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Abstract

The methods of quantum-electrodynamical (QED) calculations on bound atomic
systems are reviewed with emphasis on the newly developed covariant-evolution-
operator method. The aim is to compare that method with other available methods
and also to point out possibilities to combine that with standard many-body pertur-
bation theory (MBPT) in order to perform accurate numerical QED calculations,
including quasi-degeneracy, also for light elements, where the electron correlation is
relatively strong.

As a background, the time-independent many-body perturbation theory (MBPT)
is briefly reviewed, particularly the method with extended model space. Time-
dependent perturbation theory is discussed in some detail, introducing the time-
evolution operator and the Gell-Mann–Low relation, generalized to an arbitrary
model space. Three methods of treating the bound-state QED problem are dis-
cussed. The standard S-matrix formulation, which is restricted to a degenerate
model space, is discussed only briefly. Two methods applicable also to the quasi-
degenerate problem are treated in more detail, the two-times Green’s-function and
the covariant-evolution-operator techniques. The treatment is concentrated on the
latter technique, which has been developed more recently and which has not been
discussed in more detail before. A comparison of the two-times Green’s-function and
the covariant-evolution-operator techniques, which have great similarities, is per-
formed. In the Appendix a simple procedure is derived for expressing the evolution-
operator diagrams of arbitrary order.

The possibilities of merging QED in the covariant evolution-operator formula-
tion with MBPT in a systematic way is indicated. With such a technique it might
be feasible to perform accurate QED calculations also on light elements, which is
presently not possible with the techniques available.
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1 Introduction
sec:intro

The theory of quantum electrodynamics (QED), i.e., the theory of interactions
between electrons and electromagnetic radiation, was developed largely in the
1940’s, but it is only during the last two decades or so that it has been possible
to test the theory to a high degree of accuracy. The theory has been extremely
successful for the simplest systems that are free from strong interaction, like
the free electron and the exotic systems positronium and muonium. For the
g-factor of the free electron the QED contribution has been experimentally
verified with the amazing accuracy of a few ppb (parts per billion), and for
positronium and muonium the agreement between theory and experiment is
of the order of ppm (parts per million). The same order of agreement is also
obtained for the fine structure of neutral helium. In these cases the analytical
approach is used in the theoretical evaluation, i.e., a double power expansion
in α and Zα, starting from free particles.

The QED theory is less well tested in strong fields, for instance, in the neigh-
borhood of a highly charged nucleus. During the last decade particularly in-
teresting information has been accumulated concerning very highly charged
few-electron systems – up to hydrogenlike uranium – mainly from the SIS/ESR
facility at GSI in Darmstadt and the SuperEBIT ion trap at the Lawrence Liv-
ermore Nat. Lab. This has stimulated further development of the numerical
QED approach, which starts from electrons generated in the field of the nucleus
(Furry picture), thereby eliminating the Zα part of the expansion. This tech-
nique has now reached a high degree of sophistication, and good agreement
with experimental data have been attained in a number of cases

Mo82,MPS98
(??). Since the

QED effects increase rapidly with the nuclear charge, the heavy few-electron
systems are of particular interest in testing the theory. One big difficulty in
the theoretical treatment is here the nuclear effect, which in many cases is at
least comparable to the QED effect. This effect can to some extent be elimi-
nated by comparing, for instance, hydrogenlike and lithiumlike systems with
the same nucleus. In the heaviest systems also new physical phenomena may
occur, when the field reaches the ’supercritical’ level

SBH96
(?).

Also the intermediate region, with nuclear charges in the range Z=5-30, say, is
of great interest. Here, very accurate data is now appearing from laser and X-
ray experiments, but so far there has been only limited comparison with QED
theory. The most accurate test has been performed for the atomic g-factor
of hydrogenlike carbon, where the bound-QED contribution is verified to the
order of one part in 1000. Accurate experimental information is available also
for heliumlike ions, but a major problem here is to treat the electron correlation
properly within the QED formalism. This problem will be of major concern
in the present article.
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For atomic and molecular problems in general the many-body perturbation the-
ory (MBPT) has proven to be quite successful, particularly in the form known
as the linked-diagram expansion

LM86
(?). By means of various iterative techniques,

such as the coupled-cluster approach (CCA), the electron correlation can be
treated essentially to all orders of perturbation theory, and this is widely used
in quantum chemistry. This scheme can be used also in the relativistic case,
using the so-called no-virtual-pair approximation

Su80
(?). However, as higher ac-

curacy is required, it is necessary to take also QED effects more properly into
account.

According to present knowledge, iterative procedures used in MBPT cannot be
used in QED calculations, and therefore correlation effects have to be treated
perturbatively order by order. Since the complication of a QED calculation
increases very rapidly with the order of perturbation, a strict QED treatment
of strong electron correlation is presently not feasible. Mainly two techniques
have so far been applied to QED calculations of few-electron systems in the
intermediate Z region. One technique is the application of (relativistic) MBPT
with the QED corrections added in the lowest order, i.e., lowest order in α
as well as Zα

PJS94
(?). The other technique, which is limited to two-electron sys-

tems, is the use of correlated, nonrelativistic wavefunctions of Hylleraas type
with low-order relativity as well as QED corrections from the power expan-
sion

Dr88
(?). These techniques work relatively well in the intermediate region, but

the restriction to low-order corrections limits the accuracy.

Particularly in the low-intermediate region, Z=5-10, say, it will be necessary
to develop new numerical techniques in order to match the accuracy of the
experimental data that is presently becoming available. Here, the new ex-
perimental techniques can determine, for instance, fine-structure splittings to
ppm accuracy – an accuracy that seems out of reach for the presently avail-
able numerical as well as analytical techniques. An approach to improve the
situation might be to ’merge’ the MBPT and numerical QED techniques in
some systematic fashion, as will be discussed in the present article.

Another serious problem in bound-state QED is the treatment of the quasi-
degeneracy, appearing, for instance, in evaluating the fine-structure separa-
tions of light elements in the relativistic formalism. In MBPT this problem
can readily be handled by means of an extended model space, which is not
possible with the standard S-matrix procedure. Two techniques for handling
this problem in QED are available and will be discussed in the present work
– the two-times Green’s function and the more recently developed covariant-
evolution-operator method. Particularly the latter has a structure which largely
resembles MBPT, and for that reason it is likely that this new technique may
form the ground for merging the MBPT and QED procedures in a more sys-
tematic way than what has previously been possible. The vision is that it
would then be possible to combine the QED and MBPT effects in such a way
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that – in addition to important MBPT effects to all orders of perturbation
theory – also QED effects would be included and combined with MBPT effects
to all orders. Some ideas in that direction will be presented.

The outline of this paper is as follows. In the first chapter we summarize the
time-independent MBPT – including relativistic MBPT – as an introduction,
emphasizing the method with extended model space. In the next chapter we
treat time-dependent MBPT in some detail, since this forms a natural link be-
tween MBPT and QED. In that chapter we introduce the field-theoretical form
of the interaction between electrons and photons, which makes it possible to
work also with time-dependent (retarded) interactions between the electrons.
We derive the Gell-Mann-Low theorem for the energy shift for an arbitrary
model space, and show that it is valid also for interactions of field-theoretical
type. In the following chapters we treat the current methods for bound-state
QED calculations, starting with the standard S−matrix formulation. Next,
we treat the recently developed covariant-evolution-operator method and the
two-times Green’s-function method, which are capable of treating also quasi-
degenerate states. A comparison of these two methods is also made. A simple
procedure for expressing the covariant-evolution diagrams of arbitrary order
is derived in the Appendix. In the final chapter we sketch an extension of
the covariant-evolution-operator method to include also instantaneous inter-
actions to arbitrary order, thereby making it possible to evaluate QED effects
with correlated wavefunctions. When developed, this may hopefully improve
the accuracy of numerical QED calculations significantly, particularly in the
low-intermediate Z region.

2 Time-independent Many-Body Perturbation Theory

sec:TimeIndMBPT

2.1 General
sec:MBPTGen

As an introduction to the general bound-state problem, we shall briefly re-
view the time-independent many-body perturbation theory. This is well doc-
umented in the literature, and we refer to the book of

LM86LM86
?) for further details. 1

The time-dependent Schrödinger wavefunction for an N -electron system sat-
isfies the time-dependent Schrödinger equation 2

i
∂

∂t
ΨS(x) = HΨS(x), (1) TDSE

1 The book is now out of print, but a number of copies is available and can be
obtained upon request from the senior author: ingvar.lindgren@fy.chalmers.se
2 Throughout this article we use relativistic units: ~ = m = c = ε0 = 1, e2 = 4πα.
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where x = (t,x1, . . . xN) is the space-time coordinate, xi being the space
coordinate of the individual electron, and H is the Hamiltonian of the system.
This representation is known as the Schrödinger picture (SP).

We assume here that the Hamiltonian is time independent, which means that
there are stationary solutions of the form 3

ΨS(x) = Ψ(x, . . . xN) e−iEt. (2) WFStat

The space part of the wavefunction then satisfies the time-independent Schrödinger
equation

HΨ(x, . . . xN) = E Ψ(x, . . . xN). (3) SEtind

The eigenfunctions of the Hamiltonian

HΨi = EiΨi (4) Eigenf

define a Hilbert space, where the number of particles (electrons and photons)
is a constant of the motion 4 .

In nonrelativistic MBPT for atomic and molecular systems we start from the
N -electron Hamiltonian

H =
N∑

i=1

(
− 1

2
∇2

i + vext(ri)
)

+
N∑

i<j

e2

4π rij

, (5) Hamiltonian

where vext(r) is the external (normally nuclear) potential. As usual, we parti-
tion the Hamiltonian into a zeroth-order Hamiltonian and a perturbation,

H = H0 + H ′, (6) Partition

where we assume that the eigenfunctions and eigenvalues of H0 are known.
The modifications due to the perturbation are in standard perturbation theory
treated order by order. We assume here that the operators (

Partition
6) are of the form

H0 =
N∑

i=1

hS(i) =
N∑

i=1

(
− 1

2
∇2

i + vext(ri) + u(ri)
)

H ′ =−
N∑

i=1

u(ri) +
N∑

i<j

e2

4π rij

. (7) H0H

The additional single-electron potential, u(r), is hermitian but otherwise op-
tional and can be chosen to improve the convergence rate. The perturbation

3 We do not consider the spontaneous decay of excited states here.
4 Later, in the field-theoretical approach we shall work in the more general space,
where these numbers are not necessarily conserved (see e.g.,

Sch61
(?)).
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H ′ may also contain other (time-independent) interactions, such as interaction
with a static magnetic field.

The eigenstates of H0 form our spectrum of basis functions,

H0 ΦM = EM
0 ΦM . (8) BasisFcns

Since H0 is assumed to be of single-particle type, the basis functions can be
expressed in the form of antisymmetrized products of single-electron functions
– or Slater determinants –

ΦM =
1√
N !

det
{

φ1(x1) φ2(x2) · · ·φN(xN)
}
. (9) SlaterDet

The single-electron functions satisfy the single-electron Schrödinger equation

hS φi(x) = εi φi(x). (10) SingElEq

2.2 Perturbation theory. Extended model space

sec:pert

In MBPT we are interested in one or several eigenstates of the Hamiltonian
H with the eigenfunctions Ψα,

H Ψα = Eα Ψα (α = 1, 2, · · · d), (11) SchrEq

which we refer to as target functions, representing target states. For each tar-
get function, Ψα, we assume that there exists a zeroth-order approximation
– or model function – Ψα

0 , which, for instance, can be a wavefunction of the
independent-particle type. If there are no states with the same or nearly the
same energy that can be mixed by the perturbation, then a perturbation ex-
pansion can easily be generated in the standard way. In the more general case,
on the other hand, the situation can be more complicated. Closely lying – or
quasi-degenerate – states can lead to serious convergence problems. This can
be the case, for instance, when studying the atomic fine-structure of light el-
ements in the relativistic formalism. This problem can usually be remedied
by extending the model space and including closely lying states in that sub-
space. Also completely degenerate states that are mixed by the perturbation
are conveniently treated with this formalism, which we shall briefly review.
(For more details, we refer to the book by

LM86LM86
?)).

The model functions define a model space, which can contain an arbitrary num-
ber of eigenvalues of the unperturbed Hamiltonian. All unperturbed functions
of the same energy must be either completely inside or completely outside the
model space. In other words, no degeneracy is allowed between states in the
model space and states in the complementary space.
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In the general case, we cannot find directly an expansion for the wavefunction
as in the nondegenerate case, since the zeroth-order or model function is not
generally known from the start. Instead, it is convenient to introduce a wave
operator or Møller operator

Mo45,Lo65
(??), which transforms all model functions into

the corresponding target functions

Ψα = ΩΨα
0 (α = 1, 2, · · · d). (12) WaveOp

The model functions are solutions of a secular equation

HeffΨα
0 = EαΨα

0 , (13) EffHam

where Heff is an effective Hamiltonian, operating within the model space. The
eigenvalues of this operator are the exact energies (

SchrEq
11) of the target states.

Also this operator is in general unknown at the start of the calculation.

The wave operator satisfies the generalized Bloch equation
Bl58a,Bl58b,Li74,Kv77,LM86
(?????)

[
Ω, H0

]
P = H ′ΩP − ΩH ′

effP. (14) Bloch

H ′
eff is here the effective interaction, defined by

Heff = PH0P + H ′
eff , (15) Heff

and P is the projection operator for the model space. A condition for the
theory to work is that the model states are linearly independent and, thus,
span the entire model space.

We assume now that the model functions are the projections of the target
functions onto model space,

Ψα
0 = PΨα, (16) Psi0

which we refer to as the intermediate normalization (IN). The wave operator
then satisfies the condition

PΩP = P, (17) IN

and the effective Hamiltonian and the effective interaction have the forms

Heff = PHΩP ; H ′
eff = PH ′ΩP. (18) EffInt

Then the Bloch equation assumes the frequently used form

[
Ω, H0

]
P = Q

(
H ′Ω− ΩPH ′Ω

)
P. (19) Bloch2

Here,
Q = I − P (20) Qoper
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is the projection operator for the complementary space and I is the identity
operator for the Hilbert space we operate in.

By expanding the wave operator perturbatively

Ω = 1 + Ω(1) + Ω(2) + · · · , (21) OmegaExp

the Bloch equation can be solved order by order. This leads to the generalized
Rayleigh-Schrödinger expansion, valid also in the quasi-degenerate case,

[
Ω(1), H0

]
P = QH ′P

[
Ω(2), H0

]
P = Q

(
H ′Ω(1) − Ω(1)PH ′)P

[
Ω(3), H0

]
P = Q

(
H ′Ω(2) − Ω(1)PH ′Ω(1) − Ω(2)PH ′)P. (22) OmegaExp2

We note that with the intermediate normalization all components of the wave
operator - beyond the trivial zeroth order - have their final state in the com-
plementary space, which is also a consequence of the condition (

IN
17).

The general procedure of MBPT with an extended model space can be sum-
marized in the following rules:

• Evaluate the wave operator to the desired accuracy, using the Bloch equation;
• Evaluate the matrix elements of the effective Hamiltonian;
• Diagonalize the matrix of the effective Hamiltonian to obtain the exact en-

ergies of the target states and the model functions ;
• Evaluate the wavefunction of the target states if needed.

2.3 Second quantization. The electron-field operators

sec:SQ

In many-body theory it is convenient to work in second quantization (see, for
instance,

Sch61
(?, Ch.5) or

LM86
(?, Ch.11). A quantum-mechanical operator, Ô, can

then be expanded as 5

Ô = C + c†i di,j cj +
1

2!
c†ic

†
j dij,kl clck +

1

3!
· · · = Ô0 + Ô1 + Ô2 + Ô3 + · · · , (23) SecQuant

where the terms on the right-hand side represent the zero-, one-, two-,... body
parts of the operator. cj and c†j are electron annihilation/creation operators,
which satisfy the usual anti-commutation relations

5 We shall use a ’hat’ to indicate operators in second quantization, apart from the
creation/annihilation operators. We employ the summation convention with implicit
summations over repeated indices that appear only on the r.h.s.
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{c†i , c†j}= c†ic
†
j + c†jc

†
i = 0

{ci, cj}= cicj + cjci = 0

{c†i , cj}= c†icj + cjc
†
i = δij, (24) AntiComm

where δij is the Kronecker delta factor. The coefficients in the expansion (
SecQuant
23)

can be expressed as

di,j = 〈i|Ô1|j〉 =
∫

d3x1 φ†i (x1) Ô1 φj(x1)

dij,kl = 〈ij|Ô2|kl〉 =
∫∫

d3x1 d3x2 φ†i (x1)φ
†
j(x2) Ô2 φk(x1)φl(x2)

etc. (25) MatrixEl

{φj(x)} is a set of single-electron functions, which are solutions to the Schrödinger
equation (

SingElEq
10) in the field of the nucleus and possibly other electrons. This is

usually referred to as the Furry picture
Fu51
(?), although in his original work Furry

only considered the potential from the (point) nucleus.

It should be noted that we here let the bras and kets represent straight prod-
ucts of single-particle functions. 6 An antisymmetric product of single-particle
functions (Slater determinant) (

SlaterDet
9) can be expressed

ΦM = c†1c
†
2 · · · c†N |0〉, (26) SlaterDetSQ

where |0〉 represents the vacuum state.

The nonrelativistic Hamiltonian (
Hamiltonian
5) has one- and two-body parts and can be

expressed in second quantization as

Ĥ = c†i 〈i|H1|j〉 cj + 1
2
c†ic

†
j 〈ij|H2|kl〉 clck, (27) HamSecQuant

where H1 = −1
2
∇2 + vext(r) and H2 =

e2

4π r12

.

We define the electron field operators in the Schrödinger representation by

ψ̂S(x) = cj φj(x); ψ̂†S(x) = c†j φ†j(x), (28) ElFieldOp

which are time independent in this representation. The Hamiltonian (
HamSecQuant
27) can

6 The true two-body matrix elements, using antisymmetric wavefunctions, then
becomes

〈{ij}|Ô2|{kl}〉 = 1
2〈0|cicj c†i′c

†
j′ di′j′,k′l′ cl′ck′ c

†
kc
†
l |0〉

= 1
2

(
dij,kl + dji,lk − dji,kl − dij,lk

)
= dij,kl − dij,lk,

assuming the operator to be symmetric with respect to interchange of the coordi-
nates 1 ↔ 2, etc.
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then be expressed

Ĥ =
∫

d3x1 ψ̂†S(x1) H1 ψ̂S(x1)+
1
2

∫∫
d3x1 d3x2 ψ̂†S(x1) ψ̂†S(x2) H2 ψ̂S(x2) ψ̂S(x1).

(29) HamFieldOp

In an alternative to the Schrödinger picture, the Heisenberg picture (HP), the
wavefunctions are time independent and the time-dependence is transferred
to the operators,

ΨH = ΨS(t = 0) = eiĤtΨS(x); ÔH = eiĤtÔS e−iĤt. (30) HP

In perturbation theory it is often convenient to work in an intermediate pic-
ture, known as the interaction picture (IP). Here, the operators and wavefunc-
tions are related to those in the Schrödinger picture by

ΨI(t) = eiĤ0t ΨS(t); ÔI(t) = eiĤ0t ÔS e−iĤ0t, (31) IP

partitioning the Hamiltonian in the same way as before (
Partition
6). The relation

between the Heisenberg and the interaction pictures is

ΨH = eiĤ′tΨI(t); ÔH(t) = eiĤ′t ÔI e
−iĤ′t. (32) HPIP

The wavefunction of time-independent MBPT corresponds in all pictures con-
sidered here to the time-dependent wavefunction with t = 0,

Ψ = ΨH = ΨS(0) = ΨI(0). (33) TimeIndWF

In the Heisenberg picture (
HP
30) the electron-field operators (

ElFieldOp
28) become

ψ̂H(x) = eiĤt ψ̂S(x) e−iĤt ; ψ̂†H(x) = eiĤt ψ̂†S(x) e−iĤt, (34) ElFieldHP

and in the interaction picture (IP) (
IP
31)

ψ̂I(x) = eiĤ0tψ̂S(x) e−iĤ0t = eiĤ0tcj φj(x) e−iĤ0t = cj φj(x) e−iεjt = cj φj(x)

ψ̂†I (x) = c†j φ†j(x) eiεjt = c†j φ†j(x). (35) ElFieldIP

We now introduce the time-dependent creation/annihilations operators in the
IP by

cj(t) = cj e−iεjt ; c†j(t) = c†j eiεjt, (36) TimeDepSQ

which gives

ψ̂I(x) = cj(t) φj(x) ; ψ̂†I (x) = c†j(t) φ†j(x). (37) ElFieldTD

The creation/annihilation operators are said to be in normal order, if all cre-
ation operators appear to the left of the annihilation operators. A contraction of
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the operators is defined as the difference between the ordinary (time-ordered)
product and the normal-ordered product,

x y = x y − {x y}, (38) ContractDef

where we use the curly brackets to denote the normal product. From this defi-
nition it follows that

c†i c†j = ci cj = c†i cj = 0 and ci c
†
j = δij. (39) Contraction

Normal order and Wick’s theorem

The handling of operators in second quantization is greatly simplified by
Wick’s theorem

Wi50
(?), which states that a product of creation and annihila-

tion operators Â can be written as the normal product plus all single, double
... contractions with the uncontracted operators in normal form, or symboli-
cally

Â = {Â}+ {Â}. (40) Wick

A particularly useful form of Wick’s theorem is the following. If Â and B̂ are
operators in normal form, then the product is equal to the normal product plus
all normal-ordered contractions between Â and B̂, or formally

Â B̂ = {Â B̂}+ {Â B̂}. (41) GenWick

This forms the basic rule for constructing the MBPT diagrams.

2.4 The linked-diagram expansion

sec:LDE

By using second quantization and Wick’s theorem, the perturbation expan-
sion can conveniently be expressed in terms of diagrams – see, for instance

LM86
(?,

Ch.12). By means of the theorem in the form (
GenWick
41), the Rayleigh-Schrödinger

expansion can easily be transformed into normal-ordered products. Each such
product is represented by a (Goldstone) diagram, and this leads to the di-
agrammatic expansion of the many-body wavefunction. The corresponding
energy diagrams are obtained by ’closing’ the wavefunction diagram by a final
perturbation, so that the final state lies in the model space. It is then found
that such an expansion can contain diagrams that are referred to as unlinked,
i.e., contain one or several disconnected, closed parts (with the initial and the
final state in the model space). The remaining diagrams are known as linked.
It can be shown that all unlinked terms cancel in the Rayleigh-Schrödinger
perturbation expansion, provided the model space is complete, i.e., contains
all configurations that can be formed from the valence electrons. This is the
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Fig. 1. Diagrammatic representation of the two lowest orders of the wave operator
for a two-electron system. The heavy vertical lines represent electron states in the
nuclear potential (

SingElEq
10) and the dotted horizontal lines the Coulomb interaction. The

last diagram, originating from the second term in the Bloch equation (
BlochLink
42), is a type

of model-space contribution (MSC) with the intermediate state in the model space.
This is also referred to as folded and often drawn in a folded way. Fig:Omega12

linked-diagram theorem, first shown for closed-shell systems by
Br55Br55
?) and

Go57Go57
?) and

later extended to open-shell systems
Br67
(?) as well as to quasi-degenerate model

space
Li74,LM86
(??). The Bloch equation (

Bloch
14) can then be written

[
Ω, H0

]
P =

(
H ′Ω− ΩH ′

eff

)

linked
P, (42) BlochLink

where H ′
eff = PH ′ΩP in the intermediate normalization (

IN
17). The second

term on the r.h.s. is referred to as folded and is usually interpreted in a special
way. The denominators of the two parts, Ω and H ′

eff , are independent. For that
reason the corresponding time-ordered (Goldstone) diagrams are often drawn
as ’folded’ with all possible time orderings between the interactions of the two
parts. By using the standard Goldstone evaluation rules and the ’factorization
theorem’, the denominators of the two parts can then be factorized

Go57
(?),

LM86LM86
(?,

Ch.13).

In the formalism we shall develop, the ’folded’ diagrams need not be drawn
in a folded way. The factorization of the denominators follows directly from
the Bloch equation. If drawn in a ’stretched’ way, the folded diagrams have an
intermediate state in the model space, and we shall refer to such contributions
as Model-Space Contributions (MSC). Later, in dealing with time-dependent
interactions, we shall find that there is an additional type of MSC.

In second order, the linked-diagram form of the Bloch equation (
BlochLink
42) leads

14



instead of the Rayleigh-Schrödinger expression (
OmegaExp2
22) to

[
Ω(2), H0

]
P = Q

(
H ′Ω(1) − Ω(1)PH ′

)

linked
P. (43) OmegaExpL

As an illustration we consider a two-electron system, where the electron or-
bitals are solutions of the Schrödinger equation in an external (nuclear) field
(
SingElEq
10). The solution to the equations for Ω(1) and Ω(2) can then be expressed

〈
rs

∣∣∣Ω(1)
∣∣∣ab

〉
=

〈rs|H ′|ab〉
εa + εb − εr − εs

〈
rs

∣∣∣Ω(2)
∣∣∣ab

〉
=


 ∑

|tu〉∈Q

〈rs|H ′|tu〉〈tu|H ′|ab〉
(εa + εb − εr − εs)(εa + εb − εt − εu)

− ∑

|tu〉∈P

〈rs|H ′|tu〉〈tu|H ′|ab〉
(εa + εb − εr − εs)(εt + εu − εr − εs)




linked

. (44) Omega2

This is illustrated in Fig.
Fig:Omega12
1. The first diagram of Ω(2)P represents QH ′Ω(1)P .

It follows from Wick’s theorem (
GenWick
41) that only the fully contracted term can

contribute in this case. Here, the intermediate state (tu) lies in the comple-
mentary space, Q. The second diagram represents the term Ω(1)PH ′P , and
this is a model-space contribution with the intermediate state in the model
space, P . This diagram is here drawn in the conventional way as folded, so
that the Goldstone evaluation rules can be used.

2.5 All-order procedures. The coupled-cluster approach

sec:AllOrder

A great advantage of the many-body procedure of the type presented here is
that important perturbative effects – i.e., most of the electron correlation –
can be treated iteratively to essentially all orders of perturbation theory. This
can be achieved by separating the wave operator in second quantization into
one-, two-, ... body effects (

SecQuant
23),

Ω = 1 + Ω1 + Ω2 + · · · (45) Cluster

– which should not be confused with the perturbative expansion (
OmegaExp
21). Here,

the n-body effects can be expanded as (see, for instance,
LM86
(?, Ch.15))

Ω1 = c†i xi
j cj

Ω2 = 1
2
c†ic

†
j xij

kl clck

etc. (46)

where xi
j, xij

kl . . . are the expansion coefficients or ’amplitudes’ for the particu-
lar ’excitation’. The Bloch equation in the linked-diagram form (

BlochLink
42) can then

15



be separated into a set of equations for n = 1, 2, · · ·
[
Ωn, H0

]
P = Q

(
H ′Ω− ΩH ′

eff

)
n, linked

P. (47) ClusterEq

The equations for different orders n are coupled and have to be solved itera-
tively. The most important component is normally n = 2, which corresponds
to pair correlation

BP78,Ma79
(??). For open-shell systems also n = 1 can be quite impor-

tant, but less so for closed-shell systems. The latter contributions represent
one-body effects that can be included in the single-electron orbitals. With
such orbitals there are no single excitations in a configuration-interaction (CI)
expansion, and the zeroth-order wavefunction has maximum overlap with the
exact one. These orbitals are known as Brueckner orbitals or maximum overlap
orbitals

Br57,Lo62,LLM76,Li85
(????),

LM86
(?, p.260).

2.5.1 Coupled-cluster approachsec:CCA

An improved iterative technique can be obtained by expressing the wave op-
erator in exponential form,

Ω = exp S = 1 + S + 1
2
S2 + · · · , (48) ExpOmega

a technique first developed in nuclear physics in the late 1950’s
Hu57,Co58,CK60,KLZ78
(????) and

later further developed and extensively applied in quantum chemistry
Ci66,PC75,BP78,PKSB78
(????).

For open-shell systems the form (
ExpOmega
48) leads to ’spurious’ terms, which are

eliminated by choosing the normal-ordered form of the exponential
Ey78,Li78,LM86
(???)

Ω = {exp S} = 1 + S + 1
2
{S2}+ · · · . (49) ExpOmegaNO

The normal-ordering, denoted by curly brackets, implies that there are no
’contractions’ between the cluster operators, which eliminates the spurious
terms of the straight exponential (

ExpOmega
48). It can be shown that with a complete

model space the cluster terms are connected, which is a stronger condition
than linked 7 .

In analogy with the wave-operator expansion (
Cluster
45), we expand the cluster op-

erator S in terms of one-, two, ... body clusters

S = S1 + S2 + · · · (50) SExp

with

7 A disconnected diagram is still termed ’linked’, if all the separate pieces are open.
If the model space is incomplete, then disconnected cluster diagrams may appear
with the formalism described here. By modifying the procedure, it is possible to
maintain the connectivity also for incomplete model space, as discussed particularly
by

Mu86Mu86
?),

LM87
(?).
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S1 = c†i si
j cj

S2 = 1
2
c†ic

†
j sij

kl clck

etc.

Inserted in the Bloch equation (
Bloch
14), this leads to the coupled-cluster equations

[
Sn, H0

]
P = Q

(
H ′Ω− ΩH ′

eff

)
n, conn

P, (51) CCA

where ’conn’ stands for terms/diagrams that are connected. As before, this
leads to a set of coupled equations for n = 1, 2, · · · , which are solved itera-
tively. One essential advantage of this approach over the simpler approach of
the previous section (

ClusterEq
47) is that important four-body effects are automatically

included in the pair-correlation approach via the {S2} term. For quantum-
chemistry applications the approach furthermore has the advantage of satisfy-
ing the separability condition

PBS76
(?), which implies that the wavefunction of the

system separates correctly upon fragmentation.

2.5.2 Pair correlationsec:PairCorr

As before, the pair term, S2, in the cluster expansion (
SExp
50) is the most im-

portant, followed by the S1 term. A frequently used approximation is the
’coupled-cluster-singles-and-doubles approximation’ (CCSD), where the cou-
pled equations for S1 and S2 are solved to self-consistency

PB82
(?). Here, the wave

operator is approximated by
LM86
(?, Ch.15)

Ω = 1+S1+S2+
1
2
{S1}2+{S1S2}+ 1

2
{S2}2+ 1

2
{S2

1S2}+ 1

3!
{S1}3+

1

4!
{S1}4. (52) CCSD

(The effect of the last three terms with three or more disconnected clusters
is usually quite small and often omitted.) Inserted into the cluster equation
(
CCA
51), the pair approximation yields the equations

[
S1, H0

]
P =

(
H ′Ω− ΩH ′

eff

)
1, conn

P
[
S2, H0

]
P =

(
H ′Ω− ΩH ′

eff

)
2, conn

P (53) S1S2

with H ′
eff = PH ′ΩP in the intermediate normalization. The CCSD approxi-

mation normally represents 95-98% of the electron correlation. In more elabo-
rate calculations also connected triple and quadruple excitations are (partially)
included (see, for instance,

KB92CC
(?) for a review).

As a simple illustration of the pair equation we shall consider a two-electron
system (He-like system) with the zeroth-order Hamiltonian and the perturba-
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S2 =
666r 666s

666a 666b

=
666r 666s

666a

r r

666b

+

666r 666s

666t 666u

666a

r r

666b

+

666r 666s

666a/b 666b/a

666a

H ′
eff

666b

=
666r 666s

666a

r r

666b

+

666r 666s

666 666

666a

r r

r r
666b

+

666r 666s

666 666

666 666

666a

r r

r r

r r
666b

+ · · · + folded

Fig. 2. The pair function for a two-electron system (with no core electrons) is equiv-
alent to an infinite sequence of ladder diagrams (including the folded diagrams). Fig:PairEq

tion (
H0H
7)

H0 =
2∑

i=1

(
− 1

2
∇2

i +
Ze2

4π ri

)
; H ′ =

e2

4π r12

. (54) H0H2

The pair equation (
S1S2
53) then becomes

[
S2, H0

]
P = Q

(
H ′(1 + S2)− S2H

′
eff

)
2, conn

P. (55) PairEq

Since there are no core electrons in this case, there are no S1 clusters. With
the expansion (

SExp
50) this becomes

(
εa + εb − εr − εs

)
srs

ab = 〈rs|H ′|ab〉+ 〈rs|H ′|tu〉 stu
ab − srs

ab 〈ab|H ′
eff |ab〉 , (56) PairEq2

where the last folded term should also include an exchange contribution. The
pair (r, s) is here different from the pair (a, b). This equation is graphically
illustrated in Fig.

Fig:PairEq
2. By introducing the pair function

|ρab〉 = srs
ab|rs〉 , (57) PairFcn

we obtain the following pair equation
(
εa + εb − h0(1)− h0(2)

)
|ρab〉 =

|rs〉〈rs|H ′|ab〉+ |rs〉〈rs|H ′|ρab〉 − |ρab〉 〈ab|H ′
eff |ab〉. (58) PairEq3

Solving this equation self-consistently, is equivalent to generating an infinite
sequence of ladder diagrams – in addition to the folded diagrams – as indicated
in the second row of the figure. This corresponds to solving the two-particle
equation exactly.
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〈cd|H ′
eff |ab〉 =

666c 666d

666r 666s

666a

r r

666b

Fig. 3. Closing the pair function by a final interaction yields the contribution to the
energy – or generally the effective interaction. The final state (c, d) lies here in the
model space. Fig:ClosPf

The corresponding contribution to the energy – or generally the effective in-
teraction (

EffInt
18) – is then obtained by ’closing’ the pair function by a final

interaction

〈cd|H ′
eff |ab〉 = 〈cd|H ′

eff |rs〉 srs
ab = 〈cd|H ′

eff |ρab〉 (59) ClosPf

depicted in Fig.
Fig:ClosPf
3. Here, the final state (cd) lies in the model space.

2.5.3 Numerical evaluationsec:Num

For atomic problems we primarily consider here, it is convenient to separate
the MBPT diagrams into spin-angular and radial parts. This is based upon
the standard expansion of the perturbation (

H0H2
54) in spherical waves, using the

relation

1

r12

=
∞∑

l=0

rl
<

rl+1
>

C l(1) · C l(2), (60) SphW

where C l is a spherical tensor, closely related to the spherical harmonics
LM86
(?).

The spin-angular part can be evaluated using angular-momentum diagrams,
and only the radial part has to be evaluated numerically. For the numerical
evaluation essentially two schemes have been developed. One scheme is based
upon the use of B splines and used particularly by the Notre Dame group

JBS88
(?).

The other scheme is based upon a discretization of the radial space and matrix
inversion. This is developed by

SO89,SO89aSO89,SO89a
??) and used mainly by the Göteborg group.

(See also the review by
MPS98MPS98
?).)

19



2.6 Relativistic MBPT
sec:RMBPT

2.6.1 The Dirac equationsec:Dirac

According to Dirac’s relativistic electron theory, the equation for a single elec-
tron in an external (nuclear) potential vext is

i
∂

∂t
φ(x) =

(
α · p + β + vext

)
φ(x). (61) DiracTD

Here, φ(x) represents a four-component wavefunction, p = −i∇ is the mo-
mentum operator and α, β are the 4×4 Dirac matrices. The stationary states
are of the form φi(x) = φi(x) e−iεit, where the space part satisfies the corre-
sponding time-independent equation

hD φi(x) = εi φi(x) ; hD = α · p + β + vext. (62) Dirac

2.6.2 No-Virtual-Pair Approximationsec:NVPA

Formally, relativistic many-body problems have to be treated in the frame-
work of QED. There exists no relativistic Hamiltonian corresponding to the
nonrelativistic one (

Hamiltonian
5). However, various approximations can be constructed,

which have been found to work quite well.

The first natural choice for a relativistic many-body Hamiltonian might be to
replace the Schrödinger single-electron operator of the nonrelativistic Hamil-
tonian (

Hamiltonian
5) by the Dirac operator (

Dirac
62), which leads to the Hamiltonian

HDC =
N∑

i=1

hD(i) +
N∑

i<j

e2

4π rij

, (63) DirCoul

known as the Dirac-Coulomb Hamiltonian. Due to the negative-energy contin-
uum of the Dirac equation, the eigenvalues of this Hamiltonian are not bound
from below, and it is therefore, as it stands, not suitable for many-body cal-
culations. This is known as the Brown-Ravenhall disease

BR51
(?). Nevertheless,

the Hamiltonian has been used for a long time in practical works, particu-
larly in self-consistent Dirac-Fock and multi-configurational Dirac-Fock calcu-
lations

De75
(?). It turns out that by choosing appropriate boundary conditions,

the appearance of negative energy states can be strongly suppressed. Formally,
this can be expressed as a projected Dirac-Coulomb Hamiltonian

Su80
(?)

HProjDC = Λ+

( N∑

i=1

hD(i) +
N∑

i<j

e2

4π rij

)
Λ+ , (64) CoulHamProj
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where Λ+ is the projection operator for the positive energy spectrum of the
Dirac equation.

When relativity is considered, there is, in addition to the electrostatic interac-
tion between the electrons, a magnetic interaction of order α2, where α is the
fine-structure constant (α ≈ 1/137, 0600). This leads to an additional term
in the Hamiltonian, first formulated by

Gaunt29Gaunt29
?), and the so-called Coulomb-Gaunt

interaction,

HCG =
N∑

i<j

e2

4π rij

(
1−αi · αj

)
. (65) CoulGaunt

The Coulomb and the Gaunt interactions above are instantaneous. It was first
shown by

Breit30,Breit32Breit30,Breit32
??) that also the retardation of the Coulomb interaction gives rise

to effects of the same order. This leads together with the magnetic interaction
to the so-called Breit interaction and the Coulomb-Breit interaction

HCB =
N∑

i<j

e2

4π rij

(
1− 1

2
αi · αj − (αi · rij) (αj · rij)

2r2
ij

)
. (66) Breit

Replacing the instantaneous Coulomb interaction in the projected Hamil-
tonian by this operator, leads to

HNVPA = Λ+

( N∑

i=1

hD(i) + HCB

)
Λ+, (67) NVPA

known as the No-Virtual-Pair Approximation (NVPA)
Su80
(?).

The Breit interaction is instantaneous, although it compensates for the lead-
ing effect of the retardation of the Coulomb interaction. In a proper QED
treatment, there is an additional retardation effect of the Breit interaction
of order α3. The Coulomb interaction, on the other hand, is strictly instan-
taneous in this model, which is the Coulomb gauge. In an alternative gauge,
frequently used in QED, the Feynman gauge, the instantaneous interaction is
identical to the Coulomb-Gaunt interaction. This interaction does not contain
any retardation, and therefore the retardation correction to this interaction
is of the order α2, i.e., an order of 1/α larger than in the Coulomb gauge.
This implies that when the Feynman-gauge is used in the NVPA for heavy
elements, considerable errors may be introduced

GI88,LM89,Su88,Li90
(????). In QED calculations,

on the other hand, when the retardation is properly taken care of, this error
is eliminated, and the Feynman gauge is often used due to its simplicity.

The NVPA in the Coulomb gauge is normally a very good starting point for
relativistic MBPT. The Hamiltonian is partitioned as before (

Partition
6) with

H0 =
N∑

i=1

(
hD(i) + u(ri)

)
H ′ = −

N∑

i=1

u(ri) + HCB.
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Then the linked-diagram expansion and the coupled-cluster approach can be
generated in a straightforward manner

SO89
(?). This yields very good results also

for quite heavy elements.

3 Time-dependent MBPT

sec:TimeDepMBPT

3.1 General
sec:TDGen

In this section we shall consider the time-dependent form of MBPT, which will
form a link between time-independent MBPT and quantum electrodynamics
(QED) for bound states to be discussed in the following chapters. In QED the
interaction of electrons/positrons with the photon field is in the interaction
picture (IP) (

IP
31) represented by

Ĥ ′
I(t) =

∫
d3x Ĥ′

I(x), (68) IntHam

where
Ĥ′

I(x) = −eψ̂†(x) αµÂµ(x)ψ̂(x)

is the interaction Hamiltonian density
Sch61
(?). Here, ψ̂†(x), ψ̂(x) are the electron-

field operators in the IP (
ElFieldTD
37), and αµ represents the four-component Dirac

matrices, related to the standard Dirac α matrices (
DiracTD
61) by

αµ = (1,α).

(These are related to the Dirac γ matrices by αµ = γ0γµ.) Âµ are the electro-
magnetic field operators

Âµ ∝ εµj(k)
(
a†j(k) eiκx + aj(k) e−iκx

)
, (69) ElmagnField

where εµj(k) are the four-component polarization vectors, a†j(k) and aj(k)
the photon creation and annihilation operators, respectively, and x = (t, x)
and κ = (ω, k) the four-component k vector. With the metric we use, the
four-component scalar product is κx = ωt − k · x. The only nonvanishing
commutation relation for the photon operators is

MS84
(?, Eq. 5.28)

[ai, a
†
j] = ai a

†
j − a†j ai = ±δi,j, (70) Comm

where the upper (lower) sign is for the space (time) part of the operators.

The perturbation (
IntHam
68) commutes with the number operator for the electrons,

N =
∑

i

c†ici, (71) NumberOp
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which means that the electronic charge (number of electrons minus positrons)
is conserved. The electromagnetic-field operator, on the other hand, contains
unpaired creation and annihilation photon operators, which implies that the
number of photons in not conserved by the perturbation. Therefore, this per-
turbation operates in a more general space (see, e.g.,

Sch61
(?, Ch.6), which we can

write as
H = H0 ⊗H+1 ⊗H−1. (72) Fock

Hx represents here a ’restricted’ Hilbert space, where the number of photons
is conserved. H0 is the ’central’ space, where the model functions are located,
while H+1 and H−1 represent the corresponding spaces with one photon more
and less, respectively. This will be further discussed in chapter

MBPT/QED
8.

With a perturbation of the type (
IntHam
68), the interaction between the electrons is

formed by two perturbations with contracted photon operators. This contrac-
tion (

ContractDef
38) defines a photon propagator, DFνµ, by

iDFνµ(x2 − x1) = Aν(x2)Aµ(x1) =
〈
0
∣∣∣TD[Aν(x2)Aµ(x1)]

∣∣∣0
〉

. (73) PhotProp

TD is here the Dyson time-ordering operator,

TD[A(x1)B(x2)] =





A(x1)B(x2) (t1 > t2)

B(x2)A(x1) (t1 < t2),
(74) TimeOrdering2

and |0〉 represents the vacuum state. Since the vacuum-expectation value of the
normal-ordered product vanishes, the contraction is given by the time-ordered
product.

The Fourier transform of the photon propagator is defined by

DFνµ(x2 − x1) =
∫ dz

2π
DFνµ(x2 − x1, z) e−iz(t2−t1), (75) FourierProp

which in the Feynman gauge becomes

DFνµ(x2−x1, z) = −gνµ

∫ d3k

(2π)3

eik·(x2−x1)

z2 − k2 + iη
= − gνµ

2π2r12

∫ ∞

0

k dk sin(kr12)

z2 − k2 + iη
,

(76) PhotPropF

where k = |k|. The interaction between the electrons then becomes

I(x2, x1, z) = e2αµ
1α

ν
2 DFνµ(x2 − x1, z) =

∫ ∞

0

2k dk f(k)

z2 − k2 + iη
, (77) Interact

where f(k) = − e2

4π2 r12

(1−α1 · α2) sin(kr12).

Performing the k integration yields

I(x2,x1, z) =
e2

4π r12

(1−α1 · α2) ei|z|r12 . (78) RetCoulGaunt
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This is the retarded Gaunt interaction. When z = 0, this becomes the cor-
responding instantaneous interaction (

CoulGaunt
65). In the Coulomb gauge the corre-

sponding interaction becomes

IC(x2,x1, z) =
e2

4π





1

r12

−α1 · α2
ei|z|r12

r12

+

[
α1 · ∇1,

[
α2 · ∇2,

ei|z|r12 − 1

z2r12

]]

,

(79) IntCoul

which is the retarded form of the Coulomb-Breit interaction (
Breit
66).

For numerical work it is often convenient to expand the interaction (
Interact
77) in

spherical waves, in analogy with the expansion (
SphW
60),

sin kr12

kr12

=
∞∑

l=0

(2l + 1)jl(kr1)jl(kr2) C l(1) · C l(2), (80) SphW2

where jl(kr) are spherical Bessel functions, and to perform the radial integra-
tions before the k integrations.

3.2 The time-evolution operator

sec:TimeEvolOp

We consider now a general time-dependent perturbation, of which the QED
perturbation (

IntHam
68) is one example. We assume further that the operators in-

volved are expressed in second quantization and that the states are repre-
sented by state vectors in the generalized Fock space (

Fock
72). A state represented

by the function Ψ(x) will then be represented by the vector |Ψ(t)〉. The time-
dependent Schrödinger equation (

TDSE
1) then takes the form

i
∂

∂t

∣∣∣Ψ(t)
〉

= Ĥ(t)
∣∣∣Ψ(t)

〉
(81) SchrTD

and in the interaction picture (
IP
31)

i
∂

∂t

∣∣∣ΨI(t)
〉

= Ĥ ′
I(t)

∣∣∣ΨI(t)
〉

. (82) SchrInt

The Schrödinger equation (
SchrInt
82) has the solution

∣∣∣ΨI(t)
〉

=
∣∣∣ΨI(t0)

〉
− i

∫ t

t0
dt′ Ĥ ′

I(t
′)

∣∣∣ΨI(t
′)

〉
, (83)

and we introduce the time-evolution operator in the IP, defined by 8

∣∣∣ΨI(t)
〉

= Û(t, t0)
∣∣∣ΨI(t0)

〉
, (84) UDef

8 This operator does not preserve the intermediate normalization (
IN
17).
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which satisfies the equation

i
∂

∂t
Û(t, t0) = Ĥ ′

I(t) Û(t, t0). (85) UEq

This leads to the expansion
FW71
(?, Eq. 6.23),

IZ80
(?, Eq. 4-56)

Û(t, t0) = 1 +
∞∑

n=1

(−i)n
∫ t

t0
dtn

∫ tn

t0
dtn−1 . . .

∫ t2

t0
dt1Ĥ

′
I(tn) . . . Ĥ ′

I(t1) = 1 +

∞∑

n=1

(−i)n

n!

∫ t

t0
dtn . . .

∫ t

t0
dt1 TD

[
Ĥ ′

I(tn) . . . Ĥ ′
I(t1)

]
= TD exp

[
− i

∫ t

t0
dt Ĥ ′

I(t)
]
, (86) UExp

where TD is the time-ordering operator (
TimeOrdering2
74). Using the interaction density

(
IntHam
68), the evolution operator can then be expressed

Û(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0
d4xn . . .

∫ t

t0
d4x1 TD

[
Ĥ′

I(xn) . . . Ĥ′
I(x1)

]

= TD exp
[
− i

∫ t

t0
d4x Ĥ′

I(x)
]
, (87) EvolOpExp

where the space integration is performed over all space and the time integra-
tion as indicated.

3.3 Adiabatic damping. The Gell-Mann–Low relation

sec:GML

3.3.1 Nondegenerate casesec:GMLND

In time-dependent perturbation theory for bound-state problems an ’adiabatic
damping factor ’ is normally added to the perturbation,

Ĥ ′
I(t) → Ĥ ′

I(t, γ) = Ĥ ′
I(t) e−γ|t|, (88) Damping

where γ is a small, positive number. We assume that the damping is the
only time dependence of the perturbation in the Schrödinger picture. With
the damping, the time-dependent Schrödinger equation (

SchrTD
81) is still valid, but

there are no stationary solutions for finite γ. In order to return to the original
problem, the damping factor is adiabatically ’switched off’ at the end of the
calculation, and we shall now study this limiting process.

We consider first the case with a single target function, which in the IP evolves
according to (

UDef
84) ∣∣∣ΨIγ(t)

〉
= Ûγ(t, t0)

∣∣∣ΨIγ(t0)
〉
. (89) EvolvDamp
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The evolution operator satisfies now the equation (
UEq
85) with the damped per-

turbation,

i
∂

∂t
Ûγ(t, t0) = Ĥ ′

I(t) e−iγ|t| Ûγ(t, t0), (90) UEqDamp

which leads to the expansion (
UExp
86)

Ûγ(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0
dtn . . .

∫ t

t0
dt1 TD

[
Ĥ ′

I(tn) . . . Ĥ ′
I(t1)

]
e−γ(|t1|+|t2|...+|tn|). (91) UDamp

The damped perturbation (
Damping
88) vanishes, when γt → ±∞, and the perturbed

(target) wavefunction approaches in these limits an eigenfunction of Ĥ0,

∣∣∣ΨIγ(t)
〉
⇒

∣∣∣Ψ0

〉
. (92) UnpertWF

We can expect this function to be identical to the unperturbed model function
of time-independent MBPT,

Ĥ0

∣∣∣Ψ0

〉
= E0

∣∣∣Ψ0

〉
. (93) E0

The target function in the IP at arbitrary time for finite γ is then according
to (

EvolvDamp
89)

∣∣∣ΨIγ(t)
〉

=
Ûγ(t,−∞)

∣∣∣Ψ0

〉

〈Ψ0|Ûγ(t,−∞) |Ψ0〉
, (94) WavefIN

using intermediate normalization (
IN
17). This function will depend on the pa-

rameter γ, but we shall show that |ΨIγ(0)〉 satisfies the time-independent
Schrödinger equation in the limit γ → 0. Note that it is not possible to let
γ → 0 in the unnormalized form (

EvolvDamp
89), since the evolution operator will then

be singular. In order to study the limit γ → 0, we shall follow essentially the
treatment of

GML51GML51
?) (see also

FW71
(?, p. 61),

Sch61
(?, p. 336)).

We consider one term in the expansion (
UDamp
91)

Û (n)
γ (t,−∞) =

(−i)n

n!

∫ t

−∞
dtn

∫ t

−∞
dtn−1 · · ·TD

[
Ĥ ′

I(tn)Ĥ ′
I(tn−1) · · ·

]
eγ(t1+t2...+tn).

(95) Un

(As long as t does not approach +∞, we can leave out the absolute signs in
the damping factor.) Using the identity

[H0, ABC · · · ] = [H0, A] BC · · ·+ A[H0, B] C · · ·+ · · ·

we obtain

[
Ĥ0, Ĥ

′
I(tn)Ĥ ′

I(tn−1) · · ·
]

= −i
(

∂

∂tn
+

∂

∂tn−1

+ · · ·
)

Ĥ ′
I(tn)Ĥ ′

I(tn−1) · · · . (96) H0Comm
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(We note that Ĥ ′ is assumed to be time independent in the SP.) This gives

[
Ĥ0, Û

(n)
γ (t,−∞)

]
=

(−i)n+1

n!

∫ t

−∞
dtn

∫ t

−∞
dtn−1 · · ·

×TD

[(
∂

∂tn
+

∂

∂tn−1

+ · · ·
)
Ĥ ′

I(tn)Ĥ ′
I(tn−1) · · ·

]
eγ(t1+t2...+tn).

When integrating by parts, each term yields the same contribution, and the
result can be expressed

[
Ĥ0, Û

(n)
γ (t,−∞)

]
= −Ĥ ′

I(t) Û (n−1)
γ (t,−∞) + inγ Û (n)

γ (t,−∞). (97) UComm2

Introducing an order parameter, λ,

Ĥ = Ĥ0 + λ Ĥ ′
I(t), (98) HLambda

the result can be expressed

[
Ĥ0, Ûγ(t,−∞)

]
= −Ĥ ′

I(t) Ûγ(t,−∞) + iγλ
∂

∂λ
Ûγ(t,−∞). (99) UComm3

By operating with this commutator on the unperturbed function (
UnpertWF
92), we

obtain for t = 0

(
Ĥ0 − E0 + Ĥ ′

)
Ûγ(0,−∞)

∣∣∣Ψ0

〉
= iγλ

∂

∂λ
Ûγ(0,−∞)

∣∣∣Ψ0

〉
, (100) UComm4

where Ĥ ′ = Ĥ ′
I(0), and using (

WavefIN
94) this yields

(
Ĥ0 + Ĥ ′ − E0

) ∣∣∣Ψγ

〉
= iγλ

∂
∂λ

Ûγ(0,−∞)|Ψ0〉
〈Ψ0|Ûγ(0,−∞)|Ψ0〉

, (101) EigenvEq

where
∣∣∣Ψγ

〉
=

∣∣∣ΨIγ(0)
〉
. The r.h.s. is here

iγλ
∂
∂λ

Ûγ(0,−∞)|Ψ0〉
〈Ψ0|Ûγ(0,−∞)|Ψ0〉

= ∆Eγ

∣∣∣Ψγ

〉
+ iγλ

∂

∂λ

∣∣∣Ψγ

〉

with
∆Eγ = iγλ

〈Ψ0| ∂
∂λ

Ûγ(0,−∞)|Ψ0〉
〈Ψ0|Ûγ(0,−∞)|Ψ0〉

, (102) DeltaE

which yields (
Ĥ0 + Ĥ ′ − E0 −∆Eγ

) ∣∣∣Ψγ

〉
= iγλ

∂

∂λ

∣∣∣Ψγ

〉
. (103) EigenvEq2

Provided that the perturbation expansion of |Ψγ〉 converges, the r.h.s. will
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vanish as γ → 0. Then

∣∣∣Ψ
〉

= lim
γ→0

∣∣∣Ψγ

〉
= lim

γ→0

Ûγ(0,−∞)
∣∣∣Ψ0

〉

〈Ψ0|Ûγ(0,−∞) |Ψ0〉
(104) GML

will be an eigenfunction of the original, undamped Hamiltonian of the system
and satisfy the time-independent Schrödinger equation (

SEtind
3)

(
Ĥ0 + Ĥ ′) ∣∣∣Ψ

〉
= E

∣∣∣Ψ
〉

(105) SchrEqn

with the energy eigenvalue E = E0 + ∆E. The energy shift due to the per-
turbation is given by

∆E = lim
γ→0

iγλ
〈Ψ0| ∂

∂λ
Ûγ(0,−∞)|Ψ0〉

〈Ψ0|Ûγ(0,−∞)|Ψ0〉
. (106) GMLShift

The relations (
GML
104) and (

GMLShift
106) represent the Gell-Mann–Low theorem, which

is the basis for time-dependent perturbation theory.

Generally, the evolution operator contains singularities, due to unlinked terms
– in the graphical representation corresponding to unlinked diagrams. These
terms do not appear in the ratios (

GML
104) and (

GMLShift
106), which are regular. This is

the linked-diagram theorem, mentioned in section
sec:LDE
2.4, and first shown by

Go57Go57
?),

using time-dependent perturbation theory. Goldstone thereby showed that the
limits (

GML
104) and (

GMLShift
106) do exist and are represented by linked diagrams only. In

its original formulation the relation is valid only for a single reference function,
Ψ0, i.e., for a one-dimensional model space, but it can be extended to more
general cases, as we shall demonstrate below.

We have assumed here that the perturbation is of general time-dependent
form. If it is of the form (

IntHam
68), then the photon number is not a constant of

the motion. This implies that the eigenfunctions are superpositions of func-
tions with different photon numbers. This is necessary in order to be able to
handle time-dependent interactions between the electrons, which are formed
by contracting the field-theoretical perturbation at different times. We shall
discuss that further in the following chapters.

In the nondegenerate case, singularities of the evolution operator appear when
the initial or reference state appears as an intermediate state. The singularities
are eliminated in the Gell-Mann–Low expressions, such as (

GMLShift
106). When the

perturbation is time or energy dependent, the elimination of such a contribu-
tion is incomplete, and there is a residual contribution, usually known as the
reference-state contribution. In the more general situation we shall consider
below, we shall refer to this contribution as the Model-Space Contribution
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(MSC). To determine this contribution, the limiting process γ → 0 has to be
carried out.

3.3.2 Extended model space. The generalized Gell-Mann–Low relationsec:GenGellMann

The time-dependent MBPT was in the 1960’s and 1970’s further developed
by several groups

Mo63,KB66,BK67,To69,JM70,OOR70,KLR71
(???????), mainly in connection with nuclear calculations.

We shall summarize and extend this treatment here. In particular, we shall
prove a generalization of the Gell-Mann–Low theorem for an arbitrary model
space.

Following
To69To69
?), we choose the parent states to be the limits of the target states

(
EvolvDamp
89) for finite γ as t → −∞,

∣∣∣Ψα
〉

Iγ
⇒

∣∣∣Φα
〉

(α = 1, 2 · · · d). (107) ParentTolm

The parent functions are then eigenfunctions of H0,

Ĥ0

∣∣∣Φα
〉

= Eα
0

∣∣∣Φα
〉
, (108) ParentEigenv

but we cannot say which eigenvalue a specific target state will converge to in
the general case.

In analogy with (
WavefIN
94) we construct the states

∣∣∣Ψα
γ

〉
=

NαÛγ(0,−∞)
∣∣∣Φα

〉

〈Φα|Ûγ(0,−∞)|Φα〉 = Nα
∣∣∣Ψ̃α

γ

〉
. (109) WavefIN2

The states
∣∣∣Ψ̃α

γ

〉
are normalized to the parent states, 〈Φα|Ψ̃α

γ 〉 = 1 , and hence

regular as γ → 0. In the intermediate normalization (
Psi0
16) we normalize against

the projection of the target functions on the model space,
∣∣∣Ψα

0

〉
= P

∣∣∣Ψα
〉

, and
then an additional normalization constant, Nα, is generally needed. Below we
shall show that

∣∣∣Ψα
〉

= lim
γ→0

Nα Ûγ(0,−∞)
∣∣∣Φα

〉

〈Φα|Ûγ(0,−∞)|Φα〉 (110) GenGML

is an eigenfunction of the original Hamiltonian of the system for all values of
α, (

Ĥ0 + Ĥ ′)∣∣∣Ψα
〉

= Eα
∣∣∣Ψα

〉
(α = 1, 2, · · · d). (111) SEGML2

This is a generalization of the Gell-Mann–Low relation (
GML
104), and it holds for

an arbitrary model space, i.e., also when this is quasi-degenerate with several
energy levels.

In the one-dimensional model space, singularities appear in Û for unlinked
terms. In the general multi-dimensional case, singularities can appear also
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for linked diagrams, which have an intermediate state in the model space.
We refer to such diagrams as reducible 9 . The remaining irreducible diagrams
are regular. In addition, so-called quasi-singularities can appear – i.e., very
large, but finite, contributions – when an intermediate state is quasi-degenerate
with the initial state. All singularities and quasi-singularities are eliminated
in the ratio (

GenGML
110) – in analogy with the original Gell-Mann–Low theorem.

The elimination of these quasi-singularities represent the major advantage of
the procedure using an extended model space. In the next section we shall
see that this procedure can be applied also in QED, thus eliminating a major
shortcoming of the standard S-matrix formulation.

In order to show that the functions (
GenGML
110) are eigenfunctions of the original

Hamiltonian, we shall mainly follow the procedure used in the previous case.
We start from the identity (

UComm3
99) at t = 0

(
Ĥ0+Ĥ ′) Ûγ(0,−∞)

∣∣∣Φα
〉

〈Φα|Ûγ(0,−∞)|Φα〉 =
Ûγ(0,−∞)Ĥ0

∣∣∣Φα
〉

〈Φα|Ûγ(0,−∞)|Φα〉+iγλ

∂
∂λ

Ûγ(0,−∞)
∣∣∣Φα

〉

〈Φα|Ûγ(0,−∞)|Φα〉 ,
(112) UComm5

and in analogy with (
EigenvEq2
103), using (

WavefIN2
109), we obtain

(
Ĥ0+Ĥ ′−iγλ

〈Φα| ∂
∂λ

Ûγ(0,−∞)|Φα〉
〈Φα|Ûγ(0,−∞)|Φα〉

)∣∣∣Ψα
γ

〉
=

Nα Ûγ(0,−∞)Ĥ0

∣∣∣Φα
〉

〈Φα|Ûγ(0,−∞)|Φα〉 +iγλ
∂

∂λ

∣∣∣Ψα
γ

〉
.

(113)
Since the parent functions are assumed to be eigenfunctions of Ĥ0 (

ParentEigenv
108), we

see that the first term on the r.h.s. becomes Eα
0

∣∣∣Ψα
γ

〉
, and we retrieve the

relation (
EigenvEq2
103) for a general model space,

(
Ĥ0 + Ĥ ′ − Eα

0 −∆Eα
γ

)∣∣∣Ψα
γ

〉
= iγλ

∂

∂λ

∣∣∣Ψα
γ

〉
. (114) EigenvEqalpha

As before, we can assume that the second term on the r.h.s. vanishes as γ → 0,
which demonstrates that the functions (

GenGML
110) are eigenfunctions of the original

Hamiltonian. An important observation is here that a necessary condition for
the wavefunction (

GenGML
110) to satisfy the time-independent Schrödinger equation

is that the parent state is an eigenfunction of H0
10 .

The energy of the target states are given by

Eα = lim
γ→0

[
Eα

0 + iγλ
〈Φα| ∂

∂λ
Ûγ(0,−∞)|Φα〉

〈Φα|Ûγ(0,−∞)|Φα〉
]
. (115) Ealpha

9 See footnote in section
sec:TimeDepInt
3.4.3.

10 This observation is in conflict with the assumption of
KLR71KLR71
?), who state that – for the

ground state – the parent state can be any state in the model space with nonzero
overlap with the final wave function. If the model space contains several energies,
the results are conflicting.
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This expression is not very useful for evaluating the energy, since the eigenvalue
Eα

0 of the parent state is generally not known. The procedure is here used
mainly to demonstrate that the functions satisfy the Schrödinger equation.
Instead we shall derive an expression for the effective Hamiltonian (

EffHam
13), which

is the natural tool for a multi-level model space.

3.4 The reduced time-evolution operator

sec:RedEvOp

In order to find more useful expressions for actual evaluations, we introduce
a new operator, the reduced evolution operator, Ũγ, by the relation

LAS01
(?)

Uγ(t,−∞)P = P + Ũγ(t,−∞)PUγ(0,−∞)P. (116) Utildet

(We leave out the ’hat’ on the evolution operator.) This leads to the expansion

U(t)P = P + Ũ(t)P + Ũ(t)PŨP + Ũ(t)PŨP ŨP + · · · ,

where we temporarily leave out the initial time t0 = −∞ and the final time
t′ = 0 in the factors PŨP as well as the subscript γ. This can also be expressed

Ũ(t)P = U(t)P − P − Ũ(t)PŨP − Ũ(t)PŨP ŨP − · · · , (117) UtildeExp

which is a very useful expression that we shall use frequently in the following.
Expanding this operator perturbatively

Ũ(t) = Ũ (1)(t) + Ũ (2)(t) + Ũ (3)(t) + · · · ,

we obtain in the lowest orders

Ũ (1)(t)P = U (1)P

Ũ (2)(t)P = U (2)(t)P − U (1)(t)PU (1)P

Ũ (3)(t)P = U (3)(t)P − Ũ (2)(t)PU (1)P − U (1)(t)PŨ (2)P − U (1)(t)PU (1)PU (1)P. (118) UtildeExp2

These relations will be used below (section
sec:All orders
3.4.4) to show that the ’open’ part

of the reduced evolution operator is regular – or, in other words – that the
counterterms ŨP ŨP , ŨP ŨP ŨP · · · , eliminate the single, double· · · (quasi)-
singularities.

We recall that with the field-theoretical perturbation (
IntHam
68), the evolution op-

erator does not conserve the number of photons and therefore operates in the
extended Fock space, H (

Fock
72). The P operator is the projection operator for

the model space, which is a part of the Hilbert space H0, where the photon
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number is conserved. The Q operator is the projection operator for the com-
plementary part of this space (

Qoper
20). We now introduce a generalized projection

operator Q

Q = I − P (119) GenQ

for the extended space H, where the number of photons is not necessarily
conserved. The general evolution operator can now be expressed

Ûγ(0,−∞)P = PÛγ(0,−∞)P + QÛγ(0,−∞)P, (120) Identity

which with (
Utildet
116) leads to the generalized factorization theorem,

Ûγ(0,−∞)P =
[
1 + QŨ(0,−∞)

]
PÛγ(0,−∞)P. (121) FactTh

We shall demonstrate below that the first factor on the r.h.s. is regular in
the limit γ → 0, and consequently all (quasi)singularities are contained in the
second factor. This is a generalization to the more general Fock space (

Fock
72) of

the factorization theorem, demonstrated in nuclear theory
Mo63,To69,OOR70,KLR71
(????).

The fact that the reduced evolution operator is regular has important impli-
cations. This implies that in that part each adiabatic-damping factor γ can
be turned off individually, in contrast to the situation with the original Gell-
Mann–Low relation, as discussed above. The sign of the γ term, though, is
normally important, since that determines the position of the pole in the in-
tegration process. The model-space contribution is obtained by means of the
expansion (

UtildeExp2
118) without the need of any limiting process.

3.4.1 Wave operator and effective HamiltonianWOEH

The model states corresponding to the target states (
GenGML
110) are in intermediate

normalization given by the projection onto the model space (
Psi0
16),

∣∣∣Ψα
0

〉
= P

∣∣∣Ψα
〉

= lim
γ→0

NαP Uγ(0,−∞)
∣∣∣Φα

〉

〈Φα|Uγ(0,−∞)|Φα〉 , (122) Psi03

and the wavefunction (
GenGML
110) can then be expressed, using the factorization

theorem (
FactTh
121),

∣∣∣Ψα
〉

=
[
1 + QŨ(0,−∞)

] ∣∣∣Ψα
0

〉
. (123) WavefTD

This leads to a generalized wave operator (
WaveOp
12)

Ω = 1 + QŨ(0,−∞), (124) WaveOpTD
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operating in the extended space H. In a ’restricted’ Hilbert space H0, where
the number of photons is conserved, this operator is identical to the standard
MBPT wave operator (

WaveOp
12).

The effective Hamiltonian is defined by (
EffHam
13)

Ĥeff

∣∣∣Ψα
0

〉
= Eα

∣∣∣Ψα
0

〉
, (125) EffHam0

which in the extended space leads to

Ĥeff = PĤΩP = PĤ
[
1 + QŨ(0,−∞)

]
P (126) EffHam1

and to the effective interaction (
EffInt
18)

Ĥ ′
eff = PH ′ΩP = PĤ ′[1 + QŨ(0,−∞)

]
P. (127) EffInt1

Ĥ and Ĥ ′ are the Hamiltonian and the perturbation, respectively, at t = 0.

An alternative form of the effective interaction can be obtained in the following
way. From (

UEq
85) we have

i
∂

∂t
Uγ(t,−∞)P = Ĥ ′(t) Uγ(t,−∞)P, (128) ddtU

and using the definition (
Utildet
116) and the factorization theorem (

FactTh
121) this yields

for t = 0

[
i
∂

∂t
Ũγ(t,−∞)

]

t=0
PUγ(0,−∞)P = Ĥ ′ [1+QŨ(0,−∞)

]
PUγ(0,−∞)P (129)

or
Ĥ ′

eff = P
[
i
∂

∂t
Ũ(t,−∞)

]

t=0
P. (130) EffInt2

This is a generalization of the energy-shift formula given by Jones and Mohling
JM70
(?), and it is the form we shall mainly use in the following.

The form (
EffInt2
130) of the effective interaction can also be derived in an alternative

way. We start now from the time-dependent Schrödinger equation (
TDSE
1) at t = 0,

[
i
∂

∂t

∣∣∣Ψα
S(x)

〉]

t=0
= Ĥ

∣∣∣Ψα
〉
. (131) TDSE0

The eigenfunctions of the system at t = 0,
∣∣∣Ψα

〉
, are given by the generalized

Gell-Mann–Low relation (
GenGML
110) and satisfy the time-independent Schrödinger

equation (
SEGML2
111). This gives

[
i
∂

∂t

∣∣∣Ψα
S(x)

〉]

t=0
= Eα

∣∣∣Ψα
〉

(132) TDSE1
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and P
[
i
∂

∂t

∣∣∣Ψα
S(x)

〉]

t=0
= Eα

∣∣∣Ψα
0

〉
, (133) PTDSE1

where P
∣∣∣Ψα

〉
=

∣∣∣Ψα
0

〉
is the model function (

Psi03
122). With the relation (

IP
31) this

leads to

PĤ0

∣∣∣Ψα
〉

+ P
[
i
∂

∂t

∣∣∣Ψα
〉]

t=0
= Eα

∣∣∣Ψα
0

〉
, (134) TDSE3

where
∣∣∣Ψα

〉
is the wavefunction in the IP.

From the Gell-Mann–Low relation (
GenGML
110) we can also obtain the wave function

in the interaction picture at arbitrary (finite) time

∣∣∣Ψα(t)
〉

= lim
γ→0

NαUγ(t,−∞)
∣∣∣Φα

〉

〈Φα|Uγ(0,−∞)|Φα〉 , (135) Psit

and using the relations (
Psi03
122) and (

Utildet
116) we find that

[
i
∂

∂t

∣∣∣Ψα(t)
〉]

t=0
=

[
i
∂

∂t
Ũ(t,−∞)

]

t=0

∣∣∣Ψα
0

〉
. (136)

This leads with the relation (
TDSE3
134) to the secular equation

Ĥeff

∣∣∣Ψα
0

〉
= Eα

∣∣∣Ψα
0

〉
,

where the operator

Ĥeff = PĤ0P + P
[
i
∂

∂t
Ũ(t,−∞)

]

t=0
P (137) EffHamTD

is the effective Hamiltonian (
EffHam
13) and the second term is the effective interac-

tion (
EffInt2
130).

We recall that we have assumed here that the perturbations can be of general
time-dependent form. All forms of the effective Hamiltonian/interaction given
here are therefore valid for interaction between the electrons that are time- or
energy dependent, including the field-theoretical perturbation (

IntHam
68).

3.4.2 Time-independent interactionsSec:TimeIndInt

We shall now apply the formalism presented here to atomic systems with
interactions that are time independent in the Schödinger picture, like the in-
stantaneous Coulomb interaction. Time- or energy dependent interactions will
be treated in the following section.

When using the field-theoretical perturbation, the time-independent interac-
tions between the electrons correspond to contractions at equal time. There-
fore, only perturbations of even order of the evolution operator will appear.
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t = t′

Û (2)(t′,−∞) =

666r 666s

666t 666u

666a 666b

r r

r r

Fig. 4. The second-order evolution-operator diagram for the Coulomb interaction
between two electrons. Fig:ElSecOrd

We can now work in the restricted Hilbert space H0 (
Fock
72) and replace the gen-

eral projection operator Q by the traditional operator Q. The wave operator
then becomes

Ω = 1 + QŨ(0,−∞) (138) WaveOpTind

and the effective interaction

Ĥ ′
eff = PĤ ′ ΩP = PĤ ′ [1 + QŨ(0,−∞)

]
P. (139) EffIntTind

As a first illustration of the evolution-operator technique, we consider the
second-order Coulomb interaction between two electrons illustrated in Fig.

Fig:ElSecOrd
4.

The evolution operator (
EvolOpExp
87) can then be expressed

U (2)(t′,−∞) = −
∫ t′

−∞
dt2

∫ t2

−∞
dt1 VI(t2) VI(t1) eγ(t1+t2), (140) U2El

where VI is the Coulomb interaction in the interaction picture,

VI(t) = eiH0tV e−iH0t, (141) VI

and V = e2

4π r12
is the time-independent interaction in the Schrödinger picture.

This gives

〈rs|U (2)(t′,−∞)|ab〉 = −
∫ t′

−∞
dt2

∫ t2

−∞
dt1 〈rs|VI(t2)|tu〉 〈tu|VI(t1)|ab〉 eγ(t1+t2)

(142) U2El2

after inserting a complete set of intermediate states 11 , which leads to the time
integral

11 As before, we employ the summation convention with implicit summation over
repeated indices that do not appear on the l.h.s.
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∫ t′

−∞
dt2 e−it2(εt+εu−εr−εs+iγ)

∫ t2

−∞
dt1 e−it1(εa+εb−εt−εu+iγ)

=− e−it′(εa+εb−εr−εs+2iγ)

(εa + εb − εr − εs + 2iγ)(εa + εb − εt − εu + iγ)
.

The result then becomes

〈rs|U (2)(t′,−∞)|ab〉 =
〈rs|V |tu〉〈tu|V |ab〉

(Ein − Eout + 2iγ)(Ein − Eint + iγ)
e−it′(Ein−Eout+2iγ),

(143) U2El3

using the notations Ein = εa + εb, Eout = εr + εs and Eint = εt + εu. In the
limit γ → 0, this becomes (quasi)singular, when Eint ≈ Ein or Eout ≈ Ein. In
the former case we include the quasi-degenerate state(s) in the model space.
From the expansion (

UtildeExp2
118) we then have
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Fig. 5. For time-independent interactions the open, reducible two-photon-photon
ladder diagram with the corresponding counterterm corresponds to a folded diagram
(
Folded
147) in standard MBPT, c.f. Fig.

Fig:Omega12
1. The intermediate state |tu〉 lies in the model

space. Fig:FoldDiag

Ũ (2)P = U (2)P − U (1)PU (1)P, (144) Utilde4

where the second term is the counterterm. This case is illustrated in Fig.
Fig:FoldDiag
5.

This is a model-space contribution with the intermediate state in the model
space, and such a diagram is also referred to as reducible.
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In the same way as before we obtain for the counterterm

〈rs|U (1)PU (1)|ab〉 = −
∫ t′

−∞
dt2

∫ 0

−∞
dt1 〈rs|VI(t2) |tu〉 〈tu|VI(t1)|ab〉 eγ(t1+t2),

(145) ElCounter

which yields

〈rs|U (1)PU (1)|ab〉 =
〈rs|V |tu〉〈tu|V |ab〉

(Eint − Eout + iγ)(Ein − Eint + iγ)
e−it′(Eint−Eout+iγ).

(146) ElCounter2

Subtracting this from the main term (
U2El3
143), gives for the reducible or MSC

part of evolution operator Ũ (2) at time t′ = 0

〈rs|Ũ (2)(0,−∞)|ab〉
Red

= − 〈rs|V |tu〉〈tu|V |ab〉
(Ein − Eout + 2iγ)(Eint − Eout + iγ)

. (147) Folded

When the outgoing state lies in the Q space, this is according to the definition
(
WavefTD
123) a contribution to the wave operator. We see that the (quasi)singularity

for Eint ≈ Ein is here eliminated. This model-space contribution is identical to
the folded diagram obtained in time-independent MBPT (Fig.

Fig:Omega12
1, Eq. (

Omega2
44)).

The effective interaction (
EffIntTind
139) is in second order

H ′(2)
eff = PĤ ′

I(0) QU (1)(0,−∞)P, (148) Heff2

and this yields for the example considered here

〈rs|H ′(2)
eff |ab〉 =

〈rs|V |tu〉〈tu|V |ab〉
Ein − Eint

. (149) Heff2a

The intermediate state is here confined to the Q space, and there is no
(quasi)singularity and no MSC or folded diagram in the second-order effective
Hamiltonian. In third order we have

H ′(3)
eff = PH ′ QŨ (2)(0,−∞)P, (150) Heff3

and here there is a contribution from the folded diagram (
Folded
147) in Ũ (2).

We have now shown that the reducible part of QŨ (2) is regular, and since the
irreducible part is always regular, it follows that QŨ (2) is completely regular for
time-independent interactions. We shall generalize this proof to higher orders
in the next section in connection with time-dependent interactions.

3.4.3 Time-dependent interactionssec:TimeDepInt

We have seen that when the interactions between the electrons are time inde-
pendent, there is a model-space contribution to the effective interaction and
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the wave operator, normally represented by so-called folded diagrams, which
appear in the energy and effective interaction of third and higher orders. We
shall now consider time or energy dependent interactions and show that this
leads to an additional form of MSC, appearing also in the second-order energy
or effective interaction.

As an illustration we consider the second-order diagram shown in Fig.
Fig:SecOrdTD
6. We

assume that the interaction is of the form

V (t2 − t1) =
∫ dz

2π
V (z) e−iz(t2−t1), (151) VTD

where V (z) is the Fourier transform and z is the energy parameter. In the
interaction picture this becomes

VI(t2 − t1) =
∫ dz

2π
V (z)

(
eiH0t2 e−izt2 e−iH0t2

)(
eiH0t1 eizt1 e−iH0t1

)
. (152) VTDIP
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Fig. 6. Second-order diagram with time-dependent interactions Fig:SecOrdTD

We assume the time orderings to be t′ > t3 > t1 and t′ > t4 > t2, and the ma-
trix element of the evolution operator, corresponding to the time-independent
result (

U2El2
142), is then

〈rs|U (2)(t′,−∞)|ab〉 =
∫ t′

−∞
dt4

∫ t4

−∞
dt2

∫ t′

−∞
dt3

∫ t3

−∞
dt1 〈rs|VI(t4 − t3)|tu〉 〈tu|VI(t2 − t1)|ab〉. (153) U2TD

The time dependence is here (in the limit γ → 0)

eit4(εs−εu−z′) eit3(εr−εt+z′) eit2(εu−εb−z) eit1(εu−εa+z)

or
e−it4(q′−p′+z′) e−it3(q−p−z′) e−it2(p′+z) e−it1(p−z),

using the notations p = εa − εt, p′ = εb − εu, q = εa − εr, q′ = εb − εs . The
time integrations then yield
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e−it′(q+q′)

(q′ + z + z′)(p′ + z)(q − z − z′)(p− z)
. (154) U2TD2

If the interactions do not overlap in time, as in Fig.
Fig:SecOrdTD
6, the diagram is said to

be separable. 12 We can then have the time orderings t4 > t3 > t1, t2 , which
leads to the integration ordering

∫ t′

−∞
dt4

∫ t4

−∞
dt3

( ∫ t3

−∞
dt2

∫ t2

−∞
dt1 +

∫ t3

−∞
dt1

∫ t1

−∞
dt2

)
. (155)

Considering also the time ordering t3 > t4 > t1, t2, the integral becomes

e−it′(q+q′)

q + q′

(
1

q + p′ − z′
+

1

q′ + p + z′

)
1

p + p′

(
1

p− z
+

1

p′ + z

)
.

The matrix element (
U2TD
153) can then be expressed

〈rs|U (2)(t′,−∞)|ab〉Sep =
〈rs|V (q + p′, q′ + p)|tu〉 〈tu|V (p, p′)|ab〉

(q + q′)(p + p′)
e−it′(q+q′),

(156) U2TDSep

where V (A,B) =
∫ dz

2π
V (z)

(
1

A− z
+

1

B + z

)
.

Using the previous notations (
U2El3
143), this becomes

〈rs|U (2)(t′,−∞)|ab〉Sep =
〈rs|V (q + p′, q′ + p)|tu〉 〈tu|V (p, p′)|ab〉

(Ein − Eout)(Ein − Eint)
e−it′(Ein−Eout).

(157) U2TDSep2

When Ein − Eint ≈ 0 we have a (quasi)singularity and a corresponding coun-
terterm in analogy with the previous result (

ElCounter2
146)

〈rs|U (1)PU (1)|ab〉 =
〈rs|V (q − p, q′ − p′)|tu〉 〈tu|V (p, p′)|ab〉

(Eint − Eout)(Ein − Eint)
e−it′(Eint−Eout).

(158) ElTDCounter

With the notations

V (q + p′, q′ + p) = V (Ein − εr − εu, Ein − εt − εs) = V2(Ein)

V (q − p, q′ − p′) = V (Eint − εr − εu, Eint − εt − εs) = V2(Eint),

12 A diagram is here said to be separable, if it can be separated into two legitimate
diagrams by cutting all orbital lines at a certain time. In the older literature (see,
for instance,

JM70
(?)) the term reducible was normally used for this type of diagram.

We have, however, adopted the terminology developed mainly in recent years, where
the term ’reducible’ is used for separable diagrams with the intermediate state is
in the model space. We have therefore introduced the term separable for the wider
group in order to avoid confusion

LAS01
(?). Note that a reducible diagram must always be

separable.
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the main ’ladder’ term (
U2TDSep
156) becomes

〈rs|U (2)(t′,−∞)|ab〉Lad =
〈rs|V2(Ein)|tu〉 〈tu|V (p, p′)|ab〉

(Ein − Eout)(Ein − Eint)
e−it′(Ein−Eout) (159) ElTDSep2

and the counterterm (
ElTDCounter
158)

〈rs|U (1)PU (1)|ab〉Counter =
〈rs|V2(Eint)|tu〉 〈tu|V (p, p′)|ab〉

(Eint − Eout)(Ein − Eint)
e−it′(Eint−Eout).

(160) ElTDCounter2

Applying the relation (
EffInt2
130), the time derivative eliminates the last (leftmost)

denominator, and the corresponding reducible contribution to the effective
interaction becomes

〈rs|H ′(2)
eff |ab〉Red =

〈rs|V2(Ein)− V2(Eint)|tu〉 〈tu|V (p, p′)|ab〉
Ein − Eint

. (161) HeffRed

With ∆E = Ein − Eint this becomes in the limit ∆E → 0

〈rs|H ′(2)
eff |ab〉Red =

〈
rs

∣∣∣∣
∂

∂E

(
V2(E)

)
E=Ein

∣∣∣∣tu
〉 〈

tu
∣∣∣V (p, p′)

∣∣∣ab
〉
. (162) MSCdegen

This shows that the (quasi)singularity is eliminated also when the interac-
tions are time dependent, but that there is an additional finite Model-Space
Contribution also in second order due to the time dependence.

In order to obtain the corresponding contribution to the wave operator (
WavefTD
123),

we set the time t′ = 0, and the expressions (
ElTDSep2
159) and (

ElTDCounter2
160) yield the contri-

bution

〈rs|V2(Ein)|tu〉〈tu|V (p, p′)|ab〉
(Ein − Eout) ∆E

− 〈rs|V2(Ein −∆E)|tu〉〈tu|V (p, p′)|ab〉
(Ein −∆E − Eout) ∆E

,

which we can write as

1

∆E

[
〈rs|Ω2(Ein)|tu〉 − 〈rs|Ω2(Ein −∆E)|tu〉

]
〈tu|V (p, p′)|ab〉

=
[〈

rs

∣∣∣∣
∂

∂E

(
Ω2(E)

)
E=Ein

∣∣∣∣tu
〉

+ · · ·
]〈

tu
∣∣∣V (p, p′)

∣∣∣ab
〉

(163) MSC2

by including the last denominator in Ω2. This shows that the (quasi)singularity
is eliminated also in the second-order wave operator. The remaining part is the
model-space contribution, which in this case contains a folded part, present
also for time-independent interactions, as well as an additional part due to
the time dependence.
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Fig. 7. Reducible diagram of higher order and the corresponding counterterm. FoldDiag2

3.4.4 Generalization to all orderssec:All orders

The previous treatment can be generalized to higher orders. Let us consider a
reducible U diagram of the form U (m)PU (n), as indicated in the left diagram
in Fig.

FoldDiag2
7, where the two parts represent irreducible m- and n-fold interac-

tions, respectively, and the intermediate state lies in the model space. This is
regarded as a single diagram of ’ladder’ type, which implies that all denomi-
nators are evaluated from the bottom. All energies are then functions of the
initial energy, Ein = εa +εb, and we can represent the contribution to the wave
operator by

〈rs|W2(Ein)|tu〉〈tu|W1(Ein)|ab〉
(Ein − Eout) ∆E

=
〈rs|Ω2(Ein)|tu〉〈tu|W1(Ein)|ab〉

∆E
.

Here, Eout = εr+εs and ∆E = εa+εb−εt−εu, and W1/W2 represent the m/n-
fold interactions. This diagram is (quasi)singular, due to the denominator ∆E.
From the expansion (

UtildeExp
117) it follows that there is a counterterm of similar form,

represented by the second term in the figure. This differs from the leading term
only in the fact that the denominators of the left part are evaluated from the
intermediate state (t,u) and that the time of the right part is set to zero. The
denominators of the left part are the same as in the ladder with Ein replaced
by Ein −∆E. Assuming as before that the interactions depend on the initial
energy, the counterterm can be expressed

〈rs|W2(Ein −∆E)|tu〉〈tu|W1(Ein)|ab〉
(Ein −∆E − Eout) ∆E

=
〈rs|Ω2(Ein −∆E)|tu〉〈tu|W1(Ein)|ab〉

∆E
,

and the sum of the reducible ladder and the counterterm can be expanded in
analogy with the second-order case (

MSC2
163)

〈
rs

∣∣∣∣
∂

∂E

(
Ω2(E)

)
E=Ein

∣∣∣∣tu
〉 〈

tu
∣∣∣W1(Ein)

∣∣∣ab
〉

+ · · · .

This shows that the (quasi)singularity is eliminated also in this higher-order
case.
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Fig. 8. Doubly reducible diagram with the corresponding counterterm. FoldDiag3

Next we consider in a similar way a diagram that is doubly reducible, i.e.,
with two intermediate model-space states, as illustrated in Fig.

FoldDiag3
8. With obvi-

ous notations we can then express the ladder diagram, representing the wave
operator, as

〈rs|Ω3(Ein)|vw〉 1

∆E2

〈vw|W2(Ein)|tu〉 1

∆E1

〈tu|W1(Ein)|ab〉

and the counterterm as

〈rs|Ω3(Ein −∆E2)|vw〉 1

∆E2

〈vw|W2(Ein −∆E1)|tu〉 1

∆E1

〈tu|W1(Ein)|ab〉.

In the limit when the ∆E ′s → 0, the latter becomes

〈
rs

∣∣∣∣Ω3(Ein)−∆E2

(
∂

∂E
Ω3(E)

)

E=Ein

∣∣∣∣vw
〉

× 1

∆E2

〈
vw

∣∣∣∣W2(Ein)−∆E1

(
∂

∂E
W2(E)

)

E=Ein

∣∣∣∣tu
〉

1

∆E1

〈
tu

∣∣∣∣V1(Ein)
∣∣∣∣ab

〉
.

The double singularity is eliminated by the counterterm, and the difference
becomes

−
〈
rs

∣∣∣∣
(

∂

∂E
Ω3(E)

)

E=Ein

∣∣∣∣vw
〉 〈

vw

∣∣∣∣
(

∂

∂E
W2(E)

)

E=Ein

∣∣∣∣tu
〉 〈

tu

∣∣∣∣V1(Ein)
∣∣∣∣ab

〉
,

in addition to the single singularities, introduced by the counterterm,

〈
rs

∣∣∣∣Ω3(Ein)
∣∣∣∣vw

〉
1

∆E2

〈
vw

∣∣∣∣
(

∂

∂E
W2(E)

)

E=Ein

∣∣∣∣tu
〉 〈

tu

∣∣∣∣V1(Ein)
∣∣∣∣ab

〉

〈
rs

∣∣∣∣
(

∂

∂E
Ω3(E)

)

E=Ein

∣∣∣∣vw
〉 〈

vw

∣∣∣∣W2(Ein)
∣∣∣∣tu

〉
1

∆E1

〈
tu

∣∣∣∣V1(Ein)
∣∣∣∣ab

〉
.

These single singularities are eliminated by the terms−Ũ (m)PŨ (n)P−Ũ (n)PŨ (m)P
of the expansion (

UtildeExp2
118). In a similar way the cancellation of (quasi)singularities

for triply ... reducible diagrams can be shown.
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This verifies that the wave operator (
WaveOpTD
124) and the effective interaction (

EffInt1
127)

are regular in all orders for a two-electron system.

3.5 Comparison with time-independent MBPT

sec:Comp

We shall now summarize our observations regarding the relation between the
time-dependent and time-independent forms of MBPT. In time-independent
MBPT, generated by means of the Bloch equation in the linked-diagram form
(
BlochLink
42), there are two types of contributions to the wave operator. The first type

originates from the first term on the r.h.s., and in the case of a two-electron
system this gives rise to diagrams of ’ladder’ type. The second term on the
r.h.s. of the Bloch equation gives rise to ’folded’ diagrams. In the ladder type of
diagrams all intermediate states lie in the Q space and in the folded diagrams
one or several intermediate states lie in the P space. The folded diagrams are
therefore a type of Model-Space Contribution (MSC).

In time-dependent MBPT with time-independent interactions the wave oper-
ator can be expressed by means of the reduced evolution operator (

WaveOpTind
138). Here,

states of the model space can appear as intermediate states, which leads to
a (quasi)singularity – so-called reducible contributions – and then there is a
corresponding counterterm, which eliminates the singularity (

UtildeExp
117). The combi-

nation of the singular ladder diagram and the corresponding counterterm leads
to a MSC that exactly corresponds folded to the diagram of time-independent
MBPT.

In time-dependent MBPT with time- or energy-dependent interactions there
is an additional MSC, which in the case of complete degeneracy leads to a
contribution involving the energy derivative of the interaction (

MSCdegen
162).

4 S-matrix formulation
sec:S-matrix

In the present and the following two chapters we shall consider different
schemes for bound-state QED calculations. We shall begin with a brief re-
view of the standard S-matrix formulation, which is well documented in the
literature. (For further details we refer to the recent extensive review by
Mohr, Plunien and Soff

MPS98
(?)). Then we shall consider two more general meth-

ods, which have been developed more recently and which can be applied also
to the quasi-degenerate situation. First we shall describe in some detail the
covariant-evolution-operator method, developed by us

Li00,LAS01Li00,LAS01
??), and the present

report represents – together with the thesis of
BAs02BAs02
?) – the first more detailed

account of this new method. Next we shall more briefly describe the two-times
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Green’s-function method, developed by Shabaev et al., which has recently
been extensively reviewed

Shab02
(?), and we refer to this article for further details

concerning this method. The two methods will be intercompared, and the pos-
sibility of combining the former with MBPT in a systematic fashion will be
indicated.

We assume now that the perturbation is of the field-theoretical form (
IntHam
68)

Ĥ′
I(x) = −eψ̂†(x) αµAµ(x)ψ̂(x). (164) IntHam1

The electron-field operators are in the IP given by (
ElFieldTD
37), and we assume that

the orbitals are solutions of the Dirac equation (
Dirac
62) in the field of the nucleus

(nuclei). We have in the previous chapter discussed this type of perturbation
and derived the corresponding Gell-Mann–Low relations in the non-relativistic
case. This theory, however, is not covariant in the relativistic sense, and the
relativistic problem with negative energy states cannot be handled. The sim-
plest way to remedy the situation is to let the time integrations run over all
times, which leads to the S-matrix formulation. This we shall consider in this
chapter. Another way is to modify the standard time evolution operator to
make it covariant, which we shall consider in the next chapter.

The Sucher energy formula

Su57Su57
?) has shown that the energy shift can as an alternative to the Gell-Mann–Low
formula (

GMLShift
106) be expressed

∆E = lim
γ→0

i

2
γλ
〈Ψ0| ∂

∂λ
Uγ(∞,−∞)|Ψ0〉

〈Ψ0|Uγ(∞,−∞)|Ψ0〉 . (165) Sucher

Uγ(∞,−∞) is the scattering matrix or S-matrix, primarily used in scattering
theory. Like the Gell-Mann–Low formula, the Sucher formula is valid also
when the interaction between the electrons is time- or energy dependent, but
in contrast to the former it is also valid in the relativistic case. The Gell-
Mann–Low–Sucher procedure has been the standard approach in bound-state
QED for a long time (see, for instance

MPS98MPS98
?)) and will be discussed briefly in the

next section.

4.1 Single-photon exchange. The photon propagator

sec:SingPhot

The field-theoretical form of the evolution operator, representing multi-photon
exchange between the electrons, is given by the expansion (

UExp
86)
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U(t, t0) =

1− 1
2

∫∫ t

t0
d4x1 d4x2 TD

[(
ψ̂†(x) eαµAµ(x)ψ̂(x)

)
1

(
ψ̂†(x) eανÂν(x)ψ̂(x)

)
2

]
+ · · · , (166) UQED

where, as before, the space integration is performed over all space and the
time integration as indicated. We consider first the exchange of a single photon
between the electrons, as indicated in Fig.

Fig:SingPhot
9. As in the previous chapter we

consider the limit, where the initial time t0 → −∞, which implies that we
start from an eigenstate of the unperturbed Hamiltonian Ĥ0. The evolution
operator, including the adiabatic damping (

Damping
88), is then given by

Û (2)(t′,−∞) =

−1
2

∫∫ t′

−∞
d4x1 d4x2 TD

[(
ψ̂†(x)eαµÂµ(x)ψ̂(x)

)
1

(
ψ̂†(x)eανÂν(x)ψ̂(x)

)
2

]
e−γ(|t1|+|t2|). (167) USingPhot

t = t′

666r ψ̂†

666a ψ̂

-zr r1 2

666ψ̂† s

666ψ̂ b

=⇒

t = t′

666r ψ̂†

666a ψ̂

Veqr r1 2

666ψ̂† s

666ψ̂ b

Fig. 9. The single-photon exchange between the electrons, compared with potential
scattering. Fig:SingPhot

The contraction between the electromagnetic field operators leads to the pho-
ton propagator (

PhotProp
73), and disregarding for the moment other possible contrac-

tions, this yields

Û (2)(t′,−∞) = −1
2

∫∫ t′

−∞
d4x1 d4x2 ψ̂†(x1)ψ̂

†(x2) iI(x2, x1) ψ̂(x2)ψ̂(x1) e−γ(|t1|+|t2|)

(168) U2

with 13

I(x2, x1) = eαµ
1DFνµ(x2 − x1) eαν

2 . (169) I

The Fourier transforms of I(x2, x1) is defined by

I(x2, x1) =
∫ dz

2π
I(x2,x1, z) e−iz(t2−t1),

where I(x2,x1, z) is given by the definition (
Interact
77).

13 I(x2, x1) corresponds to iI21 of ref.
Li00,LAS01
(??).
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4.1.1 S-matrix for single-photon exchangesec:S-SingPhot

The scattering matrix (S-matrix) is defined by S = U(∞,−∞), and as a
first illustration we shall study the S-matrix for a single-photon exchange. Eq.
(
U2
168) then yields

Ŝ(2) = −1
2

∫∫
d4x1d

4x2 ψ̂†(x1)ψ̂
†(x2) iI(x2, x1) ψ̂(x2)ψ̂(x1) e−γ(|t1|+|t2|)

= −1
2

∫∫
d4x1d

4x2 c†iφ
†
i (x1)c

†
jφj(x2) iI(x2, x1) clφl(x2)ckφk(x1) e−γ(|t1|+|t2|), (170) S2

where the integration is performed over the entire space-time volume. This
is a two-body operator and becomes according to the second-quantization
expression (

SecQuant
23)

S(2) = 1
2

∑

i,j,k,l

c†ic
†
j

〈
ij

∣∣∣S(2)
∣∣∣kl

〉
clck. (171) SecQuantS2

Identification then yields the expansion coefficients

〈
rs

∣∣∣S(2)
∣∣∣ ab

〉
= −

∫∫
d4x1 d4x2 φ†r(x1)φ

†
s(x2) iI(x2, x1) )φb(x2)φa(x1) e−γ(|t1|+|t2|)

= −
∫∫

d4x1 d4x2

∫ dz

2π
φ†r(x1)φ

†
s(x2) iI(x2,x1, z) )φb(x2)φa(x1)

×e−it1(εa−εr−z)e−it2(εb−εs+z) e−γ(|t1|+|t2|). (172) S22

After the time integrations this becomes

〈
rs

∣∣∣Ŝ(2)
∣∣∣ ab

〉
= −i

∫ dz

2π
2π ∆γ(q − z) 2π ∆γ(q

′ + z)
〈
rs

∣∣∣I(x2,x1, z)
∣∣∣ab

〉
, (173) S2SingPhot

where q = εa − εr and q′ = εb − εs. The ∆ function is here defined

∫ ∞

−∞
dt eiqt e−γ|t| =

2γ

q2 + γ2
= 2π ∆γ(q), (174) Delta

which has the following properties

lim
γ→0

∆γ(q) = δ(q)

lim
γ→0

πγ ∆γ(q) = δq,0

∫ ∞

−∞
dz ∆γ(z − a) ∆κ(z − b) = ∆γ+κ(a− b).

Here, δ(q) is the Dirac delta function and δq,r is the Kronecker delta factor
(=1 for q = r and zero otherwise). 14

14 The first two relations are obvious, and the third can easily be shown by means
of the identity

∆γ(z − a)∆κ(z − b) ≡ 1
(2πi)2

( 1
z − a− iγ

− 1
z − a + iγ

)( 1
z − b− iκ

− 1
z − b + iκ

)
.

46



Using the last relation above we can for small γ approximate the expression
(
S2SingPhot
173) by

〈
rs

∣∣∣Ŝ(2)
∣∣∣ ab

〉
= −2πi ∆2γ(q + q′) 〈rs|I(x2,x1, q)|ab〉.

The single-photon exchange can be compared with the S matrix for the poten-
tial scattering from a time- or energy-dependent potential, Veq(x2 − x1) with
the Fourier transform Veq(x1,x2, z), as indicated by the rightmost diagram in
Fig.

Fig:SingPhot
9. Since two times are involved also in this process, it has to be regarded

as a second-order process, yielding

Ŝ
(2)
pot = −1

2

∫∫
d4x1d

4x2 ψ̂†(x1)ψ̂
†(x2) Veq(x2 − x1) ψ̂(x2)ψ̂(x1) e−γ(|t1|+|t2|). (175) PotScatt

After time integration, the matrix element becomes as in the previous case

〈
rs

∣∣∣Ŝ(1)
pot

∣∣∣ ab
〉

= −2πi ∆2γ(q + q′)
〈
rs

∣∣∣Veq(q)
∣∣∣ab

〉
. (176) SmatrixEl

This implies that the single-photon exchange is equivalent to potential scat-
tering by an equivalent potential given by

Veq(q) = I(x2,x1, q) = e2αµ
1α

ν
2 DFνµ(x2 − x1, q). (177) EqPot

In the Feynman gauge the equivalent potential becomes, using the definition
(
Interact
77),

V F
eq(q) =

∫ ∞

0

2k dk f(k)

q2 − k2 + iη
; f(k) = − e2

4π2 r12

(1−α1 · α2) sin(kr12) (178) EqPotF

or after integrating over the k space

V F
eq(q) =

e2

4π r12

(1−α1 · α2) ei|q|r12 , (179) EqPotF2

which is the retarded Coulomb-Gaunt interaction (
RetCoulGaunt
78).

The energy shift is given by the Sucher formula (
Sucher
165), which in the lowest

order (n = 2) yields

∆E = lim
γ→0

iγ 〈rs|Ŝ(2)|ab〉. (180) Sucher1

In the present case this gives, using (
S2SingPhot
173),

∆E = δq,−q′
〈
rs

∣∣∣Veq(q)
∣∣∣ab

〉
. (181) EnergyShift

Here, only the cross products, which have one pole on each side of the axis, con-
tribute to the integral.
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The Kronecker delta factor implies here that the result is nonvanishing only
for q + q′ = 0 or εa + εb = εr + εs, which means that in the S-matrix for-
malism energy must be conserved between the initial and final states. This has
the disadvantage that those elements of the effective Hamiltonian that are
nondiagonal in energy cannot be evaluated. Therefore, the procedure is not
applicable to the procedure of an extended model space, discussed above for
the treatment of quasi-degeneracy. In the following two chapters we shall dis-
cuss two methods that do not have this serious shortcoming, but first we shall
develop the S-matrix formulation a little further.

4.2 The electron propagator

sec:ElProp

In relativistic problems we must also allow for time running backwards, which
represents antiparticle creation. For that purpose the so-called Feynman elec-
tron propagator, SF(x, x0), is introduced, defined by

iSF(x, x0) = 〈0|T [ψ̂(x) ψ̂†(x0)]|0〉
= 〈0|Θ(t− t0) ψ̂(x) ψ̂†(x0)−Θ(t0 − t) ψ̂†(x0) ψ̂(x)|0〉. (182) ElProp1

Here, Θ(t) is the Heaviside step function (equal to unity for t > 0 and zero
for t < 0) and T is the Wick time-ordering operator

T [A(x1)B(x2)] =





A(x1)B(x2) (t1 > t2)

−B(x2)A(x1) (t1 < t2),
(183) TimeOrdering

not to be confused with the Dyson time-ordering operator (
TimeOrdering2
74). The expression

(
ElProp1
182) represents the contraction between the electron field operators (

ContractDef
38).

Separating the field operators (
ElFieldIP
35) into particle (ψ̂+) and hole (ψ̂−) parts,

corresponding to electrons with positive and negative energy, respectively, the
electron propagator can be expressed

iSF(x, x0) =
〈
0
∣∣∣Θ(t− t0)ψ̂+(x) ψ̂†+(x0)−Θ(t0 − t)ψ̂†−(x0) ψ̂−(x)

∣∣∣0
〉

= Θ(t− t0)φp(x) φ†p(x0) e−iεp(t−t0) −Θ(t0 − t)φ†h(x0) φh(x) e−iεh(t−t0). (184) ElProp2

Here, φp, φh represent the single-electron wavefunctions (
SingElEq
10), with positive

energy (’particle states’) and negative energy (’hole states’), respectively. By
analytical continuation the electron propagator can be expressed as an integral
in the complex plane

SF(x, x0) =
∫ dω

2π

φj(x) φ†j(x0)

ω − εj + iηj

e−iω(t−t0), (185) ElPropInt
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where j runs over all states (with positive as well as negative energy), and
ηj is an infinitesimally small quantity with the same sign as εj, indicating
the position of the pole. The Fourier transform (with respect to time) of the
electron propagator is

SF(x,x0, ω) =
φj(x) φ†j(x0)

ω − εj + iηj

. (186) ElPropFour

Regarding the space part of the single-electron functions as coordinate repre-
sentations of the corresponding Dirac states,

φj(x) = 〈x|j〉 ; φ†j(x0) = 〈j|x0〉,

we can express the electron propagator (
ElPropFour
186)

SF(x,x0, ω) = 〈x|ŜF(ω)|x0〉 (187) ElPropCoord

or as the coordinate representation of the electron-propagator operator

ŜF(ω) =
|j〉〈j|

ω − εj + iηj

. (188) ElPropDiracFour

We also introduce the four-dimensional coordinate representations of the
Dirac states,

〈x|j〉 = φj(x) = φj(x) e−iεjt ; 〈j|x〉 = φ†j(x) = φ†j(x) eiεjt. (189)

Then the field operators (
ElFieldIP
35) become

ψ̂(x) = 〈x|j〉 cj; ψ̂†(x) = c†j 〈j|x〉, (190) FieldDirac

and the electron-propagator (
ElProp2
184) can be expressed

iSF(x, x0) = Θ(t− t0)〈x|p〉〈p|x0〉 −Θ(t0 − t)〈x|h〉〈h|x0〉, (191) ElPropDirac1

and the form (
ElPropInt
185)

SF(x, x0) =
∫ dω

2π

〈x|j〉〈j|x0〉
ω − εj + iηj

. (192) ElPropOp

Operating with the electron propagator (
ElPropDirac1
191) on the field operator, ψ̂(x0), and

integration over the space coordinates, then yields
∫

d3x0 iSF(x, x0) ψ̂(x0) = Θ(t− t0)〈x|p〉 cp −Θ(t0 − t)〈x|h〉 ch

= Θ(t− t0)ψ̂+(x0)−Θ(t0 − t)ψ̂−(x0) (193) ElPropFieldOp1
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and similarly

∫
d3x ψ̂†(x) iSF(x, x0) = Θ(t− t0)ψ̂

†
+(x)−Θ(t0 − t)ψ̂†−(x). (194) ElPropFieldCoord

4.3 The Lamb shift

sec:LS

In the second-order evolution operator (
USingPhot
167) we can also have contractions

between the electron-field operators in various ways. Two equivalent contrac-
tions are indicated below,

(
ψ̂†(x)eαµAµψ̂(x)

)
1

(
ψ̂†(x)eανAνψ̂(x)

)
2

(
ψ̂†(x)eαµAµψ̂(x)

)
1

(
ψ̂†(x)eανAνψ̂(x)

)
2
,

(195) ElContr1

and together with the photon field contraction this represents the electron self-
energy, depicted for the S-matrix in Fig.

Fig:LS
10 (left). Contracting the electron

field operators at the same vertex

(
ψ̂†(x)eαµAµψ̂(x)

)
1

(
ψ̂†(x)eανAνψ̂(x)

)
2

(
ψ̂†(x)eαµAµψ̂(x)

)
1

(
ψ̂†(x)eανAνψ̂(x)

)
2

(196) ElCont2

represents the vacuum polarization, shown in the right diagram of the figure.
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Fig. 10. The S-matrix diagrams representing the first-order electron self-energy and
vacuum polarization. Fig:LS

4.3.1 The electron self-energysec:SE

By considering only one of the electron-field contractions in (
ElContr1
195), we can

eliminate the factor of 1
2
, and the S-matrix for the electron self-energy becomes

in analogy with the single-photon exchange (
S2
170)

S
(2)
SE =−

∫∫
d4x2d

4x1 ψ̂†(x2) iSF(x2, x1) iI(x2, x1) ψ̂(x1) e−γ(|t1|+|t2|)

=−
∫∫

d4x2d
4x1 c†iφ

†
i (x2) iSF(x2, x1) iI(x2, x1) cjφj(x1) e−γ(|t1|+|t2|). (197) SSE1
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This is a one-body operator, and identification with the expansion (
SecQuant
23) then

yields the ’matrix element’

〈
r
∣∣∣S(2)

SE

∣∣∣a
〉

= −
∫∫

d4x2 d4x1 φ†r(x2) iSF(x2, x1) iI(x2, x1) φa(x1) e−γ(|t1|+|t2|). (198) SSE2

Using the Fourier transforms of the propagator and the interaction, this be-
comes

〈
r
∣∣∣S(2)

SE

∣∣∣a
〉

=
∫∫

d4x2 d4x1

∫ dω

2π

∫ dz

2π
φ†r(x2) SF(x2,x1, ω) I(x2,x1, z) φa(x1)

× e−it2(ω+z−εr) e−it1(εa−ω−z) e−γ(|t1|+|t2|). (199) SSE3

The time integrations yield here in analogy with the single-photon exchange
(
S2SingPhot
173) the factors 2π∆γ(ω + z − εr) and 2π∆γ(εa − ω − z), and after integra-

tion over ω this becomes

〈
r
∣∣∣S(2)

SE

∣∣∣a
〉

= 2π∆2γ(εa − εr)
∫∫

d3x2 d3x1

×
∫ dz

2π
φ†r(x2) SF(x2,x1, εa − z) I(x2, x1, z) φa(x1). (200) SSE4

This can be expressed

〈
r
∣∣∣S(2)

SE

∣∣∣a
〉

= −2πi∆2γ(εa − εr)
〈
r
∣∣∣Σ(εa)

∣∣∣a
〉
, (201) SSE5

defining the self-energy operator by

〈r|iΣ(εa)|a〉=
∫∫

d3x2 d3x1

∫ dz

2π
φ†r(x2) iSF(x2,x1, εa − z) iI(x2,x1, z) φa(x1)

=−
∫ dz

2π

〈tr|I(z)|at〉
εa − εt − z + iηt

(202) SelfEn

and using the form (
ElPropCoord
187) of the electron propagator. With the photon inter-

action in the Feynman gauge (
Interact
77) this becomes (see Appendix

SingPhotEv
A.1)

〈
r
∣∣∣Σ(εa)

∣∣∣a
〉

= i
∫ dz

2π

∫
dk

〈tr|2kf(k)|at〉
(εa − εt − z + iγt)(z2 − k2 + iη)

=
∫

dk
〈tr|f(k)|at〉

εa − εt − (k − iγ)t

, (203) SelfEnInt

where (·)t has the same sign as εt.

The energy shift due to the electron self-energy is then given by the Sucher
formula (

Sucher1
180)

δESE = δεa,εr

〈
r
∣∣∣Σ(εa)

∣∣∣a
〉
. (204) SEShift

As in the previous case, the energy must be preserved between the initial and
final states in this procedure. A more general treatment is given in section

sec:SE
5.3.
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4.3.2 Self-energy renormalizationsec:RenormSE

The electron self-energy, represented by the emission and absorption of the
same photon, is a process that corresponds to an infinite energy or mass. For
the free electron this is in analogy with the bound-state result (

SelfEnInt
203)

δEfree
SE (εpr) = 〈pr|Σ(εpr)|pr〉 =

∫
dk

〈pr, qs|f(k)|qs, pr〉
εpr − εqs − (k − iγ)q

, (205) SEfree

illustrated in Fig.
Fig:SEfree
11. We use here the momentum representation — p, q

denote the momentum and r, s components of the Dirac spinor. The factor
(k − iγ)q is positive for electrons and negative for positrons.

666pr

666qs 666

r

r
k

666pr

Fig. 11. The free-electron self-energy (
SEfree
205). Fig:SEfree

The free-electron self-energy represents a part δm of the physical mass of the
electron and should be subtracted from the self-energy of the bound electron.
This renormalization process eliminates the singularity. For an electron in the
bound state |a〉 the renormalized self-energy is then given by

δErenorm
SE =

〈
a
∣∣∣Σ(εa)

∣∣∣a
〉
−

〈
a
∣∣∣δm

∣∣∣a
〉
. (206) SEShift2

The renormalization term – also referred to as the mass counterterm – is the
average of free-electron self-energy in the state |a〉, as illustrated in Fig.

Fig:SERen1
12.
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Fig. 12. The mass counterterm is the average of the free-electron self-energy in the
bound state |a〉. The thick vertical line represents a bound-electron and the thin
line a free-electron state. Fig:SERen1

A bound-electron propagator can be expanded in a free-electron propagator
with zero, one, two,... interactions of the external (nuclear) field. Applied to the
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self-energy diagram this leads to the expansion in Fig.
Fig:SERen2
13. Here, the first two

terms are infinite, while the last ’many-potential term’ is finite. In the method
introduced by

BLS59BLS59
?) and later modified by

Mo82Mo82
?) the zero- and one-potential terms

are combined with the mass counterterm, which leads to a finite quantity that
can be evaluated analytically. The final result is then obtained by evaluating
numerically the finite many-potential term.
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Fig. 13. The bound-electron self-energy can be expanded into a zero-, a one- and a
many-potential term. Fig:SERen2

4.3.3 The vacuum polarizationsec:VacPol

The second part of the Lamb shift (Fig.
Fig:LS
10), the vacuum polarization (VP),

is also singular and has to be renormalized. The bound-state VP can be ex-
panded into a zero-potential, a one-potential and a many-potential term, as
in the self-energy case (Fig.

Fig:VP
14). The zero-potential term is zero, due to the

Furry theorem
MS84
(?). The one-potential term is singular but can be renormal-

ized analytically, as first shown by
Ue35Ue35
?) and

Ser35Ser35
?). The last term, known as the

Wichmann-Kroll term
WK56
(?), is finite and evaluated numerically.
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Fig. 14. The bound-state vacuum polarization can be expanded in a zero-, one-, and
many-potential term as in the self-energy case (Fig.

Fig:SERen2
13). Fig:VP
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Some applications of the S-matrix formulation are briefly discussed in chapter
sec:Appl
7. For further information the reader is referred to the review article by

MPS98MPS98
?).

5 Covariant-evolution-operator formalism.

sec:CovEvolOp

5.1 Single-photon exchange

sec:SingPhotCov

As mentioned previously, the S-matrix formalism cannot handle the quasi-
degeneracy problem, due to the energy-conservation condition (

EnergyShift
181), which

is caused by the integration over all times. A possibility to circumvent this
problem might therefore be to consider instead of the S-matrix the original
evolution operator (

UExp
86) with a limited time integration. As mentioned, how-

ever, the evolution operator in its original form is not relativistically covariant,
implying that the relativistic problem can not be handled. By generalizing
the operator, so that time can evolve forwards as well as backwards, it can be
shown that the relativistic covariance can be restored. This method – which
we refer to as the covariant-evolution-operator method – has recently been de-
veloped and successfully applied to the quasi-degenerate situation

Li00,LAS01,BAs02
(???) and

is illustrated in Fig.
Fig:CovEvOp
15 for single-photon exchange.

In the covariant-evolution-operator method we use for the single-photon ex-
change between two electrons – instead of the standard time-evolution opera-
tor (

U2
168) – the expression

U
(2)
Cov(t

′,−∞) = −1
2

∫∫
d4x1 d4x2

[
Θ(t′ − t1) ψ̂†+(x1)−Θ(t1 − t′) ψ̂†−(x1)

]

×
[
Θ(t′ − t2) ψ̂†+(x2)−Θ(t2 − t′) ψ̂†−(x2)

]
iI(x2, x1) ψ̂(x2) ψ̂(x1) e−γ(|t1|+|t2|). (207) U2Cov

Here, we integrate over all times. For integration times smaller than the time
t′ of the evolution operator, which corresponds to positive-energy states, we
integrate in the positive direction from the negative infinity, and correspond-
ingly for integration times larger than t′, which corresponds to negative-energy
states, we integrate in the negative direction from the positive infinity. With
this operator, positive- and negative-energy states can be handled in analogous
ways.

Generally, the evolution operator (
UExp
86) is a two-times operator, with an initial

as well as a final time. However, in perturbation theory, using the adiabatic
damping (

UDamp
91), it is convenient to set the initial time t0 = −∞, which directly

leads to a perturbation expansion starting from an unperturbed state. We
shall normally apply that in the following.

Using the relation (
ElPropFieldCoord
194), we can replace the square brackets in (

U2Cov
207) by space
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Fig. 15. The one-time evolution operator for single-photon exchange between the
electrons, including forward and backward time evolution, represented by three
time-ordered (Goldstone) diagrams (top) and a single Feynman diagram (bottom).
The wavy line represents the photon propagator, the open, solid lines the elec-
tron-field operator and the straight line between dots the electron propagator. The
subscript of the electron field operators indicates positive- and negative-energy part,
respectively. Fig:CovEvOp

integration over the electron propagators, yielding

U
(2)
Cov(t

′,−∞) = −1
2

∫∫
d3x′1d

3x′2 ψ̂†(x′1)ψ̂
†(x′2)

∫∫
d4x1 d4x2

× iSF(x′1, x1) iSF(x′2, x2) iI(x2, x1) ψ̂(x2) ψ̂(x1) e−γ(|t1|+|t2|) (208) U2Cov3

with x′i = (t′,x′i). (Note that x′1 and x′2 have the common time t′.) In analogy
with the single-photon exchange (

S22
172) the ’matrix elements’ become

〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ab

〉
= −

∫∫
d3x′1d

3x′2 φ†r(x
′
1)φ

†
s(x

′
2)

∫∫
d4x1 d4x2

× iSF(x′1, x1) iSF(x′2, x2) iI(x2, x1) φa(x1) φb(x2) e−γ(|t1|+|t2|)

= −
∫∫

dt1 dt2
〈
rs

∣∣∣x′1x′2
〉〈

x′1x
′
2

∣∣∣iSF(x′1, x1) iSF(x′2, x2) iI(x2, x1)
∣∣∣x1x2

〉〈
x1x2

∣∣∣ab
〉

× eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|), (209) U2Cov4

where we have explicitly shown the coordinates for the bra 〈rs| and the ket
|ab〉.

The result (
U2Cov4
209) is illustrated by the bottom diagram in Fig.

Fig:CovEvOp
15. The integral
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is evaluated in Appendix
SingPhotEv
A.1, and the result becomes

〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

〈
rs

∣∣∣V (q, q′)
∣∣∣ab

〉 e−it′(q+q′)

q + q′
(210) U2Cov6

V (q, q′) =
∫

dk f(k)
[

1

q − (k − iγ)r

+
1

q′ − (k − iγ)s

]
, (211) SingPhotInt

where (A)x = (A) sgn(εx) and f(k) is given by (
Interact
77)

f(k) = − e2

4π2 r12

(1−α1 · α2) sin(kr12). (212) fk

When the final state |rs〉 lies in the model space, the contribution to the
effective interaction becomes, using (

EffInt2
130),

〈rs|H(1)
eff |ab〉 = 〈rs|V (q, q′)|ab〉. (213) EffIntSP

We can now compare the result above with the S-matrix result obtained in
the previous chapter. When |rs〉 has the same energy as |ab〉, this agrees with
the result (

EnergyShift
181). Then the potential (

SingPhotInt
211) reduces to

V (q,−q) =
∫ 2k dk f(k)

q2 − k2 + iγ
= V F

eq(q),

which is the same as the S-matrix result (
EqPotF
178). In the evolution-operator result

(
EffIntSP
213), however, the initial and final states do not have to have the same energy,

which makes the formalism applicable also to the quasi-degeneracy problem,
using an extended model space.

5.1.1 Single-photon exchange. Alt.sec:SingPhotAlt
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Fig. 16. The covariant evolution operator for single-photon exchange between the
electrons. Fig:SingPhotAlt

We shall now derive the expression for the single-photon exchange in an alter-
native way, using the one-photon covariant evolution-operator method, which
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will be useful in demonstrating more clearly the analogy with the Green’s-
function method to be discussed later.

The matrix element (
U2Cov4
209) is with the notations in Fig.

Fig:SingPhotAlt
16

〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ab

〉
= −

∫∫
dt1 dt2

〈
rs

∣∣∣∣iSF(x′1, x1)

× iSF(x′2, x2) iI(x2, x1)
∣∣∣∣ab

〉
eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|)

= i
∫∫

dt1 dt2

〈
rs

∣∣∣I(z)
∣∣∣ab

〉

(ω3 − εr + iηr)(ω4 − εs + iηs)

× eit′(εr+εs−ω3−ω4) e−it1(εa−z−ω3) e−it2(εb+z−ω4) e−γ(|t1|+|t2|), (214) U2Cov4A

integrated over z and all the ω’s. In analogy with the previous case, the time
integrations yield the delta factors δ(εa − z − ω3) and δ(εb + z − ω4), and
integrations over z to δ(εa + εb − ω3 − ω4). Integrations over ω4 then yield

〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ab

〉

= i
∫ dω3

2π

〈
rs

∣∣∣I(εa − ω3)
∣∣∣ab

〉

(ω3 − εr + iγr)(εa + εb − ω3 − εs + iγs)
e−it′(q+q′). (215) U2Cov4A1

This is equivalent to the integral (
U2CovInt
A.3) with the substitution εa − ω3 → z.

Rewriting the denominators in analogy with (
Phantom
294) and (

SingPhotzInt
A.5), we obtain

〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ab

〉
= i

e−it′(q+q′)

q + q′

×
∫ dω3

2π

〈
rs

∣∣∣I(εa − ω3)
∣∣∣ab

〉[
1

ω3 − εr + iγr

+
1

εa + εb − ω3 − εs + iγs

]
. (216) U2Cov4A2

This can be compared with the phantom-particle equation (IV.22) in
LeB01
(?). The

contribution to the effective Hamiltonian is then obtained by means of (
EffInt2
130),

which yields

H
(1)
eff = i

∫ dω3

2π

〈
rs

∣∣∣I(εa − ω3)
∣∣∣ab

〉 [
1

ω3 − εr + iγr

+
1

εa + εb − ω3 − εs + iγs

]
.

(217) SingPhotEffInt

This is identical to the result (
HeffGnH2
302), obtained below with the nonhermitian

form of the effective Hamiltonian in the Green’s-function method.

5.2 Nonradiative two-photon exchange

sec:TwoPhoton

The QED effects can be separated into two categories, which we refer to as
nonradiative and radiative effects. The radiative effects are characterized by
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Fig. 17. The nonradiative two-photon exchange diagrams, the ladder diagram (left)
and the crossed-photon diagram (right). Fig:TwoPhot

having at least one self-energy or vacuum-polarization loop, while the nonra-
diative effects are free from such parts. The nonradiative two-photon effect for
a two-electron system is of the type shown in Fig.

Fig:TwoPhot
17, the two-photon ladder

and the two-photon crossed diagram. The ladder diagram has a substantial
MBPT part in it. The crossed and the radiative diagrams have no MBPT
counterpart.

The fourth-order evolution operator is according to the expansion (
EvolOpExp
87) with

the interaction (
IntHam
68)

1

4!

∫∫∫∫ t

t0
d4x4 d4x3 d4x2 d4x1 TD

[(
ψ̂†(x) eατAτ ψ̂(x)

)
4

(
ψ̂†(x) eασAσψ̂(x)

)
3

×
(
ψ̂†(x) eανAνψ̂(x)

)
2

(
ψ̂†(x) eαµAµψ̂(x)

)
1

]
. (218) U4

In order to form the two-photon exchange diagrams in Fig.
Fig:TwoPhot
17 – the ’ladder’

and the ’crossed-photon’ diagrams – the contractions can be performed in
12 distinct ways, all leading to equivalent diagrams. The covariant evolution
operator for the ladder diagram is then in analogy with the single-photon
exchange (

U2Cov3
208)

U
(4)
Cov(t

′,−∞)Ladder = 1
2

∫∫
d3x′3 d3x′4 ψ̂†(x′3) ψ̂†(x′4)

∫∫
d4x3 d4x4 iSF(x′3, x3)

× iSF(x′4, x4) iI(x4, x3)
∫∫

dt1 dt2 iSF(x3, x1) iSF(x4, x2) iI(x2, x1) ψ̂(x1) ψ̂(x2)

× eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|+|t3|+|t4|). (219) U4Cov1

The ’matrix element’ then becomes after identification with the second-quantized
expansion (

SecQuant
23)

〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

〈
rs

∣∣∣∣
∫∫

d4x3 d4x4 iSF(x′3, x3) iSF(x′4, x4) iI(x4, x3)

×
∫∫

dt1 dt2 iSF(x3, x1) iSF(x4, x2) iI(x2, x1)
∣∣∣ab

〉

× eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|+|t3|+|t4|), (220) U4Cov2
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and similarly for the crossed diagram.

5.2.1 Separable ladder diagramsec:SepLadd
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Fig. 18. Graphical representation of the reducible two-photon-photon ladder dia-
gram and the corresponding counterterm. The dotted line represents a time with
no uncontracted photon, i.e., a time after the first photon has been absorbed and
before the second has been created. TwoPhotDiag

We consider first the two-photon ladder diagram. Here, we distinguish between
two situations, whether the two photons overlap with each other in time or
not. If the photons do not overlap in time, we refer to the diagram as being
separable, and in the opposite case as being nonseparable.

The separable two-photon ladder is illustrated by the leftmost diagram in
Fig.

TwoPhotDiag
18. The field-theoretical evaluation is given in the Appendix

TwoPhotonApp
A.2 (

U4SepA
B.10),

assuming all states to be positive energy states,

〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
SepLadder

=
〈
rs

∣∣∣∣V (q + p′, q′ + p)
∣∣∣∣tu

〉 〈
tu

∣∣∣∣ V (p, p′)
∣∣∣∣ab

〉

× e−it′(q+q′)

(q + q′)(p + p′)
, (221) SepLadder

where V (q, q′) is the effective one-photon interaction (
U2Cov6
210), (

SingPhotInt
211). The corre-

sponding contribution to the effective interaction then becomes, using (
U4SepA
B.10),

〈
rs

∣∣∣Heff

∣∣∣ab
〉

Sep
=

〈
rs

∣∣∣∣V (q + p′, q′ + p)
∣∣∣∣tu

〉 〈
tu

∣∣∣∣ V (p, p′)
∣∣∣∣ab

〉

p + p′
. (222) HeffSepLad

When the diagram is reducible, i.e., separable with the intermediate state in
the model space, there is a counterterm (

UtildeExp2
118), U (2)PU (2)P ,

〈
rs

∣∣∣UCounter

∣∣∣ab
〉

=
〈
rs

∣∣∣U (2)
∣∣∣tu

〉 〈
tu

∣∣∣U (2)
∣∣∣ab

〉

=
〈
rs

∣∣∣V (q − p, q′ − p′)
∣∣∣tu

〉 〈
tu

∣∣∣ V (p, p′)
∣∣∣ab

〉 e−it′(q+q′−p−p′)

(q + q′ − p− p′)(p + p′)
. (223) Counter
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Using the notations of (
Folded
147),

Ein = εa + εb, Eout = εr + εs, ∆E = p + p′ = Ein − εt − εu,

we can express the separable ladder (
SepLadder
221) diagram as

〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
SepLadder

=

〈
rs

∣∣∣V2(Ein)
∣∣∣tu

〉 〈
tu

∣∣∣ V (p, p′)
∣∣∣ab

〉 e−it′(Ein−Eout)

(Ein − Eout) ∆E
(224) SepLadder2

and the counterterm as

〈
rs

∣∣∣UCounter

∣∣∣ab
〉

=
〈
rs

∣∣∣V2(Ein −∆E
∣∣∣tu

〉 〈
tu

∣∣∣ V (p, p′)
∣∣∣ab

〉

× e−it′(Ein−∆E−Eout)

(Ein −∆E − Eout) ∆E
, (225) Counter2

where V2(X) = V (X − εr − εu, X − εs− εt). The contribution to the effective
interaction then becomes, using (

EffInt2
130),

〈
rs

∣∣∣V2(Ein)
∣∣∣tu

〉
−

〈
rs

∣∣∣V2(Ein −∆E)
∣∣∣tu

〉

∆E

〈
tu

∣∣∣ V (p, p′)
∣∣∣ab

〉
. (226) EffIntLadd

The leading term is here given by the energy derivative of the interaction,

〈
rs

∣∣∣∣
∂

∂E

(
V2(E)

)

E=Ein

+ · · ·
∣∣∣∣tu

〉 〈
tu

∣∣∣∣ V (p, p′)
∣∣∣∣ab

〉
, (227) LadderMSC

which demonstrates that the counterterm removes the (quasi)degeneracy of
the reducible ladder diagram. This result is quite analogous to the expression
for the second-order diagram, derived with time-dependent MBPT (

MSC2
163). A

more detailed comparison with MBPT will be made in Chapter
MBPT/QED
8.

5.2.2 Nonseparable ladder diagramsec:NonSepLadd

The nonseparable ladder diagram is evaluated in Appendix
sec:timeOrd
B, Eq. (

U4NonSepA2
B.16), and

the result becomes, assuming only positive-energy states are involved,

〈
rs

∣∣∣Heff

∣∣∣ab
〉

Nonsep
=

∫∫
dk′dk 〈rs|f(k′)|tu〉〈tu|f(k)|ab〉 ×

[
1

(q + p′ − k′)(q − k − k′)(p− k)
+

1

(q′ + p + k′)(q′ + k + k′)(p′ + k)

]
. (228) HeffNonsepLad
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5.3 Electron self-energy

sec:CovSE

Next, we consider the radiative effects and start with the single-electron effects,
treated also in the previous chapter with the S-matrix formulation, section

sec:LS
4.3.

sec:SE
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Fig. 19. The covariant-evolution-operator diagrams representing the first-order elec-
tron self-energy and vacuum polarization. Fig:LSEv

The first-order radiative effects are illustrated in Fig.
Fig:LS
10 for the S-matrix

formulation. The corresponding evolution-operator diagram are shown in Fig.
Fig:LSEv
19. Here, we shall evaluate the electron self-energy diagram as an illustration.
In analogy with the single-photon exchange (

U2Cov4
209) the matrix element becomes

〈
r
∣∣∣U (2)

SE (t′,−∞)
∣∣∣a

〉
= −

∫
d3x′2 φ†r(x

′
2)

×
∫∫

d4x2 d4x1 iSF(x′2, x2) iI(x2, x1) iSF(x2, x1) φa(x1) e−γ(|t1|+|t2|). (229) SE1

Using the Fourier transform of the electron propagator (
ElPropCoord
187) and of the inter-

action (
I
169), this yields

〈
r
∣∣∣USE(t′,−∞)

∣∣∣a
〉

= i
∫∫ dω2

2π

dω1

2π

∫ dz

2π

〈tr|I(z)|at〉
(ω2 − εr + iηr)(ω1 − εt + iηt)

×
∫∫

dt2 dt2 e−it′(ω2−εr) e−it2(ω1−ω2+z) e−it1(εa−ω1−z) e−γ(|t1|+|t2|). (230) SE2

Using the definition of the self-energy operator (
SelfEn
202), the time and ω integra-

tions yield in analogy with the single-photon exchange, treated in Appendix
SingPhotEv
A.1,

〈
r
∣∣∣USE(t′,−∞)

∣∣∣a
〉

=

i
e−it′(εa−εr+iγr)

εa − εr + iγr

∫ dz

2π

〈rt|I(z)|ta〉
εa − εt − z + iγt

=
e−it′(εa−εr+iγr)

εa − εr + iγr

〈
r
∣∣∣Σ(εa)

∣∣∣a
〉
. (231) SE3

61



This leads to the contribution to the effective Hamiltonian, using (
EffInt2
130),

〈r|H(1)
eff |a〉 =

〈
r
∣∣∣Σ(εa)

∣∣∣a
〉
. (232) SEEffInt

The result is the same as in the S-matrix formulation (
SEShift
204), when εr = εa.

The present result, however, is valid also when the initial and final energies
are different. When needed, we shall assume that the self-energy expressions
are renormalized (see section

sec:RenormSE
4.3.2).

5.4 Two-electron radiative effects
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Fig. 20. The two-electron radiative effects in lowest order. The first two diagrams
represent the two-electron self-energy (screened self-energy and vertex modification)
and the last two represent the two-electron vacuum polarization (screened vacuum
polarization and the photon self-energy). Fig:TwoElRad

The covariant-evolution-operator diagrams for the two-electron radiative ef-
fects in lowest order are depicted in Fig.

Fig:TwoElRad
20. Here, we shall treat the first of

these diagrams, the screened self-energy (leftmost diagram) in some detail.

5.4.1 Screened self-energysec:ScrSEEvOp

The covariant evolution operator for the screened self-energy, depicted in Fig.
Fig:ScrSE
21, is in analogy with the two-photon exchange (

U4Cov2
220)

〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ab

〉
=

∫∫
dt1 dt2

〈
rs

∣∣∣∣
∫∫

d4x3 d4x4 iSF(x′4, x4) iSF(x4, x3) iI(x4, x3)

×iSF(x3, x1) iSF(x′2, x2) iI(x2, x1)
∣∣∣ab

〉
eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|+|t3|+|t4|). (233) ScrSE1

Introducing the electron propagators (
ElPropOp
192), this becomes after time integra-

tions
〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ab

〉
=

i
∫ dω3

2π

∫ dω4

2π

∫ dω5

2π

∫ dz

2π

〈
r
∣∣∣Σ(ω5)

∣∣∣t
〉 〈

ts
∣∣∣I(z)

∣∣∣ab
〉

(ω3 − εr + iηr)(ω5 − εt + iηt)(ω4 − εs + iηs)

× e−it′(ω3+ω4−εr−εs) δ(εa − z − ω5) δ(εb + z − ω4) δ(ω5 − ω3) (234) ScrSEEvOp2
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Fig. 21. The covariant-evolution-operator diagram representing the screened self-en-
ergy. (There is also a hermitian adjoint diagram, which is not necessarily identical
in the nonhermitian formulation we use.) Fig:ScrSE

and after integration over the ω’s

〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ab

〉
=

i
∫ dz

2π

〈
r
∣∣∣Σ(εa − z)

∣∣∣t
〉 〈

ts
∣∣∣I(z)

∣∣∣ab
〉

(q − z + iγr)(p− z + iγt)(q′ + z + iγs)
e−it′(q+q′) (235) ScrSEEvOp3

with q = εa− εr, p = εa− εt, q′ = εb− εs. Rewriting two of the denominators
as before, leads to

〈
rs

∣∣∣U (4)
Cov(t

′,−∞)
∣∣∣ab

〉
= i

eit′(q+q′)

(q + q′)

×
∫ dz

2π

〈
r
∣∣∣Σ(εa − z)

∣∣∣t
〉 〈

ts
∣∣∣I(z)

∣∣∣ab
〉

p− z + iγt

[
1

q − z + iγr

+
1

q′ + z + iγs

]
. (236)

The contribution to the effective Hamiltonian is then, using (
EffInt2
130),

〈
rs

∣∣∣H(2)
eff

∣∣∣ab
〉

= i
∫ dz

2π

〈
r
∣∣∣Σ(εa − z)

∣∣∣t
〉 〈

ts
∣∣∣I(z)

∣∣∣ab
〉

p− z + iγt

[
1

q − z + iγr

+
1

q′ + z + iγs

]

= −
∫∫ dz

2π

dz′

2π

〈
ru

∣∣∣I(z′)
∣∣∣ut

〉 〈
ts

∣∣∣I(z)
∣∣∣ab

〉

(p′′ − z − z′ + iγu)(p− z + iγt)

[
1

q − z + iγr

+
1

q′ + z + iγs

]
(237) ScrSEEvOp1

with p′′ = εa − εu and with the expression (
SelfEn
202) for the self-energy operator.

The integral is evaluated in the Appendix
sec:ScrSEEvOpA
A.3 in the Feynman gauge (

Interact
77),

assuming only positive-energy states are involved, which yields
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〈rs|H(2)
eff |ab〉 =

∫∫
dk dk′ 〈ru|f(k′)|ut〉〈ts|f(k)|ab〉

×
{

1

(p′′ + q′ − k′)(p + q′)

[ 1

p− k + iγ
+

1

q′ − k + iγ

]

+
1

(p′′ − k − k′ + iγ)(p− k + iγ)

[ 1

p′′ + q′ − k′ + 2iγ
+

1

q − k + iγ

]}
. (238) ScrSEEvOp4

The first term corresponds to the separable part, where the photons do not
overlap in time, and the second term to the nonseparable part. The separable
part can also be expressed, using the expression (

SelfEnInt
203),

〈rs|H(2)
eff |ab〉Sep = 〈r|Σ(εa+q′)|t〉

∫
dk
〈ts|f(k)|ab〉

p + q′

[
1

(p− k + iγ)
+

1

(q′ − k + iγ)

]
.

(239) ScrSESep

Reducible part
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P

×
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Fig. 22. The counterterm for the screened self-energy in the covariant evolution-op-
erator method). Fig:Counter

The separable part of the screened self-energy (
ScrSESep
239) has a (quasi)singularity

when ∆ = p+q′ = εa +εb−εt−εs ≈ 0. This is eliminated by the counterterm
in the reduced evolution operator (

UtildeExp
117)

Ũ (4)P = U (4)P − U (2)PU (2)P. (240) Utildered

The counterterm U (2)PU (2)P , illustrated in Fig.
Fig:Counter
22, is a product of an electron

self energy (
SEEffInt
232) and a single-photon exchange (

SingPhotInt
211)

〈rs|H(2)
eff |ab〉Counter = 〈r|Σ(εt)|t〉

×
∫

dk 〈ts|f(k)|ab〉
[

1

p− k + iγ
+

1

q′ − k + iγ

]
1

p + q′
. (241) ScrCounterA

The difference yields the reducible part or the model-space part of the effective
Hamiltonian
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〈rs|H(2)
eff |ab〉

Red
=
〈r|Σ(εt + ∆)− Σ(εt)|t〉

∆

×
∫

dk 〈ts|f(k)|ab〉
[

1

p− k + iγ
+

1

q′ − k + iγ

]
(242) ScrMSCA

with ∆ = p + q′ = εa + εb − εt − εs. In the limit of complete degeneracy, the
first factor becomes the derivative of the self-energy with respect to the energy
parameter

〈rs|H(2)
eff |ab〉

Red
=

[
∂

∂ω
〈r|Σ(ω)|t〉

]

ω=εt

∫
dk 〈ts|f(k)|ab〉

[
1

p− k + iγ
+

1

q′ − k + iγ

]

(243) ScrMSC1A

5.5 Fourier transform of the covariant evolution operator

Fourier

The Fourier transform of the evolution operator U(t′,−∞) with respect to the
time is

U(E) =
1

2π

∫
dt′ ei Et′ U(t′,−∞). (244) FTDef

If U(t′,−∞) is of the form

U(t′,−∞) = F (E ′) e−i E′t′ , (245) UFT

then
U(E) = δ(E − E ′) F (E ′). (246)

Similarly, we define the Fourier transform of the reduced evolution operator
(
Utildet
116)

Ũ(E) =
1

2π

∫
dt′ ei Et′ Ũ(t′,−∞). (247) UredFT

It follows from the form (
EffInt2
130) that the energy-dependent effective interaction

is related to the Fourier transform of the reduced evolution operator by

H ′
eff =

∫
E dE Ũ(E). (248) EffIntFT

The Fourier transform of the single-photon matrix element (
U2Cov6
210) is

〈
rs

∣∣∣U (2)
Cov(E)

∣∣∣ ab
〉

= δ
(
E − (q + q′)

)
〈
rs

∣∣∣V (q, q′)
∣∣∣ab

〉

q + q′
, (249) S2FT

and (
EffIntFT
248) yields the effective interaction

〈
rs

∣∣∣H ′
eff

∣∣∣ab
〉

=
〈
rs

∣∣∣V (q, q′)
∣∣∣ab

〉
(250) EffInt3
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in agreement with (
EffIntSP
213).

Applying the same rule to the separable two-photon matrix element (
SepLadder2
224),

yields the contribution to the effective interaction

〈
rs

∣∣∣H ′
eff

∣∣∣ab
〉

Ladder
=

1

∆E

〈
rs

∣∣∣∣V2(Ein)
∣∣∣∣tu

〉 〈
tu

∣∣∣∣ V (p, p′)
∣∣∣∣ab

〉
, (251) EffIntLadd2

and when the diagram is reducible the counterterm (
Counter2
225) yields

〈
rs

∣∣∣H ′
eff

∣∣∣ab
〉

Counter
=

1

∆E

〈
rs

∣∣∣∣V2(Ein −∆E)
∣∣∣∣tu

〉 〈
tu

∣∣∣∣ V (p, p′)
∣∣∣∣ab

〉
. (252) EffIntCount

This agrees with the previous result (
EffIntLadd
226) in subsection

sec:TwoPhoton
5.2.

Some applications of the covariant-evolution-operator technique are discussed
in chapter

sec:Appl
7.

6 The two-times Green’s-function formalism
sec:TwoTimesGreen

6.1 General

We shall now consider the two-times Green’s-function method, mainly for the
purpose of making comparison with the covariant-evolution-operator method,
discussed in the previous chapter. For further details regarding the two-times
Green’s-function method, the reader is referred primarily to the recent review
article by

Shab02Shab02
?) and to the thesis of

LeB01LeB01
?).

In field theory the single-particle Green’s function is usually defined
FW71
(?, Eq.

7.1) 15

iG(x, x0) =

〈
0H

∣∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣∣0H

〉

〈0H| 0H〉 , (253) Green

where T is the Wick time-ordering operator (
TimeOrdering2
74) and ψ̂H, ψ̂†H are the elec-

tron field operators in the Heisenberg representation (
ElFieldHP
34). |0H〉 is the lowest

eigenstate of the Fock-space Hamiltonian, Ĥ, in this representation – or the
’Heisenberg vacuum’ – which is time independent. This state satisfies the con-
dition

ψ̂H(x) |0H〉 = 0. (254) Vacuum

15 Often the Green’s function is defined using ψ̂H = ψ̂†Hγ0 instead of ψ̂†H and some-
times without the imaginary unit; see e.g.

IZ80
(?, Eq. 6-1)
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In the interaction picture (IP) the vacuum evolves in time according to the
definition (

UDef
84),

|0I(t)〉 = U(t, t0) |0I(t0)〉. (255) VacIP

The ’unperturbed’ vacuum in the IP is |0〉 = |0I(−∞)〉, assuming an adiabatic
damping (

Damping
88), and is related to the Heisenberg vacuum by

|0H〉 = |0I(t = 0)〉 = U(0,−∞) |0〉. (256) PertVac

The relation between operators in the HP and the IP is given in Eq. (
HPIP
32)

ÔH(t) = eiĤ′t OI e
−iH′t = U(0, t) OI U(t, 0), (257) HPIPU

and we can then transform the Green’s function (
Green
253) to the interaction picture

iG(x, x0) =

〈
0
∣∣∣∣U(∞, 0) T

[
U(0, t)ψ̂(x)U(t, 0)U(0, t0)ψ̂

†(x0)U(t0, 0)
]
U(0,−∞)

∣∣∣∣0
〉

〈
0
∣∣∣U(∞,−∞)

∣∣∣0
〉 ,

(258)
which, using (

EvolOpExp
87), can be transformed into

FW71
(?, Sec. 8),

Shab02Shab02
(?, Eq. 3)

iG(x, x0) =

〈
0
∣∣∣∣ T

{
exp

[
− i

∫∞
−∞ d4ξ Ĥ′

I(ξ)
]
ψ̂(x)ψ̂†(x0)

} ∣∣∣∣0
〉

〈
0
∣∣∣∣ T exp

[
− i

∫∞
−∞ d4ξ Ĥ′

I(ξ)
] ∣∣∣0

〉 . (259) GreenIP

It can be shown that the denominator in the expression (
GreenIP
259) has the ef-

fect of removing all unlinked (unconnected) diagrams, and the result can be
expressed

FW71
(?, Eq. 9.5)

iG(x, x0) =
〈
0
∣∣∣∣T

{
exp

[
− i

∫ ∞

−∞
d4ξH′(ξ)

]
ψ̂(x)ψ̂†(x0)

}∣∣∣∣0
〉

conn

=
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
d4x1 · · ·

∫ ∞

−∞
d4xn

〈
0
∣∣∣T

[
H′(x1) · · ·H′(xn) ψ̂(x)ψ̂†(x0)

]∣∣∣0
〉

conn
. (260) GreenLink

This leads to the expansion

iG0(x, x0) =
〈
0
∣∣∣T [ψ̂(x)ψ̂†(x0)]

∣∣∣0
〉

iG1(x, x0) = −i
〈
0
∣∣∣∣
∫ ∞

−∞
d4x1 T

[
H′(x1) ψ̂(x)ψ̂†(x0)

]∣∣∣∣0
〉

conn

iG2(x, x0) = −1
2

〈
0
∣∣∣∣
∫ ∞

−∞
d4x1

∫ ∞

−∞
d4x2 T

[
H′(x1)H′(x2) ψ̂(x)ψ̂†(x0)

]∣∣∣∣0
〉

conn

etc. (261) GreenExp
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The n-particle Green’s function is defined in an analogous way

iG(x′1, x
′
2 · · · x′n; x10, x20 · · ·xn0) =

〈
0H

∣∣∣T
[
ψ̂H(x′1) · · · ψ̂H(x′n) ψ̂†H(x10) · · · ψ̂†H(xn0)

]∣∣∣0H

〉
〈
0H

∣∣∣0H

〉 ,

(262) nGreen

which leads to the expansion in the interaction picture

iG(x′1, x
′
2 · · · x′n; x10, x20 · · · xn0) =

∞∑

n=0

(−i)n

n!

∫ ∞

−∞
d4x1 · · ·

∫ ∞

−∞
d4xn

×
〈
0
∣∣∣T

[
Ĥ′(x1) · · ·H′(xn) ψ̂H(x′1) · · · ψ̂H(x′n) ψ̂†(x10) · · · ψ̂†(xn0)

]∣∣∣0
〉

conn
. (263) nGreenIPLink

If we set all incoming times ti0 = t0 and all outgoing times ti = t′, we have the
two-times Green’s function, extensively discussed by Shabaev et al.

Shab02,Sh93,Sh94,SF94,ABP00
(?????).

6.2 The Fourier transform of the two-times Green’s function

sec:FTGF

Assuming the vacuum state is normalized, we have from the definition (
Green
253)

iG(x, x0) =
〈
0H

∣∣∣T
[
ψ̂H(x) ψ̂†H(x0)

]∣∣∣0H

〉

= Θ(t− t0)
〈
0H

∣∣∣ψ̂H(x) ψ̂†H(x0)
∣∣∣0H

〉
−Θ(t0 − t)

〈
0H

∣∣∣ψ̂†H(x0) ψ̂H(x)
∣∣∣0H

〉
. (264) GreenH

Considering t > t0, we have, from the definition (
ElFieldHP
34),

iG+(x, x0) =
〈
0H

∣∣∣ψ̂H(x) ψ̂†H(x0)
∣∣∣0H

〉
=

〈
0H

∣∣∣
(
eiĤtψ̂S(x)e−iĤt

) (
eiĤt0ψ̂†S(x0)e

−iĤt0
)∣∣∣0H

〉
.

(265) GreenH+

We insert a complete set of positive-energy eigenstates of the Hamiltonian Ĥ
(
HamSecQuant
27) between the field operators,

Ĥ |n〉 = En |n〉, (266) Eigenvalue

which yields the Lehmann representation

iG+(x, x0) =
∑
n

〈
0H

∣∣∣eiĤtψ̂S(x)
∣∣∣n

〉
e−iEn(t−t0)

〈
n

∣∣∣ψ̂†S(x0) e−iĤt
∣∣∣0H

〉

=
∑
n

〈
0H

∣∣∣ψ̂S(x)
∣∣∣n

〉
e−iEn(t−t0)

〈
n

∣∣∣ψ̂†S(x0)
∣∣∣0H

〉
, (267) Lehmann

setting the energy of the vacuum to zero. We can now perform a Fourier
transform of the Green’s function, including the adiabatic damping e−γτ (see
section

sec:GML
3.3), yielding (τ = t− t0 > 0)

G+(x,x0, E) =
∫ ∞

0
dτ eiEτ G+(x,x0, τ) =

∑
n

〈
0H

∣∣∣ψ̂S(x)
∣∣∣n

〉 〈
n

∣∣∣ψ̂†S(x0)
∣∣∣0H

〉

E − En + iγ
,

(268) GreenFT
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using
∫ ∞

0
dt eiαt e−γt =

i

α + iγ
. (269) delta

We then see that the poles of the Green’s function represent the true eigenval-
ues of the system. Assuming no degeneracy, the eigenvalues can be obtained
from the formula

Shab02Shab02
(?, Eq.44)

En =

∮
Γn

dE E G+(x,x0, E)∮
Γn

dE G+(x,x0, E)
(270) Energy

where the contour Γn encircles the pole in question (and no other). This for-
mula can be compared with the corresponding formula for the covariant evo-
lution operator (

EffIntFT
248).

The eigenstates |n〉 in the eigenvalue equation (
Eigenvalue
266) are Fock states, and the

functions
Ψn(x) = 〈n|ψ̂†S(x)|0H〉 (271) EigenfcnS

are the corresponding wavefunctions in configuration space (in the Schrödinger

representation).
[
Formally, these functions can be expressed as eigenfunctions

of a hypothetical Hamiltonian in configuration space (H) that corresponds to
the Fock-space Hamiltonian (Ĥ),

H Ψn(x) = En Ψn(x).
]

(272) HamHilb

We can then express the Fourier transform (
GreenFT
268) of the Green’s function

G+(x, x0, E) =
∑
n

Ψn(x) Ψ†
n(x0)

E − En + iγ
. (273) GreenFT2

Note, that this is the exact single-particle Green’s function (positive-energy or
retarded part), since the states are eigenstates of the exact Hamiltonian (c.f.
(
ElPropFour
186)). With no degeneracy, the numerator in (

Energy
270) then becomes

∮

Γn

dE E G+(x,x0, E) = Ψn(x) EnΨ†
n(x0) (274) IntE

with no summation over n, and since the denominator is then Ψn(x) Ψ†
n(x0),

the result (
Energy
270) follows directly.

The retarded Green’s function (
GreenFT2
273) can also be written

G+(x,x0, E) =
∑
n

〈x|Ψn〉 〈Ψn|x0〉
E − En + iγ

, (275) GreenFT3

which is the coordinate representation of a (retarded) ’Green’s-function oper-
ator’ (c.f. Eq. (

ElPropDiracFour
188))

Ĝ+(E) =
∑
n

|Ψn〉 〈Ψn|
E − En + iγ

. (276) GreenOp
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The single-particle Green’s function depends on time through a single time
variable τ = t − t0, as follows from the Lehmann representation (

Lehmann
267). The

procedure above can easily be generalized to many particles, if we set all final
times equal to t and all initial times equal to t0.

6.3 Extended model space. (Quasi)degeneracy

Degen

Essentially following Shabaev
Shab02Shab02
(?, Sec. 2.5.8),

Sh93,Sh94
(??) we shall now extend the

treatment of the two-times-Green’s-function formalism to the case of degen-
eracy or quasi-degeneracy in the model space by means of an extended model
space, in close analogy with the treatment of time-independent and time-
dependent MBPT in the previous sections (sect.

sec:pert
2.2 and

sec:GenGellMann
3.3.2) (see also

LeB01
(?)).

As in section
sec:pert
2.2, we introduce a model space (D) of dimensionality d, which

contains the model states of all degenerate or quasi-degenerate states. The
model space is spanned by eigenfunctions of the unperturbed Hamiltonian

H0Φi = Ei
0Φi (i = 1, 2 · · · d). (277) BasisFcns1

The matrix of the retarded Green’s-function operator (
GreenOp
276) in this basis is

then

〈Φi|Ĝ+(E)|Φj〉 = 〈i|Ĝ+(E)|j〉 =
∑
n

〈i|Ψn〉 〈Ψn|j〉
E − En + iγ

. (278) Gmatrix

〈i|Ψn〉 is the projection of the state |Ψn〉 onto the model-space state |i〉, and
the entire projection,

P̂ |Ψn〉 =
d∑

i=1

|i〉〈i|Ψn〉 = |Ψ0
n〉, (279) ModelFcn

is the zeroth-order or model state, corresponding to the target state |Ψn〉 in
intermediate normalization (

WaveOp
12).

We now construct the P matrix with the elements

Pij = 〈i|P̂|j〉 =
1

2πi

∮

ΓD

dE 〈i|Ĝ+(E)|j〉 =
∑

D

〈i|Ψn〉〈Ψn|j〉 =
∑

D

〈i|Ψ0
n〉〈Ψ0

n|j〉
(280) Pmatrix

and the analogous K matrix

Kij = 〈i|K̂|j〉 =

1

2πi

∮

ΓD

dE E 〈i|Ĝ+(E)|j〉 =
∑

D

〈i|Ψn〉En〈Ψn|j〉 =
∑

D

〈i|Ψ0
n〉En〈Ψ0

n|j〉. (281) Kmatrix

Here, the integration is performed around all poles corresponding to the target
states, and the summations are then restricted to these states. P̂ , K̂ are the
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corresponding operators

P̂ =
∑

D

|Ψ0
n〉〈Ψ0

n| ; K̂ =
∑

D

|Ψ0
n〉En〈Ψ0

n|. (282) PKop

The model states |Ψ0
n〉 are not necessarily orthonormal. For that reason we

introduce a ’dual set ’ of states in the model space, |Ψ̃0
n〉, defined by

〈Ψ0
m|Ψ̃0

n〉 = 〈Ψ̃0
n|Ψ0

m〉 = δmn. (283) DualStates

It then follows that

P̂ |Ψ̃0
n〉 = |Ψ0

n〉 and P̂−1|Ψ0
n〉 = |Ψ̃0

n〉. (284) PDual

With these notations

P̂−1 =
∑

D

|Ψ̃0
n〉〈Ψ̃0

n|, (285) Pinv

and the standard projection operator for the model space (
Heff
15) becomes

P̂ =
∑

D

|Ψ0
n〉〈Ψ̃0

n| =
∑

D

|Ψ̃0
n〉〈Ψ0

n|. (286) P

It also follows that

K̂ P̂−1|Ψ0
n〉 = En |Ψ0

n〉, (287) EffHamNonHerm

which implies that

K̂ P̂−1 =
∑

D

|Ψ0
n〉En〈Ψ̃0

n| (288) EffHamG

is an effective Hamiltonian, which operates within the model space and gener-
ates the exact energies of the corresponding target states. This is completely
equivalent to the effective Hamiltonian introduced in the MBPT section (

EffHam
13).

In both cases the operator is nonhermitian, and the eigenstates are the model
states, which are in general nonorthogonal. As shown by

Shab02,Sh93,Sh94Shab02,Sh93,Sh94
???),

SF94,ABP00
(??), it is pos-

sible to express the effective Hamiltonian (
EffHamG
288) in a hermitian form

(
P̂−1/2K̂P̂−1/2

) ∣∣∣P̂−1/2Ψ0
n

〉
= En

∣∣∣P̂−1/2Ψ0
n

〉
. (289) EffHamHerm

This is equivalent to the hermitian form of the MBPT effective Hamiltonian
introduced by des Cloizeaux

dC60,Li74
(??).

The two-times Green’s function for single-photon exchange, represented in
Fig.

Fig:SingPhotGF
23, is obtained from the expansion (

nGreenIPLink
263), considering only relevant con-

tractions for this case,

71



t = t′

666ω1 → εa a 666b ω2 → εb

-zr r1 2

666ω3 r 666s ω4

t = t0

r r

r r

Fig. 23. The two-times Green’s function for single-photon exchange between the
electrons. Fig:SingPhotGF

iG(x′1, x
′
2; x10, x20) =

= −1
2

∫∫
d4x1d

4x2

〈
0
∣∣∣T

[
Ĥ′(x1)Ĥ′(x2) ψ̂(x′1)ψ̂(x′2) ψ̂†(x10)ψ̂

†(x20)
]∣∣∣0

〉

= −1
2

∫∫
d4x1 d4x2 iSF(x′1, x1) iSF(x′2, x2) iI(x2, x1) iSF(x1, x10) iSF(x2, x20), (290) GreenSingPhot

using (
IntHam
68) Ĥ′

I(x) = −eψ̂†(x) αµAµψ̂(x) and (
I
169) I(x2, x1) = eαµ

1DFνµ(x2 −
x1) eαν

2 . We shall now evaluate this expression in some detail.

Using the form (
ElPropCoord
187) of the electron propagator, we have

G(x′1, x
′
2; x10, x20) = −1

2

∫∫
d4x1 d4x2

〈x′1|r〉〈r|x1〉
ω3 − εr + iηr

〈x′2|s〉〈s|x2〉
ω4 − εs + iηs

I(x2,x1, z)

× 〈x1|a〉〈a|x10〉
ω1 − εa + iηa

〈x2|b〉〈b|x20〉
ω2 − εb + iηb

e−iω3(t′−t1) e−iω4(t′−t2) e−iz(t2−t1) e−iω1(t1−t0) e−iω2(t2−t0), (291) SingPhotGF

integrated also over z and the ω’s. The time integrations of t1 and t2, per-
formed over all times, yield according to the formula (

Delta
174) the factors δ(ω1 −

z − ω3) and δ(ω2 + z − ω4), respectively, and the integration over z leads to
δ(ω1 +ω2−ω3−ω4). As in the covariant-evolution-operator method, the adia-
batic damping can here be performed individually for each vertex, and we can
therefore directly replace the time integrations (

Delta
174) by Dirac delta functions.

The Fourier transform of G(x′1, x
′
2; x10, x20) with respect to the times t′ and t0

is

1

(2π)2

∫∫
dt′ dt0 eiE′t′ e−iEt0 G(x′1, x

′
2; x10, x20)

⇒ δ(E ′ − ω3 − ω4) δ(E − ω1 − ω2) G(E, E ′).

Integrations over ω2 and ω4 lead to the delta function δ(E ′ − E), which can
be eliminated together with the delta function δ(ω1 + ω2 − ω3 − ω4) above,
yielding the matrix element (c.f.

U2Cov4
209)
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〈
rs

∣∣∣G(E)
∣∣∣ab

〉
= −

∫∫ dω1

2π

dω3

2π

×
〈
rs

∣∣∣I(ω1 − ω3)
∣∣∣ab

〉

(ω3 − εr + iγr)(E − ω3 − εs + iγs) (ω1 − εa + iγa) (E − ω1 − εb + iγb)
. (292) GF

The effective Hamiltonian is given by (
EffHamHerm
289)

Heff = P−1/2KP−1/2 (293a) HeffG

K =
1

2πi

∮

Γ
E dE G(E) (293b) K

P =
1

2πi

∮

Γ
dE G(E), (293c) PG

where the integration Γ should be performed in the positive direction and
enclose the unperturbed energies of the initial (E0

in = εa + εb) and final states
(E0

out = εr + εs) but no other unperturbed energies.

The denominators in (
GF
292) can be rewritten as

[
1

(ω3 − εr + iγr)
+

1

(E − ω3 − εs + iγs)

]
1

E − E0
out + iγr + iγs

×
[

1

(ω1 − εa + iγa)
+

1

(E − ω1 − εb + iγb)

]
1

E − E0
in + iγa + iγb

, (294) Phantom

which corresponds to the phantom-particle diagrams, discussed by LeBigot
LeB01LeB01
(?,

Eq. IV.24). In the K integral (
K
293b) the poles E0

in and E0
out contribute. The

former yields
[

1

(ω3 − εr + iγr)
+

1

(E0
in − ω3 − εs + iγs)

]
E0

in

E0
in − E0

out

×
[

1

(ω1 − εa + iγa)
+

1

(εa − ω1 + iγb)

]
,

where the last bracket leads to the delta function −2πi δ(ω1 − εa) (indicated
by ω1 → εa in Fig.

Fig:SingPhotGF
23). Similarly, the other pole yields

−2πi δ(ω3 − εr)
E0

out

E0
out − E0

in

[
1

(ω1 − εa + iγa)
+

1

(E0
out − ω1 − εb + iγb)

]
.

Integrating the first contribution over ω1 and the second over ω3, gives the
matrix elements

〈rs|K̂|ab〉 =

i
∫

dω3

2π
〈rs |I(εa − ω3)| ab〉 E0

in

E0
in − E0

out

[
1

(ω3 − εr + iγr)
+

1
(E0

in − ω3 − εs + iγs)

]

+ i
∫

dω1

2π
〈rs |I(ω1 − εr)| ab〉 E0

out

E0
out −E0

in

[
1

(ω1 − εa + iγa)
+

1
(E0

out − ω1 − εb + iγb)

]
, (295) Kelem
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which is identical to the Eq. (25) in
ABP00ABP00
?).

In a similar way we obtain the P integral (
PG
293c)

〈rs|P̂|ab〉 =

i
∫

dω3

2π
〈rs |I(εa − ω3)| ab〉 1

E0
in − E0

out

[
1

(ω3 − εr + iγr)
+

1
(E0

in − ω3 − εs + iγs)

]

+ i
∫

dω1

2π
〈rs |I(ω1 − εr)| ab〉 1

E0
out −E0

in

[
1

(ω1 − εa + iγa)
+

1
(E0

out − ω1 − εb + iγb)

]
, (296) Pelem

which is the same as Eq. (26) in
ABP00ABP00
?). Expanding (

HeffG
293a) yields in first order

H
(1)
eff = K(1) − 1

2
P(1)K(0) − 1

2
K(0)P(1), (297) HeffG1

where K(0)
ij = δij E0

i . This yields the contribution to the matrix element

〈rs|H(1)
eff |ab〉 = 〈rs|K(1)|ab〉 − 1

2

(
E0

in + E0
out

)
〈rs|P(1)|ab〉

=
i

2

∫ dω3

2π
〈rs |I(εa − ω3)| ab〉

[
1

(ω3 − εr + iγr)
+

1

(E0
in − ω3 − εs + iγs)

]

+
i

2

∫ dω1

2π
〈rs |I(ω1 − εr)| ab〉

[
1

(ω1 − εa + iγa)
+

1

(E0
out − ω1 − εb + iγb)

]
. (298) HeffG2

The photon interaction I(z) has in the Feynman gauge the form (
Interact
77)

I(z) =
∫

dk
2k f(k)

z2 − k2 + iη
; f(k) = −e2αµ

1 α2µ

4π2 r12

sin(k r21).

Assuming r and s to be positive-energy states, we integrate over ω3 in the
negative half plane (poles at εr − iγ and εa + k − iη), which givesNonherm

1
2

∫
dk 〈rs |f(k)| ab〉

[
2k

q2 − k2 + iγ
+

1

q + k + iγ
+

1

q′ − k + iγ

]

= 1
2

∫
dk 〈rs |f(k)| ab〉

[
1

q − k + iγ
+

1

q′ − k + iγ

]
, (299a)

where q = εa − εr and q′ = εb − εs. Similarly for ω1

−1
2

∫
dk 〈rs |f(k)| ab〉

[
1

q + k − iγ
+

1

q′ + k − iγ

]
. (299b)

This gives the final result

〈rs|H(1)
eff |ab〉 = 1

2

∫
dk 〈rs |f(k)| ab〉

[
2k

q2 − k2 + iγ
+

2k

q′ 2 − k2 + iγ

]
, (300)
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which agrees with the result (29) of
ABP00ABP00
?). This is identical to the Mittleman

potential
Mi72
(?).

If we instead use the nonhermitian form of the effective Hamiltonian (
EffHamG
288),

we have in place of (
HeffG1
297)

H
(1)
eff = K(1) −K(0)P(1) ⇒ 〈rs|H(1)

eff |ab〉 = 〈rs|K(1)|ab〉 − Eout 〈rs|P(1)|ab〉,
(301) HeffGnH

which becomes

〈rs|H(1)
eff |ab〉 = i

∫ dω3

2π
〈rs |I(εa − ω3)| ab〉

[
1

(ω3 − εr + iγr)
+

1

(E0
in − ω3 − εs + iγs)

]
.

(302) HeffGnH2

This is identical to the result of the evolution-operator method with the sub-
stitutions ω3 → εa − z and E0

in = εa + εb and leads with the Feynman gauge
to the result of the covariant evolution-operator method (

EffIntSP
213), (

EffIntSPA
A.8), where

also a nonhermitian effective Hamiltonian is used,

〈rs|H(1)
eff |ab〉 =

∫
dk 〈rs |f(k)| ab〉

[
1

q − k + iγ
+

1

q′ − k + iγ

]
. (303) HeffGnH3

6.4 Screened self-energy

sec:ScrSEGF

6.4.1 Irreducible part

r rt = t′

666ω1 → εa a 666b ω2 → εb

-zr r1 2

666ω5 t

666s ω4666

r

r 3

4

666Σ

666ω3 r

t = t0 r r

Fig. 24. The two-times Green’s-function diagram representing the screened self-en-
ergy. Fig:ScrSEGF

As a second example we consider the two-times Green’s function for the
screened self-energy, depicted in Fig.

Fig:ScrSEGF
24,
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G(x′1, x
′
2; x10, x20) =

i

2

∫∫
d4x1 d4x2

∫∫
d4x3 d4x4

× iSF(x′4,x4, ω3)iSF(x′2,x2, ω4)iΣ(x4,x3, ω5)iSF(x3, x1, ω5)iI(x2,x1, z)

× iSF(x1,x10, ω1)iSF(x2, x20, ω2)

× e−it′(ω3+ω4) e−it4(ω5−ω3) e−it1(ω1−z−ω5) e−it2(ω2+z−ω4) eit0(ω1+ω2) (304) ScrSEGF

(leaving out the ω and z integrations). Here, Σ represents the self-energy
operator (

SelfEn
202). After time integrations this becomes

G(x′1, x
′
2; x10, x20) = 1

2

∫∫
d3x1 d3x2

∫∫
d3x3 d3x4

〈x′4|r〉〈r|x4〉
ω3 − εr + iγr

〈x′2|s〉〈s|x2〉
ω4 − εs + iγs

×Σ(x4,x3, ω5)
〈x3|t〉〈t|x1〉
ω5 − εt + iγt

I(z)
〈x1|a〉〈a|x10〉
ω1 − εa + iγa

〈x2|b〉〈b|x20〉
ω2 − εb + iγb

× e−it′(ω3+ω4) eit0(ω1+ω2)δ(ω1 − z − ω5) δ(ω2 + z − ω4) δ(ω5 − ω3). (305)

Integration over z and ω5 gives as before δ(ω1 + ω2 − ω3 − ω4). The Fourier
transform leads in the same way as the single-photon exchange (

GF
292) to

〈
rs

∣∣G(E)
∣∣ab

〉
=

∫∫
dω1

2π

dω3

2π

×
〈
r
∣∣Σ(ω3)

∣∣t〉 〈
ts

∣∣I(ω1 − ω3)
∣∣ab

〉

(ω3 − εr + iγr)(E − ω3 − εs + iγs) (ω3 − εt + iγt) (ω1 − εa + iγa) (E − ω1 − εb + iγb)
, (306) ScrSEFT

which is equivalent to the results of
LIS01
(?) and

LeB01
(?, Eq. IV.9). The treatment is

then quite analogous to the single-photon exchange, and we obtain instead of
the expression (

HeffG2
298)

〈rs|H(1)
eff |ab〉 =

− i
2

∫
dω3

2π

〈
r
∣∣Σ(ω3)

∣∣t〉 〈ts |I(εa − ω3)| ab〉
ω3 − εt + iγt

[
1

(ω3 − εr + iγr)
+

1
(E0

in − ω3 − εs + iγs)

]

− i
2

∫
dω1

2π

〈
r
∣∣Σ(ω3)

∣∣t〉 〈ts |I(ω1 − εr)| ab〉
ω3 − εt + iγt

[
1

(ω1 − εa + iγa)
+

1
(E0

out − ω1 − εb + iγb)

]
. (307) ScrSEFT2’

Using instead the nonhermitian form of the effective Hamiltonian, leads in
analogy with single-photon result (

HeffGnH2
302) to the simpler expression

〈rs|H(1)
eff |ab〉 =

= −i
∫

dω3

2π

〈
r
∣∣Σ(ω3)

∣∣t〉 〈ts |I(εa − ω3)| ab〉
ω3 − εt + iγt

[
1

(ω3 − εr + iγr)
+

1
(E0

in − ω3 − εs + iγs)

]
. (308) ScrSEnonHerm

This is identical to the evolution-operator result (
ScrSEEvOp1
237), if we make the substitu-

tion ω3 → εa−z. This expression contains a (quasi)singularity, when the inter-
mediate state is (quasi)degenerate with the initial one, E0

in = εa + εb ≈ εs + εt.
In the evolution-operator method this singularity is eliminated by the coun-
terterm (

UtildeExp
117), and in the Green’s-function method it will be eliminated by a

similar counterterm, as will be shown below.
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6.4.2 Reducible part
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Fig. 25. The counterterm for the screened self-energy in the Green’s-function method
(c.f. Fig.

Fig:Counter
22). Fig:CounterGF

In order to evaluate the reducible part of the screened self-energy diagram,
i.e., when the intermediate state lies in the model space, one has to consider
also products of first-order contributions to the K and P integrals

LIS01,LeB01
(??), shown

in Fig.
Fig:CounterGF
25. The contribution to the nonhermitian effective Hamiltonian (

EffHamG
288)

is −K(1)P(1).

From (
Pelem
296) we have

〈rs|P(1)|ab〉 = i
∫ dω3

2π
〈rs |I(εa − ω3)| ab〉 1

E0
in − E0

out

×
[

1

(ω3 − εr + iγr)
+

1

(E0
in − ω3 − εs + iγs)

]

= i
∫ dω3

2π
〈rs |I(εa − ω3)| ab〉 1

(ω3 − εr + iγr) (E0
in − ω3 − εs + iγs)

(309) CounterP

and together with the self-energy K part this yields

〈rs|H(1)
eff |ab〉Counter = i〈r|Σ(εt)|t〉

∫ dω3

2π

〈ts|I(εa − ω3)|ab〉
(ω3 − εt + iγt)(εa + εb − ω3 − εs + iγs)

.

(310) CounterGF

This removes the singularity of the effective-interaction result (
ScrSEnonHerm
308).

6.5 General comparison between the Green’s-function and the evolution-operator
methods

sec:Comp

We shall now compare the two methods for bound-state QED discussed above,
the two-times Green’s-function and the covariant-evolution-operator methods,
and we take the single-photon exchange between the electrons as an example.
As pointed out before, both these methods are, in principle, two-times meth-
ods, although in the covariant-evolution-operator method the initial time is
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Fig. 26. The two-times Green’s function for single-photon exchange between the
electrons is represented by the diagram on the left, and the corresponding two-times
covariant evolution operator by the diagram on the right. Fig:SingPhotComp

normally set to t0 = −∞, which simplifies the handling considerably (Sect.
sec:SingPhotCov
5.1). In order to make the comparison with the two-times Green’s-function
method more transparent, however, we shall use the original two-times form
also of the evolution-operator method.

The two-times Green’s-function expression for the single-photon exchange
(
GreenSingPhot
290)

iG(x′1, x
′
2; x10, x20)

= −1
2

∫∫
d4x1d

4x2

〈
0
∣∣∣T

[
Ĥ′(x1)Ĥ′(x2) ψ̂(x′1)ψ̂(x′2) ψ̂†(x10)ψ̂

†(x20)
]∣∣∣0

〉

= −1
2

∫∫
d4x1 d4x2 iSF(x′1, x1) iSF(x′2, x2) iI(x2, x1) iSF(x1, x10) iSF(x2, x20) (311) GreenSingPhot2

is represented by the first diagram in Fig.
Fig:SingPhotComp
26. This we shall compare with the

corresponding two-times covariant-evolution operator, which by a straightfor-
ward generalization of the single-time result (

U2Cov3
208) is given by

U
(2)
Cov(t

′, t0) = −1
2

∫∫
d3x′1d

3x′2 ψ̂†(x′1)ψ̂
†(x′2)

∫∫
d4x1 d4x2 iSF(x′1, x1)

×iSF(x′2, x2) iI(x2, x1)
∫∫

d3x10d
3x20 iSF(x1, x10) iSF(x2, x20)ψ̂(x10)ψ̂(x20) (312) U2TT

and represented by the second diagram in the figure. This comparison yields in
the present case the following relation between the two-times Green’s function
and the two-times covariant evolution operator

U
(2)
Cov(t

′, t0) =
∫∫

d3x′1d
3x′2

∫∫
d3x10d3x20 ψ̂†(x′1)ψ̂

†(x′2) iG(x′1, x
′
2; x10, x20) ψ̂(x10)ψ̂(x20)

(313) Comp

– a relation that holds for any two-particle Green’s function/evolution operator
and can easily be generalized to the n-particle case.

It should be noted that the evolution operator is an operator, acting in the
Fock space, while the Green’s function is a function of the time and space
coordinates.
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It is now interesting to compare the two methods in some more detail. Starting
with the single-photon exchange in the GF method, we see that in the nonher-
mitian case (

HeffGnH2
302) it is the pole E = E0

in in the ’phantom-particle’ expression
(
Phantom
294) that contributes. The denominators, originating from the propagators

of the incoming lines, lead here to the delta factor δ(ω1−εa). In the evolution-
operator method, the initial time is set to t0 → −∞ and ω1 to εa from the
onset. We also see that the denominator E0

in − E0
out of K̂(1) is eliminated in

the expression for the effective Hamiltonian, H
(1)
eff = K(1) − K(0)P(1). In the

evolution-operator method the corresponding denominator is eliminated (
SingPhotEffInt
217)

by means of the time derivative. The situation is similar for the screened self-
energy.

The observations above are quite general. The two-times Green’s-function and
covariant-evolution-operator methods are quite analogous. After time integra-
tions both expressions depend generally on the initial and final time (although
the initial time is in the latter method normally set to t0 = −∞). In the GF
method a Fourier transform is performed and the effective Hamiltonian is con-
structed by integrations over the energy. In the evolution-operator method the
same expression is obtained by means of time derivation. In the GF method
with nonhermitian effective Hamiltonian the combined denominator from the
propagators of the outgoing lines is eliminated by the energy integration and in
the evolution-operator method by the time derivation. In the GF method the
energy integration has the effect that the energy parameters of the propaga-
tors are replaced by the orbital energies. In the (one-time) evolution-operator
method this is set from the onset.(C.f. Table IV.1 in the thesis of

LeB01LeB01
?).)

Some applications of the two-times-Green’s-function technique are briefly de-
scribed in chapter

sec:Appl
7. For further information the reader is referred to the

review article by
Shab02Shab02
?).

7 Applications

sec:Appl

The bound-state techniques described here can be applied to various problems
in QED. Here, we shall summarize some applications on stationary problems.
For dynamical problems, like photoionization and radiative electron capture
(REC) we refer to the current literature

KAB02,YSB00,BAE99
(???).
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7.1 Applications on hydrogenlike ions

7.1.1 Lamb shift

Pioneering works on the problem of bound-state QED calculations were carried
out by

BLS59BLS59
?) and

DJ71DJ71
?) within the framework of the S-matrix formulation. Later the

numerical technique was developed to a high degree of sophistication mainly
for the first-order self-energy of hydrogenlike ions by

Mo75,Mo82,Mo85,Mo92Mo75,Mo82,Mo85,Mo92
????). This technique

was originally best suited for heavy ions, but a technique was later developed
and applied also to low-Z ions

JMS99
(?), and this represents the most accurate

result at present for neutral hydrogen and singly ionized helium. Accurate
calculations of the first-order vacuum polarization on these ions, including the
Wichmann-Kroll term, have been performed by

PLS93PLS93
?),

Sunn98
(?).

In order to reach a numerical accuracy for light elements that can match the
analytical approach (α − Zα expansion) for light elements, it is necessary
to consider also the two-photon contributions. This is computationally quite
challenging and has only recently been possible to attack in a more compre-
hensive way. A number of more or less complete calculations have appeared
during the last years

MalS98,LNPS00,Ye00,YS01,JPac02
(?????).

7.1.2 Hyperfine structure and Zeeman effectsec:Hfs
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Fig. 27. The diagrams representing the lowest-order QED corrections to an addi-
tional perturbation like the hyperfine structure or Zeeman effect for hydrogenlike
ions. Fig:Hfs

The S-matrix formalism has been used also for accurate calculations for hy-
drogenlike ions of the effect of an ’external’ perturbation, like the hyperfine
structure or the Zeeman effect (atomic g-factor)

PSG96,PSS97,SPS98,BCS97,BLP00,ASP01,YIS02
(???????). The diagrams in

lowest order are depicted in Fig.
Fig:Hfs
27.

The hyperfine structure of some heavy hydrogenlike ions has been studied
with the SuperEBIT at Livermore and at GSI in Darmstadt. The QED effects
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are here of the order of 0.5% and clearly observable within the experimen-
tal accuracy. This effect, however, is normally overshadowed by the nuclear
effect. Therefore, comparison between theory and experiment is here mainly
used to extract information about the nucleus, particularly the nuclear mag-
netization

BUW01,MGu01
(??).

The atomic g-factor has been measured with extreme precision for some light
hydrogenlike ions at the university of Mainz, and the agreement with the
theoretical predictions is very good. Here, the comparison between theory and
experiment can actually be used to improve the atomic value of the electron
mass

HBH00,BHH02,YIS02
(???).

7.2 Applications on heliumlike ions

The nonradiative part of the two-photon interaction for the ground states of
heliumlike ions (Fig.

Fig:TwoPhot
17) has been evaluated using the S-matrix formulation

by
BMJ93BMJ93
?) and

LPS95LPS95
?). The radiative effects (Fig.

Fig:TwoElRad
20) for the same systems have been

evaluated by
PSS96PSS96
?), using the S-matrix formalism, and by

YAS97YAS97
?) using the two-times

Green’s-function method. The results obtained are in good agreement with the
experimental results obtained with the SuperEBIT at Livermore

MES95
(?), although

the QED effects are barely detectable.

The nonradiative diagrams for the excited 1s2s states of heliumlike ions have
also been evaluated by means of the S-matrix formulation

MS00,ALP01,ASL02
(???), as well as of

the 1s2p states, excluding the quasi-degenerate J = 1 states
MS00
(?). Recently, the

covariant evolution-operator technique has been applied to the 1s2p states of
some lighter elements, including the quasi-degenerate J = 1 states, and the
results obtained agree well with the experimental fine-structure results

LAS01,BAs02
(??).

The screened-self-energy diagrams for these states of some heavier elements
have also been evaluated using the two-times Green’s-function technique by
Indelicato et al.

LIS01,LeB01
(??) and the vacuum-polarization screening corrections by

Yerokhin et al.
ABP00
(?).

The experimental results for the fine structure of some heliumlike ions to-
gether with the theoretical results are given in Table 1. As discussed in the
Introduction, the results of

PJS94PJS94
?) are obtained by means of relativistic MBPT

with the QED corrections added in lowest order in α−Zα, and the results of
Dr88Dr88
?) with nonrelativistic Hylleraas-type wavefunction and relativistic as well as
QED corrections to lowest order. The results of

BAs02BAs02
?),

LAS01
(?) are obtained by means

of the covariant evolution-operator method to second order with higher-order
MBPT corrections added. Only the nonradiative QED parts are fully calcu-
lated and the remaining effects taken from the power expansion. Full QED
calculations are now under way.
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Table 1
The 1s2p fine-structure separations of some heliumlike ions.
Values for Z = 2, 3 given in MHz and for Z ≥ 9 in µH (1µH= 27.2 µeV).

Z 3P1 −3 P0
3P2 −3 P0

3P2 −3 P1

2 29616.9509(9) 2291.1759(10) Expt’l 1

29616.9496(10) 2291.1736(11) Theory 2

3 155704.27(66) -62678.41(66) Expt’l 3

155703.4(1,5) -62679.4(5) Drake 4

9 701(10) 4364,517(6) Expt’l 5

680 5050 4362(5) Drake 4

690 5050 4364 Plante 6

690 5050 4364 Åsén 7

10 1371(7) 8458(2) Expt’l 8

1361(6) 8455(6) 265880 Drake 4

1370 8469 265860 Plante 6

1370 8460 265880 Åsén 7

18 124960(30) Expt’l 9

124810(60) Drake 4

124942 Plante 6

124940 Åsén 7

1
GLH01,CLS00GLH01,CLS00
??) 2

PS00,GLH01PS00,GLH01
??) 3

RSP94RSP94
?) 4

Dr88Dr88
?) 5

MMT99MMT99
?)

6
PJS94PJS94
?) 7

LAS01,BAs02LAS01,BAs02
??) 8

CLW00CLW00
?) 9

KLS95KLS95
?)

It can be seen from the comparison in the table that the difference between the
QED effects to leading order and the all-order result is hardly noticeable with
the present numerical accuracy. For argon there is a significant difference be-
tween the result of Drake and the other theoretical results, which is expected to
be due to the approximation of the relativistic effect in the method of Drake. It
would be a challenge to try to reproduce with the evolution-operator method
the accurate result for the separation 3P2 −3 P1 in heliumlike fluorine, which
would most likely test higher-order (in Zα) QED corrections. It is presently
unclear if this accuracy can be reached with the present technique. The ex-
perimental accuracy obtained for single ionized lithium and, in particular, for
neutral helium, is definitely out of reach at present. An improved technique,
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which might be applicable in these cases, will be discussed in the next chapter.

7.3 Applications on lithiumlike ions

Lithiumlike ions can to a large extent be treated as a single-electron system
with nonCoulombic potential. Early calculations with this approach were per-
formed in order to calculate the Lamb shift of the 1s2p transitions of Li-like
uranium

Bl92,Bl93,LPS93
(???), and the results were in excellent agreement with the accurate

experimental results of
SBB91SBB91
?). More elaborate calculations, including the two- and

three-electron interactions, have now been performed particularly by
YAB99,YAS01YAB99,YAS01
??),

ABP99
(?).

8 Possibilities of merging of QED with MBPT

MBPT/QED

We have in the previous sections considered three different methods for bound-
state QED calculations, the S-matrix, the covariant-evolution-operator and
the two-times Green’s-function methods. The latter two methods have the
advantage compared to the S-matrix formulation that they can be used with
an extended model space and thereby be applicable also to a quasi-degenerate
situation. All three methods, however, have the shortcoming that in practice
electron correlation can only be evaluated to relatively low order. This limits
the accuracy, for instance, for simple systems with low nuclear charge, for
which the electron correlation is comparatively strong.

We know that in MBPT the electron correlation can be treated to essentially
all orders, as discussed in section

sec:AllOrder
2.5. In the present section we shall consider

the possibility of introducing some of these ideas into bound-state QED.

In principle, all electromagnetic interactions between electrons could be treated
entirely within the QED framework by considering one-, two-, three- ... photon
interactions. In practice, however, it is presently hardly possible to go beyond
two-photon interactions in any reasonably complete manner. For that reason,
it would be highly desirable to be able to supplement the QED calculations
to second order, say, with higher-order effects using MBPT methods. A sim-
ple and straightforward way that has been applied to heliumlike ions is to
add effects of third and higher orders from MBPT to the second-order QED
results

PSS96,LAS01,BAs02
(???). In order to achieve higher accuracy, however, particularly for

very light elements, it is necessary to combine the two effects in a more com-
plete way, which would imply that the QED effects are evaluated by means of
correlated wavefunctions, rather than with simple hydrogenic ones.
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In the method developed by Drake, very accurate non-relativistic two-electron,
correlated wavefunctions are constructed, using the method of Hylleraas, where
the interelectronic distance r12 is explicitly used. The disadvantage with this
technique when applied to QED calculations is that the QED effects – as well
as relativistic effects – have to be evaluated analytically, using (the lowest-
order) analytical expressions. Such an approach is superior to other available
methods for very light elements, where electron correlation is relatively strong
and the QED effects quite small. For heavier elements, on the other hand,
the approach cannot compete with available numerical QED approaches. By
combining the numerical QED technique with the MBPT technique, as will
be outlined in the present section, it is expected that the QED effects can be
accurately evaluated by means of correlated wavefunctions, thus combining
the advantages of the two approaches.

The covariant-evolution-operator method is particularly suited as a basis for
the combined approach, because of its formal analogy with MBPT, as demon-
strated, for instance, in the two-photon case. This analogy remains also in
higher orders. One possibility could therefore be to restrict the full QED cal-
culations to the lowest orders and to evaluate the remaining (smaller) terms
by a combination of QED and (relativistic) MBPT. This can be done by mod-
ifying the coupled-cluster equations, particularly the pair equation, to include
also QED effects.

Below we shall first demonstrate the close analogy between the QED treated by
the covariant evolution-operator method and the traditional MBPT. Then we
shall see how this analogy can be used to derive two-electron or pair equations
to generate certain QED effects to all orders. Eventually, this will lead to the
complete Bethe-Salpeter equation

BS51,BS57
(??). Finally, we shall discuss some practical

schemes for generating combined QED-MBPT effects of high order.

8.1 Comparison of QED with MBPT

In standard MBPT the second-order contribution to the energy or the effective
interaction due to the electron-electron interaction, V , is

∑

|tu〉∈Q

〈
rs

∣∣∣V
∣∣∣tu

〉 〈
tu

∣∣∣ V
∣∣∣ab

〉

∆E
, (314) MBPT2SepLadd

where the denominator is equal to the negative of the excitation energy of the
intermediate state, ∆E = εa +εb−εt−εu, and the summation runs over states
in the complementary space (Q). This can be compared with the contribution
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due to the separable two-photon diagram (
HeffSepLad
222)

∑

|tu〉∈Q

〈
rs

∣∣∣∣V (q + p′, q′ + p)
∣∣∣∣tu

〉 〈
tu

∣∣∣∣ V (p, p′)
∣∣∣∣ab

〉

∆E
+ MSC. (315) SepLadd

where

V (q, q′) =
∫

dk f(k)
[

1

q − k + iγ
+

1

q′ − k + iγ

]
,

assuming only positive-energy states are involved. The first term in (
SepLadd
315) is

here very similar to the MBPT expression and represents the irreducible part
for which the intermediate state lies in the Q space. The term ’MSC’ represents
the Model-Space Contributions, introduced in section

sec:GMLND
3.3.1, i.e., contributions

due to the reducible part, for which the intermediate state lies in the model
space.

The lowest-order contributions to the effective interaction due to multi-photon
exchange then become

〈
rs

∣∣∣H(1)
eff

∣∣∣ab
〉

= 〈rs|V (q, q′)|ab〉

〈
rs

∣∣∣H(2)
eff

∣∣∣ab
〉

=
∑

|tu〉∈Q

〈
rs

∣∣∣∣V (q + p′, q′ + p)
∣∣∣∣tu

〉 〈
tu

∣∣∣∣ V (p, p′)
∣∣∣∣ab

〉

∆E

+ MSC +
〈
rs

∣∣∣V2

∣∣∣ab
〉

Nonsep
. (316) OneTwoPhot

The difference from the corresponding MBPT results is here that the inter-
actions are time-dependent (retarded), which also leads to the appearance of
the model-space contribution (MSC) and the nonseparable part, represented
by the last two terms of the second equation. We shall now utilize this close
analogy between the QED and the MBPT results in order to indicate how the
schemes can be combined in a systematic fashion.

8.2 The Bethe-Salpeter equation

sec:BS

The pair equation with instantaneous Coulomb interactions, discussed in the
many-body section

sec:AllOrder
2.5, can straightforwardly be generalized to include the full

QED photons. In analogy with the expression for the separable two-photon
ladder above, we can set up a pair equation by replacing the interaction in the
MBPT equation (

PairEq2
56) by the corresponding two-photon expressions

(
q + q′

)
srs

ab = 〈rs|V (q, q′)|ab〉
+〈rs|V (q + p′, q′ + p)|tu〉 stu

ab + MSC , (317) PairEqSP
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Fig. 28. The pair equation for a two-electron system, using the full QED one-photon
interaction between the electrons, in analogy with the MBPT pair function in Fig.Fig:PairEq
2. This generates an infinite sequence of ladder single-photon diagrams in addition
to model-space contributions (MSC). Fig:PairEqSP

where q = εa − εr, q′ = εb − εs, p = εa − εt, p′ = εb − εu. The folded term
is constructed in analogy with the corresponding MBPT expression in (

PairEq
55)

and model-space contribution, as described in section
sec:CovEvolOp
5. The equation (

PairEqSP
317)

will generate an infinite sequence of single-photon ladders (including folded
diagrams and MSC), as indicated in Fig.

Fig:PairEqSP
28.

The iteration scheme of the single-photon exchange (V1) above can in prin-
ciple be applied also to the nonseparable two-photon exchange (V Nonsep

2 ) etc.
Including the nonseparable interactions to all orders

V Nonsep = V1 + V Nonsep
2 + V Nonsep

3 + . . . (318) NonSep

leads to the complete Bethe-Salpeter equation
FW71
(?, p. 562)

〈rs|VBS|ab〉 = 〈rs|ab〉+
〈rs|V Nonsep|tu〉〈tu|VBS|ab〉

∆E
+ MSC. (319) BS

This is illustrated in Fig.
Fig:BS
29. The contribution to the energy – or the effective

interaction – is then obtained by closing the function by a final interaction,
in analogy with the MBPT case in Fig.

Fig:ClosPf
3. The two-particle interactions con-

tain here also radiative parts, with self-energy and vacuum polarization loops,
which, of course, have to be properly renormalized. In principle, also the one-
particle radiative effects, can be iterated in a similar way by means of a single-
particle equation. This can then be coupled to the two-particle equation in the
same way as in the MBPT case (

S1S2
53).

The result (
BS
319) can also be represented in the form of a Green’s-function
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Fig. 29. Graphical representation of the complete Bethe-Salpeter equation in the
form of a Dyson equation. The solid area represents the complete two-particle inter-
action, including no interaction, and the dashed area the nonseparable part (

NonSep
318).

The intermediate state lies in the Q space. The MSC represents the model-space
contribution of the reducible part. Fig:BS

equation

G(x′1, x
′
2, x10, x20) = iSF(x′1, x10) iSF(x′2, x20)

+
∫

d4x
′′
1

∫
d4x

′′
2 K(x′1, x

′
2, x

′′
1 , x

′′
2) G(x

′′
1 , x

′′
2 , x10, x20) + MSC, (320) V.38

where K represents a kernel of all nonseparable interactions. This can be
illustrated by the same figure, if we interpret the lines as electron propagators.

r rt = t′

r rt = t0

= +

t′ r r

t0 r r

t′ r r

t
′′ r r

t0 r r

+ MSC

Fig. 30. Graphical representation of the complete Bethe-Salpeter equation in the
form of the Green’s-function equations (

V.38
320) and (

V.38E
321). Fig:BS2

The Green’s function depends only on the relative times, and by setting the
initial times equal, t10 = t20 = t0, as well as the final times, t′1 = t′2 = t′

and t
′′
1 = t

′′
2 = t

′′
, we can make a Fourier transform with respect to the time

differences τ ′ = t′ − t0 and τ
′′

= t
′′ − t0, which leads to

G(x′1,x
′
2,x10, x20, E) =

∫ dω

2π
iSF(x′1,x10, ω) iSF(x′2, x20, E − ω)

+
∫

d3x
′′
1

∫
d3x

′′
2 K(x′1,x

′
2,x

′′
1 , x

′′
2 , E) G(x

′′
1 ,x

′′
2 , x10,x20, E) + MSC, (321) V.38E

where E is the energy parameter.

The procedure indicated here represents a generalization of the all-order pro-
cedures, discussed in section

sec:AllOrder
2.5. It is clear that the nonseparable multi-photon
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Fig. 31. The pair function with an uncontracted photon (left) and with a completed
photon exchange (right). Fig:PhotPf1

interactions can be handled very much like the interactions in standard MBPT
– but will obviously be considerably more time consuming. It is important
that only the nonseparable parts of the interactions are iterated, in order to
avoid double-counting. The nonseparable interactions are free from singular-
ities. The intermediate states between the interactions are restricted to the
Q space, as in ordinary MBPT, while inside the interactions all intermediate
states (Q as well as P space) should be included. In addition, there will be
finite model-space contributions (MSC) of the reducible part, which can be
obtained as indicated earlier.

8.3 Pair functions with ’uncontracted’ photons

sec:PhotPf

We shall now consider an alternative approach for generating higher-order
diagrams, based upon a combination of the MBPT and QED approaches. We
have seen in section

sec:TimeDepMBPT
3 that the field-theoretical perturbation (

IntHam
68) due to the

interaction between the electrons and the photon field can create or destroy a
virtual photon. A contraction between two such operators is needed to form
an interaction between the electrons. We consider now a standard MBPT pair
function (

PairFcn
57) which is perturbed by a single perturbation (

IntHam
68). This leads to a

pair function with what we shall refer to as an uncontracted photon, depicted
in Fig.

Fig:PhotPf1
31 (left). Assuming the MBPT pair functions is |ρab〉 = stu

ab|ab〉, the
modified function with an uncontracted photon can be expressed |ρ+

ab,k〉 =
sru+

ab (k)|ab〉, where

sru+
ab (k) =

〈r|Ĥ′|t〉 stu
ab

εa − εr + εb − εu − k + iγ
, (322) PhotPf

assuming that only positive-energy states are involved. Ĥ′ is here the interac-
tion (

IntHam
68), operating on a single electron. The denominator above is obtained

using the general scheme derived in Appendix
sec:GenProc
C. The pair function then sat-

isfies the equation

(
εa + εb − h0(1)− h0(2)− k

)
ρ+

ab(1, 2, k) = QĤ′(1)ρab(1, 2), (323) PhotPf2
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where h0 is the single-electron Schrödinger (
H0H
7) or Dirac (

Dirac
62) Hamiltonian. The

Q projection operator assures that the r.h.s. is orthogonal to the initial state
|ab〉.

In order to complete the photon exchange, as indicated in the second diagram
in Fig.

Fig:PhotPf1
31, we operate with a second interaction, Ĥ′(2), which after contraction

leads to the electron-electron interaction (
Interact
77). The function f(k)

f(k) = − e2

4π2 r12

(1−α1 · α2) sin(kr12)

is expanded in spherical waves according to (
SphW2
80)

sin kr12

kr12

=
∞∑

k=0

(2l + 1)jl(kr1)jl(kr2) Ck(1) · Ck(2), (324) SphW3

and then it is essentially the Bessel function jl(kr) that appears in the radial
part of the equation above in the place of Ĥ′. This procedure requires evi-
dently one pair function for each value of the photon momentum k. With the
denominator in (

PhotPf
322), the contribution to the interaction from the full photon

exchange becomes ∫ dk f(k)

q + p′ − k + iγ
,

corresponding to the first part of the interaction in the expressions (
SingPhotInt
211),

(
HeffSepLad
222). The second part of the interaction corresponds to a photon that is

emitted from the second electron.

The pair function with an uncontracted photon can also be iterated further
with instantaneous interactions (V ), before closing the photon and before mak-
ing the k-integration. This leads to effects depicted in Fig.

Fig:PhotPf2
32 and corresponds

to the pair equation

(
εa + εb − h0(1)− h0(2)− k

)
ρ+

ab(1, 2, k) = Q
(
Ĥ′(1)ρab(1, 2) + V ρ+

ab(1, 2, k)
)
.

(325) PhotPf3

Then the pair function can be ’closed’ by a second interaction, Ĥ(2), as before,
and performing the k integration leads to the corresponding contribution to
the energy or the effective interaction, depicted in Fig.

Fig:PhotPf3
33. By solving the

corresponding pair equation, we obtain a new pair function with contracted
photons only, which can then be iterated in the same way as the standard
MBPT pair function, as indicated in Fig.

Fig:PhotPf4
34. It can also be used a new input

for the whole scheme above, yielding repeated effects of the type illustrated
in the last diagram in the figure. In that diagram we have also indicated that
the vacuum-polarization (Uehling part) can be included, by modifying the
orbitals, and the photon self-energy by modifying the photon propagator, as
discussed in section

sec:VacPol
4.3.3.
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Fig. 32. The pair function with an uncontracted photon can also be iterated with
instantaneous interactions before closing the photon. Fig:PhotPf2
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Fig. 33. Closing the uncontracted photon in the pair function illustrated in Fig.
Fig:PhotPf2
32

can yield a new pair function including the effects indicated. Fig:PhotPf3

The effects obtained with the procedure indicated here include the entire effect
due to the exchange of a single QED photon as well as the completely sepa-
rable parts of two-, three-,... photon exchange. In addition, it contains most
if the effect of nonseparable two-, three-,... photon exchange. For instance,
the diagrams in Figs

Fig:PhotPf3
33 and

Fig:PhotPf4
34 contain the effects of two crossed photons,

the vertex correction, and the screened electron self-energy, where one of the
photons is retarded and the other is instantaneous. Also much of the vacuum-
polarization effects, including the Uehling part of the photon self-energy, can
be included, as indicated in Fig.

Fig:PhotPf4
34. (Of course, the self-energy and vertex

parts have to be properly renormalized.) Most importantly, however, these
effects are evaluated by means of correlated wavefunctions instead of pure hy-
drogenic ones. When the effects are iterated, a good approximation to the full
Bethe-Salpeter equation would be achieved. Work in realizing this scheme is
now under way at our laboratory.

In order to include the full two-photon effects with correlated wavefunctions, it
will be necessary to generate pair functions with two ’uncontracted’ photons.
Then also effects of the type shown in Fig.

Fig:PhotPf5
35 could be included. This would

then represent the next step towards the solution of the full Bethe-Salpeter
equation. Although straightforward in principle, this step does not seem to be
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33 can be iterated further with instantaneous

interactions, as well as with an uncontracted photon, leading to effects of the type
indicated. In the last diagram we have also included the vacuum-polarization part,
which can be obtained by modifying the orbitals and the Uehling part of the photon
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Fig. 35. By means of pair functions with two uncontracted photons effects of the
type indicated can be evaluated. Fig:PhotPf5

computationally feasible, however, for the time being.

9 Conclusions and outlook

In this work we have concentrated on two-electron ions for several reasons.
Firstly, hydrogenlike ions have been extensively treated in the review article
on the S-matrix formulation by

MPS98MPS98
?). Secondly, there has been a rapid develop-

ment concerning heliumlike ions lately – experimentally as well as theoretically
– a development we expect to continue for quite some time to come. Heliumlike
ions represent the simplest systems where the interplay between QED effects
and electron correlation can be studied, and here several interesting and chal-
lenging problems will emerge. For light elements the electron correlation is
so strong that it can not be handled to a sufficient degree of accuracy with
the currently available methods for bound-state QED. Furthermore, these sys-
tems contain levels which are very close in energy, which represents another
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theoretical challenge.

Experimentally, some fine-structure separations in light-medium-heavy heli-
umlike ions can now be measured with an accuracy up to 1 ppm , as in heli-
umlike fluorine

MMT99
(?) (see Table in Section

sec:Appl
7). Calculations are now under way

at our laboratory in order to try to reproduce this value. It is unclear, though,
whether this can be achieved with the current technique. Under way are also
some efforts to realize the modified scheme, presented in the previous main
section, where pair functions with an uncontracted photon are generated. It is
expected that this technique will improve the accuracy considerably in cases
where the electron correlation plays a major role.

The fine-structure separation in neutral helium is of particular interest. Here,
the experimental accuracy is as high as 30 ppb, and it is anticipated that the
accuracy could be improved by another order of magnitude

GLH01
(?). Since the fine-

structure is due entirely to relativity and QED (proportional to α2 in leading
order), a comparison between theory and experiment may yield a value of
the fine-structure constant with an accuracy comparable to (in principle half)
the experimental uncertainty. The first evaluation of this constant from the
experimental data and available theoretical estimates yielded a value with an
uncertainty of 23 ppb, which however deviated four standard deviations from
the accepted, and more accurate, value obtained mainly from the free-electron
g-factor

MT00
(?). According to newer estimates, the theoretical uncertainty had

been underestimated, and the new value agrees with the accepted value but
with a larger uncertainty of about 200 ppb

PSap02
(?). Hopefully, a combination of the

analytical and numerical approaches for some light ions might here improve
the situation.
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A Evaluation of one and two-photon evolution-operator diagrams

sec:Eval

In this Appendix we shall first evaluate some covariant-evolution-operator di-
agrams in the standard way. In Appendix

sec:timeOrd
B we shall consider time-ordered

diagrams and evaluate each time-ordering separately. This will lead to a gen-
eral scheme for diagram evaluation, described in Appendix

sec:GenProc
C, which is utilized

in the merging procedure of QED and MBPT in section
MBPT/QED
8.

A.1 Evaluation of the single-photon exchange

SingPhotEv

t = t′
666r ψ̂† 666ψ̂† s

666a ψ̂ 666ψ̂ b

-zr r1 2

666t SF 666SF u

r r

Fig. A.1. Graphical representation of the covariant-evolution operator for single-pho-
ton exchange (Fig.

Fig:CovEvOp
15). Fig:SingPhotApp

The covariant evolution operator for single-photon exchange, illustrated in
Fig.

Fig:SingPhotApp
A.1, is (

U2Cov4
209)

〈
rs

∣∣∣Û (2)
Cov(t

′,−∞)
∣∣∣ab

〉
= −

∫∫
dt1 dt2

×
〈
rs

∣∣∣∣iSF(x′1, x1) iSF(x′2, x2) iI(x2, x1)
∣∣∣∣ab

〉
eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|)

= i
∫∫

dt1 dt2

〈
rs

∣∣∣∣
∫ dz

2π

∫ dω1

2π

|t〉〈t|
ω1 − εt + iηt

∫ dω2

2π

|u〉〈u|
ω2 − εu + iηu

I(z)
∣∣∣∣ab

〉

× eit′(εr+εs) e−iω1(t′−t1) e−iω2(t′−t2) e−iz(t2−t1) e−it1εa−it2εb e−γ(|t1|+|t2|), (A.1) U2CovA

using the form (
ElPropOp
192) of the electron propagators and the Fourier transform

(
I
169) of the electron-electron interaction. The quantities ηt, ηu are infinites-

imally small quantities with the same sign as εt and εu, respectively, with
the purpose of determining the poles of the electron propagator. The time
integration over t1 becomes, using the ∆ function (

Delta
174),

∫
dt1 eit1(ω1+z−εa) e−γ|t1| =

2γ

(ω1 + z − εa)2 + γ2
= 2π∆γ(ω1 + z − εa). (A.2) U2Int

The ω1 integral then becomes

∫ dω1

2π

1

ω1 − εr + iηr

2γ

(ω1 + z − εa)2 + γ2
e−it′(ω1−εr),
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using the fact that only the terms t = r and u = s survive. Here, the poles
appear at ω1 = εr − iηr and ω1 = εa − z ± iγ. If εr > 0 (ηr = η) we may
integrate over the positive half plane with the pole ω1 = εa − z + iγ, yielding

1

q − z + iη + iγ
e−it′(q−z+iγ)

with q = εa − εr. Similarly, when εr < 0 we may integrate over the negative
half plane (pole ω1 = εa − z − iγ), and the integration yields

1

q − z − iη − iγ
e−it′(q−z−iγ).

In the integrals here there are two imaginary parts, one (η) associated with the
electron propagator and one (γ) with the adiabatic damping. The purpose of
the former is to indicate the position of the poles of the propagator, while the
latter is a parameter that is going to zero in the adiabatic process. It should
be noted that these quantities are of different character – γ is a finite quantity,
which is eventually switched off, while η is an infinitesimally small quantity.
Therefore, we can omit η, when it appears together with γ, and the results
above can be summarized as

1

q − z + iγr

e−it′(q−z+iγr),

where γr = γ sgn(εr). In the same way the integrations over t2 and ω2 yield

1

q′ + z + iγs

e−it′(q′+z+iγs)

with q′ = εb − εs and γs = γ sgn(εs).

After the integrations above, the expression (
U2CovA
A.1) becomes

〈
rs

∣∣∣Û (2)
Cov(t

′,−∞)
∣∣∣ ab

〉
= i

∫ dz

2π

〈
rs

∣∣∣I(z)
∣∣∣ab

〉

(q − z + iγr)(q′ + z + iγs)
e−it′(q+q′)

= i
e−it′(q+q′)

q + q′

∫ dz

2π
〈rs|I(z)|ab〉

[
1

q − z + iγr

+
1

q′ + z + iγs

]
. (A.3) U2CovInt

Eventually, all γ:s will go to zero, and they are needed only to determine the
position of the poles. Since the factor (q+q′) is not involved in any integration,
we can leave out the imaginary part of that factor.

The interaction I(z) is in the Feynman gauge given by (
Interact
77)
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I(z) = e2αµ
1α

ν
2 DFνµ(x2 − x1, z) =

∫ ∞

0

2k dk f(k)

z2 − k2 + iη

f(k) = − e2

4π2 r12

(1−α1 · α2) sin(kr12). (A.4) IFeynman

The z integral is here

∫ dz

2π

[
1

q − z + iγr

+
1

q′ + z + iγs

]
1

z2 − k2 + iη
. (A.5) SingPhotzInt

We can rewrite the last denominator as

(z − k + iη)(z + k − iη) = z2 − k2 + 2k i η.

Since η is an infinitesimally small positive quantity, 2kη is equivalent to η for
positive k.

The first term in (
SingPhotzInt
A.5) has poles at z = q + iγr and z = ±(k − iη). When

γr = γ > 0, there is one pole in the negative half-plane, z = k − iγ, and the
integral becomes

− i

2(k − iη)(q − k + iη + iγ)
.

As before, we can omit the η term in comparison with the γ term, but we keep
for the moment the η term in the first factor,

− i

(2k − iη)(q − k + iγ)
.

When γr = −γ < 0, there is one pole in the positive half-plane, z = −k + iη,
and the integral becomes similarly

− i

(2k − iη)(q + k − iγ)
,

and the result can be summarized as

− i

(2k − iη)
(
q − (k − iγ)r

) ,

where (A)x = (A) sgn(εx). Similarly, the integration of the second term in
(
SingPhotzInt
A.5) yields

− i

(2k − iη)
(
q′ − (k − iγ)s

) ,

and the complete integral becomes

− i

(2k − iη)

[
1

q − (k − iγ)r

+
1

q′ − (k − iγ)s

]
.
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When including the interaction (
IFeynman
A.4), there is a factor of 2k in the numerator,

and then it follows that the pole at k = 0 does not contribute. Therefore, the
matrix element of the covariant evolution operator for single photon exchange
becomes

〈
rs

∣∣∣Û (2)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

〈
rs

∣∣∣V (q, q′)
∣∣∣ab

〉 e−it′(q+q′)

q + q′
(A.6) U2Cov6A

V (q, q′) =
∫

dk f(k)
[

1

q − (k − iγ)r

+
1

q′ − (k − iγ)s

]
, (A.7) SingPhotIntA

where q = εa − εr and q′ = εb − εs. According to the expression (
EffInt2
130) for

the effective interaction, V (q, q′) is the first-order contribution to the effective
Hamiltonian,

〈
rs

∣∣∣H(1)
eff

∣∣∣ab
〉

=
〈
rs

∣∣∣V (q, q′)
∣∣∣ab

〉
. (A.8) EffIntSPA

A.2 Evaluation of the two-photon ladder diagram

(See also
BAs02
(?).)

TwoPhotonApp

t = t′
666r 666s

666r 666s

666a 666b

-zr r1 2

-z
′r r3 4

666t 666u

r r

Fig. A.2. Graphical representation of the covariant-evolution operator for the
two-photon ladder diagram (Fig.

Fig:TwoPhot
17). TwoPhotDiagApp

The matrix element of the two-photon ladder diagram, shown in Fig.
TwoPhotDiagApp
A.2, is

given in Eq. (
U4Cov2
220)

〈
rs

∣∣∣Û (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

〈
rs

∣∣∣∣
∫∫

d4x3 d4x4 iSF(x′3, x3) iSF(x′4, x4) iI(x4, x3)

×
∫∫

dt1 dt2 iSF(x3, x1) iSF(x4, x2) iI(x2, x1)
∣∣∣ab

〉

×eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|+|t3|+|t4|), (A.9) U4CovA

which in analogy with the single-photon case can be expressed
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〈
rs

∣∣∣Û (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

−
∫∫

dt3 dt4

〈
rs

∣∣∣∣
∫ dz′

2π

∫ dω3

2π

|r〉〈r|
ω3 − εr + iηr

∫ dω4

2π

|s〉〈s|
ω4 − εs + iηs

I(z′)
∣∣∣∣tu

〉

×
∫∫

dt1 dt2

〈
tu

∣∣∣∣
∫ dz

2π

∫ dω1

2π

|t〉〈t|
ω1 − εt + iηt

∫ dω2

2π

|u〉〈u|
ω2 − εu + iηu

I(z)
∣∣∣∣ab

〉

× eit′(εr+εs) , e−iω3(t′−t3) e−iω4(t′−t4) e−iz′(t4−t3)

× e−iω1(t3−t1) e−iω2(t4−t2)e−iz(t2−t1) e−it1εa−it2εbe−γ(|t1|+|t2|+|t3|+|t4|). (A.10) U4CovA1

The time integrations yield here, using Eq. (
Delta
174),

∆γ(ω1 − ω3 − z′) ∆γ(ω2 − ω4 + z′) ∆γ(εa − z − ω1) ∆γ(εb + z − ω2)

(leaving out the factors of 2π). If r is a positive-energy state, we integrate ω3

over the positive half plane with the pole ω3 = ω1 − z′ + iγ, which yields

1

ω1 − z′ − εr + iγ + iη
.

The ω1 integrand now becomes

∫ dω1

2π

2π∆γ(εa − z − ω1)

(ω1 − z′ − εr + iγ + iη)(ω1 − εt + iηt)

and the poles appear at ω1 = εt− iηt, ω1 = εr +z′− iγr and ω1 = εa−z± iγ. If
also t is a positive-energy state, we integrate over the positive half plane with
the pole ω1 = εa − z + iγ, yielding

1

(q − z − z′ + 2iγ)(p− z + iγ)

with q = εa− εr and p = εa− εt. Similarly, if both t and r are negative-energy
states, we obtain

1

(q − z − z′ − 2iγ)(p− z − iγ)
.

If we assume that t is a negative-energy state and r still a positive-energy
state, then there are two poles in each half plane – in the negative half plane
ω1 = εa − z − iγ and ω1 = z′ + εr − iγ − iη – yielding

1

(q − z − z′ + iη)(p− z − iγ − iη)

− 2iγ

(q − z − z′ + 2iγ + iη)(q − z − z′ + iη)(q − p− z′ + iγ + 2iη)
.

Here, we see that it is important to keep the η term, since the γ term vanishes
in the first denominator. The last term vanishes as γ → 0. The corresponding
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result is obtained when the signs of εr and εt are reversed. Generally, the result
of the ω1 integration can then be expressed (in the limit)

1

(q − z − z′ + iγr + iγt + iηr)(p− z + iγt + iηt)
,

but since the imaginary parts are here only used to indicate the position of
the poles, this is equivalent to

1

(q − z − z′ + iγr)(p− z + iγt)
.

The results after the complete ω integrations can now be summarized as follows

〈
rs

∣∣∣Û (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
= −

∫∫ dz′

2π

dz

2π

〈
rs

∣∣∣I(z′)
∣∣∣tu

〉

(q − z − z′ + iγr)(q′ + z + z′ + iγs)

×
〈
tu

∣∣∣I(z)
∣∣∣ab

〉

(p− z + iγt)(p′ + z + iγu)
e−it′(q+q′) (A.11) U4Cov2A

with q = εa− εr; q′ = εb− εs; p = εa− εt and p′ = εb− εu. As before, we leave
out the imaginary part in factors not involved in any integration.

The last two denominators of (
U4Cov2A
A.11) can be written

1

(p− z + iγt)(p′ + z + iγu)
=

[
1

p− z + iγt

+
1

p′ + z + iγu

]
1

p + p′

and the first two

1

(q − z − z′ + iγr)(q′ + z + z′ + iγs)
=

=
[

1

q − z − z′ + iγr

+
1

q′ + z + z′ + iγs

]
1

q + q′
, (A.12)

which gives

〈
rs

∣∣∣Û (4)
Cov(t

′,−∞)
∣∣∣ ab

〉

=
∫∫ dz′

2π

dz

2π
〈rs|f(k′)|tu〉〈tu|f(k)|ab〉 (A + B + C + D) e−it′(q+q′)

(q + q′)(p + p′)
(A.13)
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A = −
∫∫

dz′

2π

dz

2π

∫∫
dk′dk

4k k′

(q − z − z′ + iγr)(p− z + iγt)(z
′2 − k′2 + iη)(z2 − k2 + iη)

B = −
∫∫

dz′

2π

dz

2π

∫∫
dk′dk

4k k′

(q − z − z′ + iγr)(p′ + z + iγu)(z′2 − k′2 + iη)(z2 − k2 + iη)

C = −
∫∫

dz′

2π

dz

2π

∫∫
dk′dk

4k k′

(q′ + z + z′ + iγs)(p− z + iγt)(z
′2 − k′2 + iη)(z2 − k2 + iη)

D = −
∫∫

dz′

2π

dz

2π

∫∫
dk′dk

4k k′

(q′ + z + z′ + iγs)(p′ + z + iγu)(z′2 − k′2 + iη)(z2 − k2 + iη)
.

(A.14) ABCD

As a consequence of the generalized factorization theorem (
FactTh
121) and the reg-

ularity of the reduced evolution operator, the adiabatic-damping parameter
γ can be switched off individually for each vertex in the evolution-operator
method – in contrast to the situation in the S-matrix method, using the Gell-
Mann–Low–Sucher method (

Sucher
165). The γ’s are needed, though, for the pole

integrations, and therefore the sign of γ is important (but not its size). Then
it is possible to apply a simplified method, where the time integrations will
directly lead to Dirac delta functions, and the ω integrations will be trivial.
It has to be observed, though, as illustrated above, that the γ term might
disappear when negative-energy states are involved, and then the η term from
the propagator will determine the position of the pole.

We now evaluate the z, z′ integrals when t, u (as well as r and s) are positive-
energy states (γt = γu = γ > 0). Then A has one z pole z = k− iη and one z′

pole z′ = k′ − iη in the negative half planes (c.f. (
SingPhotzInt
A.5)), yielding

A =
1

(q − k − k′ + iγ)(p− k + iγ)
.

B has two z poles z = k − iη and z = −p′ − iγ and one z′ pole z′ = k′ − iη in
the negative half planes, which yields similarly

B =
1

(q − k − k′ + iγ)(p′ + k + iγ)
+

2k

(q + p′ − k′ + iγ)
(
(p′ + iγ)2 − k2

) .

Similarly, C has the poles z = −k + iη, z = p + iγ and z′ = −k′ + iη in the
positive half plane, and integration yields

C =
1

(q′ − k − k′ + iγ)(p + k + iγ)
+

2k

(q′ + p− k′ + iγ)
(
(p + iγ)2 − k2

) .

D has the poles z = −k + iη and z′ = −k′ + iη in the positive half plane,
yielding

D =
1

(q′ − k − k′ + iγ)(p′ − k + iγ)
.

99



The B term can be rewritten as

B =
1

q + p′ − k′ + iγ

[
1

q − k − k′ + iγ
+

1

p′ − k + iγ

]

and the C term

C =
1

q′ + p− k′ + iγ

[
1

q′ − k − k′ + iγ
+

1

p− k + iγ

]
,

which eliminates an apparent pole in the k integration.

A.3 Evaluation of the screened self-energy diagram

sec:ScrSEEvOpA

t = t′
666r 666s

666r q

666a 666b

-zr r1 2
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r

r
z′
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666u p′′

666t p

666q′ s

r r

Fig. A.3. The covariant-evolution-operator diagram representing the screened self-
-energy. Fig:ScrSEA1

Next, we shall evaluate the covariant evolution-operator diagram for the screened
self-energy, given by the expression (

ScrSEEvOp1
237), assuming all states being positive-

energy states,
〈
rs

∣∣∣H(2)
eff

∣∣∣ab
〉

=

−
∫∫ dz

2π

dz′

2π

〈
ru

∣∣∣I(z′)
∣∣∣ut

〉 〈
ts

∣∣∣I(z)
∣∣∣ab

〉

(p′′ − z − z′ + iγ)(p− z + iγ)

[
1

q − z + iγ
+

1

q′ + z + iγ

]
. (A.15) ScrSEEvOp1A

For the first term in the square brackets we integrate over the negative half
plane with the pole z = k − iη from the photon propagator, yielding

i

〈
ru

∣∣∣I(z′)
∣∣∣ut

〉 〈
ts

∣∣∣f(k)
∣∣∣ab

〉

(p′′ − k − z′ + iγ)(p− k + iγ)(q − k + iγ)

and after integration over z′

〈
ru

∣∣∣f(k′)
∣∣∣ut

〉 〈
ts

∣∣∣f(k)
∣∣∣ab

〉

(p′′ − k − k′ + iγ)(p− k + iγ)(q − k + iγ)
.
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The second term has two poles in the negative half plane, z = k − iη and
z = −q′ − iγ, and yields similarly

〈
ru

∣∣∣f(k′)
∣∣∣ut

〉 〈
ts

∣∣∣f(k)
∣∣∣ab

〉

(p′′ − k − k′ + iγ)(p− k + iγ)(q′ + k + iγ)

+

〈
ru

∣∣∣f(k′)
∣∣∣ut

〉 〈
ts

∣∣∣f(k)
∣∣∣ab

〉

(p′′ + q′ − k′ + iγ)(p + q′ + iγ)

[
1

q′ − k + iγ
− 1

q′ + k + iγ

]
. (A.16)

After some algebra the denominators can be rewritten, eliminating an appar-
ent pole,

1

(p′′ + q′ − k′ + iγ)(p + q′)

[
1

p− k + iγ
+

1

q′ − k + iγ

]

+
1

(p′′ − k − k′ + iγ)(p− k + iγ)

[
1

p′′ + q′ − k′ + iγ
+

1

q − k + iγ

]
. (A.17) ScrSEEvOp2A

B Evaluation of time-ordered diagrams

sec:timeOrd

In this Appendix we shall consider the evaluation of time-ordered diagrams,
which, as we shall see, will lead to a general scheme for expressing the covariant-
evolution-operator diagrams at arbitrary order. This procedure will form the
basis for the model of merging QED with MBPT, discussed in section

MBPT/QED
8.

B.1 Two-photon ladder

As an illustration we consider the two-photon ladder, treated in Appendix
sec:Eval
A,

for which two time-orderings are shown in Fig.
Fig:LadderTimeOrd
B.1. Using the expression (

ElProp2
184)

t = t′ r r
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Fig. B.1. Two time-ordered two-photon-ladder diagrams, representing the separable
part (left) and nonseparable part (right) of the two-photon ladder diagram. Fig:LadderTimeOrd
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of the electron propagators we can write the two-photon ladder (
U4CovA
A.9) as

〈
rs

∣∣∣Û (4)
Cov(t

′,−∞)
∣∣∣ ab

〉
= −

∫∫
d4x3 d4x4

∫ dz′

2π

[
Θ(t′ − t3) φ†r+

(x3)−Θ(t3 − t′) φ†r−(x3)
]

×
[
Θ(t′ − t4) φ†s+

(x4)−Θ(t4 − t′) φ†s−(x4)
]
I(x4, x3, z

′)

×
∫∫

d4x1 d4x2

∫ dz

2π

[
Θ(t3 − t1) φt+(x3)φ

†
t+(x1)−Θ(t1 − t3) φ†t−(x1)φt−(x3)

]

×
[
Θ(t4 − t2) φu+(x4)φ

†
u+

(x2)−Θ(t2 − t4) φ†u−(x2)φu+(x4)
]

I(x2,x1, z) φa(x1)φb(x2)

×e−it3(εt−εr−z′)e−it4(εu−εs+z′)e−it1(εa−εt−z)e−it2(εb−εu+z) e−γ(|t1|+|t2|+|t3|+|t4|). (B.1)

For simplicity we introduce the following short-hand notations:

d1 = εa − εt − z = p− z d2 = εb − εu + z = p′ + z

d3 = εt − εr − z′ = q − p− z′ d4 = εu − εs + z′ = q′ − p′ + z′

d12 = d1 + d2 = p + p′ d34 = d3 + d4 = q + q′ − p− p′

d13 = d1 + d3 = q − z − z′ d24 = d2 + d4 = q′ + z + z′

d123 = d1 + d2 + d3 = q + p′ − z′ d124 = d1 + d2 + d4 = q′ + p + z′

d1234 = d1 + d2 + d3 + d4 = q + q′, (B.2) d

and the notations d1± = d1± iγ etc. to indicate the sign of the imaginary part.

We assume first that all states are positive-energy states. Then we have the
time-ordering t′ > t3 > t1 and t′ > t4 > t2, and the time integrations yield

∫ t′

−∞
dt3 e−it3d3+

∫ t3

−∞
dt1 e−it1d1+ = − e−it′d13+

d13+ d1+
∫ t′

−∞
dt4 e−it4d4+

∫ t4

−∞
dt2 e−it2d2+ = − e−it′d24

d24+ d2+

. (B.3) 43,21

The total time integration then becomes

e−it′d1234

d13+ d24+ d1+ d2+

=
e−it′d1234

d1234

(
1

d13+

+
1

d24+

)
1

d12+

(
1

d1+

+
1

d2+

)
(B.4) 43,21A

and with the notations above

e−it′(q+q′+4iγ)

q + q′ + 4iγ

(
1

q − z − z′ + 2iγ
+

1

q′ + z + z′ + 2iγ

)
1

p + p′ + 2iγ

×
(

1

p− z + iγ
+

1

p′ + z + iγ

)
, (B.5) 43,21B

in agreement with (
ABCD
A.14). Here, also the magnitude of the imaginary parts

come out correctly, although we do not need them in our method.

If the intermediate state t is a negative-energy state – and r still a positive-
energy state – then the time-ordering becomes t′ > t3 < t1, and the time
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integration over t1 and t3 becomes

∫ t′

−∞
dt3 e−it3d3+

∫ t3

∞
dt1 e−it1d1− = − e−it′d13+

d13+ d1−
. (B.6) 13h

Here, we have an example where the γ contribution cancels, and the + sign is
due to the η term, as discussed in Appendix

TwoPhotonApp
A.2. This leads to the change in

(
43,21B
B.5)

1

p− z + iγ
⇒ 1

p− z − iγ
,

in agreement with (
ABCD
A.14).

B.1.1 Separable and nonseparable parts

We consider next the separable part of the ladder diagram. Assuming first that
all states are positive-energy states, the separable diagram in Fig.

Fig:LadderTimeOrd
B.1 corre-

sponds to the time-ordering t′ > t4 > t3 > t2 > t1, and the time integration
yields

∫ t′

−∞
dt4 e−it4d4+

∫ t4

−∞
dt3 e−it3d3+

∫ t3

−∞
dt2 e−it2d2+

∫ t2

−∞
dt1 e−it1d1+

=
e−it′d1234+

d1234+ d123+ d12+ d1+

. (B.7) 4321

The remaining time-orderings are obtained by means of the exchanges 1 ↔ 2
and 3 ↔ 4, which leads to

e−it′d1234+

d1234+

(
1

d123+

+
1

d124+

)
1

d12+

(
1

d1+

+
1

d2+

)
(B.8) Sep

or

e−it′(q+q′+2iγ)

q + q′ + 2iγ

(
1

q + p′ − z′ + 2iγ
+

1

q′ + p + z′ + 2iγ

)
1

p + p′

(
1

p− z + iγ
+

1

p′ + z + iγ

)
.

(B.9) SepA

This leads to the contribution to the effective interaction due to the separable
ladder, using (

EffInt2
130),

〈
rs

∣∣∣Heff

∣∣∣ab
〉

Sep
=

〈
rs

∣∣∣∣V (q + p′, q′ + p)
∣∣∣∣tu

〉 〈
tu

∣∣∣∣ V (p, p′)
∣∣∣∣ab

〉

p + p′
, (B.10) U4SepA

where V is given by (
SingPhotIntA
A.7).

The nonseparable diagram in Fig.
Fig:LadderTimeOrd
B.1 corresponds to the time-ordering t′ >

t4 > t2 > t3 > t1, and the time integral is obtained from (
4321
B.7) by the exchange
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3 ↔ 2,
e−it′d1234+

d1234+ d123+ d13+ d1+

. (B.11) 4231

Similarly, the opposite time-ordering, t′ > t3 > t1 > t4 > t2, yields

e−it′d1234+

d1234+ d124+ d24+ d2+

. (B.12) 3142

The total time integration for the nonseparable part of the ladder diagram
then becomes

e−it′d1234+

d1234+

(
1

d123+ d13+ d1+

+
1

d124+ d24+ d2+

)
, (B.13) NonSepA

when all states are positive-energy states.

As a corollary we may add the separable (
Sep
B.8) and nonseparable (

NonSepA
B.13) parts

of the ladder diagram,
(

1

d123+

+
1

d124+

)
1

d1+ d2+

+
1

d123+ d13+ d1+

+
1

d124+ d24+ d2+

=
1

d13+ d1+ d2+

+
1

d24+ d1+ d2+

, (B.14) Coll

which agrees with (
43,21A
B.4).

¿From (
NonSepA
B.13) the nonseparable contribution to the effective interaction con-

tains

I(z′)I(z)

(q + p′ − z′)(q − z − z′)(p− z)
+

I(z′)I(z)

(q′ + p + z′)(q′ + z + z′)(p′ + z)
, (B.15) U4NonSepA

and integrations over z and z′ yield

f(k′)f(k)

(q + p′ − k′)(q − k − k′)(p− k)
+

f(k′)f(k)

(q′ + p + k′)(q′ + k + k′)(p′ + k)
. (B.16) U4NonSepA2

C General evaluation procedure

sec:GenProc

C.1 General rules

The diagram evaluation discussed above using time-ordered diagrams can be
generalized to higher orders. When the involved states are positive-energy
states, we find that we can construct the energy denominators in the fol-
lowing way. Inserting a horizontal line above each vertex, the corresponding
denominator is given by
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• the orbital excitation energies counted from the bottom
• a term −z + iγ for each photon cut by the line.

as illustrated in Fig.
Fig:EvalProc
C.1. (The direction of the photon line is immaterial, but

we have here assumed that it is directed upwards, which yields the minus sign
of z.)

666a 666b

666t

666r

666u

666s666
r

r

666
r

r

z

z′

qqq qqq

εa − εr + εb − εu − z + iγ
εa − εr + εb − εs − z − z′ + iγ

Fig. C.1. Two time-ordered versions of the two-photon-crossed diagram. Fig:EvalProc

If a photon line is cut by only one horizontal line, considering first positive-
energy states, then the denominator is of the type

1

A− z + iγ
,

and the poles for the z integration are located at z = A+iγ and z = ±(k− iη)
from the photon propagator. We then integrate over the negative half-plane
with the pole z = k. (As discussed in Appendix

SingPhotEv
A.1 the η term can be omitted

in relation to the γ term.) The result of the integration is then obtained by
replacing z by k and multiplying by −i/2k, i.e.,

1

A− z + iγ
⇒ −i

2k(A− k + iγ)
. (C.1) zInt1

If there are several photon lines cut by several vertical lines, then the denom-
inators are of the type

1

A− z + iγ

1

B − z − z′ + iγ
· · ·

Here, each z always appears with the same sign, and we can integrate over
the z’s as before, yielding

1

A− z + iγ

1

B − z − z′ + iγ
· · · ⇒ i

2k(A− k + iγ)

i

2k′(B − k − k′ + iγ)
· · ·

(C.2) zInt2

The rules given here hold with minor modification also when there are negative-
energy states involved. The only difference is that certain time integrations are
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t = t′
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Fig. C.2. Two time-ordered versions of the two-photon-crossed diagram. Fig:Cross

performed to t = +∞ and the sign of the corresponding imaginary part is re-
versed.

C.2 Application

C.2.1 Two-photon cross

We shall first apply the rules given above to evaluate the evolution-operator
diagram for the two crossed photons, shown in Fig.

Fig:TwoPhot
17. Two time-ordered

variants are shown in Fig.
Fig:Cross
C.2.

With the time-ordering of the first diagram in the figure, the evaluation yields
(for simplicity leaving out the imaginary parts)

1

q′ + p− k′
1

p− k + p′ − k′
1

p− k
,

evaluating the denominators from the bottom and leaving out the final de-
nominator. Reversing 1 → 4, leads to the replacement p− k → p′ − k′ in the
last factor, and 3 → 2 to q′+p−k′ → q+p′−k. Adding these effects together,
yields ( 1

q′ + p− k′
+

1

q + p′ − k

)
1

p′ − k′
1

p− k
.

Finally, we can reverse the order of 3 and 4, which leads to the second diagram
in the figure. The denominators then become

1

q + p′ − k

1

q − k′ − k

1

p− k

and reversing the direction of the photons yields the final contribution

1

q′ + p− k′
1

q′ − k − k′
1

p′ − k′
.
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This agrees with the result of
BAs02BAs02
?).

C.2.2 Screened self-energysec:ScrSE

t = t′
666r 666s

666r q

666a
666b

-
r

rk

1

2

666

r

r
k′

3

4

666u p′′

666t p

666q′ s

r r

Fig. C.3. Time-ordered diagram representing the one-time covariant-evolution-op-
erator for the screened self-energy. Fig:ScrSEA

Next, we consider the screened self-energy diagram with this general proce-
dure. Starting with the time-ordering shown in Fig.

Fig:ScrSEA
C.3, t′ > t4 > t3 > t2 > t1,

and using the notations

d1 = εa − εt − k = p− k, d2 = εb − εs + k = q′ + k

d3 = εt − εu − k′ = p′′ − p− k′, d4 = εu − εr + k′ = q − p′′ + k′,
d12 = p + q′, d13 = p′′ − k − k′, d123 = p′′ + q′ − k′, d134 = q − k,

the denominators become

1

d123 d12 d1

=
1

(p′′ + q′ − k′)(p + q′)(p− k)
.

Reversing 1 and 2 yields

1

d123 d12 d2

=
1

(p′′ + q′ − k′)(p + q′)(q′ − k)
.

Reversing 2 and 3 of the first expression yields

1

d123 d13 d1

=
1

(p′′ + q′ − k′)(p′′ − k − k′)(p− k)

and finally reversing 2 and 4 of the last expression

1

d134 d13 d1

=
1

(q − k)(p′′ − k − k′)(p− k)
.

This agrees with the previous result (
ScrSEEvOp2A
A.17).
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Abbreviations and definitions

adiabatic damping (sec.
sec:GML
3.3)

Bethe-Salpeter equation (sec.
sec:BS
8.2)

Block equation (sec.
sec:pert
2.2, eq.

Bloch
14)

Block equation, linked-diagram form (sec.
sec:LDE
2.4, eq.

BlochLink
42)

Block equation, generalized (sec.
sec:pert
2.2, eq.

Bloch
14)

Breit interaction (sec.
sec:NVPA
2.6.2)

Brown-Ravenhall disease (sec.
sec:NVPA
2.6.2)

Brueckner orbitals (sec.
sec:AllOrder
2.5)

CCSD, coupled cluster singles and doubles approximation (sec.
sec:PairCorr
2.5.2, eq.

CCSD
52)

closed diagram (sec.
sec:LDE
2.4)

cluster operator (sec.
sec:CCA
2.5.1)

complete model space (sec.
sec:LDE
2.4)

CCA, coupled cluster approach (sec.
sec:CCA
2.5.1)

coordinate representation (sec.
sec:ElProp
4.2)

contraction (sec.
sec:SQ
2.3, eq.

ContractDef
38)

counterterm (sec.
sec:RedEvOp
3.4)

Coulomb-Breit interaction (sec.
sec:NVPA
2.6.2)

Coulomb gauge (sec.
sec:NVPA
2.6.2)

Coulomb-Gaunt interaction (sec.
sec:NVPA
2.6.2)

Coulomb-Gaunt interaction, retarded (sec.
sec:TDGen
3.1, eq.

RetCoulGaunt
78)

covariant evolution operator (sec.
sec:CovEvolOp
5)

∆ function (sec:
sec:S-SingPhot
4.1.1)

Dirac-Coulomb Hamiltonian (sec.
sec:NVPA
2.6.2)

Coulomb-Breit interaction, retarded (sec.
sec:TDGen
3.1, eq.

IntCoul
79)

Dirac matrices (sec.
sec:Dirac
2.6.1,

sec:TDGen
3.1)

discretization (sec.
sec:Num
2.5.3)

disconnected diagram (sec.
sec:LDE
2.4)

effective Hamiltonian (sec.
sec:MBPTGen
2.1, eq.

EffHam
13)

effective interaction (sec.
sec:pert
2.2, eq.

Heff
15)

electron-field operators (sec.
sec:SQ
2.3, eq.

ElFieldOp
28)

electro-magnetic field operators (sec.
sec:TDGen
3.1, eq.

ElmagnField
69)

extended model space (sec.
sec:MBPTGen
2.1)

electron propagator (sec.
sec:ElProp
4.2)

electron self energy (sec.
sec:SE
5.3,

sec:CovSE
5.3)

electron self energy, screened (sec.
sec:ScrSEEvOp
5.4.1)

factorization theorem (sec.
sec:RedEvOp
3.4, eq.

FactTh
121)

Feynman gauge (sec.
sec:NVPA
2.6.2)

Fock states (sec.
sec:FTGF
6.2)

folded diagram (sec.
sec:LDE
2.4, eq.

EffHam
13)

Gell-Mann–Low relation (sec.
sec:GML
3.3)

Gell-Mann–Low relation, generalized (sec.
sec:GenGellMann
3.3.2)

Goldstone diagram (sec.
sec:LDE
2.4)
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HP, Heisenberg picture (sec.
sec:SQ
2.3, eq.

HP
30)

IN, intermediate normalization (sec.
sec:pert
2.2, eq.

IN
17)

interaction Hamiltonian density (sec.
sec:TDGen
3.1, eq.

IntHam
68)

IP interaction picture (sec.
sec:SQ
2.3, eq.

IP
31)

Lamb shift (sec.
sec:LS
4.3)

Lehmann representation (sec.
sec:FTGF
6.2)

linked-diagram theorem (sec.
sec:LDE
2.4)

maximum-overlap orbitals (sec.
sec:AllOrder
2.5)

MBPT, many-body perturbation theory, time independent (sec.
sec:TimeIndMBPT
2)

MBPT, many-body perturbation theory, time dependent (sec.
sec:TimeDepMBPT
3)

model function (sec.
sec:MBPTGen
2.1)

Møller operator (sec.
sec:MBPTGen
2.1, eq.

WaveOp
12)

MSC, model-space contribution (sec.
sec:GMLND
3.3.1)

nonradiative effects (sec.
sec:TwoPhoton
5.2)

nonseparable diagram (sec.
sec:NonSepLadd
5.2.2)

normal order (sec.
sec:SQ
2.3)

normal-ordered exponential (sec.
sec:CCA
2.5.1)

NVPA, no-virtual-pair approximation (sec.
sec:NVPA
2.6.2)

pair correlation (sec.
sec:CCA
2.5.1)

pair function (sec.
sec:PairCorr
2.5.2, eq.

PairFcn
57)

photon propagator (sec.
sec:TDGen
3.1, eq.

PhotProp
73)

projected Dirac-Coulomb Hamiltonian (sec.
sec:NVPA
2.6.2)

projection operator (sec.
sec:pert
2.2)

projection operator, generalized (sec.
sec:RedEvOp
3.4)

quasi degenerate (sec.
sec:MBPTGen
2.1)

radiative effects (sec.
sec:TwoPhoton
5.2)

reference-state contribution (sec.
sec:GMLND
3.3.1)

renormalization (sec.
sec:RenormSE
4.3.2)

SP, Schrödinger picture (sec.
sec:MBPTGen
2.1)

second quantization (sec.
sec:SQ
2.3, eq.

SecQuant
23)

separable diagram (sec.
sec:SepLadd
5.2.1)

S-matrix (sec.
sec:S-matrix
4)

target function (sec.
sec:MBPTGen
2.1)

time-evolution operator (sec.
sec:TimeEvolOp
3.2)

time-evolution operator, reduced (sec.
sec:RedEvOp
3.4)

time-ordering operator (sec.
sec:TDGen
3.1, eq.

TimeOrdering2
74)

two-times Green’s function (sec.
sec:TwoTimesGreen
6)

unlinked diagram (sec.
sec:LDE
2.4)

vacuum polarization (sec.
sec:VacPol
4.3.3)

wave operator (sec.
sec:MBPTGen
2.1 eq.

WaveOp
12)

Wick’s theorem (sec.
sec:LDE
2.4, eq.

Wick
40,

GenWick
41)
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