be generalized to higher orders. Let us consider a
reducib#% 1gD(1%a§§am of the form U PU™ | as indicated in the left diagram
in Fig.r, where the two parts represent irreducible m- and n-fold interac-
tions, respectively, and the intermediate state lies in the model space. This is
regarded as a single diagram of ’ladder’ type, which implies that all denomi-
nators are evaluated from the bottom. All energies are then functions of the
initial energy, E;, = ¢, + ¢, and we can represent the contribution to the wave
operator by
(rs|Wa(Ep) [tu) (tu| Wi (Ey)|ab) — (rs|Qo(Eiy)|tu) (tu| Wy (E;y,)|ab)

(Ei - Eout) AE AFE

Here, Eoy = €, +¢5 and AE = e,4+¢,—&;—e,,, and Wy /W, represent the m/n-
fold interactions. Thi El{ gLam is (quasi)singular, due to the denominator AFE.
From the expansion (%EOWS that there is a counterterm of similar form,
represented by the second term in the figure. This differs from the leading term
only in the fact that the denominators of the left part are evaluated from the
intermediate state (t,u) and that the time of the right part is set to zero. The
denominators of the left part are the same as in the ladder with E}, replaced
by Ei, — AFE. Assuming as before that the interactions depend on the initial
energy, the counterterm can be expressed

(rs|Wa(Eym — AE)|tu) (tu| W (Ey)|ab) — (rs|Qe(Eiym — AE)|tu) (tu| W, (E;y,)|ab)

(Bn — AE — Eow) AE AFE ’

and the sum of the reducible ladder é the counterterm can be expanded in
analogy with the second-order case (;%35
0

<r$ oF (Qz(E))E:Ein

This shows that the (quasi)singularity is eliminated also in this higher-order
case.

@)t

tu> <tu‘W1(Ein)
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Fig. 8. Doubly reducible diagram with the corresponding counterterm.

Next we consider in a similar way a diagram that is doubly %edfgﬁbleggl €.,

with two intermediate model-space states, as illustrated in Fig. obvi-
ous notations we can then express the ladder diagram, representing the wave
operator, as

1 1
<7’S|Q3(Ein)|vw>AE2 (vw|Wa(Ein) [tw) 7 AE, (tu|W1(Ei)|ab)
and the counterterm as

<TS|Q3(E1H — AE2)|’U'LU>

1 1
E, — AE)|tu) — (t Ei)|ab).
A7 (W Dlt) 55 (WA (B ab)

In the limit when the AE’s — 0, the latter becomes

0
<7‘3 Q3(Ey) — AE2<3EQS(E))EEm vw>
0 1
“AE, <W‘W2 in) — A (aEWQ(E))E:Ei,, t“> AE, <t“ Vi(Ein) ab>'

The double singularity is eliminated by the counterterm, and the difference

becomes
(|55 ®), o) (ool (g0),., o) (o]

in addition to the single singularities, introduced by the counterterm,

(rs Vaz (vl (5pa®),._, ) (uiamo)
< tu> A;Jl <tu ab>.

%(Ein)

Qg(Ein> rw

‘/l(Ein)

‘/1 (Ein)

Uw> <vw‘W2(Ein)

(;E Q3(E)) E=Eip,

These single sing rli ié)ghaXreQeliminated by the terms —U ™ U™ p—y™ pym p
(é% I

of the expansion . In a similar way the cancellation of (quasi)singularities
for triply ... reducible diagrams can be shown.
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WaveOpTD EffInt1
This verifies that the wave operator (124) and the effective interaction (127=

are reqular in all orders for a two-electron system.

3.5 Comparison with time-independent MBPT

sec:Comp

We shall now summarize our observations regarding the relation between the
time-dependent and time-independent forms of MBPT. In time-independent

ﬁ)@gi %%erated by means of the Bloch equation in the linked-diagram form
(gZ ], there are two types of contributions to the wave operator. The first type
originates from the first term on the r.h.s., and in the case of a two-electron
system this gives rise to diagrams of ladder’ type. The second term on the
r.h.s. of the Bloch equation gives rise to folded’” diagrams. In the ladder type of
diagrams all intermediate states lie in the () space and in the folded diagrams
one or several intermediate states lie in the P space. The folded diagrams are
therefore a type of Model-Space Contribution (MSC).

In time-dependent MBPT with time-independent interactions the JAVe OpeT
ator can be expressed by means of the reduced evolution operator (%fgler;e,
states of the model space can appear as intermediate states, which leads to
a (quasi)singularity — so-called reducible contributions — an%tt%e& fthere is a
corresponding counterterm, which eliminates the singularity ( . Thé combi-
nation of the singular ladder diagram and the corresponding counterterm leads
to a MSC that exactly corresponds folded to the diagram of time-independent
MBPT.

In time-dependent MBPT with time- or energy-dependent interactions there
is an additional MSC, which in the case of complete degeneraﬁ@(céeads to a
( egen

contribution involving the energy derivative of the interaction

4 S-matrix formulation
ec:S-matrix

In the present and the following two chapters we shall consider different
schemes for bound-state QED calculations. We shall begin with a brief re-
view of the standard S-matrix formulation, which is well documented in the
literature. (For further gils we refer to the recent extensive review by
Mohr, Plunien and Soff [7)). Then we shall consider two more general meth-
ods, which have been developed more recently and which can be applied also
to the quasi-degenerate situation. First we shall descri G '8 SQIE detail the
covariant-evolution-operator method, developed L5 5 ?;, and the present
report represents — together with the thesis of g; — the first more detailed
account of this new method. Next we shall more briefly describe the two-times
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Green’s-function method, X%o_ped by Shabaev et al., which has recently
been extensively reviewed [[7), and we refer to this article for further details
concerning this method. The two methods will be intercompared, and the pos-
sibility of combining the former with MBPT in a systematic fashion will be
indicated.

. . . IntHam
We assume now that the perturbation is of the field-theoretical form (%8}
Hy(z) = —edl(x) " A, (2)d(). (164)

E1FieldTD
The electron-field operators are in the IP given v, QBCF ), and we assume that
(62) 1

the orbitals are solutions of the Dirac equation n the field of the nucleus
(nuclei). We have in the previous chapter discussed this type of perturbation
and derived the corresponding Gell-Mann—Low relations in the non-relativistic
case. This theory, however, is not covariant in the relativistic sense, and the
relativistic problem with negative energy states cannot be handled. The sim-
plest way to remedy the situation is to let the time integrations run over all
times, which leads to the S-matriz formulation. This we shall consider in this
chapter. Another way is to modify the standard time evolution operator to
make it covariant, which we shall consider in the next chapter.

The Sucher energy formula

Sub7
7) has Sh(ﬁlﬁé[Eéhﬁttthe energy shift can as an alternative to the Gell-Mann—Low

formula ( e expressed

AE = lim 4 (Lol gz Uy (00, —00) | W) (165)

32027 (Wl UL (00, —00) W)
U, (00, —00) is the scattering matriz or S-matriz, primarily used in scattering
theory. Like the Gell-Mann-Low formula, the Sucher formula is valid also
when the interaction between the electrons is time- or energy dependent, but
in contrast to the former it is also valid in the relativistic case. The Gell-
Mann—Low—Sucher procedure has beenplﬁfé&%%tandard approach in bound-state
QED for a long time (see, for instance 7)) and will be discussed briefly in the
next section.

4.1 Single-photon exchange. The photon propagator

The field-theoretical form of the evolution operator, representing multi-photon
exchange between the electrons, is given by the expansion (
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U(t, to) ==
t
1—;/t d*z; d*a, T
0

(¢ (@) ear Ay ()i (@) (9 (x) ea” Ay (2) (),

+---,(166) UQED

where, as before, the space integration is performed over all space and the
time integration as indicated. We consider ﬁrigtl tbgieﬁ((gh%l%ge of a single photon
between the electrons, as indicated in Fig. m%previous chapter we
consider the limit, where the initial time t; — —oo, which implies that we
start from an eigenstate of the unperturbe% Harlrgltonian H,. The evolution
operator, including the adiabatic damping (88); 1s Then given by

U(Q)(t/7_oo) — I |

_;//t;o d*zy d*ay T (&T(x)ea“flu(;c)@ﬁ(gj))l(&T(x)eavfiy@)&(x))?] e_7(|t1|+‘t2|).(167) m
t=t -y------7 r- T __
r 1&* 1;1 S r @T qﬂi S
z Ve
1 prrsnn] 2 — -] 9
2 TURN ¥ 12 SR ¥

Fig. 9. The single-photon exchange between the electrons, compared with potential
scattering. Fig:SingPhot

The contraction Jﬁ%}éflglgg the electromagnetic field operators leads to the pho-
ton propagator (73], and disregarding for the moment other possible contrac-
tions, this yields

(7(2)(t', —00) = _é//tl d*zy d'a, @;T(ajl)@w(f@) 11(9327931)77/3(332)@/3(331)6_V(|t1|+‘t2|)
- (168) | w2

with 13

I(x9, 1) = ec Dy, (12 — 21) eass . (169) I

The Fourier transforms of I(xs,z1) is defined by

dz

[(I‘Q,xl) :/%I(mg,ml,z)e_iz(tr“),

Interact
where I(xy, 21, 2) is given by the definition (77).

— . 100, LASO1
I(x9, 1) corresponds to il of ref. [(77).
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4.1.1  S-matriz for single-photon exchange

The scattering matriz (S-matrix) is defined by S = U(oo,—0), and as a
t illustration we shall study the S-matrix for a single-photon exchange. Eq.
(168) then yields

500 = 1 [ iy §1 )0 () 1z, 1) ) ) 1)
= _%//d4$1d4$2 clol(x1)cld;(w2) il (w2, 21) cipr(w2)cppr (1) e 7D (170)

where the integration is performed over the entire space-time volume. This
is a two—bogzcﬁgglrl%tor and becomes according to the second-quantization

expression (

2 — : Z c;-rc; <ij‘S(2)‘k:l> CICk- (171)
Identification then yields the e;g;lnsion coefficients
<7°5 ‘S ‘ab // dhay Ay @1 (1)l (2) 1 (22, 1) ) (2) Pa (1) e 1l HIE2D
— [ denates [ 5 610l @) il 1,2) uea)nlan)

% e—itl(Ea—Er_Z)e_itQ(Eb_ES+Z) e—’Y(|t1 [+[t21) . (172)

After the time integrations this becomes

A d
5(2)’ ab> = —i/ ﬁ 2 A (g — 2) 21 AL (¢ + =) <7’S‘I(£l?2, x1, z)‘ab>, (173)
where ¢ = ¢, — ¢, and ¢’ = ¢, — &,. The A function is here defined

00 — 2
/_OO dt elqte 1t = q2—:/72 =27 A’Y(Q)? (174>

which has the following properties

lim A, (q) = 6(q)

y—0

lim 7y A, (q) = g0

y—0

/_Oo dz Ay (z —a) Ax(z —b) = Ay i(a—b).

Here, d(q) is the Dirac delta function and d,, is the Kronecker delta factor
(=1 for ¢ = r and zero otherwise). 14

14 The first two relations are obvious, and the third can easily be shown by means
of the identity

1 1 1 1 1
Ar(z—a) An(z=b) = (27i)? (z—a—W_z—a+iy)(z—b—ifi_z—b+iﬁ>'
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'g tg%olgst relation above we can for small v approximate the expression
(%;3§ by
<rs ‘S(Q)‘ ab> = =211 Ay (q + (') (rs|I(x2, 21, q)|ab).

The single-photon exchange can be compared with the S matrix for the poten-
tial scattering from a time- or energy-dependent potential, Veq(xo — x1) with
the ﬁPourlgr tr@gsfcorm Veq(1, @2, 2), as indicated by the rightmost diagram in
Fig. ince two times are involved also in this process, it has to be regarded
as a second-order process, yielding

S0 = _,//d% Ay O (20)9 (2) Vi (03 — 1) () (1) e 100410 (175) [ potscats

After time integration, the matrix element becomes as in the previous case

<rs ‘S ot

ab> = —2mi N (q+¢) <rs

eq(Q)’ab>- (176) SmatrixEl

This implies that the single-photon exchange is equivalent to potential scat-
tering by an equivalent potential given by

Veq(q) = I(x2, 21, q) = 6204?045 Dy, (2 — 21, q). (177) EqPot

Igntt}g% a{i@gmman gauge the equivalent potential becomes, using the definition

Y

o 2k dk (k) ¢? .
V;zq(Q> /0 qg _ k2 + 1777 f(k) ) 1o ( aq a?) Sm(lﬂ”m) ( 78) qPot

or after integrating over the k space

62

vE 1—ay - ilalraz 179 EQPotF2
(@) = o (- )l (179) [ Bapo
. . . . RetCoulGaunt
which is the retarded Coulomb-Gaunt interaction (I78).
e s e Sucher = |
The energy shift is given by the Sucher formula ( , which in the lowest
order (n = 2) yields
AE = hII(l) i (rs|S®|ab). (180) Sucherl
S2SingPhot
In the present case this gives, using (II73 ;;n 2
AE =6,_¢ <7"S eq(q)‘ab>. (181) EnergyShift

Here, only the cross products, which have one pole on each side of the axis, con-
tribute to the integral.

47



sec:ElProp

The Kronecker delta factor implies here that the result is nonvanishing only
for 4+ ¢ = 0 or ¢, + &, = &, + €5, which means that in the S-matrixz for-
malism energy must be conserved between the initial and final states. This has
the disadvantage that those elements of the effective Hamiltonian that are
nondiagonal in energy cannot be evaluated. Therefore, the procedure is not
applicable to the procedure of an extended model space, discussed above for
the treatment of quasi-degeneracy. In the following two chapters we shall dis-
cuss two methods that do not have this serious shortcoming, but first we shall
develop the S-matrix formulation a little further.

4.2 The electron propagator

In relativistic problems we must also allow for time running backwards, which
represents antiparticle creation. For that purpose the so-called Feynman elec-
tron propagator, Sg(x, o), is introduced, defined by

iS(2, 20) = (OIT[Y () " (0)]0)
0) —

= (01Ot — to) () §' (o) — O(to — ) " (o) ¥(2)]0). (182)
Here, O(t) is the Heaviside step function (equal to unity for ¢ > 0 and zero
for t < 0) and T is the Wick time-ordering operator

A(Il)B<I2) (tl > tg)
A T To)| =
T[A(x1)B(x2)] BlaA) (& <b) (183)

ElPropl

TimeOrdering

TimeOrdering2
g be be confused with the Dyson time-ordering operator ( ?Zl; ['he expres N Dot
(%25 %{8517

represents the contractio hetwesi, the electron field operators
Separating the field operators ( into particle (¢+) and hole (77/1 ) parts,
corresponding to electrons with positive and negative energy, respectively, the

electron propagator can be expressed

iSp(w, 0) = (0[Ot — t0)4 () ¥} (o) — Oto — 1)L (o) ¥ (w)[0)

= O(t — to)pp(x) ¢ () e =710 — O(ty — t)} (o) (@) e =+ (10) . (184)

SingElE
Here, ¢,, ¢n represent the single-electron wavefunctions (II0), with positive

energy (‘particle states’) and negative energy (‘hole states’), respectively. By
analytical continuation the electron propagator can be expressed as an integral
in the complex plane

dw 6;() 6,(20) ioie-a

S —
v, 70) 21T w —¢g; +in;

, (185)
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where j runs over all states (with positive as well as negative energy), and
n; is an infinitesimally small quantity with the same sign as ¢;, indicating
the position of the pole. The Fourier transform (with respect to time) of the
electron propagator is

0;(x) 9}(x0)

—. (186)
W —€Ej+1n;

SF(wa Lo, CU) =

Regarding the space part of the single-electron functions as coordinate repre-
sentations of the corresponding Dirac states,

¢5(x) = (xlj);  d}(2o) = (jlzo),
E1P F
we can express the electron propagator (186;0 ot
Sp(x, @, w) = (|Sp(w)|zo) (187)

or as the coordinate representation of the electron-propagator operator

S(w) = % (188)

We also introduce the four-dimensional coordinate representations of the
Dirac states,

(w]j) = ¢;(x) = ¢;(®) 75 (jlz) = dl(x) = d}(x) ", (189)
Then the field operators (%%F%ge
d(z) = (zlj) e D) =] (jlo), (190)

E1P 2
and the electron-propagator (T84 ) ocan be expressed
15p(x, 7o) = O(t — to)(z|p){plzo) — Oto — t){x|h){h|xo),  (191)

E1P Int
and the form (lSBio .

_ [ dw (z[5)(j]zo)
SF(iL‘, $0) = 0w — gj T ”7] . (192)

. . ElPropDiracl
Operating with the electron propagator (191 ) on the field operator, w(xo) and
integration over the space coordinates, then yields

/d3m0 1Sk (2, 20) ¥(x0) = Ot — to){zp) ¢, — Ot — t){x|h) cn
= O(t — to)thy(z0) — Oty — )_(m) (193
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sec:LS

sec:SE

and similarly

/ Bt (2) 1Sp(z, w0) = Ot — to)dl (z) — O(to — )9 (). (194)
4.3 The Lamb shift

SingPhot
In the second-order evolution operator (16?i we can also have contractions
between the electron-field operators in various ways. Two equivalent contrac-
tions are indicated below,

[ 1

(dﬁ (x)eoz“Auzﬂ(x)) ) (W (x)eo/’Ayzﬂ(x)) ) (zﬁ (x)eoz“Auzﬂ(x)) ) (ﬂT(ac)eo/’A,ﬂﬂ(x)) :

(195)
and together with the photon field contractj n tkés represents the electron self-
energy, depicted for the S-matrix in Fig. eft). Contracting the electron
field operators at the same vertex

1 1

(@ET (x)ea“AugE(x)) ) (&T (x)ea”Al,@E(x))

(196)

represents the vacuum polarization, shown in the right diagram of the figure.

T4

9 Ta

z
LA W z 1 W/O b
2
1 ap
a

Fig. 10. The S-matrix diagrams representing the first-order electron self-energy and
vacuum polarization.
4.3.1 The electron self-energy

ElContril
By considering only one of the electron-field contractions in (I95), we can
eliminate the factor of %, and the S-matrix for §Be electron self-energy becomes
in analogy with the single-photon exchange (II70)

Séi:) = // d41’2d4$1 @/}T(%) iSF(%, 901) i—,(@, Il) 1&(%) e~ (ltalHP2)

= — // d4l‘2d4ZL’1 CI(ZSI(.TQ) iSF(l’g, Il) iI(IQ, Il) de)j(xl) e_’Y(ltlH_thl). (197)

20

ElPropFieldCoo:

ElContri

, (W(x)ea’“‘Auzﬂ(z)) ) (W(m)e&”Ayﬁ(x))

ElCont2

Fig:LS
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. i ) : ) . SecQuant
This is a one-body operator, and identification with the expansion ( en

yields the 'matrix element’

<T‘S§2E)‘a> =— // dizy d*ay @l (22) 1Sk (2, 21) il (29, 11) P (xy) e Y T1IHIERD (198)

Using the Fourier transforms of the propagator and the interaction, this be-
comes

’SSE / d*z, d*a / — (bT (x2) Sp(x2, 1, w) (X2, X1, 2) Pu(1)

Xe—ltg(w+z er) —1t1(€a—w z) —’Y(|tl|+|t2|) (199)

%tglnﬁlgl%tegrations yield here in analogy with the single-photon exchange
(%;33f% f

e factors 2mA,(w + 2z — ¢,) and 271A, (e, —w — 2), and after integra-
tion over w this becomes

<T‘Sé2E)‘CL> =210y (g4 — &) / Bz, 3z

dz

X 7 ¢T(CL‘2) SF(CCQ,CUlM?a - 2) [(332,33172) ¢a(w1)' (200>

This can be expressed

<r’5éij)’a> = =271y, (e, — &) <T‘2(€a)

a), (201)

defining the self-energy operator by

12 Ea //d3332 d’x /*¢T(w2) 1SF($27513176¢1 - Z) 1](513273317 )%(151)

dz  (tr|I(2)]at)

- (202)

o €qg —Et — 2+ 1

ElPropCoord
and using the form ( 0 fnt%lggg%ocn propagator. With the é)l}lllo%% tiE‘t,er—
action in the Feynman gauge ( is becomes (see Appendix A'] i

(tr|2kf(k)|at)
ME(&”) =1 /dk (o —er — 2z +im) (22 — k2 +1in)
(tr|f(k)|at)
_/dk a &t — k’ - W)t’ (203)

where (+); has the same sign as &;.

The ener% cﬁhellfrtl due to the electron self-energy is then given by the Sucher

formula (

5ESE = 5&;,57« <r)2(‘€a)

a). (204)

As in the previous case, the energy must be preserved between the initial ES%%L SE

final states in this procedure. A more general treatment is given in section
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ec:RenormSE

4.8.2  Self-energy renormalization

The electron self-energy, represented by the emission and absorption of the

same photon, is a process that corresponds to an infinite energyon n%sntFor
the free electron this is in analogy with the bound-state result (b()SE

r,qs|f(k)|gs, pr
S (o) = {pri(eplpr) — [ an 20l an D)

Fig:SEfree
illustrated in Fig. TT. We use here the momentum representation — p, q
denote the momentum and r, s components of the Dirac spinor. The factor
(k —iv), is positive for electrons and negative for positrons.

pr
qs k

pr

. SEfree
Fig. 11. The free-electron self-energy ( .

The free-electron self-energy represents a part dm of the physical mass of the
electron and should be subtracted from the self-energy of the bound electron.
This renormalization process eliminates the singularity. For an electron in the
bound state |a) the renormalized self-energy is then given by

SEGE™ = (a|S(ed)

a> - <a‘(5m‘a>. (206)

SEfree

Fig:SEfree

SEShift2

The renormalization term — also referred to as the mass counterterm — i?r.rii‘heSERen 1

average of free-electron self-energy in the state |a), as illustrated in Fig. [[2:

pr
om % = (alp) o4 & (pla)
a
pr

Fig. 12. The mass counterterm is the average of the free-electron self-energy in the
bound state |a). The thick vertical line represents a bound-electron and the thin
line a free-electron state.

A bound-electron propagator can be expanded in a free-electron propagator
with zero, one, two,... interactions of the external (nuclear) field. Applied to the

o2

Fig:SERenl




self-energy diagram this leads to the expansion in Fig. %T%e first two
terms are inﬁniﬁ Sg]&lile the last 'many-p to%tial term’ is finite. In the method
introduced by ‘.’%d later modified by @)_t'he zero- and one-potential terms
are combined with the mass counterterm, which leads to a finite quantity that
can be evaluated analytically. The final result is then obtained by evaluating
numerically the finite many-potential term.

Fig. 13. The bound-electron self-energy can be expanded into a zero-, a one- and a
many-potential term.

4.3.83  The vacuum polarization

) . Fig:LS .
The second part of the Lamb shift (Fig. l()%, the vacuum polarization (VP),
is also singular and has to be renormalized. The bound-state VP can be ex-
panded into a zero-potential a Q{}s-potential and a many-potential term, as
in the self-ener gpse (Fig. IZU [he zero-potential term is zero, due to the
Furry theorem [7). The one-potenti | term %Se rsélggular but can be renormal-
and 7). The last term, known as the

ized analytically, as fir own by [
Wichmann-Kroll term [[7), is finite and evaluated numerically.
r T r
N'\’«\/O f— \/W\/Q + W@X
as a4 a
X
r 1
—’— WA/Q
a 1
X

Fig. 14. The bound-state vacuum polarization can be}ei?_aéa‘g]ﬁgngl a zero-, one-, and

many-potential term as in the self-energy case (Fig. !
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§8£n% aﬂ)lications of the S-matrix formulation are briefly discussed in chaﬁ*@

or turther information the reader is referred to the review article by 7

5 Covariant-evolution-operator formalism.

c:CovEvolOp

5.1 Single-photon exchange
SingPhotCov

As mentioned previously, the S-matrix formalism cannot handl I‘%le als%—t
iSIi W%lcﬁ

degeneracy problem, due to the energy-conservation condition (

is caused by the integration over all times. A possibility to circumvent this
problem might ther%%g% be to consider instead of the S-matrix the original
evolution operator ( with a limited time integration. As mentioned, how-

ever, the evolution operator in its original form is not relativistically covariant,
implying that the relativistic problem can not be handled. By generalizing

the operator, so that time can evolve forwards as well as backwards, it can be

shown that the relativistic covariance can be restored. This method — which

we refer to as the covariant-evolution-operator method — has recentl kbeoerig§01 BASO2

veloped and successf}‘.lll% agy‘_];u%i to the quasi-degenerate situation K 777} and

is illustrated in Fig or single-photon exchange.

In the covariant-evolution-operator method we use for the single-photon ex-
changg between two electrons — instead of the standard time-evolution opera-
tor (II68) — the expression

Ui (t', —00) = -3 / d'zy d'ay [O(t — 1)l (21) — O(ts — t') ¥ (21)]

x [OF = t2) Bl (v2) = O(t2 = #) 6 (22)] i (3, 1) Y(z) (an) e 001120 (207)

Here, we integrate over all times. For integration times smaller than the time
t' of the evolution operator, which corresponds to positive-energy states, we
integrate in the positive direction from the negative infinity, and correspond-
ingly for integration times larger than ¢, which corresponds to negative-energy
states, we integrate in the negative direction from the positive infinity. With
this operator, positive- and negative-energy states can be handled in analogous
ways.

Generally, the evolution operator (gg%%s a two-times operator, with an initial
as well as giﬁllal time. However, in perturbation theory, using the adiabatic
damping (g%,—% is convenient to set the initial time ¢y = —oo, which directly
leads to a perturbation expansion starting from an unperturbed state. We
shall normally apply that in the following.

E1PropFieldCoord 2Cov
Using the relation (T94), we can replace the square brackets in ( BU? ) by space

o4



Fig. 15. The one-time evolution operator for single-photon exchange between the
electrons, including forward and backward time evolution, represented by three
time-ordered (Goldstone) diagrams (top) and a single Feynman diagram (bottom).
The wavy line represents the photon propagator, the open, solid lines the elec-
tron-field operator and the straight line between dots the electron propagator. The
subscript of the electron field operators indicates positive- and negative-energy part,

respectively. Fig:CovEvOp

integration over the electron propagators, yielding

U2 (¢, —o0) = —%//d?’ ' Bt Ot () (o) / d'z, dzy
X iSF(QC/prl)iSF(x,zaxz)il($2,$1>¢($2)¢(1‘1)e V(lial i) (208) U2Cov3

with 2} = (¢, @}). (Note that z} and g5 have the common time ?.) In analogy
with the single-photon exchange (H??) the 'matrix elements’ become

(rs| U (¢, —o0 // B! By ot ()l () // Atz d*es

X 1Sp (2, z1) iSF(xQ, xg) I (xg, 1) o(x1) Pp(2) € —(tal+t2])

= —//dt1 dts <7"3

a:'lw’2><a:’1:c’2‘1SF(x’l, x1) 1Sp(2h, x2) il (29, 21) ‘w1w2><w1w2‘ab>

« eit/(er—&-es) e i1€a—it2ey 6—7(|151H‘|152|)7 (209) U2Cov4

where we have explicitly shown the coordinates for the bra (rs| and the ket

|ab).

2Cov4 Fig:CovEvOp
The result (BUQO) \is illustrated by the bottom diagram in Fig. 1. og 11\{ egral
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SingPhotAlt

. . . [SingPhotEv
is evaluated in Appendix [A.T; an e result becomes

(rs [UELE, ~o0)at) = (rsfV o) T | 1
Vig.q) = /dk f(k) [q - (kl_ o t (kl_ iv)J’ (211)

where (A), = (A)san(e,) and f(k) is given by (P72t
F(k) = —475“2 (1— - ) sin(kr.). (212)

When the final state |rs) lies in th r@te} space, the contribution to the
effective interaction becomes, using ( lglii,

(rs|Hg|ab) = (rs|V (q, q)|ab). (213)

We can now compare the result above with the S-matrix result obtained in
the previoug chapter. When |rs) has ﬁ%?ns%,%lgﬁ%%rgy as |ab), this agrees with
the result (8] & e the potential (211 Frediices to

2k dk f(k
Vg, —q) = / qQ_szJ(rl),y = ‘/;2((1),

o , EqPotF _

Wi n]tSStlihe same as the S-matrix result (II R ). In the evolution-operator result
( , however, the initial and final states do not have to have the same energy,
which makes the formalism applicable also to the quasi-degeneracy problem,
using an extended model space.

5.1.1 Single-photon exchange. Alt.

t=t -4------ =

Fig. 16. The covariant evolution operator for single-photon exchange between the
electrons.

We shall now derive the expression for the single-photon exchange in an alter-
native way, using the one-photon covariant evolution-operator method, which

o6

U2Cov6

SingPhotInt

fk

EffIntSP

Fig:SingPhotAl




c: TwoPhoton

will be useful in demonstrating more clearly the analogy with the Green’s-
function method to be discussed later.

. U2Cov4 Flg SingPhotAlt
The matrix element ( 1s with the notations in Fig. [I6

<T3’Ué2o)v(t’7 — )‘ab / dty dty <7‘s 1Sp(2], 21)

ab> olt'(ertes) g—itica—itaey o —v(|t1|+t2])

X ISF(ZL'/Q, ZEQ) iI(ZL‘Q, ZEl)

. (ro| 7))
:1// dty dt (w3 —&p + i) (wa — &5 +i75)

> eit’(ar+as—w3—w4) —it1(eqa—2—w3) e—it2(€b+z—w4)

e e (rllt]) (214)

integrated over z and all the w’s. In analogy with the previous case, the time
integrations yield the delta factors d(e, — 2z — w3) and (e + 2 — wy), and
integrations over z to d(e, + &, — w3 — wy). Integrations over wy then yield

<rs’Ug))V oo)’ab>
dws <rs’[(5a - wg)‘ab>
21 (w3 — & + 17 ) (60 + &b — w3 — €5 +175)

CovInt
This is equivalent to the integral ( % 3) with hY
Rewriting the denominators in analogy with bQ?ﬂ

=i

e iWlard), (215)

}_}e %ubstl‘rsutl

ﬁ
in oﬁzI
, we obtain

—it' (g+4')
S
d 1 1
X / 2%3 <rs\l(sa - ws)\ab> [wg S —— L —— i%]. (216)

This can be compared with the phantom-particle equation (IV.22) in

t2
contribution to the effective Hamiltonian is then obtained by means of ( 7n
which yields
dw 1 1
HY =i [ 52 (rsf1(ea - b[ }
off =1 21 <T8’ (€a W3)‘CL > w3 — & + 17, +€a—|—€b—w3—€s+ifys
(217)

HeffGnH2
This is identical to the result (bUQE, obtained below with the nonhermitian
form of the effective Hamiltonian in the Green’s-function method.

5.2 Nonradiative two-photon exchange

The QED effects can be separated into two categories, which we refer to as
nonradiative and radiative effects. The radiative effects are characterized by

57

U2Cov4A

U2Cov4A1l

U2Cov4A2

SingPhotEffInt




r S T4 a4 S
t=¢ -1 - t=t -f--—-- -
r S T 4 ) O
t u t4 AU
2% %% 1
a a4 4b

Fig. 17. The nonradiative two-photon exchange diagrams, the ladder diagram (left)
and the crossed-photon diagram (right).

having at least one self-energy or vacuum-polarization loop, while the nonra-
diative effects are free from such parts. The nonradiﬁ:tiive,lt“ygg—}%}%oton effect for

a two-electron system is of the type shown in Fig. [I7, the two-photon ladder
and the two-photon crossed diagram. The ladder diagram has a substantial
MBPT part in it. The crossed and the radiative diagrams have no MBPT
counterpart.

. . . . EvolOpEx
The fourth—orde% I(le%/l(_lea%tlon operator is according to the expansion (%?) Wl%ﬁ

the interaction (

i,/// t: d'zyd'zy ey dlay Tp (@T(m) eofA#ﬁ(m))él (W(x) ea”Aoz[J(x))S
x (d1(z) ea” A (x) ), (1 () ea“Am/?(x))J : (218)

Fig:TwoPhot
In order to form the two-photon exchange diagrams in Fig. H?gf_ﬂﬁ’la—dder’
and the ’crossed-photon’ diagrams — the contractions can be performed in
12 distinct ways, all leading to equivalent diagrams. The covariant evolution
operator f 26g§31adder diagram is then in analogy with the single-photon
exchange (E]XV

Uboe(t', =00 tataer = 3 [[ @y ' (2} 01 (a)) [ d'ay o isie(ah o)

X 1Sp(2y, 24) 1 (x4, 3) / dty Aty iSp(xs, 21) iSp(xy, 22) 1 (29, 21) V(1) (22

it,(5r+5s) e—itlea—itzéb e—’Y(‘tl ‘+|t2‘+|t3|+|t4|) . (219)

X e

The 7matri)j28§elgﬁu%%tt’ then becomes after identification with the second-quantized

expansion (

<7’s ‘Ugé)v(t', —oo)‘ ab> = <rs // d*zs d*z, 1S (2}, 23) 1Sp(2), 24) 11 (24, T3)

X / dtl dtg iSF(.Z'g, 1’1) iSF(fL’4, .1'2) i[(l’g, $1)‘ab>

oy . 3
w eit (Ertes) g—itica—itzes ’Y(|t1|+|t2|+|t3|+\t4|)7 (220)

o8

Fig:TwoPhot
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sec:SeplLadd

= (rs|V(g —p.d =) [tw) (tu| V(p, ')

and similarly for the crossed diagram.

5.2.1 Separable ladder diagram

r S
t=t -¥---——--1 - - T s t U
r Z, S t: t/ N [~ — T T T T T T 77 - — t = O
3 .................. 4 r S t U
- X
¢ P U Yo% 2% %" 2% 2% %"
a b
P P

Fig. 18. Graphical representation of the reducible two-photon-photon ladder dia-
gram and the corresponding counterterm. The dotted line represents a time with
no uncontracted photon, i.e., a time after the first photon has been absorbed and
before the second has been created.

We consider first the two-photon ladder diagram. Here, we distinguish between
two situations, whether the two photons overlap with each other in time or
not. If the photons do not overlap in time, we refer to the diagram as being
separable, and in the opposite case as being nonseparable.

The S%@%ratlﬂle two-photon ladder is illustrated by the leftmost fha i
Fig I8 The ﬁel%—theoretlcal evaluation is given in the Appendix [A.2 %% i;i;,

assuming all states to be positive energy states,
(4)
<TS ’UCOV t —OO)’ CLb>SepLadder - <’I"S
et (a+q)

A+t

2Cov@SingPhotInt
where V(q, ¢') is the effective one-photon interaction BI(H EZI l i [he %&) resy

Vig+7p',d +p) ‘tU> <tU‘ Vp,p)

ab>

(221)

sponding contribution to the effective interaction then becomes, using (

s\V(g+p,qd + p)’tU> <t“’ Vp,p')
p+p

ab>sep = <T ab> . (222)

<TS’Heﬁ‘

When the diagram is reducible, i.e., sepaﬁ?blﬁ d\év%'th 2‘che intermediate state in

the model space, there is a counterterm ( U P,

ab> = <7“S‘U(2)'tu> <tu‘U(2)‘ab>

<T3 ’ UCounter

Y I
e~ it'(g+q' —p—p)

) TN

(223)
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:NonSepLadd

Folded
Using the notations of (T47),

Ein:€a+5b> Eout =& + €5, AE:p+p/:Ein_5t_5u;
Sepladder
we can express the separable ladder (}'ZZI ) diagram as

<TS ‘U((ji)v (tl’ —OO>‘ CLb>SepLadder -

e_it/ (Ein _Eout)

) (o Bon) AF

<rs’V2 (Ein)

tu> <tu‘ V(p,p')

(224)

and the counterterm as

<TS’UCounter ab> = <rs’V2(Ein — AFE ‘tu> <tu’ Vi(p,p') ab>
it/ (Bin—AE—-Eou)

“ (Bw — AE — Egu) AE’ (225)

where Vo(X) = V(X — &, —eu, Xz fpr 5t
interaction then becomes, using ( :

). The contribution to the effective

<rs’V2 (Ein)

w) — (rs|\Va(EBy, — AE) [tu
SR T TE P

ab). (226)
The leading term is here given by the energy derivative of the interaction,
0

(i), b el

which demonstrates that the counterterm removes the (quasi)degeneracy of
the reducible ladder diagram. This result is quite analogous to the eXﬁg?on

ab>, (227)

for the second-order diagram, derived with time-dependent MBE];II;T( A
more detailed comparison with MBPT will be made in Chapter .

5.2.2  Nonseparable ladder diagram

. . . . |sec:timB8KdnSepA2
The nonseparable ladder diagram is evaluated in Appendix ETETIQQET%

the result becomes, assuming only positive-energy states are involved,

<TS’HQH‘

abY o = / / AK'dk (rs|f (k') [tu) (bul £ (k) ]ab) x
1 1
[(q +p —K)qg—k—FK)p—Fk) " (@ +p+KE)d+Ek+E)Y +E)]

(228)
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5.8 FElectron self-energy

sec:CovSE

s

Next, we consider the radiative effects and start with the single-electron eff cts.. g
treated also in the previous chapter with the S-matrix formulation, section h.B.

sec:SE

T4 Ta

[Nl
-

Fig. 19. The covariant-evolution-operator diagrams representing the first-order elec-

tron self-energy and vacuum polarization. Fig:LSEv

The first-order radiative effects are illustrated in Fig. i gﬂrs the S-matrix
%rgrr%%gon. The corresponding evolution-operator diagram are shown in Fig.

[ere, we shall evaluate the electron self- 53y 4diagram as an illustration.
In analogy with the single-photon exchange ?%gme matrix element becomes

(o, —o0)|a) = - [ d'a} ()

X / d4fL'2 d4l‘1 151?(1'/2, {L'z) i[(l’g, IL’l) ISF (Ig, [I)l) gba(l‘l) 6_7(|t1|+|t2|). (229) SE1

. . ElPropCoord
Using the Fourier transform of the electron propagator (II87 % and of the inter-
action (II69), this yields

<r’U (¢ —oo)‘a> = 1//dw2 oy rde (tri1(z)|at)
SR 21 21 J 27 (wo — & +1in,) (w1 — & + )
x // dtQ dtz e—it’(wz—sT) 6—it2(u.11—w2+2) e—itl(aa—wl—z) e—’y(‘tl‘-‘r‘tQ‘). (230) SE2

SelfEn
Using the definition of the self-energy operator (bUE{,—fhe time and w integra-
'{)nsp%qc]ﬁivin analogy with the single-photon exchange, treated in Appendix

HORs
<T‘U5E(tl, —oo)‘a> =
e Weaertiv)  dy (rt|1(2)|ta) B e~ it'(ca—ertive)

ca—rtivy J 2mea—cr— 2417 Ea—Er+ i

i

a). (231) | sE3

<r‘2(5a)
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c: ScrSEEvOp

EffInt2
This leads to the contribution to the effective Hamiltonian, using (ISU;;n
(r| HG |a) = (r[S(ea)|a). (232)

SEShift
The result is the same as in the S-matrix formulation (blm, when ¢, = g,.
The present result, however, is valid also when the initial and final energies

are different. When needed, vEe shgll assume that the self-energy expressions
. sec.henorm

are renormalized (see section

5.4 Two-electron radiative effects

41 - o Nes

Fig. 20. The two-electron radiative effects in lowest order. The first two diagrams
represent the two-electron self-energy (screened self-energy and vertex modification)
and the last two represent the two-electron vacuum polarization (screened vacuum
polarization and the photon self-energy).

The covariant-evolution-operator dlagrarrgifo:rT%%El%\gﬁ—electron radiative ef-

fects in lowest order are depicted in Fig. 20. Here, we shall treat the first of
these diagrams, the screened self-energy (leftmost diagram) in some detail.

5.4.1 Screened self-energy

;Flhe: gg}/gﬁiant evoh_1tion operator for the screene f&%‘(;ﬁlergy, depicted in Fig.
bl, 1s 1n analogy with the two-photon exchange (

<’I°S’U((;gv : oo)’ab> = // dty dty <TS

. . . s/ _. _. —
X1Sp (23, 21) 1SF (25, 72) 1I(x2,x1))ab> ol (ertes) g—itiza—itaey o=y (|ta|+tal+ts|+[ta])

El1Prop0
Introducing the electron propagators (I92§, %EIS becomes after time integra-
tions

<TS’ Cov(t', —oo)‘ab> =

ws Wy ws r|X(ws)[t) (ts|I(z)]ab
i e (dsd el
X

+in, ) (ws — ¢ + ine) (wa — €5 + in)
e—1t (w3+wg—er—es) 5(&1 — 2 — w5) 5(81, +z— W4) 5(w5 — w3> (234)
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Fig:TwoElRad

/ d4$3 d4fL‘4 ISF(IZUIA) iSF(ZL‘4,ZE3) i[(l’4,[l§'3)

(233) ScrSE1

ScrSEEv0p2
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Fig. 21. The covariant-evolution-operator diagram representing the screened self-en-
ergy. (There is also a hermitian adjoint diagram, which is not necessarily identical
in the nonhermitian formulation we use.)

and after integration over the w’s

<r5‘ éi)vt —oo)’ab> =

dz (r[S(ea— 2)|t) (ts]1(2)|ab) o
Zﬂq—z+w»@—z+mmy+z+m@et”ﬂ) (235)

with ¢ = ¢, —¢,, p=¢, — &, ¢ = g, — €,. Rewriting two of the denominators
as before, leads to

it’ (q+q")
<TS’Ué?v(t/, —oo)‘ab> =i (Eq )
T YR ST R
2m p—z+in q—z+iy ¢ +z+17

EffInt2
The contribution to the effective Hamiltonian is then, using (ISU%,

(rs|H|ab) = /dz< r[Bea = 2)t) (ts]1()]|ab) { Lo, ]

2m p—z+in q—z+iyn ¢ +z+17

_ // dz d2/ ru’[(z’)‘ut> <ts‘](z)‘ab> [ 1 N 1 ] (237)

o 21 (P —z— 2 +in)(p—z+im) la—z+in @ +2+iv

Fig:ScrSE

ScrSEEv0p3

ScrSEEvOp1

‘ . . SelfEn
with p” = ¢, — &, and with the expression <WI§$ BG]E energy Operﬁ%ﬁ&

The integral is evaluated in the Appendix [A.3 in the beynman gauge (
assuming only positive-energy states are involved, which yields
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(sl HF|ab) = [[ Akak’ (rul f(K)lut) (] (k) Jab)
x{ 1 { 1 i 1 }
W' +d=K)p+d) 'p—k+iy ¢ —k+iy
1 1 1
+(p”—k:—k:’+i7)(p—k:+i7) [p”+q’—k’+217+q—k+17

]}4%&

The first term corresponds to the separable part, where the photons do not

overlap in time, and the second term to the nonsiggfj%ﬁéﬁggrt. The separable

part can also be expressed, using the expression (

ts|f(k)|ab) 1 1
HP|ab)se, = (r|S(eatq tl/dk< + .
(rsHF Jab)sop = (rIS(entd )1t [ k™=
(239)
Reducible part
r s
RIS T & P
rle ta L S
4 -t - t=0
t RWs W s
kj/ SNAu EQS X k
22 %% V)
3 13 = vl b
tR¢<L
P P

Fig. 22. The counterterm for the screened self-energy in the covariant evolution-op-
erator method).

S ES
The separable part of the screened self-energy (2ic3r9§ has a (quasi)singularity
when A =p+¢ =e,+e,—e;—¢ 54 .drle_“]l%}i{s is eliminated by the counterterm
in the reduced evolution operator (
UWp=uWp_u@py?@p, (240)

Fig:Counter

The Counterg%% HS@PU ) P, illustrated in Fig. . s product of an electron

self energy ( and a single-photon exchange (

(rs|HE |ab) counter = (7S (1)t

1 1 1
x [ dk(t kb[ —+ } .
J Ak sl ab) |+ e |

(241)

The difference yields the reducible part or the model-space part of the effective
Hamiltonian
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Fourier

_ (Bl +A) = B(e)[t)
Red A

x /dk (ts] f (k)|ab)

(rs| Helab)
L1
p—k+iy ¢ —k+1iy

(242)

with A =p+ ¢ =¢e,+ ¢, — & — €,. In the limit of complete degeneracy, the
first factor becomes the derivative of the self-energy with respect to the energy
parameter

ScrMSCA

1

(rs R b = [ trIS@)0] [ ak sl 0o

wW=¢€¢

— + .
p—k+iy ¢ —k+iy

(243)

5.5 Fourier transform of the covariant evolution operator

The Fourier transform of the evolution operator U(t', —oo) with respect to the
time is

/ at’ e B 50). (244)
If U(t', —o0) is of the form
Ut',—o0) = F(E") e 1 E? (245)
then
U(E)=6(E — E')F(E"). (246)

A %rel¥, we define the Fourier transform of the reduced evolution operator

U(E) = / A’ B (1, —o0). (247)
EffInt3
It follows from the form ( T at the energy-dependent effective interaction

is related to the Fourier transform of the reduced evolution operator by

s = [ EABT(E). (248)

U2Cov6

The Fourier transform of the single-photon matrix element ( VIS

rs|\V(q,q')|ab
(ol at) = (5 - ) SLEOE o
EffIntFT
and (bZlS:I;fle]dS the effective interaction

<7’$‘Héﬁ ab> = <7’3‘V(q, q')’ab> (250)
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oTimesGreen

_  EffIntSP
in agreement with (213).

SeplLadder2

Applying the same rule to the separable two-photon matrix element ( :
yields the contribution to the effective interaction

<7’5‘Héﬁ

Va(Ein)

tu> <tu‘V 7))

ab>Ladder NG <7’5 ab> (251)

Counter?2
and when the diagram is reducible the counterterm (bQBi yields

<7“s’Héﬁ

1
%) comter = AE<””%E —AEWW><wh4nﬂ)d>. (252)
EffIntLadd | - TwoPhot
This agrees with the previous result (}‘ZZUﬁn—sauBsectlon S A—

Some appl'(sj%’gipﬁs ?Lf the covariant-evolution-operator technique are discussed
in chapter [7

6 The two-times Green’s-function formalism
6.1 General

We shall now consider the two-times Green’s-function method, mainly for the
purpose of making comparison with the covariant-evolution-operator method,
discussed in the previous chapter. For further details regarding the two-times
Green’s-f method the reaﬁe%bsi referred primarily to the recent review
article by I7 an to the thesis of

. . . . FW71
In field theory the single-particle Green’s function is usually defined (7, Eq.
7.1)1°

(0| T [dbws ()05 (0)) | 0n)

iG(x,xg) = , 253
(. 70) (Om| Om) (253)
. . . . TimeOrderin 2T
where T' is the Wick time-ordering operator ( an ; gire the elec-
tron field operators in the Heisenberg representation (B4). [0) is the lowest

eigenstate of the Fock-space Hamiltonian, H, in this representation — or the
"Heisenberg vacuum’ — which is time independent. This state satisfies the con-
dition

Yu(z) |0g) = 0. (254)

15 Often the Green’s function is defined usj %H = @LVO instead of TZJIT_I and some-
times without the imaginary unit; see e.g. (7, Eq. 6-1)
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In the integgetion picture (IP) the vacuum evolves in time according to the
definition (@25,

01(2)) = U1, 20) [01(Lo))- (255)
The "unpegiarbed” vacuum in the IP is |0) = [0(—00)), assuming an adiabatic
damping (Egi % is related to the Heisenberg vacuum by

|01) = |0:(¢ = 0)) = U(0, —0) [0). (256)

HPIP
The relation between operators in the HP and the IP is given in Eq. (

N

On(t) = e OreH' = U(0,4) O U(t,0), (257)

. Green . . .
and we can then transform the Green’s function (bSS ) to the interaction picture

VacIP

PertVac

HPIPU

<O‘U(oo, 0) T [U(0, )3 ()U (¢, 0)U (0, to) i (0)U (£, 0)] U (0, —oo)‘0>

iG(z,z0) =

<O‘U(oo, —oo)‘0>
(258)
which, using (We transformed into %ec. 8), h:a bo(% 3)
o (o {0 [ 15 a'e ()] )i o)} o) -

<0‘ T oxp [ — 1 /%, e Hi(€)] o)

. . . GreenIP
It can be shown that the denominator in the expression (b59i has the ef-
fect of re ving all unlinked (unconnected) diagrams, and the result can be
expressed (7, Eq. 9.5)

1G<x w0) = (ofr{exp [~ [~ aten(©)] b)) f0)

conn

_y n' / i, -[wd4mn<O’T[H’(as1)---H’(xn)@Z3( Ji (20)][0) . (260)

n=0

This leads to the expansion
iGo(z, xo) < ‘T wT(xo)]‘ >
iGh (2, 20) = —i<0‘ [ e T[H () ) (o) ‘0>
Gy (, 20) = —;<o‘ /_Z ', /_O; QT () H (1) D2 )] ‘o>

etc. (261)
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The n-particle Green’s function is defined in an analogous way

(0u|T [ () - dua(a,) Py (w10) -~ Vi (w00) | |0nr )
(0]0)

. / / /. I
G (2], 25+ 2,5 10, Tao -+ * Tno) =

Y

(262) nGreen

which leads to the expansion in the interaction picture

/ Atz - / d*z,
n= 0 n‘

><<0\T[ﬂ’(x1)---H'<xn)&H(x;)--w,,(x;)w(xm)-.-w(xno)”o> .(263) | nGreenIPLink

conn

. / / /.
IG($17I2"'%7$10,$20 xno

. . . o . . o
If we set all incoming times t;y = £y and all outgoing times t; = t/, w Slﬁaggﬁh&% Sho4.,SF94, ABPOO

two-times Green’s function, extensively discussed by Shabaev et al. (77777

6.2 The Fourier transform of the two-times Green’s function

sec:FTGF

G
Assuming the vacuum state is normalized, we have from the definition (bggein
iG(z, x0) <OH‘T[wH )zEIT{ (o ”0H>
= @(t - t() <0H‘¢H ¢H CL’() ’OH> @(to - t)<0H}77/A)IJ[I(I0) &H(I)‘0H> (264) GreenH
E1FieldHP
Considering t > tg, we have, from the definition (&34;,16

1G4 (2, o) <OH‘1/JH ) bl (2o ‘OH> <OH‘(eim1ﬁs(w)e’im> (eimozﬁg(wo)e’imo) 0 >
(265) GreenH+

(\%{e 1§1es<e:511:l gn%omplete set of positive-energy eigenstates of the Hamiltonian H

efween the field operators,

l?|n>::.E%|n>, (266) Eigenvalue

which yields the Lehmann representation
Gy (z,20) =) <OH eiﬁtv,@s(:z) ’n> e_iE"(t_t°)<n’@@§($o) e_im’OH>
=Y <OH ds(a

setting the energy of the vacuum to zero. We can now perform a Fourier
transform of me Green’s function, including the adiabatic damping e™77 (see

section %.B(i vielding (7 =¢ —to > 0)

Gy(x,zo, F / dTelETG (x,xo, T Z<

n

ﬂn> ~iBn(t=to) < ‘¢g $0‘0H> (267) Lehmann

Ouls(@)|n) {n]5(o) 0n)
E—E,+1iy ’
(268) GreenFT
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using [ttt = N (269)
0 o+ 1y

We then see that the poles of the Green’s function represent the true eigenval-

ues of the system ésgbgning no degeneracy, the eigenvalues can be obtained

from the formula E ?,a Fq.44)

E, =

$r, dE E G (x, @0, )

¢ dE G (x, 20, ) (270)

where the contour I',, encircles the pole in question (and no other). This for-

mula can be co ared }thh the corresponding formula for the covariant evo-
lution operator (E)ZISE

The eigenstates |n) in the eigenvalue equation (E%’%)%%ck states, and the
functions .

V(@) = (n[dd(2)|0n) (271)
are the corresponding wavefunctions in configuration space (in the Schrédinger
representation). {Formally, these functions can be expressed as eigenfunctions
of a hypothetical Hamiltonian in configuration space (H) that corresponds to
the Fock-space Hamiltonian (H),

H,(x) = E, V()] (272)
G FT
We can then express the Fourier transform (bGrSeei of the Green’s function

U, () W (20)

: 273
E—-FE,+iy (273)

Gi(z, @0, E) =

Note, that this is the ezact single-particle Green’s function (positive-energy or
retayded, (g)art) since the states are eigenstates E% the exact Hamiltonian (c.t.

oprour "/’
( 86; ). With no degeneracy, the numerator in ( en becomes

dEE G (z, 20, E) = U, () E, V] () (274)

I

with no sumation over n, and since the denominator is then ¥, (x) Ui (x),
the result (%7(); tollows directly.

GreenFT2
The retarded Green’s function (273) can also be written

2
E— E%—l’y7 (275)

Gi(z, o, B Z

n

which is the Co%rﬂgnatg Feprgsentation of a (retarded) ’Green’s-function oper-
ator’ (c.f. Eq. (I88))
W) (W

G, (E) = an PEin (276)
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Degen

The single-particle Green’s function depends on time through a si (‘g&e at&Irlne
variable 7 = t — 1y, as follows from the Lehmann representation (@6’731—The
procedure above can easily be generalized to many particles, if we set all final
times equal to t and all initial times equal to tg.

6.3 Extended model space. (Quasi)degeneracy

hab02 h93,5Sh9%4
Essentially following Shabaev 5?, Sec. 2.5.8), ;7 7) we shall now extend the
treatment of the two-times-Green’s-function formalism to the case of degen-

eracy or quasi-degeneracy in the model space by means of an extended model
space, in close analogy with the treatment of éec

dependent M Slejgl‘: ugrtthe previous sections (sect. 2.
As in section 2.2 we introduce a model space (D) of dlmenswnahty d, Wthh
contains the model states of all degenerate or quasi-degenerate states. The
model space is spanned by eigenfunctions of the unperturbed Hamiltonian

G 0
The matrix of the retarded Green’s-function operator (2r?6ee) A this basis is
e (@[ 0n) (W)
A A Z\IJn an]
O,|GL(E)|P;) = (¢ E)j) =) ——7——. 27
@G E)D) = (G (B)) = Y g (278)

(i|W,) is the projection of the state |¥,) onto the model-space state |i), and

the entire projection,
d

PIW,) =Y [i)(i[¥a) = [T7), (279)

i=1
is the zeroth-order or model‘lfat% corresponding to the target state |¥,) in
intermediate normalization ([12)

We now construct the P matrix with the elements

1 jg B (IGL(B)) = S0 (Wali) = DG 0)

= GiIPL) = 5
(280)

and the analogous K matrix

Ky = (iIK]j) =

L AR B (IG(B)) = S0 B ,7) = S0 E,(0)).  (281)

21 Jrp D D

Here, the integration is performed around all poles corresponding to the target
states, and the summations are then restricted to these states. P, K are the

70

BasisFcnsl1

Gmatrix

ModelFcn

Pmatrix

Kmatrix




corresponding operators

P=3 1000, K= [0E, (Y. (282)
D D

The model states |¥2) are not necessarily orthonormal. For that reason we
introduce a ’dual set’ of states in the model space, |U?), defined by

(U0 00) = (T3] L) = . (283)
It then follows that
PIWS) = |¥7) and PHEY) = 7). (284)
With these notations
Pl =310l (285)
D

. Heff
and the standard projection operator for the model space (IB% becomes

P=Y" [0 (B0 = S |00y (00 (286)
D D
It also follows that
KPP0 = E,|99), (287)
which implies that
KP~' =Y |00 E, (V) (288)
D

is an effective Hamiltonian, which operates within the model space and gener-
ates the exact energies of the corresponding target states. This is comple
equivalent to the effective Hamiltonian introduced in the MBPT section (II3).
In both cases the operator is nonhermitian, and the eige states. g el
states, which are in general nonorthogonal.Eé%%}}n%VH by [777), 1777, 1t 1S pos-

sible to express the effective Hamiltonian ( in a hermitian form

(P12kp1/2) [p1/200) = B, [P i2u) (280)

This is equivalent to the her gémﬁgrén of the MBPT effective Hamiltonian
introduced by des Cloizeaux % ; 7).

The Iygvo.—gill{lleghgggﬁn’s function for sin I%Pgleontf)lgt {aﬁi{change, represented in
Fig. bS, 1S ol%%amea from the expansion (563), considering only relevant con-

tractions for this case,
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t=t -4------1 - —
W3R r SRWy
1 sy 2

w1 — Eha bwa — €p

N — =

Fig. 23. The two-times Green’s function for single-photon exchange between the
electrons.

iG(zﬁ,fEé;xm,xzo) =

= 4 [ aerdtey (O[T [F (o) (w2) d(at )i (a) 0 (210)8 (220)]0)

— 4[] @t dtaaiSe(at, 1) iSr(why 22 22, 20) iSe(1, 1) 102, 220), (290

using (%g)ﬁ%?(x) = —edi(x) a“A,ﬂ,&(x) and (%69) I(z2,21) = ea! Dpy, (22 —

x1) ealy. We shall now evaluate this expression in some detail.

. ElPropCoord
Using the form (I87§ 021‘ the electron propagator, we have

1 (@) (rf1) (@hls) (sls)
G / /. _ _7/ d4 d4 1 2 T
(@, 25; T10, T20) 5 T1d T2 ws— £ + 1T Wa— €+ 0, (22, @1, 2)

« <w1|a‘> <a’w10> <w2‘b> <b‘w20> e—iwg,(t/—tl) e—iUJ4(t/—t2) e—iz(tg—tl) e—iuq(tl—to) e—iwg(tg—to) (291)

W) — Eq + 11, Wy — €y + 1

integrated also over z and the w’s. The time integra '%E%aof t, and ty, per-
formed over all times, yield according to the formula ( he factors §(w; —
z —ws) and 0(wy + 2 — wy), respectively, and the integration over z leads to
d(w1 +ws — w3 —wy). As in the covariant-evolution-operator method, the adia-

batic damping can here be performed individua Bg{%g each vertex, and we can
therefore directly replace the time integrations ( y Dirac delta functions.

The Fourier transform of G (), x%; 210, £20) with respect to the times ¢’ and ¢,
is

1
(27)?
= 0(E' — w3 —ws) 0(F —wy —wy) G(E, E').

o
/ dt’ dtg ™" e 7 G (o), 4y 210, w20)

Integrations over wy and wy lead to the delta function §(E" — E), which can
be eliminated together with the (l:%% qunction d(w1 + we — wg — wy) above,
yielding the matrix element (c.f.
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<7"S‘G’(E)’ab> = _//(;:rl d;f'
<r3’](w1 —wg)‘ab>
(ws —er +17) (B —ws —es +17s) (w1 — €0 +17a) (B — w1 — &5 + 1)

EffHamHerm
The effective Hamiltonian is given by (bSQi

X

.(292) GF

Hyg =P V2P (293a) HeffG
1
K= — § EdEG(E) (203b) | «
271 Jr
1
P= 7? dEG(E), (293¢) | pa

where the integration I' should be performed in the positive direction and
enclose the unperturbed energies of the initial (EL = &, + &) and final states

(E2,, = &, +€5) but no other unperturbed energies.

The denominators in (292) can be rewritten as

1 1 1
: + : ; .
l(W3—8r+17T) (E—W3—€s+175)] E — EQ, +iv, +1iv,
1 1 1
X _ + : 0 )
(W —eat+17) (E—wi—ep+iw)| E— E) +iv, +im

(294) Phantom

BO1
which corresponds to the phantgm-particle diagrams, discussed by LeBigot ; ?7,
Eq. IV.24). In the K integral (293b) the poles E and E°, contribute. The
former yields

1 . 1 Ei,
(UJ3 — &+ 1’77‘) (E& — w3 — &+ 1/75) Egl - Egut

1 1
X - + : )
[(wl —eat+17.) (€ —wi+ l%)]

where the last bracket leadsfo the delta function —2mid(w; — €,) (indicated
; : ig:SingPho .
by wi — ¢, in Fig. . oimilarly, the other pole yields
E%. 1 N 1
Egut - E& (wl — &t i7a) (Ec?ut —w =&t i'yb) '

Integrating the first contribution over w; and the second over ws, gives the
matrix elements

—2mid(ws — &)

(rs]/@\a@ =
[ dws E9 [ 1 1 ]
i | — {rs|l(e, —w3)|ab m - + -
/ 27 (rs|I(ca 3)] ab) EO —ES. |(ws—er+iy)  (BEY —ws—es+1ivs)
dwn E? 1 1
+i | — (rs|I(wy —e,)| ab out [ - + - ] , (295 Kelem
/ o (7l —er)lab) EQy — E) (w1 —cat+iva) (EQy —wi—ep+im) (295)
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Nonherm

P00
which is identical to the Eq. (25) in % 5

In a similar way we obtain the P integral (293c)

(rs]ﬁ]a@ =
. [ dws 1 1 1
G938 s [ I(ey — b : :

1/Q2W (rs|I(eq — w3)| ab) B0~ B0 LW3—€T+17H<+(Eﬁ——W3—€s+479]

. [ dwy 1 1 1
+1/ 21 (rs 1w = er)fab) Egue — B} [(wl — €a +17a) " (B — w1 — e+ i%)] » (296) pelen

P00 HeffG
which is the same as Eq. (26) in % ) Expanding (29e3ai yields in first order
1 1
HY = kO - —pO© _ ZxgOpH) 297 HeffG1
4 Lo Lopo) 201 [ e
where ICZ(]Q) = §;; E?. This yields the contribution to the matrix element
(1) 1) Lo 0 (1)
(rs|Hegllab) = (rs|KMab) — o (B, + EQy.) (rs[P]ab)
du)g 1 1

== | — I(gq — b . .

2J) 27 (rs [1(a = ws)] ab) Lw3—5;+ﬂvﬁ_+(Eﬁ——w3—63+1791

dwl 1 1

= I(w, —¢,)| ab : — . (298 Hef£G2

1 [ st —elat) [t ] o) [

Interact
The photon interaction (z) has in the Feynman gauge the form (I77)

2kf e’al gy
dk ; k)= ————H~ k .
/ k’Z + 177 f( ) 472 T12 Sln( TQI)

Assuming r and s to be positive-energy states, we integrate over ws in the
negative half plane (poles at ¢, — iy and ¢, + k — in), which gives

2k i 1 L 1
P -k +iy q+k+iy ¢ —k+iy

%/dk (rs | (k)| ab) [
:%/dk (rs|f(k)| ab) lq_l — + — 1 (299a)

k+iy ¢ —k+1iy

where ¢ = ¢, — ¢, and ¢ = g, — &,. Similarly for w;

1 1
ksl || e

This gives the final result

2k 2k
. 1, (300)
8

(rs|H |ab) = & [k (rs | £ (k)] ab) lq2—k2+w+q'2—k2+1
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sec:ScrSEGF

P00
which agrees with the result (29) of %i This is identical to the Mittleman
potential 7).

EffHamG
If we instead use th%%gf)’g&ermitmn form of the effective Hamiltonian ( )

we have in place of (

HY = KO — KOPO = (rs|HY ab) = (rs|CWV]ab) — Eqgy (rs|PD|ab),

€

(301) HeffGnH
which becomes
. dw 1 1
(rs|HY|ab) = 1/ 273 (rs|I(eq — ws)| ab) l(m psurrson BV —— w} .
(302) HeffGnH2
This is identical to the result of the evolution-operator method with the sub-
stitutions ws — ¢, — 2z and Eion =g, + ¢ and leads with t tF Y 1 gadige
to the result of the covariant evolution-operator method (%EB;, E%é‘, where
also a nonhermitian effective Hamiltonian is used,
(rs|H'Y|ab) = /dk: (rs|f(k)|ab) l ! + ! 1 : (303) HeffGnH3
© q—k+iv ¢ —k+iy

6.4 Screened self-enerqgy

6.4.1 Irreducible part

t=¢t -4------1 - —

Ws3Rr

> SR Wy

3
ws4
z

I %% %% WV
W1 — &g a bwa — &p
t=ty - -

Fig. 24. The two-times Green’s-function diagram representing the screened self-en-

ergy.

Fig:ScrSEGF

As a second example we consider tlk}g tgrgfgiggﬁs Green’s function for the

screened self-energy, depicted in Fig. bzl,
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G(Jfl,JJQ,LUl(),IQO //d T d4$2 / d T3 d4£L’4

X 1Sk (), x4, wg)lsF(a:2, o, wy)iX (@, T3, ws)1SF (3, T1, ws )il (T2, x4, 2)
X 1Sp(@1, T 10, w1 )1SF (22, T20, wa)

% e—it'(w3+w4) e—it4(ws_w3) e_itl (w1 —2z—ws) e_itQ(w2+Z_w4) eito(wl-‘er) (304) ScrSEGF

(leaving out, the w and z integrations). Here, 3 represents the self-energy
operator ( . After time integrations this becomes

/ /
P & / Pas Pz, () |r)(r|ey) (5]s)(s]2)
G(%;xz,l’w,@o // T1d T2 T3 wg—gr—l-i%m—es—l—i%
(x3t) (t]z1)

(z1]a)(alz10) (z2]D) (b]20)

X Y(xy, 3, W — I(z - :
( s 5) Ws — &+ 1 ( )w1—€a+1’yaw2—€b+1”yb
x e i watw) gito@itwa) () — 5 — e) B(wy + 2 — wy) O(ws —ws).  (305)
Integration over z and ws gives as before d(w; + wy — w3 — wy). e Fourier

transform leads in the same way as the single-photon exchange ( bUQ to

_ [ dwr dws
<7“$‘G(E)’ab>—/ 5 o

<T‘E(w3)‘t> <ts‘I(w1 — wg)‘ab>

X : : : ; —, (306
(wg —er +i7)(F —w3 —es +17s) (w3 — &1 + i) (w1 — €a +17a) (B — w1 — €p + i) (306)
IS01 eB0O1
which is equivalent to the results of : ?) and : 7. Eq. IV.9). The treatment is
then quite anal to the single-photon exchange, and we obtain instead of
the expression E%gfs%
(rs|H)|ab) =
_i/du)g <T‘E ’t> (ts|I(gq — w3)| ab) + 1
2 27 w3 — & + iy (wg —&p + i) (Eg1 — w3 — €5 +17s)
i d r|X(ws)|t) (ts|I (w1 — )| ab) 1
_1/w1<‘w3’>5| w1 a - o)
2 s w3 — & + iy (Wi —€q +17a)  (Egy — w1 — &b+ i)
Using instead the nonhermitian foguy of the effective Hamiltonian, leads in
analogy with single-photon result ( 0 the simpler expression
(rs|H'Y|ab) =
r|X(ws)|t) (ts|I(eq — b
:_I/dw3<‘ w3{> s|I(eq — w3)| ab) 1 | - 1 ‘ (308)
2T w3 — & + iy (w3 —er +iv) (B —ws —es +1ivs)

ScrSEEvOpl
This is identical to the evolution-operator result (bB? i, if we make the substitu-
tion ws — &, — z. This expression contains a (quasi)singularity, when the inter-

mediate state is (quasi)degenerate with the initial one, EY = ¢, + ¢, ~ &, +¢&;.

In the ev uf '8&(}){ erator method this singularity is eliminated by the coun-
terterm ( , and in the Green’s-function method it will be eliminated by a

similar counterterm, as will be shown below.
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sec:Comp

6.4.2 Reducible part

t=t -¢------- -
r t=t -¢4------1 -
4 tRW3 Wik S
z
>4 | B X 1B 2% %% P
3 ap L b
t t=ty -$------ | _
t=t, 4o |

Fig. 25. TP% comnterterm for the screened self-energy in the Green’s-function method
(c.f. Fig. b? §

In order to evaluate the reducible part of the screened self-energy diagram,
i.e., when the intermediate state lies in the model space, one has t.IL.)SS(imEIe%eOrl
fﬂso prcglu C:téo%fn @gsrtdprdgr contributions to t}‘le‘ IC and 73 integral.s 77), ShorR g
in Fig. 25" The confribution to the nonhermitian effective Hamiltonian (

is — KO PO,

Pelem
From ( we have

Cfdw 1
<r3|73(1)|ab> = 1/2—71'3 (rs|I(gq — ws)| ab) EO _ EO

out

1 1
X - + :
[(Wg —er+iv)  (BY —ws—e,+ 1%)1

Fig:CounterGF

=) o (ga = b : . 309 CounterP
1/ o <7“S| (5 w3)|a> (wg—Er—i-l%)(E&—wg—ss—l—l'ys) ( ) ounter
and together with the self-energy IC part this yields
; dw ts|I(e, — w3)lab
<TS|HE(:f1f)|ab>Counter = 1<r|2(5t)|t> 3 < | ( 3)’ > ' .
21 (w3 — & +ive)(Ea + &b — w3 — €5 + i)
BchEnoﬂﬁg%Q CounterGF

This removes the singularity of the effective-interaction result (308).

6.5 General comparison between the Green’s-function and the evolution-operator
methods

We shall now compare the two methods for bound-state QED discussed above,
the two-times Green’s-function and the covariant-evolution-operator methods,
and we take the single-photon exchange between the electrons as an example.
As pointed out before, both these methods are, in principle, two-times meth-
ods, although in the covariant-evolution-operator method the initial time is

7



il |t

ft g -

o | 5

— | SUUNA b
Sr Sy

t=ty J-— 1 -

(2 | 1)

Fig. 26. The two-times Green’s function for single-photon exchange between the
electrons is represented by the diagram on the left, and the corresponding two-times
covariant evolution operator by the diagram on the right. Fig:SingPhotCo

ESW&“@?&&% Jo = —oo, which simplifies the handling considerably (Sect.

n order to make the comparison with the two-times Green’s-function
method more transparent, however, we shall use the original two-times form
also of the evolution-operator method.

”%}% e%\gc{htép}l%st Green’s-function expression for the single-photon exchange

1G(x, T; T10, Ta)
b [ teidtan (O[T [ R (02) 605 3) 61 010 (a20)] 0)

— —%/ d*zy d*wy iSp (2], 21) 1Sk (2, 12) il (12, 1) 1Sk (21, 210) 1Sk (2, T20) (311) GreenSingPhot

Fig:SingPhotComp
is represented by the first diagram in Fig. 26, This"we shall compare with the

corresponding two-times covariant-evolution skatar, which by a straightfor-
ward generalization of the single-time result ( 1S given by

Ucov(t’ to) = // Bt APty F () (2 / d*zy d*zy iSk (2], 1)

XISF(SCIZ, 132) i[(xg, 1 / d wlod SN ISF (.Tl, $10) iSF<LU2, x20>1p(3710>1/}(l’20) (312) U2TT

and represented by the second diagram in the figure. This comparison yields in
the present case the following relation between the two-times Green’s function
and the two-times covariant evolution operator

I

@ (¥ t9) = // B a3 // Baodan O ()P () Gz}, 2h; 210, 20) (@ 10)(20)

(313) Comp
—arelation that holds for any two-particle Green’s function/evolution operator
and can easily be generalized to the n-particle case.

It should be noted that the evolution operator is an operator, acting in the
Fock space, while the Green’s function is a function of the time and space
coordinates.
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It is now interesting to compare the two methods in some more detail. Starting
with the smgg Q?E)tﬁﬂ exchange in the GF method, we see that in the nonher-

ﬁ:la% case ( it is the pole E = EY in the 'phantom-particle’ expression
%91%55&1; contributes. The denominators, originating from the propagators
of the incoming lines, lead here to the delta factor §(w; —¢&,). In the evolution-
operator method, the initial time is set to tg — —oo and w; to g, from the
onset. We also see that the denominator E? — E9 . of K1 is eliminated in

the expression for the effective Hamiltonian, He(flf) =KW - gOpWm 1 ]
evolution-operator method the corresponding denominator is eliminated (2I / i

by means of the time derivative. The situation is similar for the screened self-

energy.

The observations above are quite general. The two-times Green’s-function and
covariant-evolution-operator methods are quite analogous. After time integra-
tions both expressions depend generally on the initial and final time (although
the initial time is in the latter method normally set to ty = —o0). In the GF
method a Fourier transform is performed and the effective Hamiltonian is con-
structed by integrations over the energy. In the evolution-operator method the
same expression is obtained by means of time derivation. In the GF method
with nonhermitian effective Hamiltonian the combined denominator from the
propagators of the outgoing lines is eliminated by the energy integration and in
the evolution-operator method by the time derivation. In the GF method the
enerqy integration has the effect that the energy parameters of the propaga-
tors are replaced by the orbital energies. In the (one-time) evolutipns %qemtor
method this is set from the onset.(C.f. Table IV.1 in the thesis of I?

Some applications qf éche two- -times-Green’s-function technique are briefly de-
scribed in chapt a7b5€0r 3fuu"ther information the reader is referred to the
review article by 173:5

7 Applications

The bound-state techniques described here can be applied to various problems
in QED. Here, we shall summarize some applications on stationary problems.

For dynamical problems, like photommz@&g&%%dﬂggs electron capture
(REC) we refer to the current literature (777
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7.1 Applications on hydrogenlike ions

7.1.1 Lamb shift

Pioneeri §5\g0]§jﬁn the problem of bound-state QED calculations were carried
out by [7) and ithin the framework of the S-matrix formulation. Later the
numerical technique was developed to a high degree o%%hﬁ é(‘ﬁijlggs%giy
for the first-order self-energy of hydrogenlike ions by 7777). This technique
was originally best suited for heay dgys, but a technique was later developed
and applied also to low-Z ions kﬁﬁ)iand this represents the most accurate
result at present for neutral hydrogen and singly ionized helium. Accurate
calculations of the first-order vacuum polarizatio hl%% ions, including the
Wichmann-Kroll term, have been performed by 7, ; ;

In order to reach a numerical accuracy for light elements that can match the
analytical approach (o — Za expansion) for light elements, it is necessary
to consider also the two-photon contributions. This is computationally quite
challenging and has only recently been possible to attack in a more compre-

hensive way. A numﬁﬁr1%f9§n%FP§(gole§eO%O%g?tgﬁzg%&latlons have appeared

during the last years (77777

sec:Hfs 7.1.2  Hyperfine structure and Zeeman effect

< < O o o

Fig. 27. The diagrams representing the lowest-order QED corrections to an addi-
tional perturbation like the hyperfine structure or Zeeman effect for hydrogenlike
ions. Fig:Hfs

The S-matrix formalism has been used also for accurate calculations for hy-

drogenlike ions of the effect of an ’external’ per &?ggg S}]}(esﬂ;g%hﬁggﬁnﬁwoo ASPO1 . YIS02
structure or the Zeeman effect ( a‘%omlﬁ & factor) : . l; . P ). The diagrams in
lowest order are depicted in Fig. b?

The hyperfine structure of some heavy hydrogenlike ions has been studied
with the SuperEBIT at Livermore and at GSI in Darmstadt. The QED effects
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are here of the order of 0.5% and clearly observable within the experimen-
tal accuracy. This effect, however, is normally overshadowed by the nuclear
effect. Therefore, comparison between theory and experiment is here mainly

used to ex%ﬁl‘% 11%8515]?&01& about the nucleus, particularly the nuclear mag-

netization [ 77).

The atomic g-factor has been measured with extreme precision for some light
hydrogenlike ions at the university of Mainz, and the agreement with the
theoretical predictions is very good. Here, the comparison between theory and
eXperHBﬁBB ,ﬁh@fﬂ}fé]é’gbe used to improve the atomic value of the electron
mass [(T7).

7.2 Applications on heliumlike ions

The nonradiative par {)f 'tll%qeolg%)fphoton interaction for the ground states of
helj ike ﬂ‘ BS(Fig' ‘ : as been eva‘lu ?Ld;"f%%ﬁﬁgﬁ S-matrix formulation
by [7) and I 6radlatlve effects (Fig. or the sapje systems have been
evaluated by 7], using the S-matrix formalism, and by [7) using the two-times
Green’s-function method. The results obtained are in good agree Bgvith the

experimental results obtained with the SuperEBIT at Livermore (7], although
the QED effects are barely detectable.

The nonradiative diagrams for the excited 1s2s states of hﬁéggil&%&?r’lisli%ge
also been evaluated by means of the S-matrix formulation [[77 ol as well as of
the 1s2p states, excluding the quasi-degenerate J = 1 states (7). Recently, the
covariant evolution-operator technique has been applied to the 1s2p states of
some lighter elements, including the quasi-degenerate J = 1 states, an Eé]& BAS02
results obtained agree well with the experimental fine-structure results % 77,
The screened-self-energy diagrams for these states of some heavier elements

have also been e §&feﬂeE6in the two-times Green’s-function technique by
E;E} and th

Indelicato et al, e vacuum-polarization screening corrections by

g
Yerokhin et al. : 7 ;

The experimental results for the fine structure of some heliumlike ions to-
gether with the theoretical 5 151})1;4% are given in Table 1. As discussed in the
Introduction, the results ofj?“?Tre obtained by means of relativistic MBPT

ig}é the QED corrections added in lowest order in o« — Z«, and the results of
P%Tvith nonrelativistic Hylleraas-type wavefunctj 1 Jgglrelativistic as well as
QED corrections to lowest order. The results of g %, E ; ) are obtained by means
of the covariant evolution-operator method to second order with higher-order
MBPT corrections added. Only the nonradiative QED parts are fully calcu-
lated and the remaining effects taken from the power expansion. Full QED
calculations are now under way.
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Table 1
The 1s2p fine-structure separations of some heliumlike ions.
Values for Z = 2,3 given in MHz and for Z > 9 in pH (1uH= 27.2 peV).

Z 3P 3P, SPy 3Py 3P,-3P
2 29616.9509(9) 2291.1759(10) Expt’l!
29616.9496(10) 2291.1736(11) Theory 2
3 155704.27(66) -62678.41(66) Expt’l?
155703.4(1,5) -62679.4(5) Drake *
9 701(10) 4364,517(6) Expt’l5
680 5050 4362(5) Drake *
690 5050 4364 Plante
690 5050 4364 Asén”
10 1371(7) 8458(2) Expt’l®
1361(6) 8455(6) 265880 Drake *
1370 8469 265860 Plante ¢
1370 8460 265880 Asén”
18 124960(30) Expt’l?
124810(60) Drake 4
124942 Plante 6
124940 Asén”

It can be seen from the comparison in the table that the difference between the
QED effects to leading order and the all-order result is hardly noticeable with
the present numerical accuracy. For argon there is a significant difference be-
tween the result of Drake and the other theoretical results, which is expected to
be due to the approximation of the relativistic effect in the method of Drake. It
would be a challenge to try to reproduce with the evolution-operator method
the accurate result for the separation 3P, —3 P, in heliumlike fluorine, which
would most likely test higher-order (in Za) QED corrections. It is presently
unclear if this accuracy can be reached with the present technique. The ex-
perimental accuracy obtained for single ionized lithium and, in particular, for
neutral helium, is definitely out of reach at present. An improved technique,
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which might be applicable in these cases, will be discussed in the next chapter.

7.8 Applications on lithiumlike ions

Lithiumlike ions can to a large extent be treated as a single-electron system
with nonCoulombic potential. Early calculations with this approach were per-

formed i %geglt@scixlzpslggte the Lamb shift of the 1s2p transitions of Li-like
; 777§, and th

uranium (77 %gilts were in excellent agreement with the accurate
experimental results of ; i More elaborate calculations, including the -

three-electron interactions, have now been performed particularly by 77,

8 Possibilities of merging of QED with MBPT

We have in the previous sections considered three different methods for bound-
state QED calculations, the S-matrix, the covariant-evolution-operator and
the two-times Green’s-function methods. The latter two methods have the
advantage compared to the S-matrix formulation that they can be used with
an extended model space and thereby be applicable also to a quasi-degenerate
situation. All three methods, however, have the shortcoming that in practice
electron correlation can only be evaluated to relatively low order. This limits
the accuracy, for instance, for simple systems with low nuclear charge, for
which the electron correlation is comparatively strong.

We know that in MBPT the elect ron ,c&%{ﬁl:a&é%n can be treated to essentially
all orders, as discussed in section ;.5.'In the present section we shall consider

the possibility of introducing some of these ideas into bound-state QED.

In principle, all electromagnetic interactions between electrons could be treated
entirely within the QED framework by considering one-, two-, three- ... photon
interactions. In practice, however, it is presently hardly possible to go beyond
two-photon interactions in any reasonably complete manner. For that reason,
it would be highly desirable to be able to supplement the QED calculations
to second order, say, with higher-order effects using MBPT methods. A sim-
ple and straightforward way that has been applied to heliumlike ions is to
add efh §§9%f EIAg&aﬁlA&is(})ggher orders from MBPT to the second-order QED
results : 777). In order to achieve higher accuracy, however, particularly for
very light elements, it is necessary to combine the two effects in a more com-
plete way, which would imply that the QED effects are evaluated by means of
correlated wavefunctions, rather than with simple hydrogenic ones.
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In the method developed by Drake, very accurate non-relativistic two-electron,
correlated wavefunctions are constructed, using the method of Hylleraas, where
the interelectronic distance 5 is explicitly used. The disadvantage with this
technique when applied to QED calculations is that the QED effects — as well
as relativistic effects — have to be evaluated analytically, using (the lowest-
order) analytical expressions. Such an approach is superior to other available
methods for very light elements, where electron correlation is relatively strong
and the QED effects quite small. For heavier elements, on the other hand,
the approach cannot compete with available numerical QED approaches. By
combining the numerical QED technique with the MBPT technique, as will
be outlined in the present section, it is expected that the QED effects can be
accurately evaluated by means of correlated wavefunctions, thus combining
the advantages of the two approaches.

The covariant-evolution-operator method is particularly suited as a basis for
the combined approach, because of its formal analogy with MBPT, as demon-
strated, for instance, in the two-photon case. This analogy remains also in
higher orders. One possibility could therefore be to restrict the full QED cal-
culations to the lowest orders and to evaluate the remaining (smaller) terms
by a combination of QED and (relativistic) MBPT. This can be done by mod-
ifying the coupled-cluster equations, particularly the pair equation, to include
also QED effects.

Below we shall first demonstrate the close analogy between the QED treated by
the covariant evolution-operator method and the traditional MBPT. Then we
shall see how this analogy can be used to derive two-electron or pair equations
to generate certain QED effects t §51,110§§§$5' Eventually, this will lead to the
complete Bethe-Salpeter equation %?ﬁmlly, we shall discuss some practical
schemes for generating combined QED-MBPT effects of high order.

8.1 Comparison of QED with MBPT

In standard MBPT the second-order contribution to the energy or the effective
interaction due to the electron-electron interaction, V', is

<7“S‘V‘tu> <tu’ V‘ab>
lt%e:Q NG : (314)

where the denominator is equal to the negative of the excitation energy of the
intermediate state, AE = ¢,+¢, —&; — &y, and the summation runs over states
in the complementary space (Q)). This can be compared with the contribution
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HeffSepLad
due to the separable two-photon diagram (bZZ%

(rs

Vig+7v',d +p) ‘tU> <tu
AFE

Vp,p')

ab>
+ MSC. (315)

[tu)eQ

where

N 1 1 ]

Vig.q) /dkf(k)[q—k+iv+q’—k+iv’ Seoladd
assuming only positive-energy states are involved. The first term in ( 1S
here very similar to the MBPT expression and represents the irreducible part
for which the intermediate state lies in the () space. Ths ggg%’ﬁ@@ represents
the Model-Space Contributions, introduced in section E33 [, i.e., contributions
due to the reducible part, for which the intermediate state lies in the model
space.

The lowest-order contributions to the effective interaction due to multi-photon
exchange then become

<7’3‘Héf1f)‘ab> = (rs|V (g, ¢')|ab)

Vp,p')

ab>

Vig+7p.d +0p) tU> <tu
AE

<r5‘Héf2f)}ab>: Z <TS
|tu)e@

+MSC + (rs|V|ab) (316)

Nonsep'
The difference from the corresponding MBPT results is here that the inter-
actions are time-dependent (retarded), which also leads to the appearance of
the model-space contribution (MSC) and the nonseparable part, represented
by the last two terms of the second equation. We shall now utilize this close
analogy between the QED and the MBPT results in order to indicate how the
schemes can be combined in a systematic fashion.

8.2 The Bethe-Salpeter equation

The pair equation gsié%‘; g5tapaneous Coulomb interactions, discussed in the

many-body section 2.5, can straightforwardly be generalized to include the full
QED photons. In analogy with the expression for the separable two-photon

ladder above, we 1L.set up a pair equation by replacing the interaction in the
(géﬂ by T

MBPT equation y the corresponding two-photon expressions

(a+4') sz = (rsIV(g,q)ab)
+(rs|V(g+p',qd + p)|tu) sk + MSC, (317)
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Fig. 28. The pair equation for a two-electron system, using the full QED one-photon
i lter?,%ti(%% between the electrons, in analogy with the MBPT pair function in Fig.
E. i'ﬁls generates an infinite sequence of ladder single-photon diagrams in addition

to model-space contributions (MSC).

where ¢ = ¢, —¢,, ¢ =€y — €5, p = €4 — &1, P = €y — €. The folded t m o
is constructed in analogy with the corresponding MBE;FC SXRess i, 10 éagl%E ap

and model-space contribution, as described in section b. The equation

will generate an infinite sequence of Singﬁi—gbﬁ:g&l%@ders (including folded
diagrams and MSC), as indicated in Fig. B8

The iteration scheme of the single-photon exchange (V;) above can in prin-
ciple be applied also to the nonseparable two-photon exchange (Vy %) etc.
Including the nonseparable interactions to all orders

vNonsep — ‘/1 + ‘/2N0nsep + VE}Nonsep 4. (318)
. FWT1
leads to the complete Bethe-Salpeter equation (7, p. 562)

(rs|VNonsep |ty (tu|Vigg| ab)
AFE

o - E&gﬁ%§ N .
This is illustrated in Fig. 29 The contribution to the energy — or the effective
interaction — is then obtained by closin {h:ecﬁ%%gf'on by a final interaction,
in analogy with the MBPT case in Fig. Eg [he two-particle interactions con-
tain here also radiative parts, with self-energy and vacuum polarization loops,
which, of course, have to be properly renormalized. In principle, also the one-
particle radiative effects, can be iterated in a similar way by means of a single-
particle equation. This can then ljgﬁlpled to the two-particle equation in the
same way as in the MBPT case (b3).

(rs|Vislab) = (rs|ab) + + MSC. (319)

BS
The result (%IE)) can also be represented in the form of a Green’s-function
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a b a b |
a b

Fig. 29. Graphical representation of the complete Bethe-Salpeter equation in the
form of a Dyson equation. The solid area represents the complete two-particle 'ﬁgers—e
action, including no interaction, and the dashed area the nonseparable part (‘b_l_%)_p
The intermediate state lies in the @) space. The MSC represents the model-space
contribution of the reducible part.

equation
G(x}, 2%, 19, T90) = 1Sp (], 210) 1Sk (25, 220)
—I—/dﬁ‘a:/ll/d%g K (2, x), x), x4) Gz, 2y, 210, Z20) + MSC, (320)

where K represents a kernel of all nonseparable interactions. This can be
illustrated by the same figure, if we interpret the lines as electron propagators.

t/,a ,,,,,,,, -
t=1- - - -
= + 1] -+ MSC
|
tztof - tO* ”””” - tO’” ,,,,,,,, | _

Fig. 30. Graphical representation of th C%@plete \ﬁ%gte—Salpeter equation in the
form of the Green’s-function equations (320) and (%2' [).

The Green’s function depends only on the relative times, and by setting the
initial times equal, t1g = t99 = to, as well as the final times, t| = t, = ¢’
and t] =t, = t", we can make a Fourier transform with respect to the time
differences 7' =t —ty and 7 =1t — to, which leads to

d
G(w/lvwéawloanOaE) = /% iSF(wll,$10,W) iSF(','U/QanOJE - W)

—|—/d3:13/1,/d?’mgf(m’l,mg,m/{,w;,E) G(xy, @y, T10, Ta0, E) + MSC, (321)
where E is the energy parameter.
The procedure indicated hergergpgﬁﬁl%gse a generalization of the all-order pro-

cedures, discussed in section b.S. [t 1s clear that the nonseparable multi-photon
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Fig. 31. The pair function with an uncontracted photon (left) and with a completed
photon exchange (right).

interactions can be handled very much like the interactions in standard MBPT
— but will obviously be considerably more time consuming. It is important
that only the nonseparable parts of the interactions are iterated, in order to
avoid double-counting. The nonseparable interactions are free from singular-
ities. The intermediate states between the interactions are restricted to the
Q space, as in ordinary MBPT, while inside the interactions all intermediate
states (@ as well as P space) should be included. In addition, there will be
finite model-space contributions (MSC) of the reducible part, which can be
obtained as indicated earlier.

8.8 Pair functions with ‘uncontracted’ photons

We shall now consider an alternative approach for generating higher-order
diagrams, based upoy gc(::(fl:{rrln@ﬁlea%{g,[of the MBPT and QED ]fggﬁ%(ﬁhes. We
have seen in section ; that the held-theoretical perturbation ( ue to the
interaction between the electrons and the photon field can create or destroy a
virtual photon. A contraction between two such operators is needed to form
an in§erac‘ggnrpg;clwe§n the electrons. We consider now a s %ﬁlﬁ%‘? .MBPT pair
function (%/; whach is perturbed by a single perturbation (68). This leads to a
pair fu Eioqb}vlvi%pf\f/hat we shall refer to as an uncontracted photon, depicted
in Fig. Egl (left). Assuming the MBPT pair functions is |pe) = s%|ab), the

modified function with an uncontracted photon can be expressed |py, ;) =
st (k)|ab), where

(r[H'|t) st
Ea—Er+Ep—Ey—k+1v

sap (k) = (322)

assu '%%Hta}%nat only positive-energy states are involved. H’ is here the interac-
(%8)

tion , operating on a single electron. The C;seean@ei%ﬁ%%rc above is obtained
using the general scheme derived in Appendix IC. The pair function then sat-

isfies the equation

(a &0 = ho(1) = ho(2) = k) (1,2, 8) = QR (Dpun(1,2),  (323)
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HOH Dirac
where hy is the single-electron Schrodinger (Hﬁ)r Dirac (%2; Hamiltonian. The
() projection operator assures that the r.h.s. is orthogonal to the initial state
|ab).

In ord Lio. %%Hlé%l te the photon exchange, as indicated in the second diagram
in Fig. %I we operate with a second mteracﬁlqcn H 1@2 ), which after contraction

leads to the electron-electron interaction ( e function f(k)

e2

F(k) = -

prp— (1 — g+ ay) sin(krz)

SphW2
is expanded in spherical waves according to (%”i

sin krqa

i o1 + 1)1 (kry) g (kry) C*(1) - C*(2), (324)

k?’f’lg

and then it is essentially the Bessel function j;(kr) that appears in the radial
part of the equation above in the place of H’'. This procedure requires evi-
dently one pair f Eg@'lgp for each value of the photon momentum k. With the
denominator in (%ZZ’)—fhe contribution to the interaction from the full photon
exchange becomes

P f(k)

qg+p —k+iy’

SphW3

SingPhotInt
QL eo%%iélg to the first part of the interaction in the expressions (211 i,
(22% % Pi

e second part of the interaction corresponds to a photon that is
emitted from the second electron.

The pair function with an uncontracted photon can also be iterated further
with instantaneous interactions ('), before closing the phojlg{l %ﬁo‘%‘if%e mak-
ing the k-integration. This leads to effects depicted in Fig. B2 and corresponds
to the pair equation

<€a +ép — ho(l) - h0(2) - k) p;_b(lv 2, k) = Q(ﬂ,(Dpab(L 2) + Vp(—;b(L 2, k))

(325)
Then the pair function can be ’closed’ by a second interaction, 7%(2), as before,
and performing the k integration leads to the correspondj X :clg)ﬁlggj@étion to
the energy or the effective interaction, depicted in Fig. ﬂg]g By solving the
corresponding pair equation, we obtain a new pair function with contracted
photons only, which can then be iterate%%n :t‘lj}leo Sppye way as the standard
MBPT pair function, as indicated in Fig. B4. Tt can also be used a new input
for the whole scheme above, yielding repeated effects of the type illustrated
in the last diagram in the figure. In that diagram we have also indicated that
the vacuum-polarization (Uehling part) can be included, by modifying the
orbitals, and the phESte%r% \;g(ls%ggergy by modifying the photon propagator, as

discussed in section
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Fig. 32. The pair function with an uncontracted photon can also be iterated with
instantaneous interactions before closing the photon.

7+ L]+

+ { + K: ———————— -+ {:: + .-

A A

Fig:PhotPf2

. . . . .. . . [Fig:PhotPf2
Fig. 33. Closing the uncontracted photon in the pair function illustrated in Fig.

can yield a new pair function including the effects indicated.

The effects obtained with the procedure indicated here include the entire effect
due to the exchange of a single QED photon as well as the completely sepa-
rable parts of two-, three-,... photon exchange. In addition, it contains most
if the' effect of nopseﬁa{g%%o‘%%%spg%gﬁ.@ﬁm photon exchange. For instance,
the diagrams in Figs B3 and B4 contain the effects of two crossed photons,
the vertex correction, and the screened electron self-energy, where one of the
photons is retarded and the other is instantaneous. Also much of the vacuum-
polarization effects, including the gleh}' honys of the photon self-energy, can
be included, as indicated in Fig. }’3181%%86, the self-energy and vertex
parts have to be properly renormalized.) Most importantly, however, these
effects are evaluated by means of correlated wavefunctions instead of pure hy-
drogenic ones. When the effects are iterated, a good approximation to the full
Bethe-Salpeter equation would be achieved. Work in realizing this scheme is
now under way at our laboratory.

In order to include the full two-photon effects with correlated wavefunctions, it
will be necessary to generate pair functions Igviitlgpflftggp}lglcontracted’ photons.
Then also effects of the type shown in Fig. %Bgcﬁwmcluded. This would
then represent the next step towards the solution of the full Bethe-Salpeter
equation. Although straightforward in principle, this step does not seem to be
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Fig. 34. The pair function in Fig. can be iterated further with instantaneous
interactions, as well as with an uncontracted photon, leading to effects of the type
indicated. In the last diagram we have also included the vacuum-polarization part,
which can be obtained by modifying the orbitals and the Uehling part of the photon
self-energy by modifying the photon propagator.

{

A A

Fig. 35. By means of pair functions with two uncontracted photons effects of the
type indicated can be evaluated.

computationally feasible, however, for the time being.

9 Conclusions and outlook

In this work we have concentrated on two-electron ions for several reasons.
Firstly, hydrogenlike ions have ‘%fgxtensively treated in the review article
on the S-matrix formulation by 7). Secondly, there has been a rapid develop-
ment concerning heliumlike ions lately — experimentally as well as theoretically
— a development we expect to continue for quite some time to come. Heliumlike
ions represent the simplest systems where the interplay between QED effects
and electron correlation can be studied, and here several interesting and chal-
lenging problems will emerge. For light elements the electron correlation is
so strong that it can not be handled to a sufficient degree of accuracy with
the currently available methods for bound-state QED. Furthermore, these sys-
tems contain levels which are very close in energy, which represents another
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theoretical challenge.

Experimentally, some fine-structure separations in light-medium-heavy heli-
umlike ions can \@fgbe measured with a Laccpracy up to 1 ppm , as in heli-
umlike fluorine %@ee Table in Section ‘%).—Cé%ﬂations are now under way
at our laboratory in order to try to reproduce this value. It is unclear, though,
whether this can be achieved with the current technique. Under way are also
some efforts to realize the modified scheme, presented in the previous main
section, where pair functions with an uncontracted photon are generated. It is
expected that this technique will improve the accuracy considerably in cases
where the electron correlation plays a major role.

The fine-structure separation in neutral helium is of particular interest. Here,
the experimental accuracy is as high as 30 ppb, and it is ai%ﬁi_@?ted that the
accuracy could be improved by another order of magnitude [[7). Since the fine-
structure is due entirely to relativity and QED (proportional to a? in leading
order), a comparison between theory and experiment may yield a value of
the fine-structure constant with an accuracy comparable to (in principle half)
the experimental uncertainty. The first evaluation of this constant from the
experimental data and available theoretical estimates yielded a value with an
uncertainty of 23 ppb, which however deviated four standard deviations from
the acce and more accurate, value obtained mainly from the free-electron
g-factor [7). According to newer estimates, the theoretical uncertainty had
been underestimated, and the new value ree with the accepted value but
with a larger uncertainty of about 200 ppb (7). Hopefully, a combination of the
analytical and numerical approaches for some light ions might here improve
the situation.
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A Evaluation of one and two-photon evolution-operator diagrams

In this Appendix we shall first evaluate somg ggy@{linae%tfgvolution—operator di-
agrams in the standard way. In Appendix 38 we shall consider time-ordered

diagrams and evaluate each time-ordering separately. Thissvgéll &g%gr%% a gen-
eral scheme for diagram evaluation, described in Appendix| \y ghis utilized
in the merging procedure of QED and MBPT in section 8.

A.1  FEvaluation of the single-photon exchange

Fig. A.1. Graphical Prgé%%ﬁ;cﬁon of the covariant-evolution operator for single-pho-
ton exchange (Fig. 35 ;

The Igg)vagiia Vghution operator for single-photon exchange, illustrated in
Fig. IK.T, 15
<rs‘(7é20)v(t', —oo)‘ab> = — // dt; dis

X<’I"S

. . . sl 7. J— p—
1Sy (2, 21) 1Sp (Y, w2) il (w2, 21) ab> ot (ertes) gmiticaitazy or(nl i)

d d ty(t d

:1/ dtl dt2 <TS /72: W1 | >< | . ] |u><u’ . I(Z) a/b>
2w 2T wy — & + iy 2T wo — &y + 11y

w it (Ertes) gmiwr(t'—t1) q—iwa(t'—t2) —iz(ta—t1) (—itica—itaer (—(|t1|+[t2]) (A1)

ing the form (%ég%gf%he electron propagators and the Fourier transform
(T69) of the electron-electron interaction. The quantities 7, 7, are infinites-
imally small quantities with the same sign as ¢, and ¢,, respectively, with
the purpose of determining the poles of the elect 1 bropagator. The time
integration over ¢; becomes, using the A function %

it1 (w142z—¢€a) ,—7[t1| _ — _
/dtl eltt (w1 el — <w1 o €a>2 - 72 = 27‘[’A,y(a)1 + z €a). (A2>

The w; integral then becomes

dwy 1 27
21 wy — &, + 1N (W1 + 2 — €)% + 72

e—it/(wl —Er) 7
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using the fact that only the terms ¢ = r and u = s survive. Here, the poles
appear at w; = &, —in, and wy; = ¢, — 2z xiy. lf &, > 0 (., = 1) we may
integrate over the positive half plane with the pole wy = ¢, — z + i, yielding

1
q—z+in+1y

e~ it'(g—=+i7)

with ¢ = ¢, — ¢,. Similarly, when ¢, < 0 we may integrate over the negative
half plane (pole w; = ¢, — z — i), and the integration yields

1
q—z—1in—1y

In the integrals here there are two imaginary parts, one (n) associated with the
electron propagator and one () with the adiabatic damping. The purpose of
the former is to indicate the position of the poles of the propagator, while the
latter is a parameter that is going to zero in the adiabatic process. It should
be noted that these quantities are of different character — v is a finite quantity,
which is eventually switched off, while 7 is an infinitesimally small quantity.
Therefore, we can omit 7, when it appears together with ~, and the results
above can be summarized as

1

eilt/ (qinrl’Y”')
q—z+1iy

Y

where 7, = ysgn(e,). In the same way the integrations over ¢, and ws yield

1

efit’(q’Jerri'ys)
q + z+ivs

with ¢ = &, — &5 and 7, = ysgn(es).
2CovA
After the integrations above, the expression (%I ) becomes

. rd rs|l(z)|ab o
@ﬂagﬁcﬂxﬂw>:1i;(q—zii%J+Z+m@et@ﬂ)

—it'(¢+d') 1 1
[ (rs|[(z)|ab>[ - , } (A.3)
q+q 2 q—z+iy ¢ F+z2+1y

Eventually, all v:s will go to zero, and they are needed only to determine the
position of the poles. Since the factor (¢+¢’) is not involved in any integration,
we can leave out the imaginary part of that factor.

Interact
The interaction I(z) is in the Feynman gauge given by (I77)
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V oo 2kdk f(k
](2) = €2CY}1LO[2 DFVM(Q:2 — &y, Z) = /0 22_]{;2_(‘_1)77

62

f(k) =

e (1 — oy - o) sin(krya). (A.4)

The z integral is here

/dz [ 1 . 1 1 (A5)

o lg—z+1iy ¢ +z+ivd 22—k +in

We can rewrite the last denominator as
(z —k+in)(z + &k —in) = 2* — k* + 2kin.

Since 7 is an infinitesimally small positive quantity, 2kn is equivalent to n for
positive k.

. SingPhotzInt . .
The first term in (A.B% has poles at z = ¢ + iv, and z = +(k — in). When
v, =y > 0, there is one pole in the negative half-plane, 2 = k — i, and the

integral becomes _
i
2k —in)(g—k+in+iy)’
As before, we can omit the 1 term in comparison with the v term, but we keep
for the moment the 7 term in the first factor,

(2k —in)(q — k +ivy)

When v, = —v < 0, there is one pole in the positive half-plane, z = —k + in,
and the integral becomes similarly

(2k —in)(qg+ k —iv)’

and the result can be summarized as

i

(2k —in) (g — (k — i),

Y

whiere, (4), = (A)sgn(e,). Similarly, the integration of the second term in
(A.S% yields
1
(2k —in) (¢ — (k — 7))

and the complete integral becomes

b

i

—E )
(2k—in) Lg—(k—iy), ¢ —(k—iy)s)
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When including the interaction (%%re is a factor of 2k in the numerator,
and then it follows that the pole at k = 0 does not contribute. Therefore, the
matrix element of the covariant evolution operator for single photon exchange
becomes

Ug))v(t', —oo)‘ ab> = <7’5‘V(q, q')‘ab> S (A.6) U2Cov6A

1 . 1 ]
—(k=iy), ¢ —(k—iy)s L

EffInt2
where ¢ = ¢, — ¢, and ¢ = &, — &,. According to the expression (lBU% for
the effective interaction, V' (g, ¢’) is the first-order contribution to the effective
Hamiltonian,

(A.7) SingPhotIntA

Vi) = [ ki) |-

<7"3‘Héf1f) ’ab> = <7’3’V(q, q) ‘ab>. (A.8) EffIntSPA

A.2  FEwvaluation of the two-photon ladder diagram

‘woPhotonApp s02
1 (See also % § i.;

=
»

t=¢ -$---—-—--1 -

~
N & B W®»

Fig. A.2. Graphical representatilggl gfw‘%]ll_,%o%ovariant—evolution operator for the

two-photon ladder diagram (Fig. [[77. TwoPhotDiagApp

. . . . [TwoPhotDiagApp
The matrix e@g&%r\lrtz of the two-photon ladder diagram, shown in Fig. [A.21s

given in Eq. (

<7“S ‘Ug;)v(t', —oo)‘ ab> = <rs // d*zs d*z, 1Sk (2}, 23) iSp(2), 14) 11 (24, T3)

X / dtl dtQ iSF(Ig,Il)iSF(JI4,I2) i]($2,$1)‘ab>

o . » _ ‘
Xelt (ertes) e it1eq—itagy e ’Y(|t1\+|t2|+|t3|+|t4|)’ <A9> U4CovA

which in analogy with the single-photon case can be expressed
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<7“s ’U(A‘) (t, —oo)’ ab> =

Cov
/
_//dt3dt4 <T8 /dZ du}g |T><T| : dw4 |3><S| : I(Z,) tu>
27 2T w3 — &, + 1, 2T Wy — €5 + 175
dz rdw [0 dws  |u)(yl
aty dty (1| [ I b>
X/ ! 2<u 2w 2T wy — & + iy 2T wo — €y + 1My (2)]a

gl o ’_ s ’_ i,
% elt (ertes) e iws (t' —t3) e iwa (' —tq) e 17 (ta—t3)

% e—iwl(tg,—tl) e—iwz(t4—t2)e—iz(t2—t1) e_itlea_it25be_'}’(‘tl|‘Ht2|+‘t3‘+‘t4‘). (Alo)

. . . . . Delta
The time integrations yield here, using Eq. ( ,

Ay(wr —ws — 2 ) Ay (wa —wy + 2') Ay (ea — 2 —w1) Ay(ep + 2 — w2)

(leaving out the factors of 27). If r is a positive-energy state, we integrate ws
over the positive half plane with the pole w3 = w; — 2’ + 17, which yields

1
wy — 2 — & +iy+in

The w; integrand now becomes

dw; 21A(gq — 2 —w1)
21 (w1 — 2/ — e, + iy +in)(wy — & + iny)

and the poles appear at w; = &, —iny, w; = &, +2' —iv, and wy = g, — 2L iy. If
also t is a positive-energy state, we integrate over the positive half plane with
the pole w; = ¢, — 2 + 17, yielding
1
(g—z—2+21y)(p—2+17)

with ¢ = ¢, — ¢, and p = ¢, — &;. Similarly, if both ¢ and r are negative-energy

states, we obtain
1

(g—z—2—2iv)(p—2—1y)

If we assume that t is a negative-energy state and r still a positive-energy
state, then there are two poles in each half plane — in the negative half plane
w1 =¢,—2z—1iyand wy =2 +¢, —iy —in — yielding

1

(g—2z—=2"+in)(p—z—iy—in)
2iy
(q—z—2"+2iy+in)(g—2z—2"+in)(g —p — 2/ + iy + 2in)’

Here, we see that it is important to keep the 7 term, since the v term vanishes
in the first denominator. The last term vanishes as v — 0. The corresponding
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result is obtained when the signs of €, and ¢; are reversed. Generally, the result
of the w; integration can then be expressed (in the limit)

1
(q—z—2 +iy+iv+in)(p—z+in+in)’

but since the imaginary parts are here only used to indicate the position of
the poles, this is equivalent to

1
(g—z—2+iy)(p—2z+in)

The results after the complete w integrations can now be summarized as follows

<rs ‘U((jﬂf))v(t/a B // dz' dz <7’='5"](ZI) >

o 21 (q— 2 — 2 + i) (¢ + 2 + 2/ + i)

<w!w!a> s
@—Z+WMW+Z+hwet@ﬂ) A

U4Cov2A

with ¢ =¢,—¢,; ¢ =, —¢5; p=¢c,—¢c; and p' = g, — g,,. As before, we leave
out the imaginary part in factors not involved in any integration.

4Cov2A
The last two denominators of (%l [) can be written

1 1 1 1
. ——| — + -
P—z+in)@' +2+10) lp—z+in PH+z+inlptp

and the first two

1
(q—z— 2 4iv)(¢ + 2+ 2 + i)
1 1 1
q—z—2 41y ¢ +z+2+ivl g+ ¢

which gives

<7’s 7 () —oo)‘ ab>

B dz’ dz (A+ B+ C + D) e ¥(atd)
= J[ 5 5 trsl Wl FOR) o)

(A.13)
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dz’ dz Ak k'
A=— — dk'dk
/ 27 2w // (q—z—2 +iv)(p—2+iv) (22 — k2 +in)(22 — k2 +in)

dz’ dz 4k k'
B=- — — dk'dk
/ 27 27w // (q—2z—2 +iv)(p + 2 +iv) (22 —k'2+in)(22 — k2 +in)

dz' dz 4k k'
C=-— [ == [] dK'dk S—
/ 2m 2m // (¢ + 242 +ivs)(p— 2z + i) (22 = k2 +in) (2% — k2 + in)

dz' d 4k K
p—- [[ 55 [ awa . e _
27 2w (¢ +z2+2 +1vs) (P + 2 + i) (22 — k2 +in) (22 — k2 + in)
(A.14)

_ o FactTh

As a consequence of the generalized factorization theorem (ﬁZT)TLnd the reg-
ularity of the reduced evolution operator, the adiabatic-damping parameter
~v can be switched off individually for each vertex in the evolution-operator
method — in contrast to the S.gﬁc ieorn in the S-matrix method, using the Gell-
Mann—Low—Sucher method ( . The v’s are needed, though, for the pole
integrations, and therefore the sign of v is important (but not its size). Then
it is possible to apply a simplified method, where the time integrations will
directly lead to Dirac delta functions, and the w integrations will be trivial.
It has to be observed, though, as illustrated above, that the v term might
disappear when negative-energy states are involved, and then the 7 term from
the propagator will determine the position of the pole.

We now evaluate the z, 2’ integrals when ¢, u (as well as r and s) are positive-
energy states (74 = v, = > 0). Then A has one Ro h%ﬁf%t_ in and one 2’
pole 2/ = k' — in in the negative half planes (c.f. (A.5]), yielding

1

A= : .
(q—k =K +iy)(p—k+iv)

B has two z poles z = k —in and z = —p’ — iy and one 2’ pole 2/ = k' —in in
the negative half planes, which yields similarly
1 2k

B = . — + .
(=k=K+)@ +k+17)  (g+p — K +iy)(@ +iv)2 - k)

Similarly, C' has the poles z = —k +in, 2 = p+1iy and 2/ = —k’ + in in the
positive half plane, and integration yields

1 2k
C= . — + :
(¢ —k=F+iP+E+i7) (¢ +p—k+iv)((p+i7)? - k2)
D has the poles z = —k + in and 2’ = —k’ 4+ in in the positive half plane,
yielding

1

D= .
(¢ — k=K +iy)(p — k +iy)
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: ScrSEEvOpA

The B term can be rewritten as

1 1 1
q+p — K +iy [q—k—k’+i’y+p’—k+ify]

and the C term

1 1 1
g +p—k+iy [q’—k—k"—l—iv—i_p—k—kiv}’

which eliminates an apparent pole in the £ integration.

A.8  FEwvaluation of the screened self-energy diagram

Fig. A.3. The covariant-evolution-operator diagram representing the screened self-
-energy.

Next, we shall evaluate the covariant é{g% Eﬁ%oPerator diagram for the screened
ion (223 7§

self-energy, given by the expression , assuming all states being positive-
energy states,

<r8’H(2)‘ab> =

dz dz/ ru‘] " ><ts’[ )’ab> 1 1
/ / / [ _ —|. (A.15)
om 2 (P —z—2 +i)(p—z2+17) lq— 241y ¢ +z2+1iy
For the first term in the square brackets we integrate over the negative half
plane with the pole z = k — in from the photon propagator, yielding

<ru‘](z’ > <ts‘f(k)’ab>
P —k =2 +1)(p—k+iv)(g—k+iv)
and after integration over z’

<ru f(E") > <t5‘f(k;)‘ab>
' —k—K+iv)(p—k+iy)(¢—k+iy)
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sec:timeOrd

The second term has two poles in the negative half plane, z = k£ — in and
z = —¢ —i7, and yields similarly

<ru‘f(k”) ut> <ts‘f(k)‘ab>
(P =k =K +iy)(p—k+17)(d +k+iy)
<ru’f(k:’) ut> <t5‘f(k‘) ab>
P’ +q =K +i)p+d +1iy)

1 1
- . (A6
{q/—k—l-i’y q’—i—k—l—ify} (A.16)

After some algebra the denominators can be rewritten, eliminating an appar-
ent pole,

1 [ 1 1 }
: — + :
P +q -K+i)p+d)lp-k+iv ¢ —k+tiy
1 [ 1 L]
p'—k—K+iv)p—k+iy) lp/+¢ - K +iy q—k+1iy

_|_

] . (A7) ScrSEEvOp2A

B Evaluation of time-ordered diagrams

In this Appendix we shall consider the evaluation of time-ordered diagrams,
which, as we shall see, will lead to a general scheme for expressing the covariant-
evolution-operator diagrams at arbitrary order. This procedure will fo Ptlh ED
basis for the model of merging QED with MBPT, discussed in section g

B.1  Two-photon ladder

. . . . . |sec:Eval
As an }llustratlf)n we con.s1der the two—photqn lLald(:iErd d%rgf"f%ge raAppendl 1@ i
for which two time-orderings are shown in Fig.B. I . Using the expression (

ﬁ
VA
=
V)

t=t -¥t------1 = t=t -¥+---—---1 -

— ~ w =
> (N} e e~
Q= W =<
S NS ®»

Fig. B.1. Two time-ordered two-photon-ladder diagrams, representing the separable
part (left) and nonseparable part (right) of the two-photon ladder diagram. Fig:LadderTime
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. 4CovA
of the electron propagators we can write the two-photon ladder (%.Qi as

(rs|UGo (¢, —o0)| ab) = — / dzs diay / (;’ Ot —t3) 6, (x3) — O(ts — 1) &} _(3)]

X [@(t/ — ty) ¢Jsr+(1'4) — Oty —t') ¢l,($4)} I(xy, 3, 2")

x [t [ g; [6(ts — 1) v, (@3) 6], (1) — Ot — 1) Bf_(21)n_(as)]

X {@(M —t2) Pu, ($4)¢L(w2) — O(ty — t4) ¢L_<$2)¢u+ (334)} I(x2, 1, 2) Po(@1)Pp(2)

> e—itg(at—ar—z’)e—it4(au—es+z’)e—it1 (aa—at—z)e—itg(ab—au-i-z) e—y(|t1 [+ |t2]+|t3]+ta]) )

For simplicity we introduce the following short-hand notations:

di=€,——2=p—2% dy=¢ep—ecu+z2=p +2
ds=¢,—e, — 2 =q—p—2 dy=c,—cs+2 =q¢ —p +72
dip=di+dy=p+p dsy =ds+ds=q+q —p—1p
diz=dy +d3=q—2—72 dogy=dy+dy=¢ +2+72
digs=di+dy+ds=q+p -2 digg=di+do+dy=q +p+72
digga =dy +dy+ds+ds =g+ ¢, (B.2)

and the notations dy4 = d; £1iv etc. to indicate the sign of the imaginary part.

We assume first that all states are positive-energy states. Then we have the
time-ordering ¢’ > t3 > t; and t' > t4 > to, and the time integrations yield

/ —it'dq -
—00 —00 diz+ diy
t . ty ) e~ it'daa
dty e itada+ / dtgeiteder — — — (B.3)
—00 —00 doa day
The total time integration then becomes
e—it/d1234 e—it/d1234 1 1 1 1 1
Sy N T B
di34 doay diy doy dizss \dizy  dosy/ dray \diy  doy
and with the notations above
e—it’(q+q'+4i'y) ( 1 N 1 ) 1
q+q +4iy \q—2—24+21y ¢ +z+2+2v/) p+p + 2y

><( ! + ! ), (B.5)

p—z+iy p+z+iy

) . %E% ) ) )
in agreement with (A14). Here, also the magnitude of the imaginary parts
come out correctly, although we do not need them in our method.

If the intermediate state t is a negative-energy state — and r still a positive-
energy state — then the time-ordering becomes t' > t3 < t;, and the time
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integration over t; and t3 becomes

e—it/d13+

Cdigrdi

Here, we have an example where the Contrigwlgilgﬁlogglﬁﬁels, and the + sign is
e qé;he 7 term, as discussed in Appendix [A.2. This leads to the change in

(B.6)

t' ) ts )
dtg e_ItSdB+ / dtl e‘ltldk =
o0 [es)

1 1
—z+1i T r—z—1y
| e P v T p v
in agreement with (IA.14).

B.1.1 Separable and nonseparable parts

13h

We consider next the separable part of the ladder diagram. Assumin girs:‘igggg rTimeOrd
%. corre-

all states are positive-energy states, the separable diagram in Fig.
sponds to the time-ordering t' > t, > t3 > ty > t1, and the time integration
yields

t/
dt4 (3_it4d4Jr
(o0

2} itod t3 itod t2 it1d
[ty [ apyeian [ g s
—0 — 00 — 00

e—it’d1234+

= . B.7 4321
d123a+ di2sy diay diy (B7)
The remaining time-orderings are obtained by means of the exchanges 1 < 2
and 3 < 4, which leads to
e it/dizser < 1 1 1 /1 1
+ ) ( + > B.8 Se
s Ny | dize ) digy \diy | doy (B8) | Ser
or
e—it’(q+q/+2i'y) 1 1 1 1 1
o .+ IR I
¢+ ¢ +2iy \g+p =2 +2y ¢ +p+d+2y) prp \p—z+tiy pPrzti
(B.9) SepA
This leads to Eff ongz'bution to the effective interaction due to the separable
nt
ladder, using ( :
<7"8 Vig+p,d + p)‘tU> <tu V(p,p') ab>
<TS‘Heff ab>sep = P , (B.10) U4SepA

. SingPhotIntA
where V' is given by (A7),

. . . Fi%: LadderTimeOrd . .
The nonseparable diagram in Fig. B.T corresponds to t gne—orderlng t >
ty >ty > t3 > t1, and the time integral is obtained from (B.7) by the exchange
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e*it/d1234+ ( )
) B.11
d12344 d1231 dizy diy
Similarly, the opposite time-ordering, t' > t3 > t; > t4 > tq, yields
e*it/d1234+
(B.12)

d1234+ d124+ d24+ d2+

The total time integration for the nonseparable part of the ladder diagram
then becomes

e—it/d1234+ 1 1
( + ) , (B.13)
digzatr  \diosg dizg diy  digay dagy doy

when all states are positive-energy states.

S NonSepA
As a corollary we may add the separable (bgg) and nonseparable (B?nl 3) parts
of the ladder diagram,

1 1 1 1 1
+ > + +
<d123+ dioay / dyy day diozy diz diy digay dogy doy
1 1
B dizt digp doy  dogy digpdoy’

_ . 43.21A
which agrees with (B.4).

(B.14)

NonSepA
;From (B.13) )Ehe nonseparable contribution to the effective interaction con-
tains

I(z")I(z) I(z")I(z)
a7 - a-- -9 @rrrAgrzrwr O
and integrations over z and 2’ yield
F)F () P () B.10

+ .
(+p —k)g—k=K)p—k) (¢ +p+k)d+E+F)P +Fk)
C General evaluation procedure

C.1 General rules

The diagram evaluation discussed above using time-ordered diagrams can be
generalized to higher orders. When the involved states are positive-energy
states, we find that we can construct the energy denominators in the fol-
lowing way. Inserting a horizontal line above each vertex, the corresponding
denominator is given by
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e the orbital excitation energies counted from the bottom
e o term —z 41y for each photon cut by the line.

. . . [Fig:EvalProc . .
as illustrated in Fig. IC.T. e direction of the photon line is immaterial, but

we have here assumed that it is directed upwards, which yields the minus sign
of z.)

Ea—Ertepy—es—2z—2 +ivy

=

€a—Er+Ep—Ey — 2+ 1Y B
y

b

a

Fig. C.1. Two time-ordered versions of the two-photon-crossed diagram.

If a photon line is cut by only one horizontal line, considering first positive-
energy states, then the denominator i? of the type

A—z+iy’

and the poles for the z integration are located at z = A+iy and z = £(k—in)

from the photon propagator. We then integrat i%veghgl%ﬁvnegative half-plane
with the pole z = k. (As discussed in Appendix % l %Ee 7 term can be omitted

in relation to the 7 term.) The result of the integration is then obtained by
replacing z by k and multiplying by —i/2k, i.e.,

1 —1
Azt 2MA—k+D)

(C.1)

If there are several photon lines cut by several vertical lines, then the denom-
inators are of the type

1 1
A—z+iy B—z—2'+1iy

Here, each z always appears with the same sign, and we can integrate over
the z’s as before, yielding

1 1 i i
A—z+iyB—z—2 +1iy T (A —k+1iy) 2K (B—k — kK +1y)
(C.2)

The rules given here hold with minor modification also when there are negative-
energy states involved. The only difference is that certain time integrations are

105

Fig:EvalProc

zIntl

zInt2




Fig. C.2. Two time-ordered versions of the two-photon-crossed diagram.

performed to t = 400 and the sign of the corresponding imaginary part is re-
versed.

C.2  Application

C.2.1 Two-photon cross

We shall first apply the rules given above to evaluate ‘P‘.rh%e Qﬁ(l)cl)pgiggl—operator
diagram for the two cross%(il pg{)(‘)c(s)rsls, shown in Fig. T7. Two time-ordered

variants are shown in Fig. k‘%

With the time-ordering of the first diagram in the figure, the evaluation yields
(for simplicity leaving out the imaginary parts)

1 1 1
¢+p—Kp—k+p—kKp—Fk

evaluating the denominators from the bottom and leaving out the final de-
nominator. Reversing 1 — 4, leads to the replacement p — k — p’ — kK’ in the
last factor, and 3 — 2 to ¢’ +p— k' — q+p' — k. Adding these effects together,
yields

( 1 N 1 ) 1 1

¢+p—K q+p-—k/p—Kp—Fk

Finally, we can reverse the order of 3 and 4, which leads to the second diagram
in the figure. The denominators then become

1 1 1
g+p —k gk —kp—k

and reversing the direction of the photons yields the final contribution

1 1 1
q’+p—k’ q/_k_k/p/_k/'
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02
This agrees with the result of ; :S

C.2.2  Screened self-energy

T S
t=¢ -¥4------1 -
r}q
4
7 A
3
t/l:j’er
1 b

a

Fig. C.3. Time-ordered diagram representing the one-time covariant-evolution-op-
erator for the screened self-energy.

Next, we consider the screened self-energy diagra: iwitglc rtgﬂ general proce-
dure. Starting with the time-ordering shown in Fig. %‘%, T>14 > 13 > 19 > ty,

and using the notations

di=¢co—cr—k=p—k, di=cp—cs+k=q+k
ds=¢;,—cy— kK =p" —p—FK, di=e,—e,+kK =q—p"+F,
dio=p+q, dz=p" —k—Fk, dipn=p"+¢d—-k, dsau=q-F,
the denominators become
1 1
dipsdindy — (p"+q' —K)p+q)p—k)

Reversing 1 and 2 yields

1 1
dy23 dy2 dy - (P" +q — k’)(p + q’)(q’ - k)

Reversing 2 and 3 of the first expression yields

1 1
diogdizdy ' +qd—-K)p —k—-F)p—kFk)

and finally reversing 2 and 4 of the last expression

1 1
dy34 dy3 dy N (q - k)(P” —k— k’)(p - k)

. . . ScrSEEvOp24A
This agrees with the previous result (A.T7 )
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Abbreviations and definitions

G _ ec:GML
adiabatic damping (SeC. sec:BS

Bethe-Salpeter equatjon. (sec.S.
Block equation (sec. ;SeQC'e erEZIOi

q 4 sec: LDElBlochLlnk
Block equation, linked-diagram form sec A, eq.

Block equation, generafs zzed §E
Breit interaction (sec.

VPA

Brown-Ravenhall dzseas gse r
Brueckner orbitals (sec. 2. E;i Sec:Pair

closed diagram (sec.
cluster operator (sec. oc:LDE
complete model space (sec.

sec:CCA

CCA, coupled cluster appmach ésec )1
coordinate repres ntaté nc(gsegr g2l ¢
contraction (sec. 2.3, e, §§L

sec:Re
counterterm (sec. 3. coc:NVPA
Coulomb-Breit interactio \(ﬁbc. 6.2

Sec:

Coulomb gauge (sec. b(ﬁ;; cec: NVPA
Coulomb-Gaunt interaction (sec. ' sec: TDCRRLCoulCaunt
Coulomb-Gaunt interaction, retarqfed %%VQVSOliOeq ?gi
covariant evolutz?n o%eréztorp(ﬁeg o)

A function (sec: A.1.1 NVPA
Dirac-Coulomb Hamiltonian (sec soc: TDCERtCoul

Coulomb-Breit inter ctzmb reta%gd sec. 3.1, eq.
Dirac matrices (se ) :

) R éc: Nim
discretization (sec LDE

disconnected dzagmm sec. MBPHEG gHan
effective Hamiltonian (se u 1 Cqpl13)
E

(0]
CCSD, coupled clust STGSZ;Q%ZES and doubles approzimation (sec. 2.5.2, eq. b2)
%c ?CA

effective interaction (sec. 1FieldD
electron-field operators (sec. : %§ :C TDGéé agnField
electro-magnetic field oper: tors I\QE‘E’CI'G Lo ed

extended model space (se 2]

electron propagator (sec.

electron self energy (sec. b.3,b. sec : ScrSEEvOD
electron self energy, screened, (956 dbrdabim

factorization theorem é

sec \}pﬁ eq. 121)
Feynman gauge (5¢ E@?;

Fock states (sec. soc: LDE\EffHam
folded diagram (sec 2.4, eq. |

Gell-Mann—Low relation (Sec sec:GenGellMann
Gell-Mann—Low relation,

%eniﬁ%lzzed (sec. B.3.2)
Goldstone diagram (sec. bzf)

ec:GML
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sec:SQ HP
HP, Heisenberg picture (sec. bS eq. B0
IN, intermediate normalization (sec.

interaction Hamiltonian denszt éﬁe 3.
IP interaction pzctureLésec %T
Lamb shift (sec. &[3()

) sec:FTGF
Lehmann representation (sec.se. L DE
linked-diagram theorem (sec. oc:Al10rder

mazximum-overlap orbitals (sec. sec:TimeIndMBPT
MBPT, many-body perturbation theory, time independent (Se%ec TimeDepMBPT
MBPT, many-body p, rtur’l\%ﬁw theory, time dependent (sec. B)

model function (sec. 5 LL . MBPWAsR0p

Moller operator (sec. 2.1, eq. 112)

MLND
MSC, model-space contm?utwq\w(oslgﬁo t?o% | )

nonradiative effects (sec. 0.2 %ec NonSepLadd
nonseparable diagram (s§ 5.2.2)
normal order (sec. E 37
sec:CCA
normal-ordered exponential (sec. b.S.l )
NVPA, no-virtual- pair, approrimation (sec.

pair correlation (SGIC %Fcn

pair function (sec. 2.5.2

se& L'?]Sé} otPro
photon propagator (sec. kle—q‘g‘%)—E sec: NVPA
pmj'ectgd Dirac-Coulomb Hamultonian (sec. 2.6.
projection operator (sec. b 2(i RedEv0
projection operator, genemﬁﬁf,cfc(esec b@%—p
quast degenerate (sec lsbmn

radiative effects (sec. 5.2)
reference-state contri utzo sgcm
renormalization (sec.

:MBPTGen
SP, Schrodinger p@cture Ese. %a iSec uant
second quantization (se 234 & ab(%i
separable dzagrgm <§ema:§r21x| b

S-matriz (sec

i sec:MBPTGen
target function (sec. |se<: TimeEvolOp

time-evolution Opemtor (sec. B RedEv0
time-evolution operator, red ced (1552 MQ
time-ordering operator (sec. %W%fgn
two-times Green’s func ign ﬁ%:
unlinked diagram (sec.
vacuum polarizatio

wave operator (sec.
Wick’s theorem (sec.

ec:NVPA

MLND
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