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Preface

It is now almost 30 years since the first edition of my book together with
John Morrison, Atomic Many-Body Theory [118], appeared, and the second
edition appeared some years later. It has been out of print for quite some
time, but fortunately is has recently been made available again by a reprint
by Springer Verlag.

During the time that has followed, there has been a tremendous develop-
ment in the treatment of many-body systems, conceptually as well as compu-
tationally. Particularly the relativistic treatment has expanded considerably,
a treatment that has been extensively reviewed recently by Ian Grant in the
book Relativistic Quantum Theory of Atoms and Molecules [74].

Also the treatment of quantum-electrodynamical (QED) effects in atomic
systems has developed considerably in the last few decades, and several review
articles have appeared in the field [152, 211, 124] as well as the book by
Labzowsky et al., Relativistic Effects in Spectra of Atomic Systems [109].

An impressive development has taken place in the field of many-electron
systems by means of various coupled-cluster approaches, with applications
particularly on molecular systems. The development during the last 50 years
has been summarized in the book Recent Progress in Coupled Cluster Meth-
ods, edited by Čársky, Paldus, and Pittner [230].

The present book is aimed at combining atomic many-body theory with
quantum-electrodynamics, which is a long-sought goal in quantum physics.
The main problem in this effort has been that the methods for QED calcu-
lations, such as the S-matrix formulation, and the methods for many-body
perturbation theory (MBPT) have completely different structures. With the
development of the new method for QED calculations, the covariant evolu-
tion operator formalism by the Gothenburg atomic theory group [124], the
situation has changed, and quite new possibilities appeared to formulate a
unified theory.
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4 Preface

The new formalism is based on field theory, and in its full extent the uni-
fication process represents a formidable problem, and we can in the present
book describe only how some steps towards this goal can be taken. The
present book will be largely based upon the previous book on Atomic Many
Body Theory [118], and it is assumed that the reader has absorbed most
of that book, particularly Part II. In addition, the reader is expected to
have basic knowledge in quantum field theory, as found in books like Quan-
tum Theory of Many-Particle Systems by Fetter and Walecka [62] (mainly
parts I and II), An introduction to Quantum Field Theory by Peskin and
Schroeder [183], and Quantum Field Theory by Mandl and Shaw [136].

The material of the present book is largely based upon lecture notes and
recent publications by the Gothenburg Atomic-Theory Group [124, 125, 126,
85, 83], and I want to express my sincere gratitude particularly to my previ-
ous co-author John Morrison and to my present coworkers, Sten Salomonson
and Daniel Hedendahl, as well as to the previous collaborators Ann-Marie
Pendrill, Jean-Louis Heully, Eva Lindroth, Björn Åsén, Hans Persson, Per
Sunnergren, Martin Gustavsson, and H̊akan Warston for valuable collabora-
tion.

In addition, I want to thank the late pioneers of the field, Per-Olov
Löwdin, who taught me the foundations of perturbation theory some 40
years ago, and Hugh Kelly, who introduced the diagrammatic representa-
tion into atomic physics—two corner stones of the later developments. Fur-
thermore, I have benefitted greatly from communications with many other
national and international colleagues and friends (in alphabetic order), Rod
Bartlett, Erkki Brändas, Gordon Drake, Ephraim Eliav, Stephen Fritzsche,
Gerald Gabrielse, Walter Greiner, Paul Indelicato, Karol Jankowski, Jürgen
Kluge, Leonti Labzowsky, Peter Mohr, Debashis Mukherjee, Marcel Nooijen,
Joe Paldus, Vladimir Shabaev, Thomas Stöhlker, Gerhard Soff †, Joe Sucher,
Peter Surjan and many others.

The outline of the book is the following. The main text is divided into three
parts. Part I gives some basic formalism and the basic many-body theory that
will serve as a foundation for the following. In Part II three numerical proce-
dures for calculation of QED effects on bound electronic states are described,
the S-matrix formulation, the Green’s-function and the covariant-evolution-
operator methods. A procedure towards combining QED with MBPT is de-
veloped in Part III. Part IV contains a number of Appendices, where basic
concepts are summarized. Certain sections of the text that can be omitted
at first reading are marked with an asterisk (*).

Gothenburg in November 2010
Ingvar Lindgren



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Part I Basics. Standard many-body perturbation theory

2 Time-independent formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 First quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Time-independent many-body perturbation theory . . . . . . . . . . 28

2.4 Graphical representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 All-order methods. Coupled-Cluster Approach. . . . . . . . . . . . . . 39

2.6 Relativistic MBPT. No-Virtual-Pair Approximation . . . . . . . . . 46

2.7 Some numerical results of standard MBPT and CC
calculations, applied to atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Time-dependent formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Evolution operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Adiabatic damping. Gell-Mann–Low theorem . . . . . . . . . . . . . . 57

3.3 Extended model space. The generalized Gell-Mann–Low
relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Part II Quantum-electrodynamics:
One- and two-photon exchange

4 S-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5



6 Contents

4.1 Definition of the S-matrix. Feynman diagrams . . . . . . . . . . . . . . 66

4.2 Electron propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Photon propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Single-photon exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Two-photon exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 QED corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Feynman diagrams for the S-matrix. Feynman amplitude . . . . 94

5 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Classical Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Field-theoretical Green’s function—closed-shell case . . . . . . . . . 98

5.3 Graphical representation of the Green’s function * . . . . . . . . . . 106

5.4 Field-theoretical Green’s function—open-shell case * . . . . . . . . 117

6 Covariant evolution operator and Green’s operator . . . . . . . 125

6.1 Definition of the covariant evolution operator . . . . . . . . . . . . . . 125

6.2 Single-photon exchange in the covariant- evolution-operator
formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Multi-photon exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4 Relativistic form of the Gell-Mann–Low theorem . . . . . . . . . . . 136

6.5 Field-theoretical many-body Hamiltonian . . . . . . . . . . . . . . . . . . 138

6.6 Green’s operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7 Model-space contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.8 Bloch equation for Green’s operator * . . . . . . . . . . . . . . . . . . . . . 152

6.9 Time dependence of the Green’s operator. Connection to the
Bethe-Salpeter equation * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7 Numerical illustrations to Part II . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1 S-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Green’s-function and covariant-evolution-operator methods . . 173

Part III Quantum-electrodynamics beyond two-photon exchange:
Field-theoretical approach to many-body perturbation theory



Contents 7

8 Covariant evolution combined with electron correlation . . . 179

8.1 General single-photon exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.2 General QED potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.3 Unification of the MBPT and QED procedures. Connection
to Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.4 Coupled-cluster-QED expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9 The Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.1 The original derivations by the Bethe-Salpeter equation . . . . . 205

9.2 Quasi- and effective-potential approximations. Single-
reference case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

9.3 Bethe-Salpeter-Bloch equation. Multi-reference case . . . . . . . . . 213

9.4 Problems with the Bethe-Salpeter equation . . . . . . . . . . . . . . . . 214

10 Implementation of the MBPT-QED procedure with
numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10.1 The Fock-space Bloch equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10.2 Single-photon potential in Coulomb gauge. No virtual pairs . . 219

10.3 Single-photon exchange. Virtual pairs . . . . . . . . . . . . . . . . . . . . . 222

10.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

11 Analytical treatment of the Bethe-Salpeter equation . . . . . . 233

11.1 Helium fine structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

11.2 The approach of Sucher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

11.3 Perturbation expansion of the BS equation . . . . . . . . . . . . . . . . 239

11.4 Diagrammatic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

11.5 Comparison with the numerical approach . . . . . . . . . . . . . . . . . . 243

12 Regularization and renormalization . . . . . . . . . . . . . . . . . . . . . . . 245

12.1 The free-electron QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

12.2 Renormalization process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

12.3 Bound-state renormalization. Cut-off procedures . . . . . . . . . . . . 256

12.4 Dimensional regularization in Feynman gauge * . . . . . . . . . . . . 266



8 Contents

12.5 Dimensional regularization in Coulomb gauge * . . . . . . . . . . . . 272

12.6 Direct numerical regularization of the bound-state self energy 276

13 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Part IV Appendices

A Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

A.1 Four-component vector notations . . . . . . . . . . . . . . . . . . . . . . . . . 283

A.2 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

A.3 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

B Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

B.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

B.2 Heisenberg and interaction pictures . . . . . . . . . . . . . . . . . . . . . . . 296

C Representations of states and operators . . . . . . . . . . . . . . . . . . . 299

C.1 Vector representation of states . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

C.2 Matrix representation of operators . . . . . . . . . . . . . . . . . . . . . . . . 301

C.3 Coordinate representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

D Dirac equation and the momentum representation . . . . . . . . 305

D.1 Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

D.2 Momentum representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

D.3 Relations for the alpha and gamma matrices . . . . . . . . . . . . . . . 312

E Lagrangian field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

E.1 Classical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

E.2 Classical field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

E.3 Dirac equation in Lagrangian formalism . . . . . . . . . . . . . . . . . . . 319

F Semiclassical theory of radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 321

F.1 Classical electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

F.2 Quantized radiation field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327



Contents 9

G Covariant theory of Quantum ElectroDynamics . . . . . . . . . . . 335

G.1 Covariant quantization. Gupta-Bleuler formalism . . . . . . . . . . . 335

G.2 Gauge transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

G.3 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

H Feynman diagrams and Feynman amplitude . . . . . . . . . . . . . . 345

H.1 Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

H.2 Feynman amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

I Evaluation rules for time-ordered diagrams . . . . . . . . . . . . . . . 351

I.1 Single-photon exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

I.2 Two-photon exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

I.3 General evaluation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

J Some integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

J.1 Feynman integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

J.2 Evaluation of the integral
∫

d3k
(2π)3

eik·r12

q2−k2+iη
. . . . . . . . . . . . . . . . . 361

J.3 Evaluation of the integral
∫

d3k
(2π)3 (α1·k̂)(α2·k̂)

eik·r12

q2−k2+iη
. . . . . . . 362

K Unit systems and dimensional analysis . . . . . . . . . . . . . . . . . . . . 365

K.1 Unit systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

K.2 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383





Chapter 1

Introduction

Standard many-body perturbation theory

The quantum-mechanical treatment of many-electron systems, based on the
Schrödinger equation and the Coulomb interaction between the electrons,
was developed shortly after the advent of quantum mechanics, particularly
by John Slater in the late 1920’s and early 1930’s [214]. Self-consistent-field
(SCF) schemes were early developed by Slater, Hartree, Fock and others.1

Perturbative schemes for quantum-mechanical system, based on the Rayleigh-
Schrödinger and Brillouin-Wigner schemes, were developed in the 1930’s and
1940’s, leading to the important linked-diagram expansion, introduced by
Brueckner [37] and Goldstone [73] in the 1950’s, primarily for nuclear appli-
cations. That scheme was in the 1960’s and 1970’s also applied to electronic
systems [100] and extended to degenerate and quasi-degenerate energy lev-
els [31, 112]. The next step in this development was the introduction of ”all-
order methods” of coupled-cluster type, where certain effects are taken to all
orders of the perturbation expansion. This represents the last—and prob-
ably final—major step of the development of a non-relativistic many-body
perturbation theory (MBPT).2

The first step towards a relativistic treatment of many-electron systems
was taken in the early 1930’s by Gregory Breit [32], extending works made
somewhat earlier by J. A. Gaunt [68]. Physically, the Gaunt interaction rep-
resents the magnetic interaction between the electrons, which is a purely
relativistic effect. Breit augmented this treatment by including the leading

1 For a review of the SCF methods the reader is referred to the book by Ch. Froese-
Fischer [66]
2 By MBPT we understand here perturbative methods based upon the Rayleigh-
Schrödinger perturbation scheme and the linked-diagram expansion. To that group we
also include non-perturbative schemes, like the coupled-cluster approach (CCA), which
are based upon the same formalism.

11



12 1 Introduction

retardation effect, due to the fact that the Coulomb interaction is not instan-
taneous, which is an effect of the same order.

A proper relativistic theory should be Lorentz covariant , like the Dirac
single-electron theory.3 The Dirac equation for the individual electrons to-
gether with the instantaneous Coulomb and Breit interactions between the
electrons represent for a many-electron system all effects up to order α2

H(artree atomic units) or α4mec
2. 4 This procedure, however, is NOT Lorentz

covariant, and the Breit interaction can only be treated to first-order in per-
turbation theory, unless projection operators are introduced to prevent the
intermediate states from falling into the ”Dirac sea” of negative-energy states,
as discussed early by Brown and Ravenhall [36] and later by Joe Sucher [222].
The latter approach has been successfully employed for a long time in rela-
tivistic many-body calculations and is known as the no-virtual-pair approxi-
mation (NVPA).

A fully covariant relativistic many-body theory requires a field-theoretical
approach, i.e., the use of quantum-electrodynamics (QED). In principle, there
is no sharp distinction between relativity and QED, but conventionally we
shall refer to effects beyond the no-virtual-pair approximation as QED effects.
This includes effects of retardation, virtual pairs and radiative effects (self
energy, vacuum polarization, vertex correction). The systematic treatment
of these effects requires a covariant approach, where the QED effects are
included in the wave function. It is the main purpose of the present book to
formulate the foundations of such a procedure.

Quantum-electrodynamics

Already in the 1930’s deviations were observed between the results of preci-
sion spectroscopy and the Dirac theory for simple atomic systems, primarily
the hydrogen atom. Originally, this deviation was expected to be due to vac-
uum polarization, i.e., spontaneous creation of electron-positron pairs in the
vacuum, but this effect turned out to be too small and even of the wrong sign.
An alternative explanation was the electron self energy, i.e., the emission and
absorption of a virtual photon on the same electron—another effect that is
not included in the Dirac theory. Early attempts to calculate this effect, how-

3 A physical quantity (scalar, vector, tensor) is said to be Lorentz covariant, if it transforms
according to a representation of the Lorentz group. (Only a scalar is invariant under a that
transformation.) An equation or a theory, like the theory of relativity or Maxwell’s theory
of electromagnetism, is said to be Lorentz covariant, if it can be expressed entirely in terms
of covariant quantities (see, for instance, the books of Bjorken and Drell [19, 18]).
4 α is the fine-structure constant ≈ 1/137 and mec2 is the electron rest energy (see Ap-
pendix K).
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ever, were unsuccessful, due to singularities (infinities) in the mathematical
expressions.

The first experimental observation of a clear-cut deviation from the Dirac
theory was the detection in 1947 by Lamb and Retherford of the so-called
Lamb shift [111], namely the shift between the 2s and 2p1/2 levels in atomic
hydrogen, levels that are exactly degenerate in the Dirac theory [53, 54]. In
the same year Hans Bethe was able to explain the shift by a non-relativistic
calculation, eliminating the singularity of the self energy by means of a renor-
malization process [16]. At about the same time Kusch and Foley observed
that the magnetic g-factor of the free electron deviates slightly but signifi-
cantly from the Dirac value -2 [105, 106]. These observations led to the devel-
opment of the modern form of the quantum-electrodynamic theory by Feyn-
man, Schwinger, Dyson, Tomanaga and others by which the deviations from
the Dirac theory could be explained with good accuracy [210, 228, 64, 63, 58].5

The original theory of QED was applied to free electrons. During the
last four decades several methods have been developed for numerical calcu-
lation of QED effects in bound electronic states. The scattering-matrix or
S-matrix formulation, originally developed for dealing with the scattering of
free particles, was made applicable also to bound states by Joe Sucher [220],
and the numerical procedure was refined in the 1970’s particularly by Peter
Mohr [146]. During the last two decades the method has been extensively
used in studies of highly charged ions in order to test the QED theory under
extreme conditions, works that have been pioneered by Mohr and Soff (for a
review, see ref. [152]).

The Green’s function is one of the most important tools in mathematical
physics with applications in essentially all branches of physics.6 During the
1990’s the method was adopted to bound-state QED problems by Shabaev
et al. [211]. This procedure is referred to as the Two-times Green’s function
and has recently been extensively applied to highly-charged ions by the St
Petersburg group.

During the first decade of this century another procedure for numerical
QED calculations was developed by the Gothenburg atomic theory group,
termed the Covariant-evolution-operator (CEO) method [124], which has
been applied to the fine structure and other energy-level separations of heli-
umlike ions.
5 For the history of the development of the QED theory the reader is referred to the
authoritative review by Silvan Schweber [207].
6 For a comprehensive account of the applications, particularly in condensed-matter
physics, the reader is referred to the book by Gerald Mahan [133].



14 1 Introduction

Bethe-Salpeter equation

The first completely covariant treatment of a bound-state problem was pre-
sented in 1951 by Salpeter and Bethe [201, 17] and by Gell-Mann and
Low [69]. The Bethe-Salpeter (BS) equation contains in principle the com-
plete relativistic and interelectronic interaction, i.e., all kinds of electron cor-
relation and QED effects.

The BS equation is associated with several fundamental problems, which
were discussed in the early days, particularly by Dyson [59], Goldstein [72],
Wick [235] and Cutkosky [48]. Dyson found that the question of relativistic
quantum mechanics is ”full of obscurities and unsolved problems” and that
”the physical meaning of the 4-dimensional wave function is quite unclear”.
It seems that some of these problems still remain.

The BS equation is based upon field theory, and there is no direct con-
nection to the Hamiltonian approach of relativistic quantum mechanics. The
solution of the field-theoretical BS equation leads to a four-dimensional wave
function with individual times for the two particles. This is not in accor-
dance with the standard quantum-mechanical picture, which has a single time
variable also for many-particle systems. The additional time variable leads
sometimes to ”abnormal solutions” with no counterparts in non-relativistic
quantum mechanics, as discussed particularly by Nakanishi [165] and Namys-
lowski [166].

Much efforts have been devoted to simplifying the BS equation by reducing
it to a three-dimensional equation, in analogy with the standard quantum-
mechanical equations (for reviews, see refs [44, 29]). Salpeter [200] derived
early an ”instantaneous” approximation, neglecting retardation, which led
to a relativistically exact three-dimensional equation, similar to—but not
exactly equal to—the Breit equation. More sophisticated is the so-called
quasi-potential approximation, introduced by Todorov [226], frequently used
in scattering problems. Here, a three-dimensional Schrödinger-type equation
is derived with an energy-dependent potential, deduced from scattering the-
ory. Sazdjian [202, 203] was able to separate the BS equation into a three-
dimensional equation of Schrödinger type and one equation for the relative
time of the two particles, serving as a perturbation—an approach that is
claimed to be exactly equivalent to the original BS equation. This approach
establishes a definitive link between the Hamiltonian relativistic quantum me-
chanics and field theory. Connell [44] further developed the quasi-potential
approximation of Todorov by introducing series of corrections, a procedure
that also is claimed to be formally equivalent to the original BS equation.

Caswell and Lepage [39] applied the quasi-potential method to evaluate
the hyperfine structure of muonium and positronium to the order α6mec

2 by
combining analytical and perturbative approaches. Grotch and Yennie [78, 29]
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have applied the method to evaluate higher-order nuclear corrections to the
energy levels of the hydrogen atom, and Adkins and Fell [3, 4] have applied
it to positronium.

The procedure we shall develop in the following is to combine the covariant-
evolution-operator method with electron correlation, which will constitute a
step towards a fully covariant treatment of many-electron systems. This will
form another approximation of the full Bethe-Salpeter equation that seems
feasible for electronic systems.

A vast literature on the Bethe-Salpeter equation, its fundamental prob-
lems and its applications, has been gathered over the years since the orig-
inal equation appeared. Most applications are performed in the strong-
coupling case (QCD), where the fundamental problems of the equation
are more pronounced. The interested reader is here referred to some re-
views of the field, where numerous references to original works can be
found [165, 203, 166, 77, 169].

Helium atom. Analytical approach

An approach to solve the BS equation, known as the external-potential ap-
proach, was first developed by Sucher [219, 221] in order to evaluate the
lowest-order QED contributions to the ground-state energy of the helium
atom, and equivalent results were at the same time also derived by Araki [5].
The electrons are here assumed to move in the field of the (infinitely heavy)
atomic nucleus. The relative time of the two electrons is eliminated by inte-
grating over the corresponding energy of the Fourier transform, which leads to
a Schrödinger-like equation, as in the quasi-potential-method. The solution of
this equation is expanded in terms of a Brillouin-Wigner perturbation series.
This work has been further developed and applied by Douglas and Kroll [55]
and by Zhang and Drake [248, 244] by considering higher-order terms in the
α and Zα expansions. This approach, which is reviewed in Chapter 11, can
be used for light systems, such as light heliumlike ions, where the power ex-
pansions are sufficiently convergent. The QED effects are here evaluated by
means of highly correlated wave functions of Hylleraas type, which implies
that QED and electron-correlation effects are highly mixed. A related tech-
nique, referred to as the effective Hamiltonian approach, has been developed
and applied to heliumlike systems by Pachucki and Sapirstein [170, 172, 171].

A problem that has been controversial for quite some time is the fine
structure of the lowest P state of the neutral helium atom. The very ac-
curate analytical results of Drake et al. and by Pachucki et al. give results
close to the experimental results obtained by Gabrielse and others [243],
but there have for quite some time been significant deviations—well out-
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side the estimated limits of error. Very recently, Pachucki and Yerokhin have
by means of improved calculations shown that the controversy has been re-
solved [236, 173, 237, 174].

Field-theoretical approach to many-body perturbation
theory

The methods previously mentioned for numerical QED calculations can for
computational reasons be applied only to one- and two-photon exchange,
which implies that the electron correlation is treated at most to second or-
der. This might be sufficiently accurate for highly charged systems, where the
QED effects dominate over the electron correlation, but is usually quite insuf-
ficient for lighter systems, where the situation is reversed. In order to remedy
the situation to some extent, higher-order many-body contributions can be
added to the two-photon energy, a technique applied by the Gothenburg and
St Petersburg groups [181, 7].

In the numerical procedures for standard (relativistic) MBPT the elec-
tron correlation can be evaluated effectively to essentially all orders by tech-
nique of coupled-cluster type. QED effects can here be included only as first-
order energy corrections, a technique applied particularly by the Notre-Dame
group [184]. To treat electron correlation, relativity and QED in a unified
manner would require a field-theoretical approach.

The above-mentioned methods for QED calculations are all based upon
field-theory. Of these methods, the covariant-evolution method has the ad-
vantage that it has a structure that is quite akin to that of standard MBPT,
which has the consequence that it can serve as a basis for a unified field-
theoretical many-body approach. The QED effects can here be included in
the wave function, which will make it possible to treat the QED and corre-
lation effects in a more unified way. To solve this problem completely is a
formidable task, but it will be a main theme of the present book to describe
how some steps can be taken in this direction, along the line that is presently
being pursued by the Gothenburg atomic theory group. The covariant evo-
lution operator, which describes the time evolution of the relativistic state
vector, is the key tool in this treatment. This operator is closely related to the
field-theoretical Green’s function. It should be mentioned that a related idea
was proposed by Leonard Rosenberg already 20 years ago [191], namely of in-
cluding Coulomb interactions in the QED Hamiltonian, and this is essentially
the procedure we are pursuing in the present book.

The covariant evolution operator is singular, as is the standard evolution
operator of non-relativistic quantum mechanics, but the singularities can be
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eliminated in a similar way as the corresponding singularities of the Green’s
function. The regular part of the covariant evolution operator is referred
to as the Green’s operator, which can be regarded as an extension of the
Green’s-function concept and shown to serve as a link between field theory
and standard many-body perturbation theory. The perturbation used in this
procedure represents the interaction between the electromagnetic field and
the individual electrons. This implies that the equations operate in an ex-
tended photonic Fock space with variable number of photons.

The strategy in dealing with the combined QED and correlation problem
is first to construct a field-theoretical ”QED potential” with a single retarded
photon, containing all first-order QED effects (retardation, virtual pairs, ra-
diative effects), which—after proper regularization and renormalization—can
be included in a perturbative expansion of MBPT or coupled-cluster type. In
this way the QED effects can—for the first time—be built into the wave func-
tion and treated together with the electron correlation in a coherent manner.
For practical reasons only a single retarded photon (together with arbitrary
number of Coulomb interactions) can be included in this procedure at present
time, but due to the fact that these effects are included in the wave func-
tion, this corresponds to higher-order effects in the energy. When extended
to interactions of multi-photon type, this leads for two-particle systems to
the Bethe-Salpeter equation, and in the multi-reference case to an extension
of this equation, referred to as the Bethe-Salpeter-Bloch equation.

In combining QED with electron correlation it is necessary to work in the
Coulomb gauge, in order to take advantage of the development in standard
MBPT. Although this gauge is non-covariant in contrast to, for instance,
the simpler Feynman gauge, it can be argued that the deviation from a fully
covariant treatment will have negligible effect in practical applications when
handled properly. This makes it possible to mix a larger number of Coulomb
interactions with the retarded-photon interactions, which is expected to lead
to the same ultimate result as a fully covariant approach but with faster
convergence rate due to the dominating role of the Coulomb interaction.

The procedure can also be extended to systems with more than two elec-
trons, and due to the complete compatibility between the standard and the
extended procedures, the QED effects need only be included where they are
expected to be most significant.

In principle, also the procedure outlined here leads to individual times for
the particles involved, consistent with the full Bethe-Salpeter equation but
not with the standard quantum-mechanical picture. We shall mainly work in
the equal-time approximation here, and we shall not analyze effects beyond
this approximation in any detail. It is expected that—if existing—any such
effect would be extremely small for electronic systems.





Part I

Basics. Standard many-body
perturbation theory





Chapter 2

Time-independent formalism

In this first part of the book we shall review some basics of quantum mechan-
ics and the many-body theory for bound electronic systems that will form the
foundations for the following treatment. This material can also be found in
several standard text books. The time-independent formalism is summarized
in the present chapter 1 and the time-dependent formalism in the following
one.

2.1 First quantization

First quantization is the term for the elementary treatment of quantized
systems, where the particles of the system are treated quantum-mechanically,
for instance, in terms of Schrödinger wave functions, while the surrounding
fields are treated classically.

de Broglie’s relations

As an introduction to the quantum mechanics we shall derive the Schrödinger
equation from the classical relations of De Broglie.

According to Planck-Einstein’s quantum theory the electromagnetic radi-
ation is associated with particle-like photons with the energy (E) and mo-
mentum (p) given by the relations

1 This chapter is essentially a short summary of the second part of the book Atomic Many-
Body Theory by Lindgren and Morrison, and the reader who is not well familiar with the
subject is recommended to consult that book.

21



22 2 Time-independent formalism

{
E = hν = ω~
p = h/λ = ~k (2.1)

where ~ = h/2π, h being Planck’s constant (see further Appendix K), ν the
cyclic frequency of the radiation (cycles/second) and ω = 2πν the angular
frequency (radians/second). λ = c/ν (c being the velocity of light in vacuum)
is the wavelength of the radiation and k = 2π/λ the wave number.

De Broglie assumed that the relations (Eq. 2.1) for photons would hold
also for material particles, like electrons. Non-relativistically, we have for a
free electron in one dimension

E =
p2

2me
or ~ω =

~2k2

2me
(2.2)

where me is the mass of the electron.

De Broglie assumed that a particle could be represented by a wave packet

χ(t, x) =
∫

dk a(k) ei(kx−ωt) (2.3)

The relation (Eq. 2.2) then leads to the one-dimensional wave equation for a
free electron

i~
∂χ(t, x)
∂t

= − ~2

2me

∂2χ(t, x)
∂x2

(2.4)

which is the Schrödinger equation for a free particle. This can be obtained
from the first of the relations (Eq. 2.2) by means of the substitutions

E → i~
∂

∂t
p→ −i~

∂

∂x
(2.5)

The Schrödinger equation

We can generalize the treatment above to an electron in three dimensions in
an external field, vext(x), for which the energy Hamiltonian is

E = H =
p2

2me
+ vext(x) (2.6)

Generalizing the substitutions above to 2

p→ p̂ = −i~∇ and x→ x̂ = x (2.7)

2 Initially, we shall use the ’hat’ symbol to indicate an operator, but later we shall use this
symbol only when the operator character needs to be emphasized.



2.1 First quantization 23

where ∇ is the vector gradient operator (see Appendix A.1), leads to the
Hamilton operator

Ĥ =
p̂2

2me
+ vext(x) = − ~2

2me
∇2 + vext(x) (2.8)

and to the Schrödinger equation for a single electron

i~
∂

∂t
χ(t,x) = Ĥ χ(t,x) =

(
− ~2

2me
∇2 + vext(x)

)
χ(t,x) (2.9)

For an N -electron system the Schrödinger equation becomes correspond-
ingly 3

i~
∂

∂t
χ(t;x1,x2, · · ·xN ) = Ĥχ(t;x1,x2, · · ·xN ) (2.10)

where we assume the Hamiltonian to be of the form Ĥ = Ĥ1 + Ĥ2 (see
Appendix (Eq. B.19)) 4

Ĥ1 =
N∑
n=1

(
− ~2

2me
∇2
n + vext(xn)

)
=:

N∑
n=1

ĥ1(n)

Ĥ2 =
N∑

m<n

e2

4πε0 rmn
=:

N∑
m<n

ĥ2(m,n) (2.11)

Here, rmn is the interelectronic distance, rmn = |xm−xn| and vext represents
the external (essentially nuclear) energy potential.

Generally, the quantum-mechanical operators Â, B̂ that represent the cor-
responding classical quantities A, B in the Hamilton formulation (see Appen-
dix E) should satisfy the quantization condition

[Â, B̂] = ÂB̂ − B̂Â = i~{A,B} (2.12)

where the square bracket (with a comma) represents the commutator and the
curly bracket the Poisson bracket (Eq. E.10). For conjugate momenta, like
the coordinate vector x and the momentum vector p, the Poisson bracket
equals unity, and the quantization conditions for the corresponding operators
become

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i~ (2.13)

which is consistent with the substitutions (Eq. 2.7).

3 Note that according to the quantum-mechanical picture the wave function has a single
time also for a many-electron system. This question will be discussed further below.
4 The symbol ”=:” indicates that this is a definition.



24 2 Time-independent formalism

We shall be mainly concerned with stationary, bound states of electronic
systems, for which the wave function can be separated into a time function
and a space function

χ(t;x1, · · ·xN ) = F (t)Ψ(x1,x2, · · ·xN )

As shown in standard text books, this leads to a separation into two equa-
tions, one for the time part and one for the space part. The time equation
becomes

i~
∂

∂t
F (t) = E F (t)

with the solution
F (t) ∝ e−iEt/~

and the space part is the standard time-independent Schrödinger equation

ĤΨ(x1, · · ·xN ) = E(Ψ(x1, · · ·xN ) (2.14)

Thus, for stationary states the time-dependent wave function is of the form

χ(t;x1, · · ·xN ) = e−iEt/~ Ψ(x1, · · ·xN ) (2.15)

The separation constant E is interpreted as the energy of the state.

2.2 Second quantization

Schrödinger equation in second quantization*

In the following, we shall consistently base our treatment upon second quan-
tization, which implies that also the particles and fields are quantized and
expressed in terms of (creation- and absorption) field operators (see Appen-
dices B and C). Here, we shall first derive the second-quantized form of the
time-dependent Schrödinger equation (SE) (Eq. 2.9), which reads

i~
∂

∂t
|χ(t)〉 = H|χ(t)〉 (2.16)

With the partitioning (Eq. 2.11), the operator becomes in second quantiza-
tion (Eq. B.12)

Ĥ = c†i 〈i|h1|j〉 cj +
1
2
c†i c
†
j 〈ij|h2|kl〉 clck (2.17)
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and the state is expressed as a vector (Eq. C.4). The equation (Eq. 2.16) is
by no means obvious, and we shall here indicate the proof. (The proof follows
largely that given by Fetter and Walecka [62, Ch. 1].)

For the sake of concretization we consider a two-electron system. With the
coordinate representation (Eq. C.19) of the state vector

χ(x1, x2) = 〈x1,x2|χ(t)〉 (2.18)

the SE (Eq. 2.16) becomes

i~
∂

∂t
〈x1,x2|χ(t)〉 = 〈x,x2|H|χ(t)〉 (2.19)

We consider first the effect of the one-body part of the Hamiltonian
(Eq. 2.17) operating on the wave function (Eq. 2.18), and we shall show that
this is equivalent to operating with the second-quantized form of the operator
(Eq. B.19)

Ĥ = c†i 〈i|h1|j〉 cj (2.20)

on the state vector |χ(t)〉.
We start by expanding the state vector in terms of straight products of

single-electron state vectors (t1 = t2 = t)

|χ(t)〉 = akl(t) |k〉|l〉 (2.21)

(akl = −alk). The coordinate representation of this relation is

χ(x1, x2) = 〈x1,x2|χ(t)〉 = akl(t) 〈x1|k〉〈x2|l〉 (2.22)

We now operate with the single-particle operator (Eq. 2.20) on the state
vector expansion (Eq. 2.21)

Ĥ1|χ(t)〉 = c†i 〈i|h1|j〉 cj akl(t) |k〉|l〉 (2.23)

For j = k the electron in position 1 is annihilated in the state k and replaced
by an electron in the state i, yielding

〈i|h1|k〉 akl(t) |i〉|l〉

The coordinate representation of this relation becomes

〈x1|i〉〈i|h1|k〉 akl(t) 〈x2|l〉 = 〈x1|h1|k〉 akl(t) 〈x2|l〉

using the resolution of the identity (Eq. C.12). The right-hand side of
Eq. (2.23) can also be expressed
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h1(x1)φk(x1)φl(x2) akl(t) = h1(x1)χ(x1, x2)

Together with the case j = l this leads to

〈x1,x2|H1|χ(t)〉 =
(
h1(x1) + h1(x2)

)
χ(x1, x2) = H1χ(x1, x2)

Thus, we have shown the important relation

〈x1,x2|H1|χ(t)〉 = H1χ(x1, x2) (2.24)

A similar relation can be derived for the two-body part of the Hamiltonian,
which implies that

〈x1,x2|H|χ(t)〉 = Hχ(x1, x2) (2.25)

and from the relation (Eq. 2.19)

i~
∂

∂t
〈x1,x2|χ(t)〉 = 〈x1,x2|H|χ(t)〉 (2.26)

This is the coordinate representation of the Schrödinger equation (Eq. 2.16),
which is thus verified. It should be observed that Eq. (2.16) does not contain
any space coordinates. The treatment is here performed for the two-electron
case, but it can easily be extended to the general case.

Particle-hole formalism. Normal order and contraction

In the particle-hole formalism we separate the single-particle states into par-
ticle and hole states, a division that is to some extent arbitrary. Normally,
core states (closed-shell states) are treated as hole states and virtual and
valence states as particle states, but sometimes it might be advantageous to
treat some closed-shell states as valence states or some valence states as hole
states.

If time increases from right to left, the creation/annihilation operators are
said to be time ordered. Time ordering can be achieved by using the Wick
time-ordering operator , which for fermions reads

T [A(t1)B(t2)] =
{

A(t1)B(t2) (t1 > t2)
−B(t2)A(t1) (t1 < t2) (2.27)

The case t1 = t2 will be discussed later.

The creation/annihilation operators are said to be in normal order, if
the particle-creation and hole-annihilation operators appear to the left of the
particle-annihilation and hole-creation operators
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c†pcpchc
†
h (2.28)

where p, h stand for particle/hole states.

• A contraction of two operators is defined as the difference between the time
-ordered and the normal-ordered products,

x y = T [xy]−N [xy] (2.29)

In the following we shall use curly brackets to denote the normal product [113]

N [xy] ≡ {x y} (2.30)

From these definitions it follows that the non-vanishing contractions of the
electron-field operators (Eq. B.28) are

ψ̂+(x1)ψ̂†+(x2) = −ψ̂†+(x2)ψ̂+(x1) =
{
φp(x1)φ∗p(x2) e−iεp(t1−t2)/~ t1 > t2
0 t1 < t2

ψ̂−(x1)ψ̂†−(x2) = −ψ̂†−(x2)ψ̂−(x1) =
{

0 t1 > t2
φh(x1)φ∗h(x2) e−iεh(t1−t2)/~ t1 < t2

(2.31)

Here, ψ̂± represents the positive-/negative-energy part of the spectrum, re-
spectively, and φp and φh denote particle (positive-energy) and hole (negative-
energy) states, respectively.

The results can be summarized as

ψ̂(x1)ψ̂†(x2) = −ψ̂†(x2)ψ̂(x1) = φj(x1)φ∗j (x2) e−iεj(t1−t2)/~ (2.32)

if t1 > t2 for particles and t1 < t2 for holes with all other contractions
vanishing.

Wick’s theorem

The handling of operators in second quantization is greatly simplified by
Wick’s theorem [234] (for an introduction, see, for instance, Fetter and
Walecka [62, sect.8] or Lindgren and Morrison [118, Chapt.11]), which states
that a product of creation and annihilation operators Â can be written as the
normal product plus all single, double ... contractions with the uncontracted
operators in normal form, or symbolically

Â = {Â}+ {Â} (2.33)
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A particularly useful form of Wick’s theorem is the following. If Â and B̂ are
operators in normal form, then the product is equal to the normal product
plus all normal-ordered contractions between Â and B̂, or formally

Â B̂ = {Â B̂}+ {Â B̂} (2.34)

With this formulation there are no further contractions within the operators
to be multiplied. This forms the basic rule for the graphical representation
of the operators and operator relations to be discussed below.

2.3 Time-independent many-body perturbation theory

Bloch equation

Here, we shall summarize the most important concepts of standard time-
independent many-body perturbation theory (MBPT) as a background for
the further treatment. (For more details the reader is referred to designated
books, like Lindgren-Morrison, Atomic Many-Body Theory [118].)

We are considering a number of stationary electronic states,
|Ψα〉 (α = 1 · · · d), termed target states, that satisfy the Schrödinger equation

H|Ψα〉 = Eα|Ψα〉 (α = 1 · · · d) (2.35)

For each target state there exists an ”approximate” or model state, |Ψα0 〉 (α =
1 · · · d), which is more easily accessible and which forms the starting point
for the perturbative treatment. We assume that the model states are linearly
independent and that they span a model space. The projection operator for
the model space is denoted P and that for the complementary or orthogonal
space by Q, which together form the identity operator

P +Q = I (2.36)

A wave operator is introduced—also known as the Møller operator [155]—
which transforms the model states back to the exact states,

|Ψα〉 = Ω|Ψα0 〉 (α = 1 · · · d) (2.37)

and this operator is the same for all states under consideration.

We define an effective Hamiltonian with the property that operating on a
model function it generates the corresponding exact energy
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Heff |Ψα0 〉 = Eα|Ψα0 〉 (α = 1 · · · d) (2.38)

with the eigenvectors representing the model states. Operating on this equa-
tion with Ω from the left, using the definition (Eq. 2.37), yields

ΩHeff |Ψα0 〉 = Eα|Ψα〉 (2.39)

which we compare with the Schrödinger equation (Eq. 2.35)

HΩ|Ψα0 〉 = Eα|Ψα〉 (2.40)

Since this relation holds for each state of the model space, we have the im-
portant operator relation

ΩHeffP = HΩP (2.41)

which as known as the generalized Bloch equation.

The form above of the Bloch equation is valid independently on the choice
of normalization. In the following, we shall mainly work with the intermediate
normalization (IN), which implies

〈Ψα0 |Ψα〉 = 1 (2.42a)

|Ψα0 〉 = P |Ψα〉 (α = 1 · · · d) (2.42b)

Then we have after projecting the Schrödinger equation onto the model space

PHΩ|Ψα0 〉 = Eα|Ψα0 〉 (2.43)

and we find that the effective Hamiltonian (Eq. 2.38) becomes in IN

Heff = PHΩP (2.44)

Normally, the multi-dimensional or multi-reference model space is applied
in connection with valence universality , implying that the same operators are
used for different stages of ionization (see further section 2.5).

Partitioning of the Hamiltonian

For electrons moving in an external (nuclear) potential, vext, the single-
electron (Schrödinger) Hamiltonian (Eq. 2.8) is

hS = − ~2

2me
∇2 + vext (2.45)
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The corresponding Schrödinger equation

hS φi(x) = εi φi(x) (2.46)

generates a complete spectrum of functions, which can form the basis for
numerical calculations. This is known to as the Furry picture. These single-
electron functions are normally referred to as (single-electron) orbitals—or
spin-orbitals, if a spin eigenfunction is adhered. Degenerate orbitals (with the
same eigenvalue) form an electron shell.

The Hamiltonian for a many-electron system (Eq. 2.11) is

H =
N∑
n

(
− ~2

2me
∇2 + vext

)
n

+
N∑

n<m

e2

4πε0 rnm
(2.47)

where the last term represents the interelectronic interaction. For the pertur-
bation treatment we separate the many-electron Hamiltonian into

H = H0 + V (2.48)

where H0 a model Hamiltonian that is a sum of single-electron Hamiltonians

H0 =
N∑
n

(− ~2

2me
∇2 + vext + u

)
n

=:
N∑
n

h0(n) (2.49)

and V is a perturbation

V = −
N∑
n

un +
N∑

n<m

e2

4πε0 rnm
(2.50)

The potential u is optional and used primarily to improve the convergence
properties of the perturbation expansion.

The antisymmetrized N -electron eigenfunctions of H0 can be expressed as
determinantal products of single-electron orbitals (see Appendix B)

H0 ΦA(x1,x2 · · ·xN ) = EA0 ΦA(x1,x2 · · ·xN )

ΦA(x1,x2 · · ·xN ) = 1/
√
N ! A{φ1(x1)φ2(x2) · · ·φN (xN )} (2.51)

where A is an antisymmetrizing operator. The determinants are referred to
as Slater determinants and constitute our basis functions. The eigenvalues
are given by

E0 =
N∑
n=1

εn (2.52)

summed over the spin-orbitals of the determinant.
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Degenerate determinants form a configuration. The model space is sup-
posed to be formed by one or several configurations that can have different
energies. We distinguish between three kinds of orbitals

• core orbitals, present in all determinants of the model space

• valence orbitals, present in some determinants of the model space

• virtual orbitals, not present in any determinants of the model space.

The model space is said to be complete, if it contains all config-
urations that can be formed by distributing the valence electrons
among the valence orbitals in all possible ways. In the following we
shall normally assume this to be the case.

With the partitioning (Eq. 2.48), the Bloch equation above can be ex-
pressed (

ΩHeff −H0Ω
)
P = V ΩP (2.53)

With H0 of the form (Eq. 2.49) it commutes with the projection operator P .
Then we find that

Heff = PH0P + PV ΩP (2.54)

and we shall refer to the second term as the effective interaction

Veff = PV ΩP (2.55)

• The partitioning leads to the commonly used form of the generalized
Bloch equation [108, 112, 118]

[
Ω,H0

]
P = Q

(
V Ω −ΩVeff

)
P (2.56)

which is frequently used as the basis for many-body perturbation the-
ory (MBPT). The last term appears only for open-shell systems with un-
filled valence shell(s) and is graphically represented by so-called folded or
backwards diagrams, first introduced by Brandow in nuclear physics [31],
(see further below).

If the model space is completely degenerate with a single energy E0, the
general Bloch equation reduces to its original form, derived in the late 1950’s
by Claude Bloch [22, 21],

(
E0 −H0

)
ΩP = V ΩP −ΩVeff (2.57)

This equation can be used to generate the standard Rayleigh-Schrödinger
perturbation expansion, found in many text books.

The generalized Bloch equation (Eq. 2.56) is valid for a general model
space, which can contain different zeroth-order energy levels. Using such an
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extended model space , represents usually a convenient way of treating very
closely spaced or quasi-degenerate unperturbed energy levels, a phenom-
enon that otherwise can lead to serious convergence problems. This can be
illustrated by the relativistic calculation of the fine structure of heliumlike
ions, where a one-dimensional model space leads to convergence problems
for light elements, a problem that can normally be remedied in a straightfor-
ward way by means of the extended model space [184, 139]. But the extended
model space can also lead to problems, due to so-called intruder states, as
will be further discussed below.

With an extended model space we can separate the projection operator
into the corresponding energy components 5

P =
∑

E
PE ; H0PE = EPE (2.58)

Operating with the general Bloch equation (Eq. 2.56) on a particular com-
ponent, then yields

(E −H0

)
ΩPE = Q

(
V Ω −ΩVeff

)
PE (2.59)

Expanding the wave operator order by order

Ω = 1 +Ω(1) +Ω(2) + · · · (2.60)

leads to the recursive formula
(E −H0

)
Ω(n)PE = Q

(
V Ω(n−1) − (ΩVeff)(n)

)
PE (2.61)

or
Ω(n)PE = ΓQ(E)

(
V Ω(n−1) − (ΩVeff)(n)

)
PE (2.62)

where
V

(k)
eff = PV Ω(k−1)P (2.63)

Here,

Γ (E) =
1

E −H0
(2.64)

and
ΓQ(E) = QΓ (E) (2.65)

are known as the resolvent and the reduced resolvent, respectively [131].

The recursive formula (Eq. 2.62) can generate a generalized form of the
Rayleigh-Schrödinger perturbation expansion (see ref. [118, Ch. 9]), valid also
for a quasi-degenerate model space. We see from the form of the resolvent

5 In the case of an extended model space, we shall normally use the symbol E for the
different energies of the model space.
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that in each new order of the perturbation expansion there is a denominator
equal to the energy difference between the initial and final states. This leads
to the Goldstone rules in the evaluation of the time-ordered diagrams to be
consider in the following section.

Even if the perturbation is energy independent, we see that the wave
operator and effective interaction will still generally be energy dependent,
due to the energy dependence of the resolvent. In first order we have

Ω(1)PE = ΓQ(E)V PE (2.66)

and in second order

Ω(2)(E)PE = ΓQ(E)
(
V Ω(1)(E)−Ω(1)(E ′)PE′V (1)

eff

)
PE (2.67)

where V (1)
eff = PV P . Note that the wave operator in the last term operates

on the projection operator PE′ and therefore depends on the corresponding
energy E ′. We now have

δΩ(1)(E)
δE =

δΓQ(E)
δE V =

ΓQ(E ′)− ΓQ(E)
E ′ − E V = −ΓQ(E)ΓQ(E ′)V

= −ΓQ(E)Ω(1)(E ′) (2.68)

and we note that the last folded term in Eq. (2.67) has a double denomi-
nator . We can express the second-order Bloch equation as

Ω(2)(E)PE = ΓQ(E)V Ω(1)(E)PE +
δΩ(1)(E)

δE V
(1)
eff (E)PE (2.69)

In the limit of complete degeneracy space the difference ratio, of course,
goes over into the partial derivative. We shall show in later chapters that the
second-order expression above holds also when the perturbation is energy
dependent (Eq. 6.77).

2.4 Graphical representation

In this section we shall briefly describe a way of representing the perturbation
expansion graphically. (For further details, the reader is referred to the book
by Lindgren and Morrison [118].)
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Goldstone diagrams

The Rayleigh-Schrödinger perturbation expansion can be conveniently repre-
sented in terms of diagrams by means of second quantization (see above and
Appendix B).

The perturbation (Eq. 2.50) becomes in second quantization

V̂ = c†i cj 〈i|f |j〉+ 1
2 c
†
i c
†
j cl ck 〈ij|g|kl〉 (2.70)

where f is the negative potential f = −u and g is the Coulomb interaction
between the electrons. When some of the states above are hole states, the ex-
pression (Eq. 2.70) is not in normal order. By normal ordering the expression,
zero-, one- and two-body operators will appear [118, Eq.11.39]

V = V0 + V1 + V2 (2.71)

where

V0 =
hole∑

i

〈i|f |i〉+ 1
2

hole∑

ij

[〈ij|g|kl〉 − 〈ji|g|kl〉]

V1 = {c†i cj} 〈i|veff |j〉
V2 = 1

2 {c†i c†j cl ck} 〈ij|g|kl〉 (2.72)

In the one- and two-body parts the summation is performed over all orbitals.
Here,

〈i|veff |j〉 = 〈i|f |j〉+
hole∑

k

[〈ik|g|jk〉 − 〈ki|g|jk〉] (2.73)

is known as the effective potential interaction and can be represented graph-
ically as shown in Fig. 2.3. The summation term represents the Hartree-Fock
potential

〈i|vHF|j〉 =
hole∑

k

[〈ik|g|jk〉 − 〈ki|g|jk〉] (2.74)

where the first term is a ”direct” integral and the second term an ”exchange”
integral. In the Hartree-Fock model we have u = vHF, and the effective po-
tential vanishes [118].

We can now represent the perturbation (Eq. 2.72) by the normal-ordered
diagrams in Fig. 2.1. The zero- and one-body parts are shown in more detail
in Figs 2.2 and 2.3. In our diagrams the dotted line with the cross represents
the potential interaction, f = −u, and the dotted line between the electrons
the Coulomb interaction, g = e2/4πε0 r12. We use here a simplified version of
Goldstone diagrams. Each free vertical line at the top (bottom) represents an
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V = V0 +
6i

6j -u ×f +
6k

6i

6l

6js s
Fig. 2.1 Graphical representation the effective-potential interaction (Eq. 2.72). The heavy
lines represent the orbitals in the Furry picture. The dotted line with the cross represents
the potential −u and the dotted, horizontal lines the Coulomb interaction. The zero-body
and one-body parts of the interaction are depicted in Figs 2.2 and 2.3, respectively.

electron creation (absorption) operator but normally we do not distinguish
between the different kinds of orbitals (core, valence and virtual) as done
traditionally. There is a summation of internal lines over all orbitals of the
same category. We use here heavy lines to indicate that the orbitals are gen-
erated in an external (nuclear) potential, i.e., the bound-state representation
or Furry picture .

V0 = ��������������������6i
−u ×s + ��������������������6 lk ��������������������? + s s�

-

k

l

Fig. 2.2 Graphical representation of the zero-body part of the effective-potential interac-
tion (Eq. 2.72). The orbitals are summed over all core/hole states.

6

6

j

i

×hs =

6

6

j

i
−u×s +

6

6

j

i ��������������������?+
6i

6j

s s�
Fig. 2.3 Graphical representation of the effective-potential interaction (Eq. 2.73). For the
closed orbital lines (with no free end) there is a summation over the core/hole states. The
last two diagrams represent the ”Hartree-Fock” potential, and the entire effective-potential
interaction vanishes when HF orbitals are used.

By means of Wick’s theorem we can now normal order the right-hand side
(r.h.s.) of the perturbation expansion of the Bloch equation (Eq. 2.62), and

• each resulting normal-ordered term will be represented by a dia-
gram .
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The first-order wave operator (Eq. 2.66)

Ω(1)PE = ΓQ(E)V PE = ΓQ(E) (V1 + V2)PE (2.75)

becomes in second quantization (Eq. 2.72)

Ω(1)PE = Q
[
{c†i cj}

〈i|veff |j〉
εj − εi + 1

2 {c†i c†j cl ck}
〈ij|g|kl〉

εk + εl − εi − εj
]
PE (2.76)

This can be represented in the same way as the open part (V1 + V2) of the
perturbation (Eq. 2.70) (Fig. 2.1), if we include the extra energy denominator
according to the Goldstone rules, summarized below.

In second order we have from Eq. (2.67), using Wick’s theorem (Eq. 2.34),

Ω(2)PE = ΓQ(E)
(
{V Ω(1)

E }+ {V Ω(1)
E } − {Ω(1)

E PE′V
(1)
eff } − {Ω(1)

E′ PE′V
(1)
eff }

)
PE

(2.77)
where the hook represents a contraction. The first, uncontracted term is
represented by combinations of the diagrams in Fig. 2.1, such as

6

6
×f

6

6

6

6

(2.78)

considered as a single diagram. This diagram can be of two types.

• If both disconnected parts are open, the diagram is referred to

as linked.6. If, on the other hand, at least one of them is closed,
the diagram is referred to as unlinked.

In the unlinked part of the second term in Eq. (2.77) the closed part rep-
resents V (1)

eff , and since the order of the operators in the normal product
is immaterial, this unlinked diagram appears also in the third term and is
therefore eliminated. The last, contracted term survives and represents the
”folded” term. Here, the wave operator depends on the energy (E ′) of the
intermediate state, which might differ from the energy of the initial state
(E). We can then express the second-order wave operator by

Ω(2)PE = ΓQ(E)
(
V Ω

(1)
E −Ω(1)

E′ PE′V
(1)
eff

)
linked

PE (2.79)

where only linked diagrams are maintained (see Fig. 2.4).

6 A closed diagram has the initial as well as the final state in the model space. Such a
diagram can—in the case of complete model space—have no other free lines than valence
lines. A diagram that is not closed is said to be open.
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Fig. 2.4 Examples of second-order wave-operator diagrams, excluding folded diagrams.

The diagrams in Fig. 2.4 are second-order time-ordered Goldstone dia-
grams. In these diagrams, time is supposed to run from the bottom (although
the formalism is here time independent). The diagrams are evaluated by the
standard Goldstone rules with a denominator after each interaction equal
to the energy difference between the (model-space) state at the bottom and
that directly after the interaction (see Appendix I and ref. [118, sect. 12.4]).
(In later chapters we shall mainly use Feynman diagrams, which contain all
possible time orderings between the interactions.)

Linked-Diagram Expansion

Complete model space

Written more explicitly, the second-order wave operator (Eq. 2.79) becomes

Ω(2)PE =
(
ΓQ(E)V ΓQ(E)V − ΓQ(E)ΓQ(E ′)V PE′V

)
linked

PE (2.80)

Here, the second term has a double resolvent (double denominator, which
might contain different model-space energies), and it is traditionally drawn
in a ”folded” way, as shown in the left diagram below (see, for instance, [118,
Sect. 13.3])

6r 6s �
�

�
�

��

+��
�

�
��

+��
�

�
��

+ �
�

�
�

��

+��
�

�
��

+��
�

�
��

+c d

PE′ PE
6a 6b

⇒
6a 6b

6c 6d

6r 6s

PE′

PE (2.81)

The reason for drawing the diagram folded in this way is that the two
pieces—before and after the fold—should be evaluated with their denomi-
nators independently. In the general case, by considering all possible time-
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orderings between the two pieces, together with the Goldstone evaluation
rules, it can be shown that the denominators do factorize. In a relativistic
treatment, which we shall employ for the rest of this book, the treatment
is most conveniently based upon Feynman diagrams, which automatically
contain all possible time-orderings, and then it is more natural to draw the
diagram straight, as shown in the second diagram above. Factorization then
follows directly. The double bar indicates that the diagram is ”folded”. In
such a diagram the upper part has double denominators—one denominator
with the energy of the initial state and one with that of the intermediate
model-space state. The second-order wave operator can then be illustrated
as shown in Fig. 2.5. Note that there is a minus sign associated with the
folded diagram.

The general ladder diagram (Fig. 2.5) may contain a (quasi)singularity,
when the intermediate state lies in the model space and is (quasi)degenerate
with the initial state. This singularity is automatically eliminated in the
Bloch equation and leads to the folded term. Later, in section 6.6 we shall
discuss this kind of singularity in more detail in connection with energy-
dependent interactions, and then we shall refer to the finite remainder as the
model-space contribution (MSC).

6r 6s

6c 6d
s ss s
6a 6b

P +Q

P

⇒
6r 6s

6c 6d
s ss s
6a 6b

Q

P

+

6r 6s

6c 6d
s ss s
6a 6b

P

PE

Fig. 2.5 Removing the singularity from a ladder diagram leads to finite remainder, rep-
resented by a ”folded” diagram (last). The double bar represents a double denominator
(with a factor of -1).

We have seen that the so-called unlinked diagrams are eliminated in the
second-order wave operator (Eq. 2.79). When the model space is ”complete”
(see definition above), it can be shown that unlinked diagrams disappear in
all orders of perturbation theory. This is the linked-cluster or linked-diagram
theorem (LDE), first demonstrated in the 1950’s by Brueckner [37] and Gold-
stone [73] for a degenerate model space. It holds also for a complete quasi-
degenerate model space, as was first shown by Brandow [31], using a dou-
ble perturbation expansion. This was demonstrated more directly by Lind-
gren [112] by means of the generalized Bloch equation (Eq. 2.56), and the
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result can then be formulated 7

[
Ω,H0

]
P =

(
V ΩP −ΩVeff

)
linked

P (2.82)

This equation is a convenient basis for many-body perturbation theory, as
developed, for instance, in ref. [118]. It will also constitute a fundament of
the theory developed in the present book.

Incomplete model spaces

When the model space is incomplete, i.e., does not contain all configurations
that can be formed by the valence orbitals, the expansion is not necessarily
completely linked. As first shown by Mukherjee [159, 119], the linked-diagram
theorem can still be shown to hold, if the normalization condition (Eq. 2.42a)
is abandoned. As will be discussed later, a complete model space often has
the disadvantage of so-called intruder states, which destroy the convergence.
Then also other means of circumventing this problem will be briefly discussed.

2.5 All-order methods. Coupled-Cluster Approach.

Pair correlation

Instead of solving the Bloch equation order by order, it is often more efficient
to solve it iteratively. By separating the second-quantized wave operator into
normal-ordered zero-, one-, two-,...body parts

Ω = Ω0 +Ω1 +Ω2 + · · · (2.83)

with
7 The Rayleigh-Schrödinger and the linked-diagram expansions have the advantage com-
pared to, for instance, the Brillouin-Wigner expansion, that they are size-extensive, which
implies that the energy of a system increases linearly with the size of the system. This
idea was actually behind the discovery of the linked-diagram theorem by Brueckner [37],
who found that the so-called unlinked diagrams have a non-physical non-linear energy
dependence and therefore must be eliminated in the complete expansion. The concept
of size extensivity should not be confused with the term size consistency, introduced by
Pople [186, 187], which implies that the wave function separates correctly when a molecule
dissociates. The Rayleigh-Schrödinger or linked-diagram expansions are generally not size
consistent. The coupled-cluster approach (to be discussed below), on the other hand, does
have this property in addition to the property of size extensivity.
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


Ω1 = {c†i cj} xij
Ω2 = 1

2 {c†i c†j cl ck} xijkl
etc.

(2.84)

the Bloch equation can be separated into the following coupled n-particle
equations

[
Ω1,H0

]
P =

(
V Ω −ΩW )

linked, 1
P

[
Ω2,H0

]
P =

(
V Ω −ΩW )

linked, 2
P (2.85)

etc. where
W = Veff = PV ΩP (2.86)

is the effective interaction.

Usually, the two-body operator dominates heavily, since it contains the
important pair correlation between the electrons. Therefore, a good approx-
imation for many cases is

Ω ≈ 1 +Ω1 +Ω2 (2.87)

which yields
[
Ω1,H0

]
P =

(
V1 + V Ω1 + V Ω2 −Ω1W1

)
linked, 1

P
[
Ω2,H0

]
P =

(
V2 + V Ω1 + V Ω2 −Ω1W2 −Ω2W1 −Ω2W2

)
linked, 2

P (2.88)

where

W1 =
(
V1 + V1Ω1

)
closed, 1

W2 =
(
V2 + V Ω1 + V Ω2

)
closed, 2

(2.89)

We see here that the equations are coupled, so that Ω1 appears in the equa-
tion of Ω2 and vice versa. This approach is known as the pair-correlation
approach. Solving these coupled equations self consistently, is equivalent to a
perturbation expansion—including one- and two-body effects—to essentially
all orders. It should be noted, though, that each iteration does not correspond
to a certain order of the perturbative expansion.

As a simple illustration we consider the simplified pair-correlation ap-
proach

Ω = Ω2 (2.90)

omitting single excitations. (This would be exact for a two-electron system
using hydrogenic basis functions, in which case there are no core orbitals, but
is a good approximation also in other cases.) The equation for Ω2 is

[
Ω2,H0

]
P =

(
V + V Ω2 −Ω2W2

)
linked, 2

P (2.91)
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Operating on an initial two-electron state of energy E , the solution can be
expressed

Ω2PE = ΓQ(E)
(
V + V Ω2 −Ω2W2

)
linked

PE (2.92)

Solving this iteratively, leads to

Ω
(1)
2 PE = ΓQ(E)V PE (2.93)

Ω
(2)
2 PE = ΓQ(E)

(
V Ω

(1)
2 −Ω(1)

2 PE′W
(1)
2

)
PE

= ΓQ(E)V ΓQ(E)V PE − ΓQ(E)ΓQ(E ′)V PE′V PE
etc. (2.94)

where all terms are assumed to be linked. This leads to the ”ladder sequence”,
illustrated in Fig. 2.6. Note that in the expression above, all energies of the
first term depend on the initial state, while in the folded term the wave
operator depends on the energy of the intermediate state (E ′) (c.f., the ”dot
product”, introduced in section 6.6).

6 6

6 6s s =
6 6

6 6s s +
6 6

6 6

6 6s ss s +
6 6

6 6

6 6

6 6

s ss s
s s

+ · · · + folded

Fig. 2.6 Graphical representation of the pair function (Eq. 2.96).

Operating with Ω2 in Eq. (2.84) on the initial state |ab〉, leads to the pair
function

Ω2|ab〉 = xrsab|rs〉 = ρab(x1, x2) (2.95)

which inserted in Eq. (2.88) leads to the pair equation

(
εa + εb − h0(1)− h0(2)

)
ρab(x1, x2) =

(
|rs〉〈rs|V |ab〉

+ |rs〉〈rs|V |ρab〉 − |ρcd〉〈cd|W2|ab〉
)

linked
(2.96)

(For simplicity we work with straight product functions—not antisymmetrized—
in which case we sum over all combinations of r, s (without the factor of 1/2)
with xrsab = −xsrab.)

We can also express the pair function as

|ρab〉 = ΓQ(E) IPair|ab〉 (2.97)
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where ΓQ(E) is the reduced resolvent (Eq. 2.65) and E is the energy of the
initial state |ab〉. IPair represents the ladder sequence of Coulomb interactions
(including folded terms), corresponding to the heavy line in Fig. 2.6, and
including the resolvent (final denominator) leads to the pair function |ρab〉.
The effective interaction W2 can be expressed as

W2 = PE′IPairPE (2.98)

which can be represented by the same diagrams as in Fig. 2.6 (with no final
denominator), if the final state (with energy E ′) lies in the model space. The
pair function (Eq. 2.92) can now be expressed

ΓQ(E)IPairPE = ΓQ(E)
(
V + V ΓQ(E)IPair − ΓQ(E ′)IPairPE′IPairPE

)
PE (2.99)

This relation can be represented graphically as shown in Fig. 2.7.

6a 6b

6r 6ss s =
PE 6a 6b

6r 6ss s +
PE 6a 6b

6 6

6r 6ss sQ

s s
PE

+

6a 6b

s s
6c 6d

6r 6s

s sPE′
W2

PE

Fig. 2.7 Graphical representation of the self-consistent pair equation (Eq. 2.99). The
last diagram represents the ”folded” term −Ω2W2. The double line represents the double
denominator (double resolvent).

Exponential Ansatz

A particulary effective form of the all-order approach is the Exponential
Ansatz or Coupled-Cluster Approach (CCA), first developed in nuclear physics
by Hubbard, Coster and Kümmel [86, 45, 46, 102, 103]. It was introduced
into quantum chemistry by Čižek [42] and has been extensively used during
the last decades for more details. (The reader is referred to a recent book
”Recent Progress in Coupled Cluster Methods” [230], which reviews the de-
velopment of the methods since the start.) The CCA is a non-linear approach,
and the linear all-order approach (Eq. 2.85), discussed above, is sometimes
inadvertently referred to as ”linear CCA”(!)—a term we shall not use here.
In the exponential Ansatz the wave operator is expressed in the form of an
exponential
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Ω = eS = 1 + S +
1
2
S2 +

1
3!
S3 + · · · (2.100)

S is the cluster operator (in chemical literature normally denoted by T ). It
can then be shown that for a degenerate model space the cluster operator
is represented by connected diagrams only.8 This implies that the linked but
disconnected diagrams of the wave operator are here represented by the higher
powers in the expansion of the exponential.

For open-shell systems (with unfilled valence shell) it is convenient to rep-
resent the Ansatz in the normal-ordered form, introduced by Lindgren [113,
118],

Ω = {eS} = 1 + S +
1
2
{S2}+

1
3!
{S3}+ · · · (2.101)

This form has the advantage that unwanted contractions between the cluster
operators are avoided. The cluster operator is completely connected also in
this case, if the model space is complete [119], which can be formulated by
means of the Bloch equation

[
S,H0

]
P = Q

(
V ΩP −ΩVeff

)
conn

(2.102)

Expanding the cluster operator in analogy with the wave-operator expansion
(Eq. 2.83) in terms on one-, two-,..body operators,

S = S1 + S2 + S3 + · · · (2.103)

yields

Ω = {eS} = 1+S1 +S2 + 1
2 {S2

1}+{S1S2}+ 1
2 {S2

2}+ 1
2 {S2

1S2}+
1
3!
{S3

1}+ · · ·
(2.104)

With the approximation

S = S1 + S2 (2.105)

the cluster operators satisfy the coupled Bloch equations
[
S1,H0

]
P =

(
V Ω −ΩW )

conn, 1
P

[
S2,H0

]
P =

(
V Ω −ΩW )

conn, 2
P (2.106)

illustrated in analogy with Fig. 2.7 in Fig. 2.8. These equations lead to
one- and two-particle equations, analogous to the pair equation given above
(Eq. 2.96). Also these equations have to be solved iteratively, and we observe
that they are coupled, as are the corresponding equations (Eq. 2.88) for the
full wave operator.

8 The distinction between linked and connected diagrams should be noted. A linked dia-
gram can be disconnected, if all parts are open, as defined in section 2.4.
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S1 :
6

6r r =
6
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×e + 6 ×e

6r r
6
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r r
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=
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+
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6 6r r
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+
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6 6r r
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+
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6 6r r
6 6

+

6 6

6 6r r r r
6 6
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6 6r rW2

+

6 6

r r
6 6

6 6r r W1

+

6 6

r r
6 6

6 6r rW2

Fig. 2.8 Diagrammatic representation of the equations for the cluster operators S1 and
S2 Eq. (2.106). The circle with a cross represents the ”effective potential” in Fig. 2.3. The
second diagram in the second row and the diagrams in the fourth row are examples of
coupled-cluster diagrams. The last diagram in the second row and the three diagrams in
the last row represent folded terms (c.f. Fig. 2.7).

The normal-ordered scheme is usually combined with a complete model
space—or complete active space (CAS)—and the valence universality. This
might lead to problems due to intruder states to be discussed further below.

For atomic systems with essentially spherical symmetry the cluster equa-
tions can be separated into angular and radial parts, where the former can be
treated analytically and only the radial part has to have solved numerically
(see, for instance, ref. [118, Ch. 15]). For molecular systems, on the other
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hand, analytical basis-set functions of Slater or Gaussian types are normally
used to solve the coupled-cluster equations, as described in numerous articles
in the field.

As mentioned, the advantage of the normal ordering of the exponential
Ansatz is that a number of unwanted contractions between open-shell opera-
tors is avoided. More recently, Mukherjee has shown that certain valence-shell
contractions are actually desired, particularly when valence holes and strong
relaxation are involved [91]. He then introduced a modified normal ordering

Ω = {{exp(S)}} (2.107)

where contractions involving passive (spectator) valence lines are reintro-
duced compared to the original normal ordering.

Various models for coupled-cluster calculations.
Intruder-state problem

The early forms of coupled-cluster models were of single-reference type
(SRCC) with a one-dimensional (closed-shell) model space. In the last few
decades various versions of multi-reference (MRCC) models with multi-
dimensional model space have appeared (for reviews, see e.g., [161, 119, 11]).
These are essentially two major types, known as valence-universal multi-
reference (VU-MRCC) [160, 113] and state-universal multi-reference (SU-
MRCC) [94, 95] methods, respectively. In the valence-universal methods the
same cluster operators are being used for different ionization states and there-
fore particularly useful for calculating ionization energies and affinities. In the
state-universal methods specific operators are used for a particular ionization
stage and particularly used when different states of the same ionization are
considered or in the molecular case for studying potential energy surfaces
(PES).

A serious problem that can appear in MBPT with a multi-reference model
space is what is known as the ”intruder-state-problem”. This appears when
a state outside the model space—of the same symmetry as the state under
consideration—has a perturbed energy between those of the same symmetry
originating from the model space. This will destroy the convergence of the per-
turbation expansion. This problem was first observed in nuclear physics [204],
but it was early observed also in atomic physics for the beryllium atom [195].
Here, the ground state is 1s22s2 1S, and the excited state 1s2 2p2 1S has a
low unperturbed energy, while the true state lies close to the 2s ionization
limit. This implies that when the perturbation is gradually turned on, a large
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number of ”outside” states, 1s2 2s ns, will cross the energy of the 1s22p2 1S
state, and there will be no convergence beyond the crossing point.

The convergence problem due to intruders is particularly serious in per-
turbation theory, when the states are expanded order-by-order from the un-
perturbed ones. In the coupled-cluster approach, which in principle is non-
perturbative, it might be possible to find a self-consistent solution of the
coupled equations without reference to any perturbative expansion. It was
first shown by Jankowski and Malinowski [135, 89, 90] that it was in fact
possible to find a solution to the beryllium problem with a complete model
space. Lindroth and Mårtensson [129] solved the same problem by means of
complex rotation.

Several other methods have been developed to reduce the intruder-state
problem. One way is to reduce the model space and make it incomplete. It
was shown by Mukherjee [159] that by abandoning the intermediate nor-
malization (Eq. 2.42a), the linked character of the diagram expansion could
still be maintained. The criteria for the connectivity of the coupled-cluster
expansion have been analyzed by Lindgren and Mukherjee [119].

Another approach to avoid or reduce the intruder-state problem is to
apply an intermediate-effective Hamiltonian, a procedure developed by the
Toulouse group (Malrieu, Durand et al.) in the mid 1980’s [57]. Here, only
a limited number of roots of the secular equation are being looked for. A
modified approach of the method has been developed by Meissner and Mali-
nowski [140] and applied to the above-mentioned beryllium case.

A third approach to the problem is the state-specific multi-reference (SS-
MRCC) approach, where a multi-reference is used but only a single state
is considered [134]. This approach can be regarded as an extreme of the
intermediate-Hamiltonian approach and is frequently used particularly for
studying potential-energy surfaces.

All the coupled-cluster approaches can also be applied in the relativistic
formalism, although applications are here still quite limited. We shall return
briefly to this problem in Chapter 8.

2.6 Relativistic MBPT. No-Virtual-Pair Approximation

In setting up a Hamiltonian for relativistic quantum mechanics it may be
tempting to replace the single-electron Schrödinger Hamiltonian in the many-
body Hamiltonian (Eq. 2.11) by the Dirac Hamiltonian (see Appendix D)

hD = cα · p̂ + βmc2 + vext (2.108)
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which with the Coulomb interaction between the electrons

VC =
N∑

i<j

e2

4πε0 rij
(2.109)

yields the Dirac-Coulomb Hamiltonian

HDC =
N∑

i=1

hD(i) + VC (2.110)

This Hamiltonian, however, has several serious shortcomings. Firstly, it is
not bound from below, because nothing prevents the electrons from falling
into the ”Dirac sea” of negative-energy electron states. A many-electron state
with a mixture of negative-energy and positive-energy electron states can then
be accidentally degenerate with a state with only positive-energy states—
a phenomenon known as the Brown-Ravenhall disease [36]. In Chapter 6
we shall derive a field-theoretical many-body Hamiltonian that will be used
in the further development. In this model there is no ”Dirac sea”, but the
negative-energy states correspond to the creation of positron states, which
are highly excited. Then there can be no Brown-Ravenhall effect.

Within the conventional many-body treatment the Brown-Ravenhall effect
can be circumvented by means of projection operators [222], which exclude
negative-energy states, leading to the projected Dirac-Coulomb Hamiltonian

HDCproj = Λ+

[ N∑

i=1

hD(i) + VC

]
Λ+ (2.111)

Including also the instantaneous Breit interaction (see Appendix F)

VB = − e2

8πε0

∑

i<1

[αi ·αj
rij

+
(αi · rij)(αj · rij)

r2
ij

]
(2.112)

where αi is the Dirac alpha matrix vector for particle i (see Appendix D),
leads to the projected Dirac-Coulomb-Breit Hamiltonian

HNVPA = Λ+

[ N∑

i=1

hD(i) + VC + VB

]
Λ+ (2.113)

which is known as the No-Virtual-Pair Approximation (NVPA).

With the partitioning (Eq. 2.48)

H = H0 + V (2.114)

we choose the model Hamiltonian to be
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H0 =
N∑

i

(
hD + u

)
i

=:
N∑

i

h0(i) (2.115)

and the perturbation

V = −
N∑

i

u(i) + VC + VB (2.116)

The Dirac-Coulomb and Dirac-Coulomb-Breit Hamiltonians, which are
valid only in the Coulomb gauge (see Appendix G.2), have been extensively
used in relativistic MBPT calculations and particularly in self-consistent-field
calculations of Dirac-Fock type. In the latter type of calculations the projec-
tion operators can often be left out, since the boundary conditions usually
excludes negative-energy solutions (see the book by I.P. Grant for a modern
review [74]).

NVPA is a good approximation for many purposes, and it includes all
effects to order α2 H, but it is not Lorentz covariant (see definition in the
Introduction). In later chapters we shall consider a more rigorous many-body
Hamiltonian, based upon field theory.

QED effects

As mentioned, we shall refer to effects beyond the NVPA as QED effects,
although this separation is to some extent arbitrary. These effects are of two
kinds

• non-radiative effects, representing effects due to negative-energy states and
to retardation of the Breit interaction, shown in the upper line of Figure
2.9. These effects are also referred to as the Araki-Sucher effects [5, 219,
221] and

• radiative effects, represented by the lower line of Figure 2.9, which are
”true” quantum-electrodynamical effects due to the electron self energy
(first diagram), vacuum polarization (next two diagrams) or vertex cor-
rection (last diagram) (see further Chapter 4).

The QED effects can also be separated into reducible and irreducible effects,
where a reducible effect is represented by a diagram that can be separated
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into two legitimate diagrams by a horizontal cut, such as the second non-
radiative diagram in Fig. 2.9.9 Remaining diagrams are irreducible.
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Fig. 2.9 Non-radiative (upper line) and radiative (lower line) ”QED effects”. These di-
agrams are Feynman diagrams, where the orbital lines can represent particle as well as
hole or anti-particle states (see further Chapter 4). The second diagram in the first row
is reducible (there is an intermediate time with no photon), while the remaining ones are
irreducible.

2.7 Some numerical results of standard MBPT and CC
calculations, applied to atoms

In the book Atomic Many-Body Theory [61, Sect. 15.5] a brief summary is
given of the situation in the late 1970’s concerning the numerical application
of many-body perturbation theories. Most effective at that time to handle
the electron-correlation problem were various pair-correlation approaches,
based on works of Kelly [100], Meyer [141], Sinanŏglu [213], Nesbet [167],
Kutzelnigg [107] and others. Coupled-cluster methods were available at that
time but still relatively undeveloped. Also methods of treating open shells
and the quasi-degenerate problem, using the extended model space [112] (Eq.
2.56), were available but not particularly well-known.

In the three decades that have followed, a dramatic development regarding
numerical implementations has taken place. All-order methods, in particular,

9 Unfortunately, different definitions of reducible and irreducible diagrams occur in the
literature. We use in this book the original interpretation of the concepts, due to the
pioneers Feynman, Dyson, Bethe, Salpeter and others [58, 201].
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coupled-cluster methods, have been developed to a stage of ”almost perfec-
tion”. Also the open-shell techniques have been further developed and are
now routinely used. Here, two main lines have emerged, based upon multi-
reference or single-reference states. The latter technique has been developed
mainly to circumvent the intruder problem, although there are methods of
dealing with this problem also in the multi-reference case, as was briefly men-
tioned above. We shall in no way try to review this immense field here but
limit ourselves to some comments concerning developments that are most
relevant for the theme of this book. (We refer to the previously mentioned
book, edited by Čársky et al. [230], for more details.) We also call attention
to a comprehensive review of all-order relativistic atomic calculations that
has recently been published by Safronova and Johnson [192].

The coupled-cluster approach was early applied to various molecular sys-
tems, particularly by Čižek, Paldus and coworkers in the Waterloo group [175,
176]. Extensions of the method and extensive calculations have been per-
formed by Bartlett and his collaborators at Gainesville [12, 188]. The paper
by Purvis and Bartlett [188], together with the simultaneous publication by
Pople et al. [185], represent the first applications of CCA with both single and
double excitations (CCSD). Bartlett et al. have later extended the technique
to include part of triples, CCSD(T), and quadruples, CCSD(TQ), techniques
that are now widely spread.

In molecular calculations functional basis sets of Slater or Gaussian type
are normally used. For atomic systems, on the other hand, it is normally
preferable to use numerical integration of the radial coordinates. Such tech-
niques have been developed and applied particularly by the groups at Notre
Dame, Gothenburg and Tel Aviv.

The Notre-Dame group has for a long time performed relativistic many-
body calculations on atomic systems by applying and further developed the
spline technique with piece-wise polynomial fitting [96]. This was first used
for calculations to second-order (third order in energy) of the helium atom
and the sodium isoelectronic sequence [97]. The method was then extended
by Blundell et al. [28] to an all-order technique (linear with singles and dou-
bles) and applied to the Li atom and the Be+ ion and by Plante et al. [184] to
a sequence of heliumlike ions. In Table 2.1 we reproduce from the latter work
the contributions to the ground-state ionization energies due to a) all-order
Coulomb interactions, b) same with one instantaneous Breit interaction, c)
same with TWO instantaneous Breit interactions, d) first-order QED con-
tribution (from ref. [56]), e) total ionization energy. Later, the Notre-Dame
group, partly together with Safronova, has extended the technique to full
relativistic CCSD, including also some triples, CCSD(T), and applied it ex-
tensively to various atomic and ionic systems [132, 192] (see Tables 2.2 and
2.3).
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Table 2.1 Contributions to the ground-state ionization energies of heliumlike
ions. From ref. [184] (in Hartrees).

Z Coulomb Breit Double Breit QED Total
10 43.962 0.010708 0.000048 -0.004610 43.946
20 188.636 0.096696 0.000433 -0.054905 168.485
40 792.126 0.83482 0.00409 -0.57860 790.717
60 1855.119 2.97236 0.01528 -2.22984 1849.832
80 3472.330 7.51789 0.03914 -5.89519 3458.965
100 5841.499 16.0999 0.0836 -12.9704 5812.513

The Gothenburg group developed numerical non-relativistic all-order and
coupled-cluster approaches in the late 1970’s and early 1980’s. Ann-Marie
Mårtensson (Pendrill) [138] developed an all-order pair program (LD) —
linear with doubles without coupled clusters — based upon the first-order pair
program developed by Morrison [157, 67], and first applied it to the helium
atom. This technique was later converted into a coupled-cluster program with
doubles (CCD) by Salomonson [123] and applied to various atomic systems.
It was also applied to open-shell systems [158, 195]—in the second paper
(concerning the beryllium atom) the famous intruder problem, mentioned
above, was probably observed for the first time in an atomic system. The
procedure of the Gothenburg group was extended to the full CCSD procedure
and applied by Lindgren [114] (see Table 2.2) and Salomonson et al. [196, 199]
(see Tables 2.3 and 2.4).

A relativistic version of the linear all-order pair program (LD) was de-
veloped by Eva Lindroth [128], and applied to the helium atom. This was
extended to a relativistic coupled-cluster program by Salomonson and Öster,
who also developed a new numerical, highly accurate technique, referred to as
the discretization technique [197]. This technique was early applied relativis-
tically as well non-relativistically to a number of atomic systems [196, 199]
and is used also in all later works of the group.

In Tables 2.2-2.4 we have compared some all-order calculations for the
lithium, sodium, and beryllium atoms as well as for the Li− ion. The calcula-
tions on Be and Li− demonstrates clearly the importance of single excitations
in this case. The results for sodium show the importance of triple excitations
in this case. (The results by Safronova et al. is probably fortuitous, indicating
that effects of non-linear coupled-cluster terms and triples accidentally can-
cel.) The accurate results from numerical integrations by Salomonson et al.
are sometimes used as benchmarks for testing calculations with finite basis
sets [38].

The Tel-Aviv group has applied the relativistic coupled-cluster technique
with singles and doubles (CCSD) particularly to very heavy atoms and simple
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Table 2.2 Binding energies of the two lowest states of the lithium atom (in
µH)

Lithium atom
2 2S 2 2P References

Expt’l 198 159 130 246
Hartree-Fock 196 304 128 637

Difference 1 854 1 609
LSD 1 855 1 582 Blundell et al. [28]

CCSD 1 850 1 584 Lindgren [114]
CCSD 1 835 1 534 Eliav et al. [60]

Table 2.3 Correlation energy of some low-lying states of the sodium atom (in
µH) (from ref. [193])

Sodium atom
3 2S 3 2P1/2 3 2P3/2 4 2S References

Expt’l 6 825 2121 2110 1415
LSD 6 835 2118 2108 1418 Safronova et al. [193]

CCSD 6 458 Salomonson-Ynnerman [199]
CCSD 6 385 Eliav et al. [60]

CCSD(T) 6 840 Salomonson-Ynnerman [199]

Table 2.4 Correlation energy of the ground state of the beryllium atom and
the negative lithium ion (in µH) (from ref. [38])

Beryllium atom and negative lithium ion
Be Li− References

CCD -92.960 -71.148 Bukowski et al. [38]
CCD -92.961 71.266 Salomonson-Öster [196]

CCSD -93.665 72.015 Bukowski et al. [38]
CCSD -93.667 72.142 Salomonson-Öster [196]

molecules (see, for instance, the review article by Kaldor and Eliav [99], as
well as Tables 2.2 and 2.3).



Chapter 3

Time-dependent formalism

In the present chapter we shall summarize the fundamentals of time-dependent
perturbation theory. Although we shall be only concerned with stationary
problems in this book, it will be advantageous to apply time-dependent meth-
ods. We restrict ourselves in the present chapter to the non-relativistic for-
malism and return to the relativistic one in later chapters.

3.1 Evolution operator

It follows from the second-quantized Schrödinger equation (Eq. 2.16) that
the state vector evolves in time according to

|χS(t)〉 = e−iH(t−t0)/~ |χS(t0)〉 (3.1)

This is known as the Schrödinger picture (SP), indicated by the subscript
”S”. In another representation, known as the interaction picture (IP) (see Ap-
pendix B, Eq. B.23) the Hamiltonian is partitioned according to (Eq. 2.48),
H = H0 + V , and the state vectors and the operators are transformed ac-
cording to

|χI(t)〉 = eiH0t/~ |χS(t)〉; OI(t) = eiH0t/~OS e−iH0t/~ (3.2)

This implies that the state vectors are normally much more slowly varying
with time, and most of the time dependence is instead transferred to the
operators that are normally time independent in SP.

The Schrödinger equation is in IP transformed to

i~
∂

∂t
|χI(t)〉 = VI(t) |χI(t)〉 (3.3)

53
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with the solution

|χI(t)〉 = |χI(t0)〉 − i
~

∫ t

t0

dt1 VI(t1) |χI(t1)〉 (3.4)

VI(t) is the perturbation in the interaction picture, which is assumed to be
time independent in the Schrödinger picture.

For a stationary state of energy E the time dependence (Eq. 2.15) is
e−iEt/~. It then follows that the state in the IP is of the form

|χI(t)〉 = e−it(E−H0)/~ |χI(t = 0)〉 (3.5)

The time-evolution operator in IP, UI(t, t0), is defined by the relation

|χI(t)〉 = UI(t, t0) |χI(t0)〉 (t > t0) (3.6)

Evidently, we then have

UI(t, t) = 1 (3.7)
UI(t, t1)UI(t1, t2) = UI(t, t2) (3.8)

From the relation (Eq. 3.1) it follows that the corresponding evolution oper-
ator in SP is

US(t, t0) = e−iH(t−t0)/~ (3.9)

Transforming Eq. (3.2) to IP then yields 1

UI(t, t0) = eiH0t/~ e−iH(t−t0)/~ e−iH0t0/~ (3.10)

This evolution operator satisfies the differential equation

i~
∂

∂t
UI(t, t0) = VI(t)UI(t, t0) (3.11)

which leads to the expansion 2

U(t, t0) = 1− i
~

∫ t

t0

dt1 V (t1)U(t1, t0)

= 1− i
~

∫ t

t0

dt1 V (t1) +
(−i
~

)2
∫ t

t0

dt1 V (t1)
∫ t1

t0

dt2 V (t2)U(t2, t0) (3.12)

1 It should be noted that generally eiH0t/~e−iHt/~ 6= e−iV t/~, since the operators do not
necessarily commute.
2 Unless specified otherwise, we shall in the following assume that the evolution operators
always are expressed in IP and leave out the subscript I.
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etc. By extending the second integration from t0 to t, this can be ex-
pressed [62, Fig. 6.1]

U(t, t0) = 1− i
~

∫ t

t0

dt1 V (t1) +
1
2

(−i
~

)2
∫ t

t0

dt1
∫ t

t0

dt2 T
[
V (t1)V (t2)

]
U(t2, t0) (3.13)

where T is the time-ordering operator, which orders the operators after de-
creasing time (without any sign change). This leads to the expansion

U1(t, t0) = − i
~

∫ t

t0

dt1 V (t1)

U2(t, t0) =
1
2

(−i
~

)2
∫ t

t0

dt1
∫ t

t0

dt2 T
[
V (t1) V (t2)

]
(3.14)

etc., which can be generalized to [62, Eq. 6.23], [88, Eq. 4-56]

U(t, t0) =
∞∑
n=0

1
n!

(−i
~

)n ∫ t

t0

dt1 . . .
∫ t

t0

dtn T
[
V (t1) . . . V (tn)

]
(3.15)

(We have here included the term n = 0 to replace the unity.)

We introduce the Hamiltonian density H(x) by

V (t) =
∫

d3xH(t,x) (3.16)

We do not have to specify the perturbation at this point, but we shall later
assume that it is given by the interaction between the electrons (of charge
−e) and the electromagnetic radiation field (see Appendix E.3)

H(x) = −ψ̂†(x)ecαµAµ(x)ψ̂(x) (3.17)

Here, αµ is the Dirac operator (see Appendix D) and Aµ is the covariant
radiation field (Appendix (Eq. G.2))

Aµ(x) =
√

~
2ε0ωV

∑

kr

εµr
[
a†kr e

ikx + akr e
−ikx] (3.18)

The evolution operator (Eq. 3.15) can now be expressed

U(t, t0) =
∞∑
n=0

1
n!

(−i
c~

)n ∫ t

t0

dx4
1 . . .

∫ t

t0

dx4
n T
[H(x1) . . .H(xn)

]
(3.19)
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The factor of c in the denominator is due to the fact that we now use the
integration variable x0 = ct. The integrations are performed over all space
and over time as indicated. Alternatively, this can be expressed

U(t, t0) = T

[
exp

(−i
c~

∫ t

t0

d4xH(x)
)]

(3.20)

The evolution operator can be represented graphically be means of Gold-
stone diagrams in the same way as the wave operator, discussed previously.
As a simple example, we consider the first-order interaction with a time-
independent potential interaction v(x). In second quantization the evolution
operator becomes

U (1)(t, t0) = − i
~

∫ t

t0

dt c†r 〈r|v(x1)|a〉 ca (3.21)

or after summing over the states

U (1)(t, t0) = − i
~

∫ t

t0

dt1
∫

d3x1 ψ̂
†(x1) v(x1) ψ̂(x1) (3.22)

which is illustrated in Fig. 3.1 (left).

The two-body interaction can be given by a contraction of two pertur-
bations (Eq. 3.17), corresponding to the exchange of one virtual photon,
v(x1, x2), as will be further discussed in chapter 4. The corresponding, second-
order evolution operator then becomes (Fig. 3.1, right)

U (2)(t, t0) =
1
2

(−i
~

)2
∫∫ t

t0

dt1 dt2
∫∫

d3x1 d3x2 ψ̂
†(x1) ψ̂†(x2) v(x1, x2) ψ̂(x2) ψ̂(x1)

(3.23)

6ψ̂ a

6ψ̂† r

×rx1

·

t

·t0
6ψ̂ a 6b ψ̂

6ψ̂† r 6s ψ̂†

-r rx1

x2

·

t

·t0

Fig. 3.1 Graphical representation of the evolution operator for first-order potential inter-
action and single-photon exchange.

In higher orders the operator can have connected as well as disconnected
parts and can be separated into zero-, one-, two-,...body parts. The connected
one- and two-body pieces are schematically illustrated in Fig. 3.2. Expressions
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with uncontracted photons fall in an extended photonic Fock space, as will be
further discussed in later chapters.

6ψ̂ a

6ψ̂† r

·

t

·t0
6ψ̂ a 6b ψ̂

6ψ̂† r 6s ψ̂†

·

t

·t0

Fig. 3.2 Schematic graphical representation of the connected one- and two-body parts of
the evolution operator.

3.2 Adiabatic damping. Gell-Mann–Low theorem

For the mathematical treatment we shall find it convenient to apply an ”adi-
abatic damping factor” to the perturbation,

V (t)→ V (t) e−γ|t| (3.24)

where γ is a small, positive number, which implies that

H → H0 as t→ −∞ (3.25)

The expansion (Eq. 3.19) then becomes

Uγ(t, t0) =
∞∑
n=0

1
n!

(−i
c~

)n

×
∫ t

t0

dx4
1 . . .

∫ t

t0

dx4
n T
[H(x1) . . .H(xn)

]
e−γ(|t1|+|t2|...+|tn|) (3.26)

The damping is adiabatically ’switched off’ at the end of the calculation. The
evolution operator satisfies now the equation (Eq. 3.11)

i~
∂

∂t
Uγ(t, t0) =

(
V (t)∓ iγ

)
Uγ(t, t0) (3.27)

where the upper sign is valid for t > 0.
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Gell-Mann–Low theorem

The damped perturbation (Eq. 3.24) vanishes, when γt → ±∞, and the
perturbed (target) state vector approaches in these limits an eigenstate of
H0, ∣∣χIγ(t)

〉⇒
∣∣Φ〉. (3.28)

which we call the parent state. Gell-Mann and Low have shown that for t = 0
and in the limit γ → 0, the state vector

lim
γ→0
|χIγ(0)〉 = lim

γ→0

Uγ(0,−∞)|Φ〉
〈Φ|Uγ(0,−∞)|Φ〉 =: |Ψ〉 (3.29)

is a solution of the time-independent Schrödinger equation

(H0 + V )|Ψ〉 = E|Ψ〉 (3.30)

where H0 is the model Hamiltonian (Eq. 2.49) without the interaction. Here,

E = E0 + i~γλ
〈Φ| ∂∂λUγ(0,−∞)|Φ〉
〈Φ|Uγ(0,−∞)|Φ〉 (3.31)

This is the famous Gell-Mann–Low theorem (GML) [69], [62, p.61], [206,
p.336], which represents one of the fundamentals of the theory presented here.
The perturbation, V , must in the limit γ → 0 be time-independent in the
Schrödinger picture, which is the case with the interaction (Eq. 3.17).

3.3 Extended model space. The generalized
Gell-Mann–Low relation

The original Gell-Mann–Low theorem (Eq. 3.29) is valid only in the single-
reference case (one-dimensional model space). The time-dependent MBPT
was in the 1960’s and 1970’s further developed by several groups [156, 33,
227, 98, 168, 104], mainly in connection with nuclear calculations. We shall
extend this treatment here and prove a generalization of the Gell-Mann–Low
theorem for an arbitrary model space. This treatment follows mainly that
performed in ref. [124] (see also ref. [62, Sect. 6]).

We choose the parent states to be the (normalized) limits of the target
states for finite γ as t→ −∞, as introduced by Tolmachev [227],

∣∣Φα〉 = Cα lim
t→−∞

∣∣χα〉
γ

(α = 1, 2 · · · d) (3.32)
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where Cα is a normalization constant. The parent functions are then eigen-
functions of H0,

H0

∣∣Φα〉 = Eα0
∣∣Φα〉 (3.33)

but generally we do not know which eigenvalue a specific target state will
converge to.

In analogy with the single-reference case (Eq. 3.29) we construct the state

∣∣Ψαγ
〉

=
Uγ(0,−∞)

∣∣Φα〉

〈Ψα0 |Uγ(0,−∞)|Φα〉 (3.34)

which is normalized in the intermediate normalization, 〈Ψα0 |Φα〉.
We shall now demonstrate that this state is in the limit γ → 0 an eigenstate

of the time-independent Hamiltonian of the system for all values of α,
(
H0 + V

)∣∣Ψα〉 = Eα
∣∣Ψα〉 (α = 1, 2, · · · d) (3.35)

• This is a generalization of the original Gell-Mann–Low relation
(Eq. 3.29), and it holds also for a quasi-degenerate model space
with several energy levels [124].

In order to prove the theorem, we consider one term in the expansion
(Eq. 3.26)

U (n)
γ (t,−∞) =

1
n!

(−i
~

)n ∫ t

−∞
dtn

∫ t

−∞
dtn−1 · · ·T

[
V (tn)V (tn−1) · · · ] eγ(t1+t2...+tn)

(3.36)
(As long as t does not approach +∞, we can leave out the absolute signs in
the damping factor.) Using the identity

[H0, ABC · · · ] = [H0, A]BC · · ·+A[H0, B]C · · ·+ · · ·

we obtain, noting that in IP VI(t) = eitH0/~VS e−itH0/~ and that V is assumed
to be time independent in the SP,

∂V12(t)
∂t

= i [H0, V12(t)] (3.37)

and

[
H0, V (tn)V (tn−1) · · · ] = −i~

( ∂

∂tn
+

∂

∂tn−1
+ · · ·

)
V (tn)V (tn−1) · · · (3.38)

This gives
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[
H0, U

(n)
γ (t,−∞)

]
= − 1

n!

(−i
~

)(n−1)
∫ t

−∞
dtn

∫ t

−∞
dtn−1 · · ·

× T
[( ∂

∂tn
+

∂

∂tn−1
+ · · ·

)
V (tn)V (tn−1) · · ·

]
eγ(t1+t2...+tn)

When integrating by parts, each term gives the same contribution, yielding
[
H0, U

(n)
γ (t,−∞)

]
= −V (t)U (n−1)

γ (t,−∞) + i~nγ U (n)
γ (t,−∞) (3.39)

where the last term originates from derivating the damping term. Introducing
an order parameter, λ,

H = H0 + λV (t) (3.40)

the result can be expressed

[
H0, Uγ(t,−∞)

]
= −V (t)Uγ(t,−∞) + i~γλ

∂

∂λ
Uγ(t,−∞) (3.41)

By operating with the commutator on the parent function (Eq. 3.32), utilizing
the fact that the parent state Φα is an eigenstate of H0, we obtain for t = 0

(
H0 − Eα0 + V

)
Uγ(0,−∞)

∣∣Φα〉 = i~γλ
∂

∂λ
Uγ(0,−∞)

∣∣Φα〉 (3.42)

where V = V (0) or with the state (Eq. 3.34)

(
H0 + V − Eα0

) ∣∣Ψαγ
〉

= i~γλ
∂
∂λUγ(0,−∞)|Φα〉
〈Ψα0 |Uγ(0,−∞)|Φα〉 (3.43)

(Note that at t = 0 the Schrödinger and interaction pictures are identical.)
We note from the relation (Eq. 3.34), that

∂

∂λ
|Ψαγ 〉 =

∂

∂λ

Uγ(0,−∞)
∣∣Φα〉

〈Ψα0 |Uγ(0,−∞)|Φα〉 =
∂
∂λ Uγ(0,−∞)

∣∣Φα〉

〈Ψα0 |Uγ(0,−∞)|Φα〉

− 〈Ψ
α
0 | ∂∂λ Uγ(0,−∞)|Φα〉
〈Ψα0 |Uγ(0,−∞)|Φα〉

Uγ(0,−∞)
∣∣Ψα0

〉

〈Ψα0 |Uγ(0,−∞)|Φα〉 (3.44)

Therefore, the r.h.s. of Eq. (3.43) can be expressed

i~γλ
∂
∂λUγ(0,−∞)|Φα〉
〈Ψα0 |Uγ(0,−∞)|Φα〉 = ∆Eαγ

∣∣Ψαγ
〉

+ iγλ
∂

∂λ

∣∣Ψαγ
〉

where

∆Eαγ = i~γλ
〈Ψα0 | ∂∂λUγ(0,−∞)|Φα〉
〈Ψα0 |Uγ(0,−∞)|Φα〉

and this yields
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(
H0 + V − Eα0 −∆Eαγ

) ∣∣Ψαγ
〉

= i~γλ
∂

∂λ

∣∣Ψαγ
〉

(3.45)

Provided that the perturbation expansion of |Ψαγ 〉 converges, the r.h.s. will
vanish as γ → 0. Then

• the generalized Gell-Mann–Low (GML) relation reads

∣∣Ψα〉 = lim
γ→0

∣∣Ψαγ
〉

= lim
γ→0

Uγ(0,−∞)
∣∣Φα〉

〈Ψα0 |Uγ(0,−∞) |Φα〉 (3.46)

This state vector will satisfy the time-independent Schrödinger equation

(
H0 + V (0)

) ∣∣Ψα〉 = Eα
∣∣Ψα〉 (3.47)

where H0 is the model or independent-particle Hamiltonian (Eq. 2.49) and
V is the perturbation (Eq. 3.16).

This relation is derived in the interaction picture with t = 0, which implies
that it holds also in the Schrödinger picture (SP). The perturbation must be
time-independent in SP, apart from possible damping, as is the case with the
perturbation Eq. (3.17).

The energy eigenvalue corresponding the Gell-Mann–Low state (Eq. 3.46)
becomes

Eα = lim
γ→0

[
Eα0 + i~γλ

〈Ψα0 | ∂∂λUγ(0,−∞)|Φα〉
〈Ψα0 |Uγ(0,−∞)|Φα〉

]
(3.48)

This expression is not very useful for evaluating the energy, since the eigen-
value Eα0 of the parent state is generally not known. The procedure is here
used mainly to demonstrate that the functions satisfy the Schrödinger equa-
tion. Instead we shall derive an expression for the effective Hamiltonian
(Eq. 2.54), which is the natural tool for a multi-level model space.3

In the one-dimensional model space, singularities appear in U for unlinked
terms. In the general multi-dimensional case, singularities can appear also
for linked diagrams that have an intermediate state in the model space. The
remaining diagrams are regular. In addition, so-called quasi-singularities can
appear – i.e., very large, but finite, contributions – when an intermediate
state is quasi-degeneracy with the initial state. All singularities and quasi-
singularities are eliminated in the ratio (Eq. 3.46) – in analogy with the
original Gell-Mann–Low theorem, although in the general case there is a
finite remainder, so-called model-space contribution (MSC). The elimination

3 It should be noted that a necessary condition for the proof of the theorem given here
is that the parent state (Eq. 3.33) is an eigenstate of the model Hamiltonian H0 (see Eq.
3.42). This is in conflict with the statement of Kuo et al. [104], who claim that it is sufficient
that this state has a nonzero overlap with the corresponding target state.
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of these quasi-singularities represent the major advantage of the procedure
using an extended model space. Later we shall see how this procedure can
also be applied in quantum-electrodynamical calculations.



Part II

Quantum-electrodynamics:
One- and two-photon exchange





Chapter 4

S-matrix

In Part I we have considered methods for treating atomic many-body systems
within the standard relativistic MBPT and coupled-cluster schemes, in what
is known as the no-virtual-pair approximation (NVPA). In this second part
we shall include effects beyond this approximation, which we shall refer to
as quantum-electrodynamical (QED) effects. We shall describe three methods
for numerical calculations of QED effects on bound states, developed in the
last few decades, which are all based upon field theory.1

In the present chapter we shall present the most frequently applied scheme
for bound-state QED calculations, namely the S-matrix formulation. In this
chapter we shall also come into contact with the important question of the
choice of gauge. The Maxwell equations are invariant under a certain class of
gauge transformations, as shown in Appendix G. So far, practically all QED
calculations have been performed using what is known as covariant gauges,
particularly the Feynman gauge, where the expressions involved are particu-
larly simple. However, for bound-state problems, where the Coulomb inter-
action often dominates, it would be more advantageous to use the Coulomb
gauge. It has been demonstrated by several authors [1, 191] that it is per-
fectly legitimate use the Coulomb gauge also in QED calculations and that
this leads to results that are renormalizable and completely equivalent to
those obtained using covariant gauges.

In the next chapter we shall consider the Green’s-function method, which
is frequently used in various fields of physics. In Chapter 6 we shall present

1 From now on we shall for simplicity set ~ = 1 but maintain the remaining fundamental
constants. In this way our results will be valid in the relativistic or natural unit system as
well as in the Hartree atomic unit system. They will also be valid in the cgs unit system,
as long as we stay consistently to either the electrostatic or the magnetic version, but they
will NOT be valid in the Gaussian system that is a mixture of the two. With our choice it
will still be possible to perform a meaningful dimensional analysis (see further Appendix
K).

65
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the recently introduced covariant-evolution operator method, which will form
the basis for the unified approach we are developing in the following chapters.

4.1 Definition of the S-matrix. Feynman diagrams

The scattering matrix or S-matrix was introduced by John Wheeler [232]
and Werner Heisenberg in the 1930’s, particularly for studying the scattering
processes between elementary particles. The formalism is not particularly
suited for bound-state problems but has in the last few decades been applied
also to such problems in connection with QED calculations (see, for instance,
the review article by Mohr, Plunien, and Soff [152] for a modern update).

The S-matrix relates the initial state of a particle or system of particles,
Φi = Φ(t = −∞), before the interaction has taken place, to the final state
after the interaction is completed, Φf = Φ(t = +∞),

Φ(t = +∞) = S Φ(t = −∞) (4.1)

We know that the time evolution of the state vector in the interaction picture
is governed by the evolution operator (Eq. 3.6), which leads to the connection

S = U(∞,−∞) (4.2)

This is is assumed to hold also relativistically (see, for instance, Bjorken and
Drell [19]). With the expansion (Eq. 3.26) this becomes

S =
∞∑
n=0

1
n!

(−i
c

)n ∫
dx4

1 . . .

∫
dx4

n T
[H(x1) . . .H(xn)

]
e−γ(|t1|+|t2|...|tn|) (4.3)

Here, x is the four-dimensional coordinate vector x = (ct,x), which explains
the factor of c in the denominator. The S-matrix is—in contrast to the evo-
lution operator for finite times—Lorentz covariant (see footnote in the Intro-
duction), which is manifestly demonstrated by its form given here. We shall
normally assume that the perturbation density is given by the interaction
between the electrons and the electromagnetic radiation field (Eq. 3.17)

H(x) = −ψ̂†(x)ecαµAµ(x)ψ̂(x) (4.4)

The S-matrix can conveniently be represented by so called Feynman di-
agrams. Feynman has in his famous papers from 1949 [64, 63] developed
a set of rules for evaluating the S-matrix for various elementary processes
(see Appendix H), and this has formed the basis for much of the develop-
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ments that followed in quantum-electrodynamics and field theory in general
(see, for instance, the books by Mandl and Shaw [136, ch. 7] and Peskin and
Schroeder [183]). This has also formed the basis for the diagrammatic repre-
sentation of many-body perturbation theory (MBPT), discussed earlier [118].

In order to represent the S-matrix by means of Feynman diagrams, this
has to be transformed into normal order, which can be performed by means
of Wick’s theorem (see section 2.2). This leads to all possible (zero, single,
double ...) contractions between the perturbations H and to diagrams of the
type shown in Fig. 2.9. (Details of this process are found in standard text
books, e.g., Fetter and Walecka [62] or Lindgren-Morrison [118].) Below we
shall illustrate this by a few simple examples.

Even if the S-matrix formulation was initially set up for scattering prob-
lems, we shall here be mainly concerned with applications to bound-state
problems. Since the final time of the scattering process is t = +∞, we
can not directly apply the Gell-Mann–Low theorem (Eq. 3.31), (Eq. 3.46).
Sucher [220] has, however, modified the Gell-Mann–Low energy formula so
that it can be applied also to the S-matrix. With the S-matrix expanded in
a perturbation series

S =
∑
n

S(n) (4.5)

the energy shift can be expressed

∆E = lim
γ→0

iγ
2

∑
n〈Φ|S(n)|Φ〉
〈Φ|S|Φ〉 (4.6)

This energy formula can also be applied to a degenerate multi-state model
space—but not in the case of quasi-degeneracy, when there are several dis-
tinct energy levels within the model space. Furthermore, in the S-matrix
formulation no information can be derived for the corresponding change of
the state vector or wave function. For these reasons the S-matrix formulation
is not suited as a basis for a unification with many-body perturbation theory
that is our main concern in this book. We shall return to this problem in
later chapters.

Before we consider some physical processes, we shall define two very im-
portant concepts, namely the Feynman electron and photon propagators that
will be frequently used in the following.
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4.2 Electron propagator

The contraction between two electron-field operators is defined as the differ-
ence between the time and normal orderings (see section 2.2)

ψ̂(x1)ψ̂†(x2) = T
[
ψ̂(x1)ψ̂†(x2)

]−N[ψ̂(x1)ψ̂†(x2)
]

(4.7)

Since the vacuum expectation value vanishes for every normal-ordered prod-
uct, it follows that the contraction is equal to the vacuum expectation of the
time-ordered product 2

ψ̂(x1)ψ̂†(x2) =
〈
0
∣∣T [ψ̂(x1)ψ̂†(x2)

]∣∣0〉

=
〈
0
∣∣Θ(t1 − t2) ψ̂(x1)ψ̂†(x2)−Θ(t2 − t1) ψ̂†(x2)ψ̂(x1)

∣∣0〉 (4.8)

considering that the electron fields operators are fermions that anticommute.
Θ is the Heaviside step function (Appendix A, Eq. A.29).

• The Feynman electron propagator is defined (see Fig. 4.1) 3

ψ̂(x1)ψ̂†(x2) =
〈
0
∣∣T [ψ̂(x1)ψ̂†(x2)

]∣∣0〉 =: iSF(x1, x2) (4.9)

6ω r
r
6

2

1

iSF(x1, x2)

Fig. 4.1 Graphical representation of the (bound-state) electron propagator. (As before, we
shall let thick vertical lines represent electron propagators in the bound-state representation
(Furry picture) and thin lines in the free-electron representation.

2 In field theory the vacuum state is normally the ”true” vacuum with no (positive-energy)
particles or photons present. In the Dirac picture this implies that the negative-energy
states or ”hole” states of the ”Dirac sea” are filled. In many-body applications without
reference to field theory, the ”vacuum” is normally a closed-shell state related to the system
(finite or infinite) under study, obtained for instance by removing the valence or open-shell
single-electron states. Single-electron states present in this vacuum state are referred to as
hole states and those not present as virtual or particle states. In our unified approach we
shall let hole states include negative-energy (anti-particle) states as well as core states.
3 Note that we define here the electron propagator, using ψ̂† rather than

¯̂
ψ = ψ̂†β, which

is more frequently used. We find the present definition more convenient in working with
the combination of QED and MBPT.
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Separating the field operators into particle (p) and hole (h) parts, ψ̂ = ψ̂+ + ψ̂−,
above and below the Fermi surface, respectively, it follows that the expression
(Eq. 4.8) is identical to
〈
0
∣∣Θ(t1 − t2) ψ̂+(x1)ψ̂†+(x2)−Θ(t2 − t1) ψ̂†−(x2)ψ̂−(x1)

∣∣0〉

= Θ(t1 − t2)φp(x1)φ†p(x2) e−εp(t1−t2) −Θ(t2 − t1)φ†h(x2)φh(x1) e−εh(t1−t2)

using the time dependence of the field operators in IP in App. B (Eq. B.28).
As will be demonstrated below,

• the electron propagator can be expressed as a complex integral

SF(x1, x2) =
∫

dω
2π

φj(x1)φ†j(x2)
ω − εj + iη sgn(εj)

e−iω(t1−t2) (4.10)

where η is a small, positive number.

-

6

-

		

x x x x
x x x x

ω

Fig. 4.2 Complex integration of the electron propagator Eq. (4.10).

In order to verify the integral formula (Eq. 4.10), we first consider the
case t1 > t2. Here, the integrand vanishes exponentially as ω → −i∞, and
we then integrate over the negative half-plane, as illustrated in Fig. 4.2. Here,
the poles appear at ω = εj when this is positive. The contribution to the in-
tegral from this pole is −2πi times the pole value—with the minus sign due
to the negative (clockwise) integration—or −iφj(x1)φ†j(x2) e−iεj(t1−t2). Sim-
ilarly, when t1 < t2, we integrate over the positive half plane with the result
+iφj(x1)φ†j(x2) e−iεj(t1−t2), when εj is negative. It then follows that iSF, as
defined by the integral, is identical to the time-ordered vacuum expectation
(Eq. 4.8).

• The Fourier transform of the electron propagator with respect to
time is
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SF(ω;x1,x2) =
φj(x1)φ∗j (x2)

ω − εj + iη sgn(εj)
(4.11)

which can be regarded as the coordinate representation (see Appendix C)

SF(ω;x1,x2) = 〈x1|ŜF(ω)|x2〉 =
〈x1|j〉 〈j|x2〉

ω − εj + iη sgn(εj)
(4.12)

of the operator 4

ŜF(ω) =
|j〉 〈j|

ω − εj (1− iη)
(4.13)

Using the relation in Appendix (Eq. D.49), this can also be expressed

ŜF(ω) =
1

ω − ĥD (1− iη)
(4.14)

where ĥD is the Dirac hamiltonian operator (see Appendix D).

The contraction has so far been defined only for t1 6= t2. For the bound-
state problem it is necessary to consider also equal-time contractions. We
then define the time-ordering for equal time as

T
[
ψ(x1)ψ†(x2)

]
=

1
2
[
ψ(x1)ψ†(x2)− ψ†(x2)ψ(x1)

]
(t1 = t2) (4.15)

In this case we have

ψ(x1)ψ†(x2) =
〈
0
∣∣T [ψ(x1)ψ†(x2)

]∣∣ 0〉 =
1
2
〈
0
∣∣ψ(x1)ψ†(x2)− ψ†(x2)ψ(x1)

∣∣ 0〉

=
1
2

∑
p

φp(x1)φ†p(x2)− 1
2

∑

h

φh(x1)φ†h(x2) =
1
2

∑

j

sgn(εj)φj(x2)φ†j(x1)

where j as before runs over particles and holes. This can still be expressed
by the integral above, as can be seen from the relation

1
εj − z − iη sgn(εj)

=
εj − z

(εj − z)2 + η2
+

iη sgn(εj)
(εj − z)2 + η2

= P
1

εj − z + iπ sgn(εj) δ(εj − z) (4.16)

P stands for the principal-value integration, which does not contribute here.
Therefore, the electron-propagator expression (Eq. 4.10) is valid also for equal
times.
4 As stated before, we use the ’hat’ symbol to emphasize that the quantity is an operator.
In cases where this is obvious, the hat will normally be omitted.
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4.3 Photon propagator

The exchange of a single photon between the electrons corresponds to a con-
traction (Eq. 2.29) of two photon-field operators (Eq. 3.18), defined as in the
electron-field case (Eq. 4.7),

Aµ(x1)Aν(x2) =
〈
0
∣∣T [Aµ(x1)Aν(x2)

]∣∣0〉

=
〈
0
∣∣Θ(t1 − t2)Aµ(x1)Aν(x2) +Θ(t2 − t1)Aν(x2)Aµ(x1)

∣∣0〉 (4.17)

(the photon-field operators commute in contrast to the electron-field opera-
tors), and in analogy with the electron propagator we have

• the Feynman photon propagator is defined (see Fig. 4.3)

Aµ(x1)Aν(x2) =
〈
0
∣∣T [Aµ(x1)Aν(x2)

]∣∣0〉 =: iDFµν(x1, x2) (4.18)

We shall also sometimes for convenience use the short-hand notation

DF(x1, x2) = αµανDFµν(x1, x2) (4.19)

using the summation convention.

With Aµ = A+
µ +A−µ we see that Eq. (4.17) is identical to

〈
0
∣∣∣Θ(t1 − t2)

[
A+
µ (x1), A−ν (x2)

]
+Θ(t2 − t1)

[
A+
ν (x2), A−µ (x1)

]∣∣∣0
〉

where the square bracket with a comma between the operators represents
the commutator (Eq. 2.12) and noting that the photon-field operators do
commute.

Before evaluating the photon propagator we have to make a choice of gauge
(see Appendix G.2). In so-called covariant gauges the field components are
related by a Lorentz transformation. Most commonly used of the covariant
gauges is the Feynman gauge, because of its simplicity. In our work with com-
bined QED and electron correlation, however, it will be necessary to use the
non-covariant Coulomb gauge in order to take advantage of the devel-
opment in standard many-body perturbation theory. We shall demonstrate
that this is quite feasible, although not always straightforward.
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Feynman gauge

In the Feynman gauge we have, using the commutation rule in Appendix G
(Eq. G.11),

[
A+
µ (x1), A−ν (x2)

]
=

1
2ε0ωV

εµrενr′ [akr, a
†
k′r′ ] e−i(kx1−k′x2)

= − 1
2ε0ωV

gµν δk,k′δr,r′ e−ik(x1−x2)

With kx1 = k0x10 − k ·x1 and k′x2 = k′0x20 − k′ ·x2 (x0 = ct, ω = ck0) this
yields for the vacuum expectation in Eq. (4.18)
〈
0
∣∣T [Aµ(x1)Aν(x2)

]∣∣0〉

= − 1
2ε0ck0V

gµν

[
Θ(t1 − t2) e−ik(x1−x2) +Θ(t2 − t1) eik(x1−x2)

]

= −gµν
∑

k

1
2ε0ck0V

eik·r12
[
Θ(t1 − t2) e−ik0(x10−x20) +Θ(t2 − t1) eik0(x10−x20)

]
(4.20)

with r12 = x1 − x2. The sign of the exponent k · r12 is immaterial.

-
zt t1,µ ν,2 iDFνµ(x2, x1)

Fig. 4.3 Graphical representation of the photon propagator.

The expression in the square brackets of Eq. (4.20) can as in analogy with
Eq. (4.10) be written as a complex integral

Θ(t1 − t2) e−ik0(x10−x20) +Θ(t2 − t1) eik0(x10−x20) = 2ik0

∫ ∞
−∞

dq
2π

e−iq(x10−x20)

q2 − k2
0 + iη

(4.21)

Thus (see Appendix, section D.2),

〈
0
∣∣T [Aµ(x1)Aν(x2)

]∣∣0〉 = −igµν
1

ε0cV

∑

k

eik·r12

∫ ∞
−∞

dq
2π

e−iq(x10−x20)

q2 − k2 + iη

→ −igµν
1
cε0

∫
d3k

(2π)3
eik·r12

∫ ∞
−∞

dq
2π

e−iq(x10−x20)

q2 − k2 + iη
(4.22)

with k0 = |k|, and the photon propagator (Eq. 4.18) becomes in the Feynman
gauge (c.f Appendix Eq. F.62)
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DF
Fµν(x1, x2) = −gµν

cε0

∫
d3k

(2π)3
eik·r12

∫ ∞
−∞

dq
2π

e−iq(x10−x20)

q2 − k2 + iη

= −gµν
ε0

∫
d3k

(2π)3
eik·r12

∫ ∞
−∞

dz
2π

e−iz(t1−t2)

z2 − c2k2 + iη
(4.23)

where z = cq is the energy parameter. It then follows that

• the Fourier transform of the photon propagator with respect to
x0 = ct becomes in Feynman gauge

DF
Fµν(q;x1,x2) = −gµν

ε0

∫
d3k

(2π)3

eik·r12

q2 − k2 + iη
(4.24)

and the inverse transformation becomes

DF
Fµν(x1, x2) =

∫
dq
2π

DF
Fµν(q;x1,x2) e−iq(x10−x20) (4.25)

After integration over the angular part (see Appendix J) this becomes

DF
Fµν(q;x1,x2) = − gµν

4π2cε0r12

∫ ∞
0

2κ dκ sinκr12

q2 − κ2 + iη
(4.26)

where κ = |k| and q = k0 is now decoupled from |k|.5 Fourier transforming
Eq. (4.25) with respect to space, yields

DF
Fµν(q;k) = −gµν

cε0

1
q2 − κ2 + iη

(4.27)

or in covariant notation

DF
Fµν(k) = −gµν

cε0

1
k2 + iη

(4.28)

where k is the four-dimensional momentum vector, k2 = k2
0 − k2.

The Fourier transforms with respect to time are similarly

DF
Fµν(z;x1,x2) = −gµν

ε0

∫
d3k

(2π)3

eik·r12

q2 − k2 + iη

= − gµν
4π2ε0r12

∫ ∞
0

2κ dκ sinκr12

z2 − c2κ2 + iη
(4.29)

5 In some literature |k| is denoted by k, but here we introduce a new notation (κ), reserving
k for the four-dimensional vector, in order to avoid confusion.
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DF
Fµν(z;k) = −gµν

ε0

1
z2 − c2κ2 + iη

(4.30)

which differ from the previous transforms with respect to momentum (Eq. 4.26),
(Eq. 4.27) by a factor of c (see Appendix K.2). z = cq is the energy parame-
ter. The inverse transformation is here

DF
Fµν(x1, x2) =

∫
dz
2π

DF
Fµν(z;x1,x2) e−iz(t1−t2) (4.31)

Coulomb gauge

Above we have found an expression for the photon propagator in the Feynman
gauge, and by means of the formulas for gauge transformation in Appendix
G.2 we can derive the corresponding expressions in other gauges.

In the Coulomb gauge (Eq. G.19) the scalar part (µν = 00) of the photon
propagator is

DC
F00(k) =

1
cε0k

2 (4.32)

Transforming back to 4-dimensional space yields according to Eq. (4.23)

DC
F00(x1, x2) =

1
cε0

∫
d3k

(2π)3

eik·r12

k2

∫
dk0

2π
e−ik0(x01−x02)

=
1

4π2cε0r12

∫ ∞
0

2κ dκ sinκr12

κ2

∫
dk0

2π
e−ik0(x01−x02)

using the relation (Eq. J.17). With x0 = ct and z = ck0 this can be expressed

DC
F00(x1, x2) =

VC

e2c2

∫
dz
2π

e−iz(t1−t2 (4.33)

where VC is the Coulomb interaction (Eq. 2.109). With the damping factor
the integral tends to a delta function (Eq. A.15)

DC
F00(x1, x2)⇒ VC

e2c2
δ(t1 − t2) (4.34)

but we shall normally use the more explicit expression (Eq. 4.33).

From the relation (Eq. 4.33) we find that the Fourier transform with re-
spect to time becomes
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DC
F00(z;x1,x2) =

1
4π2c2ε0r12

∫ ∞
0

2κ dκ sinκr12

κ2
=

VC

e2c2
(4.35)

The vector part of the propagator is according to Eq. (G.19) (q = k0)

DC
Fij(k) = − 1

cε0(k2 + iη)

(
gij +

kikj

k2

)
(4.36)

and transforming back to 3-dimensional space yields

DC
Fij(q;x1,x2) = − 1

cε0

∫
d3k

(2π)3

eik·r12

q2 − k2 + iη

(
gij +

kikj

k2

)

= − 1
cε0

∫ ∞
0

2κ dκ sinκr12

q2 − κ2 + iη

(
gij +

kikj

k2

)

= cDC
Fij(z;x1,x2) (z = cq) (4.37)

4.4 Single-photon exchange

We consider now the exchange of a single photon between the electrons,
represented by the Feynman diagram in Fig. 4.4 (left). We start with a general
covariant gauge, like the Feynman gauge, and consider then the non-covariant
Coulomb gauge.

Covariant gauge

6c 6d

6a

-z = cqs s1 µ 2 ν

6b

=
6 6

6

-r r
6

+
6 6

6

- rr
6

Fig. 4.4 The Feynman representation of the exchange of a single, virtual photon between
two electrons. This contains two time-orderings.

The second-order S-matrix (Eq. 4.3) is given by
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S(2) =
1
2

(−i
c

)2
∫∫

d4x2 d4x1 T
[H(x2)H(x1)

]
e−γ(|t1|+|t2|) (4.38)

With the interaction density (Eq. 4.4) this becomes

S(2) =
(ie)2

2

∫∫
d4x2 d4x1 T

[(
ψ†(x)ανAν(x)ψ(x)

)
2

(
ψ†(x)αµAµ(x)ψ(x)

)
1

]
e−γ(|t1|+|t2|) (4.39)

where the contraction between the radiation-field operators yields the photon
propagator, iDFµν (Eq. 4.18), or with the short-hand notation (Eq. 4.19),

S(2) =
(ie)2

2

∫∫
d4x2 d4x1 ψ

†(x1)ψ†(x2) iDF(x2, x1)ψ(x2)ψ(x1) e−γ(|t1|+|t2|) (4.40)

Identification with the second-quantized form (see Appendix B)

S(2) = 1
2 c
†
cc
†
d

〈
cd
∣∣S(2)

∣∣ab〉 cbca (4.41)

yields a particular matrix element of the S(2) matrix

〈
cd
∣∣S(2)

∣∣ab〉 = −
∫∫

d4x2 d4x1 φ
†
c(x1)φ†d(x2) ie2DF(x2, x1)

× φb(x2)φa(x1) e−γ(|t1|+|t2|) =
∫

dz
2π
〈
cd
∣∣− ie2DF(z,x2,x1)

∣∣ab〉

×
∫∫

c2dt1dt2 e−it1(εa−εc−z) e−it2(εb−εd+z) e−γ(|t1|+|t2|) (4.42)

using the Fourier transform (Eq. 4.31). After performing the time integrations
(Eq. A.14)

〈
cd
∣∣S(2)

∣∣ab〉 =
∫

dz
2π
〈
cd
∣∣− ie2c2DF(z,x2,x1)

∣∣ab〉

× 2π∆γ(εa − z − εc) 2π∆γ(εb + z − εd) (4.43)

• We introduce the single-photon interaction

I(x1, x2) = Vsp(x1, x2) = e2c2αµ1α
ν
2DFµν(x1, x2) = e2c2DF(x1, x2)

(4.44)
with the Fourier transform with respect to time

I(z;x1,x2) = e2c2αµ1α
ν
2DFµν(z;x1,x2) = e2c2DF(z;x1,x2) (4.45)

which has the form of an energy potential. We shall generally express the
Fourier transform of the interaction with respect to time as
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I(z;x1,x2) = e2c2αµ1α
ν
2DFµν(z;x1,x2) =

∫
2c2κ dκ f(κ,x1,x2)
z2 − c2κ2 + iη

(4.46)

where f(κ,x1,x2) is a gauge-dependent function. This transform, as well
as the function f(κ,x1,x2), has the dimension of energy (or s−1 with our
convention with ~ = 1).6

With the notation above the S-matrix element (Eq. 4.43) becomes

〈
cd
∣∣S(2)

∣∣ab〉 =
∫

dz
2π
〈
cd
∣∣− iI(z)

∣∣ab〉 2π∆γ(εa − z − εc) 2π∆γ(εb + z − εd) (4.47)

In Appendix A.3 it is shown that
∫

dz
2π

2π∆γ(a− z) 2π∆γ(b− z) 1
z2 − c2κ2 + iη

= 2π∆2γ(a− b) 1
z2 − c2κ2 + iγ

(4.48)

where we observe that the infinitesimally small quantity η, appearing in the
propagators to indicate the position of the poles, is replaced by the adiabatic
damping parameter, γ, which is a finite quantity (that eventually tends to
zero). This gives

〈
cd
∣∣S(2)

∣∣ab〉 = 2π∆2γ(εa + εb − εc − εd)
〈
cd
∣∣∣− iI(z)

∣∣∣ab
〉

(4.49)

with z = cq = εa − εc. This can also be expressed
〈
cd
∣∣S(2)

∣∣ab〉⇒ 2π∆2γ(Ein − Eout)
〈
cd
∣∣− iI(z)

∣∣ab〉 (4.50)

where Ein and Eout are the incoming and outgoing energies, respectively.
Using the Sucher energy formula (Eq. 4.6) and the relation (Eq. A.17)

lim
γ→0

2πγ∆2γ(x) = δx,0 (4.51)

the corresponding energy shift becomes

∆E(1) = δEin,Eout

〈
cd
∣∣I(z)

∣∣ab〉 (4.52)

Assuming that Φout = Φin = Φ is the antisymmetrized state

|Φ〉 = |{ab}〉 =
1√
2

[|ab〉 − |ba〉]

6 The constants of the expressions can be conveniently checked by dimensional analysis
(see Appendix K.2).
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the first-order energy shift becomes

∆E = 〈Φ|I(z)|Φ〉 = 〈ab|I(z)|ab〉 − 〈ba|I(z)|ab〉 (4.53)

which is consistent with the interpretation of the interaction I(z) as an equiv-
alent energy-dependent perturbing potential.

We have seen here that the time integration – in the limit γ → 0 – leads
to

• energy conservation at each vertex with the propagator energy
parameters treated as energies.

Due to the energy conservation of the scattering process, only diagonal
(”on-the-energy-shell”) matrix elements are obtained from the analysis of
the S-matrix. Therefore, the technique cannot be used for studying quasi-
degenerate states by means of the extended-model-space technique (see sec-
tion 2.3). Off-diagonal elements needed for this approach can be evaluated
using the covariant-evolution operator technique, demonstrated in Chapter
6.

Feynman gauge

With the expression (Eq. 4.29) of the photon propagator in Feynman gauge
the corresponding interaction (Eq. 4.45) becomes (z = cq)

IF(z;x1,x2) = − e2

4π2ε0r12
αµ1α2µ

∫
2κdκ sinκr12

q2 − κ2 + iη
(4.54)

The corresponding f function in Eq. (4.46) then becomes

fF(κ,x1,x2) = − e2

4π2ε0
αµ1α2µ

sinκr12

r12
= − e2

4π2ε0
(1−α1 ·α2)

sinκr12

r12

(4.55)

Evaluating the integral in Eq. (4.54), using the result in Appendix J, we
obtain

IF(z;x1,x2) =
e2

4πε0r12
(1−α1 ·α2) ei|z|r12/c (4.56)

which agrees with the semiclassical potential (Appendix F.73).
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Non-covariant Coulomb gauge

In the Coulomb gauge we separate the interaction into the instantaneous
Coulomb part and the time-dependent transverse (Breit) part,

IC = IC
C + IC

T (4.57)

The transverse part of the interaction can be treated in analogy with the
covariant gauges. According to Eq. (4.44) we have

IC
T (x1, x2) = e2c2αi1α

j
2D

C
Fij(x1, x2) (4.58)

which with Eq. (4.37) yields

IC
T (z;x1,x2) =

e2

ε0

∫
d3k

(2π)3

(
α1 ·α2 − (α1 · k) (α2 · k)

k2

) eik·r12

q2 − k2 + iη

=
e2

ε0

∫
d3k

(2π)3

(
α1 ·α2 − (α1 · ∇1) (α2 · ∇2)

k2

) eik·r12

q2 − k2 + iη

=
e2

4π2ε0r12

∫
2κ dκ sinκr12

q2 − κ2 + iη

(
α1 ·α2 − (α1 · ∇1) (α2 · ∇2)

κ2

)
(4.59)

and the corresponding f function becomes (Eq. 4.46)

fC
T (κ,x1,x2) =

e2

4π2ε0

sin(κr12)
r12

[
α1 · α2 − (α1 · ∇1) (α2 · ∇2

κ2

]
(4.60)

Performing the κ integration in Eq. (4.59), using the integrals in Appendix
J, yields for the transverse (Breit) part

IC
T (z;x1,x2) = − e2

4πε0

[
α1 ·α2

ei|q|r12

r12
− (α1 · ∇1)(α2 · ∇2)

ei|q|r12 − 1
q2 r12

]
(4.61)

This agrees with the semi-classical result obtained in Appendix F.2 (Eq. F.54).

The instantaneous Breit interaction is obtained by letting q ⇒ 0,

IBreit = BInst
12 = − e2

4πε0 r12

[
1
2 α1 ·α2 +

(α1 · r12)(α1 · r12)
2r12

]
(4.62)

which is the interaction in the Dirac-Coulomb-Breit approximation (NVPA)
(Eq. 2.112) and agrees with the expression derived in Appendix F (Eq. F.55).

The (instantaneous) Coulomb part of the interaction becomes, using the
relations Eq. (4.33) and Eq. (4.35),
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IC
C (x1, x2) =

e2

4π2ε0r12

∫
2κdκ sinκr12

κ2

∫
dz
2π

e−iz(t1−t2) = VC

∫
dz
2π

e−iz(t1−t2)

(4.63a)

IC
C (z;x1,x2) =

e2

4π2ε0r12

∫
2κ dκ sinκr12

κ2
= VC (4.63b)

This leads to, using Eq. (4.43),

6c 6d

6a

V12s s1 2

6b

6c 6d

6a

r r r r r rB121 2

6b

Fig. 4.5 Instantaneous Coulomb and Breit interactions between the electrons.

〈
cd
∣∣S(2)

∣∣ab〉 =
∫

dz
2π
〈
cd
∣∣− iVC

∣∣ab〉

× 2π∆γ(εa − z − εc) 2π∆γ(εb + z − εd)

and in analogy with Eq. (4.49)
〈
cd
∣∣S(2)

∣∣ab〉 =
〈
cd
∣∣− iVC

∣∣ab〉∆2γ(εa + εb − εc − εd)

The Sucher energy formula (Eq. 4.6) then gives the expected result for the
first-order energy shift

∆E(1) = δEin,Eout 〈cd|VC|ab〉 (4.64)

where, as before, Ein = εa + εb is the initial and Eout = εc + εd is the final
energy. Again this demonstrates that the interaction (Eq. 4.45) represents
an equivalent interaction potential and that the energy is conserved for the
S-matrix.

Single-particle potential

Finally, we consider in this subsection the simple case of an interaction be-
tween a single electron and a time-independent external field, Aµ(x) (Fig.
4.6). Here, the scattering amplitude becomes from Eq. (4.3) with the inter-
action density (Eq. 4.4)
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6b

6a

x r
Fig. 4.6 Diagrammatic representation of the interaction between an electron and an ex-
ternal field. The heavy lines represent electronic states in the bound-interaction picture.

S(1) = ie
∫

d4x ψ̂†(x)αµAµ(x) ψ̂(x) e−γ|t| (4.65)

with Aµ = (φ/c,−A) according to Eq. (F.6) in App. F. In analogy with the
previous cases this yields (dx0 = cdt)

〈b|S(1)|a〉 = iec〈b|αµAµ|a〉 2π∆γ(εa − εb) (4.66)

We consider a scalar energy potential, V (x) = −eφ(x) and A0 = −V/ec,
which with is given by and the S-matrix element then becomes

〈b|S(1)|a〉 = 2π∆γ(εa − εb) 〈b| − iV |a〉 (4.67)

The Sucher energy formula (Eq. 4.6) then yields the expected result

∆E(1) = δεa,εb 〈b|V |a〉 (4.68)

4.5 Two-photon exchange

Two-photon ladder

We consider next the exchange of two uncrossed photons in a covariant gauge,
like the Feynman gauge, illustrated in Fig. 4.7 (left). Again, this is a Feynman
diagram, which contains all relative time orderings of the times involved, still
with the photons uncrossed.

As before, we consider first this problem using a general covariant gauge ,
like the Feynman gauge, and then we shall consider the Coulomb gauge, in
particular.

In analogy with the single-photon exchange, the S-matrix becomes
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6c 6d
-z
′s s3 4

6t ω1 6ω2 u
-zs s1 2

6a 6b
E0

6c 6ds s3 4
VC

6t ω1 6ω2 u
-zs s1 2

6a 6b
E0

Fig. 4.7 The Feynman representation of the two-photon exchange. The left diagram rep-
resents a Coulomb and a transverse photon interaction in Coulomb gaoge.

S(4) =
(ie)4

4!

∫∫∫∫
d4x1d4x2d4x3d4x4 ψ̂

†(x3)ψ̂†(x4) iDF(x4, x3)

× iSF(x3, x1) iSF(x4, x2) iDF(x2, x1)ψ̂(x2)ψ̂(x1) e−γ(|t1|+|t2|+|t3|+|t4|) (4.69)

where DF is defined in Eq. (4.19).

The vertices can here be permuted in 4! ways, and this leads to pairwise
identical diagrams, related only by a reflection in a vertical plane. The 12 pairs
represent equivalent but distinct terms in the expansion, and by considering
only one of them, we have

S(4) =
(ie)4

2

∫∫∫∫
d4x1d4x2d4x3d4x4 ψ̂

†(x3)ψ̂†(x4) iDF(x4, x3)

× iSF(x3, x1) iSF(x4, x2) iDF(x2, x1)ψ̂(x2)ψ̂(x1) e−γ(|t1|+|t2|+|t3|+|t4|) (4.70)

Identifying with the second-quantized expression and performing the time
integrations as in the single-photon case (Eq. 4.43), using the interaction
(Eq. 4.44), the matrix elements becomes 7

〈cd|S(4)|ab〉 =
∫∫

dz
2π

dz′

2π

∫∫
dω1

2π
dω2

2π
× 〈cd

∣∣(−i)I(z′;x4,x3) iSF(ω1;x3,x1) iSF(ω2;x4,x2) (−i)I(z;x2,x1)
∣∣ab〉

× 2π∆γ(εa − z − ω1) 2π∆γ(εb + z − ω2) 2π∆γ(ω1 − z′ − εc) 2π∆γ(ω2 + z′ − εd)

Integrations over ω1, ω2 then yield

7 We have here an illustration of the general rules for setting up the S-matrix, given in
Appendix H, that there is (i) factor iSF for each electron propagator, (ii) a factor −iI for
each single-photon exchange and (iii) a ∆ factor for each vertex.
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〈cd|S(4)|ab〉 =
∫∫

dz
2π

dz′

2π
〈
cd
∣∣(−i)I(z′;x4,x3) iSF(εa − z;x3,x1)

× iSF(εb + z;x4,x2) (−i)I(z;x2,x1)
∣∣ab〉

× 2π∆2γ(εa − εc − z − z′) 2π∆2γ(εb − εd + z + z′) (4.71)

(As shown before, the η parameter in the electron propagators should here
be replaced by the adiabatic damping parameter γ.) After integration over
z′ we have

〈cd|S(4)|ab〉 =
∫

dz
2π
〈
cd
∣∣(−i)I(εa − εc − z;x3,x4)iSF(εa − z;x3,x1)

×iSF(εb + z;x4,x2) (−i)I(z;x2,x1)
∣∣ab〉 2π∆4γ(εa + εb − εc − εd) (4.72)

To evaluate this integral is straightforward but rather tedious, and we shall
not perform this here (see, for instance, ref. [120]).

Next, we shall consider the special case, where we have one instantaneous
Coulomb interaction and one transverse-photon interaction (Fig. 4.7, right),
using the Coulomb gauge .

Separating the interaction according to Eq. (4.57), we now have

〈cd|S(4)|ab〉 =
∫

dz
2π
〈
cd
∣∣(−i)IC

C (z;x4,x3) iSF(εa − z;x3,x1)

× iSF(εb + z;x4,x2) (−i)IC
T (z;x2,x1)

∣∣ab〉

× 2π∆2γ(εa − εc − z) 2π∆4γ(εa + εb − εc − εd) (4.73)

Inserting the expressions for the electron propagators (Eq. 4.10) and the in-
teraction (Eq. 4.46), this yields

〈cd|S(4)|ab〉 =
〈
cd
∣∣∣VC

∫
dz
2π

|t〉〈t|
εa − z − εt + iγt

|u〉〈u|
εb + z − εu + iγu

×
∫

2κ c2dκ fC
T (κ)

z2 − c2κ2 + iη

∣∣∣ab
〉

2π∆4γ(εa + εb − εc − εd) (4.74)

where VC is the Coulomb interaction fC
T (Eq. 4.63b) and fC

T is given by
Eq. (4.60). The products of the propagators can be expressed

1
εa − z − εt + iγt

1
εb + z − εu + iγu

=
1

E0 − εt − εu
[ 1
εa − z − εt + iγt

+
1

εb + z − εu + iγu

]
(4.75)

with E0 = εa + εb. The poles are here at z = εa − εt + iγt, z = εu − εb − iγu
and z = ±(cκ − iη). Integrating the first term over the negative half plane
(z = cκ− iη) and the second term over the positive half plane (z = −cκ+iη),
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yields 8

〈cd|S(4)|ab〉 =

−i
〈
cd
∣∣∣VC

|tu〉〈tu|
E0 − εt − εu VT

∣∣∣ab
〉

2π∆4γ(E0 − Eout) (4.76)

where

〈tu|VT|ab〉 =
〈
tu
∣∣∣
∫
cdk fC

T (κ)

×
[ 1
εa − εt − (cκ− iγ)t

+
1

εb − εu − (cκ− iγ)u

]∣∣∣ab
〉

(4.77)

is the transverse-photon potential . The corresponding energy shift be-
comes in analogy with the single-photon case (Eq. 4.53)

∆E =
〈
Φ
∣∣∣VC

|tu〉〈tu|
E0 − εt − εu VT

∣∣∣Φ
〉

(4.78)

This holds when particle as well as hole states are involved.

In principle, the adiabatic damping has to be switched off simultaneously
at all vertices. If the intermediate state is not degenerate with the initial
state, the damping can be switched off at each vertex independently, which
leads to energy conservation at each vertex, using the orbital energies of the
free lines and the energy parameters of the propagators. The degenerate case,
which leads to what is referred to as the reference-state contribution, is more
complicated to handle [24, 120], and we shall not consider that further here.
This kind of contribution is easier to evaluate in the covariant-evolution-
operator formalism that we shall consider in Chapter 6.

Two-photon cross

For two crossed photons (Fig. 4.8) the S-matrix becomes

〈cd|S(4)|ab〉 =
∫∫

dz
2π

dz′

2π

∫∫
dω1

2π
dω2

2π
× 〈cd∣∣(−i)I(z′;x4,x3) iSF(ω1;x4,x1) iSF(ω2;x2,x3) (−i)I(z;x2,x1)

∣∣ab〉

× 2π∆γ(εa − z − ω1) 2π∆γ(εb − z′ − ω2) 2π∆γ(ω1 + z′ − εc) 2π∆γ(ω2 + z − εd)

Integrations over ω1, ω2 yield

8 This is an illustration of the rule given in Appendix H that there is a factor of −i for
each ”non-trivial” integration, not involving a ∆ factor.
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Fig. 4.8 The Feynman representation of the two-photon cross.

〈cd|S(4)|ab〉 =
∫∫

dz
2π

dz′

2π
〈
cd
∣∣(−i)I(z′;x4,x3) iSF(εa − z;x4,x1)

× iSF(εb − z′;x2,x3) (−i)I(z;x2,x1)
∣∣ab〉

× 2π∆2γ(εa − εc − z + z′) 2π∆2γ(εb − εd + z − z′) (4.79)

Again, we consider the simpler case with one Coulomb and one transverse
interaction (Fig. 4.8, right), using the Coulomb gauge. Then the diagonal
element becomes

〈ab|S(4)|ab〉 =
〈
ab
∣∣∣VC

∫
dz
2π

|t〉〈t|
εa − z − εt + iγt

|u〉〈u|
εd − z − εu + iγu

×
∫

2c2κ dκ fC
T (κ)

z2 − c2κ2 + iη

∣∣∣ab
〉

2π∆4γ(0) (4.80)

using the fact that εa + εb = εc + εd. Integration over z leads in analogy with
Eq. (4.77) to

〈ab|S(4)|ab〉 = −i
〈
ab
∣∣∣VC

|tu〉〈tu|
εa − εd − εt + εu

V XT

∣∣∣ab
〉

2π∆4γ(0) (4.81)

where V XT is the potential

〈tu|V XT |ab〉 =
〈
tu
∣∣∣
∫
cdκ fC

T (κ)
[ 1
εa − εt − (cκ− iγ)t

− 1
εd − εu − (cκ− iγ)u

]∣∣∣ab
〉

(4.82)

If εt and εu have the same sign, the denominators in the expression (Eq. 4.81)
can be expressed

1
εa − εt − (cκ− iγ)t

1
εd − εu − (cκ− iγ)u

which is in agreement with the evaluation rules for time-ordered diagrams,
derived in Appendix I.
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The two-photon ladder and the two-photon cross have been studied in
great detail by means of the S-matrix technique for the ground-state of he-
liumlike systems by Blundell et al. [24] and by Lindgren et al. [120]. Some
numerical results are given in Chapter 7.

4.6 QED corrections

In this section we shall consider how various first-order QED corrections—
beyond the no-virtual-pair approximation (see section 2.6)—can be evaluated
using the S-matrix formulation. With this formulation only corrections to the
energy can be evaluated. In Chapter 6 we shall demonstrate a way of includ-
ing these effects directly into the wave functions, which makes it possible to
incorporate them into the many-body procedure in a more systematic way.
Some QED effects contain singularities (divergences), which can be handled
by means of regularization and renormalization, as will be discussed in Chap-
ter 12.

Bound-electron self energy

6a

6t ω 6

s
s z

1

2
6b

6b

6a

s s2 1
�t

Fig. 4.9 Diagram representing the first-order bound-electron self energy. The second di-
agram represents the Coulomb part of the self energy in Coulomb gauge.

When the photon is emitted from and absorbed on the same electron, we
have an effect of the electron self energy , illustrated in Fig. 4.9. This forms
the major part of the Lamb shift , discovered experimentally by Lamb and
Retherford in 1947 [111]. This was the starting point for the development of
modern QED (see the book by Schweber [207]). The second most important
part of the Lamb shift is the vacuum polarization, to be treated below.

We treat first the self energy and start with a covariant gauge and then
consider the non-covariant Coulomb gauge.
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Covariant gauge

For the electron self energy (Fig. 4.9) we can set up the expression for the
S-matrix in analogy with the single-photon exchange (Eq. 4.40),

SSE =
(ie)2

2

∫∫
d4x2 d4x1 ψ

†(x2) iSF(x2, x1) iDF(x2, x1)ψ(x1) e−γ(|t1|+|t2|) (4.83)

Considering the equivalent case with 1↔ 2, the matrix element becomes

〈b|SSE|a〉 =
∫∫

dz
2π

dω
2π

〈
b
∣∣∣iSF(ω;x2,x1) (−i)I(z;x2,x1)

∣∣∣a
〉

×2π∆γ(εa − z − ω) 2π∆γ(ω + z − εb) (4.84)

and after integration over ω

〈b|SSE|a〉 = 2π∆2γ(εa − εb)〈b| − iΣ(εa)|a〉

with
Σ(εa) = i

∫
dz
2π

SF(εa − z;x2,x1) I(z;x2,x1) (4.85)

being the self-energy function.

The Sucher energy formula (Eq. 4.6) yields the corresponding energy shift

∆ESE = lim
γ→0

iγ〈b|SSE|a〉 = δεa,εb〈b|Σ(εa)|a〉 (4.86)

using the relation between the Dirac delta function and the Kroenecker delta
factor in Appendix (Eq. A.17).

With the expressions for the electron propagator (Eq. 4.10), the bound-
state self energy becomes

〈a|Σ(εa)|a〉 = i
〈
at
∣∣∣
∫

dz
2π

1
εa − εt − z + iηt

I(z;x2,x1)
∣∣∣ta
〉

= i
〈
at
∣∣∣
∫

dz
2π

1
εa − εt − z + iηt

∫
2c2κdκ f(κ)
z2 − c2κ2 + iη

∣∣∣ta
〉

(4.87)

using the f function defined in Eq. (4.46).

In the Feynman gauge we have

〈a|Σ(εa)|a〉 = i
〈
at
∣∣∣
∫

dz
2π

1
εa − εt − z + iηt

∫
2c2κ dκ fF(κ)
z2 − c2κ2 + iη

∣∣∣ta
〉

(4.88)

where fF is given by Eq. (4.55). Performing the z integration, yields
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〈a|Σ(εa)|a〉 =
〈
at
∣∣∣
∫

cdκfF(κ)
εa − εt − (cκ− iη)t

∣∣∣ta
〉

(4.89)

and

〈a|Σ(εa)|a〉 = − e2

4π2ε0

〈
at
∣∣∣α

µ
1α2µ

r12

∫
cdκ sinκr12

εa − εt − (cκ− iη)t

∣∣∣ta
〉

(4.90)

Coulomb gauge

In the Coulomb gauge the transverse part can be treated in analogy with
the covariant gauge Eq. (4.89)

〈a|Σ(εa)|a〉Trans =
〈
at
∣∣∣
∫

cdκfC
T (κ)

εa − εt − (cκ− iη)t

∣∣∣ta
〉

(4.91)

or with Eq. (4.60)

〈a|Σ(εa)|a〉Trans =
e2

4π2ε0

〈
at
∣∣∣ 1
r12

∫
cdκ sinκr12

εa − εt − (cκ− iη)t

×
[
α1 · α2 − (α1 ·∇1) (α2 ·∇2

κ2

]∣∣∣ta
〉

(4.92)

For the Coulomb part we insert the expression for IC
C in Eq. (4.63b) into

Eq. (4.85), yielding

Σ(εa)Coul =
ie2

4π2ε0r12

∫
dz
2π

SF(εa − z;x2,x1)
∫

2κ dκ sinκr12

κ2

= i
∫

dz
2π

SF(εa − z;x2,x1)VC (4.93)

and

〈a|Σ(εa)|a〉Coul = i
〈
at
∣∣∣
∫

dx
2π

1
εa − z − εt + iηt

VC

∣∣∣ta
〉

(4.94)

The integral can be evaluated as a principal integral (which vanishes) and
half a pole, yielding the result −i sgn(εt)/2. The self energy then becomes

〈a|Σ(εa)|a〉Coul =
1
2

sgn(εt)
〈
at
∣∣∣VC

∣∣∣ta
〉

(4.95)
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The electron self energy is divergent and has to be renormalized, as will be
discussed in Chapter 12. Some numerical results, using the Feynman gauge,
are given in Chapter 7.

Vertex correction
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Fig. 4.10 Diagram representing the first-order vertex correction.

The vertex correction, shown in Fig. 4.10, is a correction to the single-
potential interaction in Fig. 4.6, and the S-matrix becomes in analogy with
the self energy

〈b|SVC|a〉 =
∫∫

dz
2π

dω
2π

×
〈
bu
∣∣∣iSF(ω;x2,x3) iec ασAσ(x3) iSF(ω;x3,x1) (−i)I(z;x2,x1)

∣∣∣ta
〉

×2π∆γ(εa − z − ω) 2π∆γ(ω + z − εb) (4.96)

and after integration over ω

〈bu|SVC|ta〉 = 2π∆2γ(εa − εb)〈bu| − iecΛσ(εa, εa)Aσ(x3) |ta〉 (4.97)

where

Λσ(εa, εa) = −iασ
∫

dz
2π
SF(εa − z;x2,x3)SF(εa − z;x3,x1) I(z;x2,x1)

(4.98)

is the first-order vertex-correction function.
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Covariant gauge

With the expression for the electron and the photon propagators in a covari-
ant gauge we have

Λσ(εa, εa) = −iασ
∫

dz
2π

1
εa − εu − z + iηu

1
εa − εt − z + iηt

∫
2c2κ dκ f(κ)
z2 − c2κ2 + iη

= −ασ
∫

cdκ f(κ)
(εa − εu − cκ+ iη)(εa − εt − cκ+ iη)

(4.99)

assuming positive intermediate states. The corresponding expressions of the
particular gauge is obtained by inserting the expression for f(k) in that gauge.

Comparing with the self energy above, we find for the diagonal part, t = u,
what is known as

• the Ward identity (see also Chapter 12).

∂

∂εa
Σ(εa) = Λ0(εa, εa) (4.100)

Also the vertex correction is singular and has to renormalized, as will be
discussed in Chapter 12.

Coulomb gauge

The transverse part in Coulomb gauge is analogous the expression in the
covariant gauge, using the corresponding f function. For the Coulomb part we
insert the Coulomb interaction (Eq. 4.63b) in expression (Eq. 4.98), yielding

Λσ(εa, εa) = −i
〈
u
∣∣∣ασ

∫
dz
2π

1
εa − εu − z + iηu

1
εa − εt − z + iηt

VC

∣∣∣t
〉

= −
〈
u
∣∣∣sgn(εt)ασ

VC

εt − εu
∣∣∣t
〉

(4.101)

provided εt and εu have different sign. If εt = εu this vanishes, which is consis-
tent with the Ward identity, since the corresponding self-energy contribution
is energy independent.
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Fig. 4.11 Diagram representing the first-order vacuum polarization according to
Eq. (4.107). The closed loop contains summation over all orbitals (particles and holes).
The first and third diagrams on the r.h.s. of the first row vanish due to Furry’s theorem
(see text). The first diagram in the second row represents the Uehling part and the final
diagrams the Wickmann-Kroll part. The heavy lines represent the bound-state propagator
and the thin lines the free-electron propagator.

Vacuum polarization

The field near the atomic nucleus can gives rise to a ”polarization effect” in
the form of the creation of electron-positron pairs, an effect referred to as
the vacuum polarization. The first-order effect, illustrated in Fig. 4.11, forms
together with the first-order self energy (Fig. 4.9) the leading contributions
to the Lamb shift.

In order to set up the S-matrix for the leading vacuum polarization (first
diagram in Fig. 4.11), we go back to the relation (Eq. 4.39) for single-photon
exchange

−
∫∫

d4x2 d4x1 T
[(
ψ†(x)eανAν(x)ψ(x)

)
2

(
ψ†(x)eαµAµ(x)ψ(x)

)
1

]
e−γ(|t1|+|t2|)

leaving out the factor of 1/2, since we can interchange 1 and 2, and inserting
the contraction between the creation and absorption electron-field operators
at vertex 2 to represent the closed orbital loop. Explicitly writing out the
spinor components, we have at this vertex

ψ†σ(x2)eανστAν(x2)ψτ (x2) = Tr
[
ψ†(x2)eανAν(x2)ψ(x2)

]

where ”Tr” stands for the trace of the matrix, i.e., the sum of the diago-
nal elements. The contraction leads here to −iSF(x2, x2), according to the
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definition (Eq. 4.9). We then have the S-matrix element

−e2

∫∫
d4x2 d4x1 iαµ1DFνµ(x2, x1) Tr

[
αν2(−i)SF(x2, x2)

]
e−γ(|t1|+|t2|)

With the Fourier transforms SF(ω;x2,x2) and DFνµ(z;x2,x1) the time de-
pendence is

e−it1(εb−εa−z)−γ|t1| e−it2(ω−ω+z)−γ|t2|

and this leads after time integrations to the S-matrix element

〈b|S(2)
SE |a〉 = −2π∆γ(εa − εb − z) 2π∆γ(ω − ω + z)

×e2

∫∫
dω
2π

dz
2π

〈
b
∣∣∣αµ1DFνµ(z;x2,x1) Tr

[
αν2SF(ω;x2,x2)

]∣∣∣a
〉

(4.102)

and in the limit γ → 0, using the relation (Eq. A.28) in Appendix A,

〈b|S(2)
SE |a〉 = −2π∆2γ(εa − εb)

×e2

∫
dω
2π

〈
b
∣∣∣αµ1DFνµ(0;x2,x1) Tr

[
αν2SF(ω;x2,x2)

]∣∣∣a
〉

(4.103)

According to Sucher’s energy formula (Eq. 4.6) we have in second order

∆E = lim
γ→0

iγ〈Φ|S(2)|Φ〉 (4.104)

and using the relation (Eq. A.17)

∆E = −iδ(εa, εb)

×e2

∫
dω
2π

〈
b
∣∣∣αµ1DFνµ(0;x2,x1) Tr

[
αν2SF(ω;x2,x2)

]∣∣∣a
〉

(4.105)

It can furthermore be shown that only ν = 0, i.e., αν = 1 will contribute
here [179]. The vacuum polarization contribution is divergent and has to
renormalized, which in this case turns out to be not too difficult (see below).

The bound-state electron propagator, SF(ω), is in operator form (Eq. 4.14)

ŜF(ω) =
1

ω − ĥbau (1− iη)
(4.106)

Expressing the Dirac Hamiltonian for an electron in an external (nuclear) po-
tential vext as ĥbau = ĥfree +vext, where ĥfree is the free-electron Hamiltonian,
the propagator (Eq. 4.102) can be expanded as
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1

z − ĥbau(1− iη)
=

1

z − ĥfree(1− iη)
+

1

z − ĥfree(1− iη)
V

1

z − ĥfree(1− iη)

+
1

z − ĥfree(1− iη)
V

1

z − ĥfree(1− iη)
V

1

z − ĥfree(1− iη)
+ · · ·

=
1

z − ĥfree(1− iη)
+

1

z − ĥfree(1− iη)
V

1

z − ĥfree(1− iη)

+
1

z − ĥfree(1− iη)
V

1

z − ĥbau(1− iη)
V

1

z − ĥfree(1− iη)
(4.107)

which leads to the expansion is illustrated in Fig. 4.11.

The first and third diagrams on the r.h.s. in the first row in Fig. 4.11 vanish
due to ”Furry’s theorem”. According to this theorem, a diagram will vanish if
it contains a free-electron loop with an odd number of vertices [136, Sect. 9.1]..
The first diagram in the second row represents the Uehling part [229], and the
second part is the so-called Wickmann-Kroll [233] part. The Uehling part is
divergent, but Uehling was already in 1934 able to handle this divergence and
derive an analytic expression for the renormalized potential. The Wickmann-
Kroll part is finite and has to be evaluated numerically.

Both the Uehling and the Wickmann-Kroll effects can be expressed in
terms of single-particle potentials that can be added to the external poten-
tial, used to generate the single particle spectrum, and in this way the effects
can be automatically included in the calculations to arbitrary order (see, for
instance, Persson et al. [179]). In Table 4.1 we show the result of some accu-
rate vacuum-polarization calculations. The diagrams above for the vacuum-
polarization and the self energy can be compared with the corresponding
many-body diagrams, discussed in section 2.4 (Fig. 2.3). In the MBPT case
the internal line represent core orbitals only, while in the present case they
can represent all orbitals—particle as well as hole states.

Table 4.1 Vacuum-polarization effects in the ground state of some hydrogen-
like systems (in eV) (from Persson et al. [179]).

36Kr Uehling -1.35682
Wickmann-Kroll 0.01550

54Xe Uehling -7.3250
Wickmann-Kroll 0.1695

70Yb Uehling -23.4016
Wickmann-Kroll 0.8283

92U Uehling -93.5868
Wickmann-Kroll 4.9863
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Photon self energy
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Fig. 4.12 Diagram representing the first-order photon self energy.

The interaction between the photon and the electron-positron fields can
give rise to another form of vacuum polarization, illustrated in Fig. 4.12. The
S-matrix for this process can be obtained from that of single-photon exchange
(Eq. 4.40) by replacing −ie2αµ1DFνµ(x1, x2)αν2 by
∫∫

d4x3d4x4 (−ie2)αµ1DFµσ(x1, x3) iΠστ (x3, x4) (−ie2)αν2DFτν(x4, x2)

(4.108)
where

iΠστ (x3, x4) = ασ3 ψ̂
†(x3)ψ̂(x3) ψ̂†(x4)ψ̂(x4)αν4 = ασ3 ψ̂(x3) ψ̂†(x4) ψ̂†(x3)ψ̂(x4)αν4

= −Tr
[
ασ3 iSF(x3, x4) iSF(x4, x3)αν4

]
(4.109)

is the first-order polarization tensor [136, Eqs (7.22), (9.5)]. The contractions
lead here to the trace as in the previous case, and there is also here a minus
sign due to the closed loop.

The photon self energy is (charge) divergent and requires a renormaliza-
tion, as is discussed further in Chapter 12, and after the renormalization
there is a finite remainder.

4.7 Feynman diagrams for the S-matrix. Feynman
amplitude

Feynman diagrams

We have in this chapter constructed S-matrix expressions for a number of
Feynman diagrams, and we summarize here the rules that can be deduced
for this construction. We also introduce the so-called Feynman amplitude ,
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introduced by Richard Feynman in his original works on quantum-field the-
ory, which we shall find convenient to use also in other procedures to be
discussed later. These rules are also summarized in Appendix H.

The S-matrix is given by Eqs (3.26, 4.3)

S =
∞∑
n=0

(−i
c

)n 1
n!

∫
dx4

1 . . .

∫
dx4

n T
[H(x1) . . .H(xn)

]
e−γ(|t1|+|t2|...|tn|)

with the interaction density (Eq. 4.4)

H(x) = −ψ̂†(x)ecαµAµ(x)ψ̂(x)

This leads to the following rules: There is

• a electron-field creation/absorption operator, ψ̂†/ψ̂, for each outgoing/incoming
electron orbital;

• an electron propagator (Eq. 4.10) (times imaginary unit) for each internal
orbital line

ψ̂(x1)ψ̂†(x2) = iSF(x1, x2) = i
∫

dω
2π

SF(ω;x1,x2) e−iω(t1−t2)

• a single-photon interaction (Eq. 4.44), (Eq. 4.45) (times negative imagi-
nary unit) for each single internal photon line

I(x1, x2) =
∫

dz
2π

(−i)I(z;x1,x2) e−iz(t1−t2)

where the interaction is given by Eq. (4.46))

I(z;x1,x2) =
∫

2c2κ dκ f(κ,x1,x2)
z2 − c2κ2 + iη

=
∫

2κ dκ f(κ,x1,x2)
q2 − κ2 + iη

(κ = |k|, z = ck0 = cq)

• at each vertex a space integration and a time integral 2π∆γ(arg), where
the argument is equal to incoming minus outgoing energy parameters;

• a factor of -1 and a trace symbol for each closed orbital loop;

Feynman amplitude

The Feynman amplitude, M, is
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• for the S-matrix defined by the relation

〈cd|S|ab〉 = 2πδ(Ein − Eout)〈cd|M|ab〉 (4.110)

where Ein, Eout are the incoming and outgoing energies, respectively.

• The first-order energy shift is given by

∆E = δEin,Eout〈cd|iM|ab〉 (4.111)



Chapter 5

Green’s functions

The Green’s function is an important tool with applications in classical as well
as quantum physics (for an introduction, see, particularly the book by Fetter
and Walecka [62, Ch. 3], see also the book by Mahan [133]). More recently
it has been applied also to quantum-electrodynamics by Shabaev et al. [211].
As a background we shall first consider the classical Green’s function.

5.1 Classical Green’s function

The classical Green’s function, G(x, x0), can be defined so that it describes
the propagation of a wave from one space-time point x0 = (t0,x0) to another
space-time point x = (t,x), known as the Huygens’ principle (see, for instance
the book by Bjorken and Dell [19, sec. 6.2])

χ(x) =
∫

d3x0G(x, x0)χ(x0) (5.1)

The retarded Green’s function is defined as the part of the functions
G(x, x0) for which t > t0

G+(x, x0) = Θ(t− t0)G(x, x0) (5.2)

where Θ(t) is the Heaviside step function (Appendix A.29), which implies

Θ(t− t0)χ(x) =
∫

d3x0G+(x, x0)χ(x0) (5.3)

We assume now that the function χ(x) satisfies a differential equation of
Schrödinger type

97
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(
i
∂

∂t
−H(x)

)
χ(x) = 0 (5.4)

Operating with the bracket on Eq. (5.3), yields

iδ(t− t0)χ(x) =
∫

d3x0

(
i
∂

∂t
−H(x)

)
G+(x, x0)χ(x0)

using the relation (Eq. A.31), which implies that

• the retarded Green’s function satisfies the differential equation

(
i
∂

∂t
−H(x)

)
G+(x, x0) = iδ4(x− x0) (5.5)

—a relation often taken as the definition of the (mathematical) Green’s
function.

The Green’s function can be used for solving inhomogeneous differential
equations. If we have

(
i
∂

∂t
−H(x)

)
Ψ(x) = f(x) (5.6)

then the solution can be expressed

Ψ(x) =
∫

dx′G+(x′, x) f(x′) (5.7)

5.2 Field-theoretical Green’s function—closed-shell case

Definition of the field-theoretical Green’s function

• In the closed-shell case the field-theoretical single-particle Green’s func-
tion can be defined [62] 1

G(x, x0) =

〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉

〈0H| 0H〉 (5.8)

where T is the Wick time-ordering operator (Eq. 2.27) and ψ̂H, ψ̂
†
H are the

electron-field operators in the Heisenberg representation (HP) (Eq. B.27).

1 Different definitions of the field-theoretical Green’s function are used in the literature.
The definition used here agrees with that of Itzykson and Zuber [88], while that of Fetter
and Walecka [62] differs by a factor of i.
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The state |0H〉 is the ”vacuum in the Heisenberg representation”, i.e., the
state in the Heisenberg representation with no particles or holes. In a
”closed-shell state” the single reference or model state is identical to the
vacuum state (see section 2.3).

The Heisenberg vacuum is time independent and equal to the correspond-
ing vacuum state in the interaction picture at t = 0, i.e.,

|0H〉 = U(0,−∞)|0〉 (5.9)

where U(t, t0) is the evolution operator (Eq. 3.6) and |0〉 is the unperturbed
vacuum or the IP vacuum as t→ −∞ (c.f. Eq. (Eq. 3.28)).

Using the relation between the electron-field operators in HP and IP
(Eq. B.25)

ψ̂H(x) = U(0, t) ψ̂(x)U(t, 0) (5.10)

we can transform the Green’s function (Eq. 5.8) to the interaction picture

G(x, x0) =
〈0|U(∞, 0)T

[
U(0, t)ψ̂(x)U(t, 0)U(0, t0)ψ̂†(x0)U(t0, 0)

]
U(0,−∞)|0〉

〈0|U(∞,−∞)|0〉
(5.11)

For t > t0 the numerator becomes

〈0|U(∞, t) ψ̂(x)U(t, t0)ψ̂†(x0)U(t0,−∞)|0〉 (5.12a)

and for t < t0

〈0|U(∞, t0) ψ̂†(x0)U(t0, t)ψ̂(x)U(t,−∞)|0〉 (5.12b)

using the relation (Eq. 3.8). From the expansion (Eq. 3.15) we obtain the
identity

U(t, t0) =
∞∑
ν=0

(−i)ν

ν!

∫ t

t0

dt1 . . .
∫ t

t0

dtν T
[
V (t1) . . . V (tν)

]
e−γ(|t1|+|t2|··· )

=
∞∑
n=0

(−i)n

n!

∫ t

t1

dt1 . . .
∫ t

t1

dtn T
[
V (t1) . . . V (tn)

]
e−γ(|t1|+|t2|··· )

×
∞∑
m=0

(−i)m

m!

∫ t1

t0

dt1 . . .
∫ t1

t0

dtm T
[
V (t1) . . . V (tm) e−γ(|t1|+|t2|··· )] (5.13)

where we have included the unity as the zeroth-order term in the summation.
If we concentrate on the ν:th term of the first sum, we have the identity
(leaving out the damping factor)
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1
ν!

∫ t

t0

dt1 . . .
∫ t

t0

dtν T
[
V (t1) . . . V (tν)

]

=
∑

m+n=ν

1
m!n!

∫ t

t1

dt1 . . .
∫ t

t1

dtn T
[ · · · ]

∫ t1

t0

dt1 . . .
∫ t1

t0

dtm T
[ · · · ] (5.14)

We can now apply this identity to the first part of the numerator (Eq. 5.12a),
U(∞, t) ψ̂(x)U(t, t0). The interaction times of U(∞, t), ψ̂(x) and U(t, t0) are
time ordered, and hence the result can be expressed

1
ν!

∫ ∞
t0

dt1 . . .
∫ ∞
t0

dtν T
[
V (t1) . . . V (tν) ψ̂(x)

]
(5.15)

The same procedure can be applied to the rest of the expression (Eq. 5.12a)
as well as to the other time ordering (Eq. 5.12b). With the perturbation
(Eq. 3.16) the numerator of the single-particle Green’s function (Eq. 5.11)
then becomes [62, Eq. 8.9]

〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉
=
∞∑
n=0

1
n!

(−i
c

)n ∫
d4x1 · · ·

∫
d4xn

×〈0|T [ψ̂(x)H(x1) · · ·H(xn) ψ̂†(x0)
]|0〉 e−γ(|t1|+|t2|··· ) (5.16)

with integrations over all internal times. In transforming the time-ordering
to normal ordering by means of Wick’s theorem, only fully connected terms
remain, since the vacuum expectation of any normal-ordered expression van-
ishes (see section 4.41).

The denominator in Eq. (5.8) becomes, using the relation (Eq. 5.9),

〈0H| 0H〉 = 〈0|U(∞,−∞)|0〉 = 〈0|S|0〉

where S is the S-matrix (Eq. 4.2). Then

• the Green’s function can be expressed

G(x, x0) =

〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉
〈
0
∣∣S
∣∣0〉 (5.17)

We see that this expansion is very similar to that of the S-matrix (Eq. 4.3),
the main difference being the two additional electron-field operators.
Therefore,

• the Green’s function can also be expressed as

G(x, x0) =

〈
0
∣∣T [ψ̂(x)U(∞,−∞)ψ̂†(x0)

]∣∣0〉〈
0
∣∣S
∣∣0〉 (5.18)



5.2 Field-theoretical Green’s function—closed-shell case 101

where the time-ordered product is connected to form a one-body operator.
This leads to

G(x, x0) =
1

〈0|S|0〉
∞∑
n=0

1
n!

(−i
c

)n ∫
d4x1 · · ·

∫
d4xn

×〈0|T [ψ̂(x)H(x1) · · ·H(xn) ψ̂†(x0)
]|0〉 e−γ(|t1|+|t2|··· ) (5.19)

The Green’s function is like the S-matrix Lorentz covariant .

The two-particle Green’s function is defined in an analogous way

G(x, x′;x0, x
′
0) =

〈
0
∣∣T [ψ̂H(x) ψ̂H(x′) ψ̂†H(x′0) ψ̂†H(x0)

]∣∣0〉〈
0
∣∣S∣∣0〉 (5.20)

and transforming to the interaction picture, leads similarly to

G(x, x′;x0, x
′
0) =

1
〈0|S|0〉

∞∑
n=0

1
n!

(−i
c

)n ∫
d4x1 · · ·

∫
d4xn

×〈0|T [ψ̂(x)ψ̂(x′)H(x1) · · ·H(xn) ψ̂†(x′0)ψ̂†(x0)
]|0〉 e−γ(|t1|+|t2|··· ) (5.21)

and analogously in the general many-particle case. Note that the coordi-
nates are here four-dimensional space-time coordinates, which implies that
the particles have individual initial and final times. This is in contrast to the
quantum-mechanical wave function or state vector, which has the same time
for all particles. We shall discuss this question further below.

We can transform the time-ordered products above to normal-ordered ones
by means of Wick’s theorem (see section 2.2). Since normal-ordered products
do not contribute to the vacuum expectation value, it follows that only fully
contracted contribute to the Green’s function. The contractions between the
electron-field operators and the interaction operators lead to electron propa-
gators (SF) (Eq. 4.9) on the in- and outgoing lines as well as all internal lines
(see Fig. 5.1).2 This allows time to run in both directions and both particle
and hole states can be involved.

Single-photon exchange

The Green’s function for single-photon exchange in Fig. 5.2 can be con-
structed in close analogy to that of the corresponding S-matrix in section
4.4,

2 In our notations, an orbital line between heavy dots always represents an electron prop-
agator.
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x

x0 r

r
6SF

6SF

6SF 6SF

6SF 6SF

r r

r r

x x′

x0 x′0
Fig. 5.1 Graphical representation of the one- and two-particle Green’s function. The
orbital lines between dots represent electron propagators.

6SF ω1 6ω2 SF

6SF ω3 6ω4 SF

r r

r r
-zs s1 2

x x′

x0 x′0E0

Fig. 5.2 Green’s function for single-photon exchange.

G(x, x′, x0, x
′
0) =

∫∫
d4x2 d4x1 iSF(x, x1) iSF(x′, x2)

× (−i)e2DF(x2, x1) iSF(x1, x0) iSF(x2, x
′
0) e−γ(|t1|+|t2|) (5.22)

With the transforms (Eq. 4.10) and (Eq. 4.31) this becomes after integrating
over the internal limes (using the relation Eq. A.17)

G(x, x′, x0, x
′
0) = e−itω3 e−it′ω4 eit0ω1 eit′0ω2

×
∫∫

d3x1 d3x2

∫∫
dω3

2π
dω4

2π

∫∫
dω1

2π
dω2

2π

∫
dz
2π

iSF(ω3;x,x1)

× iSF(ω4;x′,x2) (−i)e2DF(z;x2,x1) iSF(ω1;x1,x0)
× iSF(ω2;x2,x

′
0) 2π∆γ(ω1 − z − ω3) 2π∆γ(ω2 + z − ω4) (5.23)

In the equal-time approximation, where the particles have the same initial
and final times (t = t′ and t0 = t′0), the external time dependence becomes
e−it(ω3+ω4) eit0(ω1+ω2). In the limit γ → 0 we have after z-integration ω1 +
ω2 = ω3 + ω4, and if we consider the diagram as a part of a ladder, this is
equal to the initial energy E0.

We define the Feynman amplitude for the Green’s function as
the function with the external time dependence removed . This gives

G(x, x′, x0, x
′
0) =Msp(x,x′;x0,x

′
0) e−i(t−t0)E0 (5.24)

and
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Msp(x,x′;x0,x
′
0) =

∫∫
d3x1 d3x2

∫∫
dω3

2π
dω4

2π

∫∫
dω1

2π
dω2

2π
× iSF(ω4;x′,x2) (−i)I(ω1 − ω3;x2,x1) iSF(ω1;x1,x0) iSF(ω2;x2,x

′
0)

× 2π∆2γ(ω1 + ω2 − ω3 − ω4) (5.25)

using the definition (Eq. 4.44).

Fourier transform of the Green’s function

Single-particle Green’s function

Assuming the Heisenberg vacuum state |0H〉 to be normalized, the single-
particle Green’s function (Eq. 5.8) becomes

G(x, x0) =
〈
0H

∣∣T [ψ̂H(x) ψ̂†H(x0)
]∣∣0H

〉

= Θ(t− t0)
〈
0H

∣∣ψ̂H(x) ψ̂†H(x0)
∣∣0H

〉−Θ(t0 − t)
〈
0H

∣∣ψ̂†H(x0) ψ̂H(x)
∣∣0H

〉
(5.26)

The retarded part (Eq. 5.2) is then, using the relation (Eq. B.27) in App. B,

G+(x, x0) =
〈
0H

∣∣ψ̂H(x) ψ̂†H(x0)
∣∣0H

〉

=
〈
0H

∣∣(eiHtψ̂S(x) e−iHt
) (

eiHt0 ψ̂†S(x0) e−iHt0
)∣∣0H

〉
(5.27)

Inserting between the field operators a complete set of positive-energy eigen-
states of the second-quantized Hamiltonian H (Eq. 2.17), corresponding to
the (N + 1)-particle system

H |n〉 = En |n〉 (5.28)

yields the Lehmann representation

G+(x, x0) =
∑
n

〈
0H

∣∣eiHtψ̂S(x)
∣∣n〉 e−iEn(t−t0)

〈
n
∣∣ψ̂†S(x0) e−iHt

∣∣0H

〉
(5.29)

summed over the intermediate states of the (N+1) system. The ground state
as well as the inserted intermediate states are eigenstates of the Hamiltonian
H, and setting the energy of the former to zero, this yields

G+(x, x0) =
∑
n

〈
0H

∣∣ψ̂S(x)
∣∣n〉 e−iEn(t−t0)

〈
n
∣∣ψ̂†S(x0)

∣∣0H

〉
(5.30)

Performing a Fourier transform of the Green’s function, including the adi-
abatic damping e−γτ (see section 3.2), yields (τ = t− t0 > 0)
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G+(E;x,x0) =
∫ ∞

0

dτ eiEτ G+(τ,x,x0) = i

〈
0H

∣∣ψ̂S(x)
∣∣n〉 〈n∣∣ψ̂†S(x0)

∣∣0H

〉

E − En + iγ
(5.31)

using ∫ ∞
0

dt eiαt e−γt =
i

α+ iγ
. (5.32)

Analogous results are obtained for the advanced part (t < t0) of the Green’s
function, corresponding to a hole in the initial system.

The expression
〈
n
∣∣ψ̂†S(x)

∣∣0H

〉
represents a state Ψn(x) of the (N + 1)

system in the Schrödinger picture, and an equivalent expression of
• the Fourier transform of the Green’s function becomes

G+(E;x,x0) = i
∑
n

Ψn(x)Ψ∗n(x0)
E − En + iγ

(5.33)

This implies that

• the poles of the retarded/advanced single-particle Green’s func-
tion represent the true energies of the vacuum plus/minus one
particle, relative to the vacuum state .

In order to show that the definition (Eq. 5.8) of the Green’s function is
compatible with the classical definition (Eq. 5.1), (Eq. 5.5), we form the re-
verse transformation

G+(x, x0) = G+(τ,x,x0) =
∫

dE
2π

e−iEτ i
∑
n

Ψn(x)Ψ∗n(x0)
E − En + iγ

(5.34)

We then find that
(

i
∂

∂t
−H(x)

)
G+(x, x0) =

∫
dE
2π

e−iEτ i
∑
n

E − En
E − En + iγ

Ψn(x)Ψ∗n(x0)

(5.35)
Letting γ → 0 and using the closure property (Eq. C.27)

∑
n

Ψn(x)Ψ∗n(x0) = δ3(x− x0)

and the integral ∫
dE
2π

e−iEτ = δ(τ) = δ(t− t0)

we confirm that the retarded part of the Green’s function (Eq. 5.8) satisfies
the relation (Eq. 5.5)

(
i
∂

∂t
−H(x)

)
G+(x, x0) = iδ4(x− x0) (5.36)
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Electron propagator

We consider now the zeroth-order single-particle Green’s function (Eq. 5.19)

G0(x, x0) =
〈
0
∣∣T [ψ̂(x)ψ̂†(x0)]

∣∣0〉 (5.37)

where the vacuum and the field operators are expressed in the interaction
picture. Then we find that

• the single-particle Green’s function is identical to the Feynman
electron propagator (Eq. 4.9) times the imaginary unit i

G0(x, x0) ≡ iSF(x, x0) (5.38)

The retarded operator can be transformed in analogy with the Lehmann
representation above

G0+(x, x0) =
∑
n

〈
0H

∣∣ψ̂S(x)
∣∣n0
〉

e−iE0
n(t−t0)

〈
n0
∣∣ψ̂†S(x0)

∣∣0H

〉
(5.39)

where |n0〉 are eigenstates of the zeroth-order Hamiltonian for the (N + 1)-
particle system (Eq. B.22)

H0|n0〉 = E0
n|n0〉

and E0
n are the energies relative the vacuum. Performing the time integration,

yields the Fourier transform

G0+(x,x0, E) = i
∑
n

〈x|n0〉〈n0|x0〉
E − E0

n + iγ
(5.40)

The corresponding advanced function becomes

G0−(x,x0, E) = −i
∑
n

〈x|n0〉〈n0|x0〉
E − E0

n − iγ
(5.41)

Both of these results can be expressed by means of a complex integral

G0(x, x0) = iSF(x, x0) = i
∫

dE
2π
〈x|n0〉〈n0|x0〉
E − E0

n + iγn
e−iE(t−t0) (5.42)

where γn has the same sign as E0
n, i.e., positive for particle states and negative

for hole or antiparticle states.

The zeroth-order Green’s function or electron propagator can also be ex-
pressed in operator form as



106 5 Green’s functions

Ĝ0(E) = iŜF(E) =
i

E −H0 ± iγ
(5.43)

Two-particle Green’s function in the equal-time approximation

Setting the initial and final times equal for the two particles, t = t′ and
t0 = t′0, the retarded two-particle Green’s function (Eq. 5.20) becomes

G+(x, x′;x0, x
′
0) =

〈
0H

∣∣ ψ̂H(x) ψ̂H(x′) ψ̂†H(x′0) ψ̂†H(x0)
∣∣0H

〉

=
〈
0H

∣∣(eiHtψ̂S(x) ψ̂S(x′)e−iHt
) (

eiHt0 ψ̂†S(x′0) ψ̂†S(x0)e−iHt0
)∣∣0H

〉
(5.44)

We introduce a complete set of two-particle states (Eq. 5.28), which leads to
the Lehmann representation

G+(x, x′;x0, x
′
0) =

∑
n

〈
0H

∣∣ψ̂S(x) ψ̂S(x′)
∣∣n〉 e−iEn(t−t0)

〈
n
∣∣ψ̂†S(x′0) ψ̂†S(x0)

∣∣0H

〉

(5.45)
with the Fourier transform

G+(E;x,x′;x0,x
′
0) =

∑
n

〈
0H

∣∣ψ̂S(x) ψ̂S(x′)
∣∣n〉 〈n

∣∣ψ̂†S(x′0, ψ̂
†
S(x0))

∣∣0H

〉

E − En ± iγ
(5.46)

with the upper (lower) sign for the retarded (advanced) function. Here,〈
n
∣∣ψ̂†S(x0) ψ̂†S(x′0)

∣∣0H

〉
represents a two-particle state Ψn(x,x′) in the Schrödinger

picture, which yields the Fourier transform

G+(E;x,x′;x0,x
′
0) = i

∑
n

Ψn(x,x′)Ψ∗n(x0,x
′
0)

E − En ± iγ
(5.47)

This implies that also in this case the poles of the Green’s function represent
the exact eigenvalues of the system, relative to the vacuum. Note that this
holds in the many-particle case only in the equal-time approximation, where
there is only a single time coordinate τ = t− t0.

5.3 Graphical representation of the Green’s function *

We shall now demonstrate how the expansions of the Green’s-functions
(Eq. 5.19), (Eq. 5.21) can be conveniently represented by means of Feyn-
man diagrams [64], discussed in the previous chapter, and we start with the
single-particle case.
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Single-particle Green’s function

The zeroth-order Green’s function is (with our definition) identical to the
Feynman electron propagator times the imaginary unit (Eq. 5.38) or equal
to the contraction (Eq. 4.9)

G0(x, x0) =
〈
0
∣∣T [ψ̂(x)ψ̂†(x0)]

∣∣0〉 = ψ̂(x)ψ̂†(x0) (5.48)

which we represent graphically as in Fig. 4.1

G0(x, x0) = s
s
6

x0

x

j

(5.49)

This contains both time orderings, i.e., j represents both particle and hole/anti-
particle states.

In next order the numerator of the Green’s function Eq. (5.16) has the
form

− 1
2c2

〈
0
∣∣∣
∫∫

d4x1 d4x2 T
[
ψ̂(x)H(x1)H(x2) ψ̂†(x0)

]∣∣∣0
〉

(5.50)

The photon fields have to be contracted, which leads to a two-particle inter-
action, in analogy with the single-photon interaction Vsp (Eq. 4.44),

H(x1)H(x2) = v(x1, x2) (5.51)

with the Fourier transform with respect to time v(z;x1,x2), which we rep-
resent graphically as

-s s@@I ���
��� @@I

1 2

(5.52)

The vacuum expectation (Eq. 5.50) can then be illustrated by the following
picture s

s

x

x0

〈0|T[ -s s@@I ���
��� @@I

1 2 ] |0〉

(5.53)
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where the vertical lines represent the electron-field operators.

The procedure is now to transform the time ordering to normal ordering
(see section 2.2), which we can do by means of Wick’s theorem (Eq. 2.34).
This leads to a normal-ordered totally uncontracted and all possible normal-
ordered single, doubly, ... contracted terms. In the vacuum expectation only
fully contracted terms will survive.

We can here distinguish between two cases: either the electron-field opera-
tors are connected to each other and disconnected from the interaction or all
parts are connected to a single piece. The former case leads to the diagrams
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(5.54)

where the disconnected, closed parts represent the closed first-order S-matrix
diagrams

S
(1)
cl =�
���
���
���
���
��r r- �
���
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���
���
��6 6+ ��������������������r r-�- (5.55)

The diagrams in Fig. (Eq. 5.54) can then be expressed G0S
(1)
cl .

Connecting all parts of the expression (Eq. 5.53), leads to the diagrams
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These diagrams are quite analogous to the S-matrix diagrams for vacuum po-
larization and self energy, discussed in section 4.6, the only difference being
that the Green’s-function diagrams contain in- and outgoing electron prop-
agators. We note that all internal lines do represent electron propagators,
containing particle as well as hole states.

We can now see that the disconnected parts of the diagrams (Eq. 5.54)
are eliminated by the denominator in the definition of the Green’s function
(Eq. 5.8). Therefore, we can then represent the Green’s function up to first
order by connected diagrams only (Fig. 5.57).
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6 mmmmmr r- 6

(5.57)

We shall now indicate that this holds also in higher orders.

Next, we consider a Green’s-function term with two two-particle interac-
tions s

s
〈0|T [

-s s@@I ���
��� @@I

-s s@@I ���
��� @@I

] |0〉
(5.58)

We can here distinguish different cases.

We consider first the case where both interactions are disconnected from
the electron-field operators. Leaving out the latter we then have

〈0|T[
-s s@@I ���

��� @@I

-s s@@I ���
��� @@I

]|0〉
(5.59)

This corresponds to the vacuum expectation of the second-order S-matrix
and leads to connected diagrams
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and to the disconnected diagrams

�
���
���
���
���
��r r- �
���
���
���
���
��6 6�
���
���
���
���
��r r- �
���
���
���
���
��6 6 �
���
���
���
���
��r r- �
���
���
���
���
��6 6��������������������r r-�- ��������������������r r-�- ��������������������r r-�-
(5.61)

We denote these diagrams by S(2)
cl = 〈0|S(2)|0〉. In addition, we have the free

electron-field operators, which combine to the zeroth-order Green’s function
G0. Therefore, we can express the corresponding GF diagrams as G0S

(2)
cl .

Next, we consider the case where one of the interactions in Eq. (5.59) is
closed by itself, while the remaining part is connected. This leads to dis-
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connected diagrams, where the disconnected part is the closed first order
(Eq. 5.55) and the connected part is identical to the connected first-order
diagrams in Fig. 5.56, which we can express the disconnected diagram as
G

(1)
C S

(1)
cl .

Finally, we have the case where all diagram parts are completely connected,
shown in Fig. 5.3, which we denote by G(2)

C .
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Fig. 5.3 Second-order connected diagrams of the one-body Green’s function, assuming a
two-body interaction.

Going to third order, we find similarly that we can have G0 = G(0) com-
bined with the closed diagrams S(3)

cl , G(1)
C combined with S(2)

cl , G(2)
C combined

with S
(1)
cl and finally completely connected G

(3)
C diagrams. This leads to the

sequence




G(0)

G
(1)
C +G(0)S

(1)
cl

G
(2)
C +G

(1)
C S

(1)
cl +G(0)S

(2)
cl

G
(3)
C +G

(2)
C S

(1)
cl +G

(1)
C S

(2)
cl +G(0)S

(3)
cl

etc.

which summarizes to

(G(0) +G
(1)
C +G

(2)
C + · · · )(1 +S

(1)
cl +S

(2)
cl + · · · ) = (G0 +GC)(1 +Scl) (5.62)
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where GC represents all connected diagrams of the numerator of the GF
expression (Eq. 5.21) and Scl represents all closed S diagrams. But the last
factor is the vacuum expectation of the S matrix to all orders

〈0|S|0〉 = 1 + Scl (5.63)

which implies that this is cancelled by the denominator in the definition
(Eq. 5.8). Hence,

• the single-particle Green’s function can in the close-shell case be
represented by completely connected diagrams

iG(x, x0) =

[ ∞∑
n=0

1
n!

(−1
c2

)n ∫
· · ·
∫

d4x1 · · · d4x2n

× 〈0|T [ψ̂(x)H(x1, x2) · · ·H(x2n−1, x2n) ψ̂†(x0)
]|0〉
]

conn

(5.64)

This can also be expressed

G(x, x0) =
〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉
conn

(5.65)

The connectedness of the Green’s function can also be shown in a somewhat
different way. If the remove the two electron-fields operators and the de-
nominator from the Green’s function expansion (Eq. 5.19), then we retrieve
the vacuum expectation of the S-matrix (Eq. 4.3) 〈0|S|0〉. Therefore, if the
field operators are connected to each other and the interactions among them-
selves, the result (after including the denominator) is simply the zeroth-order
Green’s function iG(0). If the field operators are connected to one of the in-
teractions, they form the connected first-order Green’s function iG(1)

conn and
the remaining interactions again form 〈0|S|0〉. Continuing the process leads
to

G = G(0) +G(1)
conn +G(2)

conn + · · · (5.66)

which proves that the single-particle Green’s function is entirely con-
nected .

One-body interaction

We shall now consider the case when we in addition to the two-body inter-
action have a one-body interaction of potential typ

×t (5.67)
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The graphical representation can then be constructed in the same way as
before, and we then find in first order the additional diagrams

s
s
6 r r- ×6�
�� s

s
6

6 ×s
(5.68)

The first diagram is unconnected, and the closed part is a part of 〈0|S|0〉
and hence this diagram is eliminated by the denominator of (Eq. 5.19), as
before. It is not difficult to show that the single-particle Green’s function is
represented by connected diagrams only, when we have a mixture of one- and
two-body interactions. The additional connected diagrams in second order
are shown in Fig. 5.4
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Fig. 5.4 Additional second-order diagrams of the single-particle Green’s function —in
addition to those in Fig. 5.3—with a combination of one- and two-body interaction.

Many-particle Green’s function

We now turn to the two-particle Green’s function (Eq. 5.21). The zeroth-
order Green’s function is in analogy with the one-particle function (Eq. 5.49)
represented by
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G0(x, x′;x0, x
′
0) = s
s
6 s
s
6

x0

x

x′0

x′

= iSF(x, x0) iSF(x′, x′0)

(5.69)

or a product of two Feynman electron propagators.

As mentioned before, the (initial and final) times of the two particles in
principle can be different, although we shall in most applications assume that
they are equal, as will be further discussed in the following.

In first order we have in analogy with the single-particle case (Eq. 5.53)s

s

s

s
〈0|T [ -s s@@I ���

��� @@I
] |0〉

(5.70)

This can lead to disconnected diagrams, composed of the zeroth-order func-
tion (Eq. 5.69) and the closed first-order diagrams (Eq. 5.55). Another type
of disconnected diagrams is the combination of zeroth-order single-particle
GF and the connected first-order GF
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(5.71)

It should be noted that both parts are here consider as open (not closed) 3

Finally, we can have an open two-particle diagram

s

s
6

6

s

s
6

6
-s s

(5.72)

3 Generally, a diagram is considered closed if it has no free lines/propagators, like the
diagrams in Fig. 5.60 and 5.61, while an open diagram has at least one pair of free lines,
like those in Fig. 5.3. An operator or a function represented by a closed/open diagram is
said to be closed/open.
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In second order we can have the zeroth-order two-particle Green’s function,
combined with second-order closed diagrams, S(2)

cl , and connected first-order
diagrams combined with first-order closed diagrams, S(1)

cl . In addition, we can
have disconnected diagrams with two open first-order single-particle diagrams
(Eq. 5.56).

Continuing this process leads formally to the same result as in the single-
particle case (Eq. 5.62)—the diagrams with a disconnected closed part are
eliminated by the denominator. Formally, the diagrams can still be discon-
nected, like (Eq. 5.71), since there is a disconnected zeroth-order Green’s
function part. We shall refer to such diagrams as linked in analogy with the
situation in MBPT (section 2.4). The result is then expressed

G(x, x′;x0, x
′
0) =

[ ∞∑
n=0

1
n!

(−1
c2

)n ∫
d4x1 · · ·

∫
d4x2n

× 〈0|T [ψ̂(x)ψ̂(x′) v(x1, x2) · · · v(x2n−1, x2n) ψ̂†(x′0)ψ̂†(x0)
]|0〉
]

linked

(5.73)

a result that can easily be extended to the general many-particle case.

The two-body interactions used here correspond to two contracted inter-
actions of the type (Eq. 4.4). Uncontracted interactions of this kind cannot
contribute to the Green’s function, since this is a vacuum expectation. There-
fore, the results above can in the single-particle case also be expressed

G(x, x0) =
∞∑
n=0

1
n!

(−i
c

)n ∫
d4x1 · · ·

∫
d4xn

× 〈0|T [ψ̂(x)H(x1) · · ·H(xn) ψ̂†(x0)
]|0〉conn (5.74)

including even- as well as odd-order terms, and similarly in the many-particle
case. This can also be expressed

G(x, x0) =
〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉
conn

(5.75)

and in the two-particle case

G(x, x′;x0, x
′
0) =

〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x′)ψ̂H(x′0)ψ̂†H(x0)]
∣∣0H

〉
linked

(5.76)

The linked character of the Green’s function can also in the two-particle
case be shown as we did at the end on the single-particle section. If all in-
teractions of the expansion (Eq. 5.21) are connected among themselves, they
form the vacuum expectation value of the S-matrix, cancelling the denomina-
tor, and the electron-field operators form the two-body zeroth-order Green’s
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function G(0)
2 . If one pair of field operators are internally connected, then the

remaining part is identical to the single-particle Green’s function G1, which
has been shown to be connected. The result G(0)

1 G1 is disconnected but since
both parts are open, this is linked with the convention we use. If one pair of
field operators are connected to some of the interactions and the other pair
to the remaining ones, the result is G1G1, which is also disconnected but
linked. Finally, all field operators can be connected to the interactions, which
leads to the connected two-particle Green’s function G2,conn. The remaining
interactions form 〈0|S|0〉, cancelling the denominator, and the result becomes
G2,conn. In summary, the two-particle Green’s function becomes

G2 = G
(0)
2 +G1,connG1,conn +G2,conn (5.77)

which can be disconnected but linked. This argument can easily be general-
ized, implying that

• the many-particle Green’s function in the closed-shell case is
linked.

Self energy. Dyson equation

All diagrams of the one-particle Green’s function can be expressed in the
form

G(x, x0) = G(x, x0) +
∫∫

d4dx1d4dx2G0(x, x1) (−i)Σ(x1, x2)G0(x2, x0)

(5.78)
where Σ(x2, x1) represents the self energy. This can be represented as shown
in Fig. 5.5, i.e., as the zeroth-order Green’s function plus all self-energy dia-
grams.

Some of the second-order self-energy diagrams in Figs 5.3 and 5.4 have
the form of two first-order diagrams, connected by a zeroth-order GF. All
diagrams of that kind can be represented as a sequence of proper self-energy
diagrams, Σ∗, which have the property that they cannot be separated into
lower-order diagrams by cutting a single line. This leads to the expansion of
the total self energy shown in Fig. 5.6, where the crossed box represents the
proper self energy. The single-particle Green’s function can then be repre-
sented as shown in Fig. 5.7, which corresponds to the Dyson equation for the
single-particle Green’s function.
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Fig. 5.5 The single-particle Green’s function expressed in terms of the self energy.

ss6
ss6

= ss6
ss6

+

ss6s
s
6

ss6
+ · · ·

Fig. 5.6 Expansion of the total self energy in terms of proper self energies. The crossed
box represents the proper self energy Σ∗.
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Fig. 5.7 Graphical representation of the Dyson equation for the single-particle Green’s
function (Eq. 5.79), using the proper self energy Σ∗.

G(x, x0) = G0(x, x0) +
∫∫

d4x1d4x2G0(x, x2) (−i)Σ∗(x2, x1)G(x1, x0)

(5.79)
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Fig. 5.8 Graphical representation of the Dyson equation for the two-particle Green’s
function (Eq. 5.80). The crossed box represents the proper two-particle self energy.

Similarly, the Dyson equation for two-particle Green’s function becomes

G(x, x′;x0, x
′
0) = G0(x, x′;x0, x

′
0)

+
∫∫∫∫

d4x1d4x2d4x′1d4x′2G0(x, x′;x2, x
′
2) (−i)Σ∗(x2, x

′
2;x1, x

′
1)G(x1, x

′
1;x0, x

′
0) (5.80)
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This equation is illustrated in Fig 5.8, where the crossed box represents the
proper two-particle self energy.

Numerical illustration

Here, we shall illustrate the application of the Green’s-function technique for
many-body calculation by the electron affinity of the calcium atom (Table
5.1). The negative calcium ion is a very delicate system, with a very feeble
binding energy, and it has been quite difficult to determine this quantity
experimentally as well as theoretically. It is only recently that it has been
possible to obtain reasonable agreement.

Table 5.1 Electron affinity of Ca atom (in meV)

4p1/2 4p3/2 Reference
Theory 19 -13 Salomonson [198]
Theory 22 -18 Avgoustoglou [10]
Theory 49 -18 Dzuba [10]
Expt’l 24,55 -19.73 Petrunin (1996)
Expt’l 18,4 Walter [231]
Expt’l 17,5 Nadeau [164]

The calculation of Salomonson et al. is performed by means of the Green’s-
function method, that of Dzuba et al. by many-body perturbation theory and
that of Avgoustoglou by all-order pair-correlation method.

5.4 Field-theoretical Green’s function—open-shell case *

In this section we shall indicate how the Green’s-function concept could be
extended to the open-shell case, when the model states are separated from
the vacuum state. It is recommended that Chapter 6 is first studied, where
the treatment is more akin to the normal situation in MBPT, discussed in
section 2.3. We shall leave out most details here and refer to the treatment
of the covariant evolution operator and the Green’s operator, which is quite
equivalent. In the present section we shall in particular look into the special
approach due to Shabaev [211].
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Definition of the open-shell Green’s function

In the general open-shell case singularities of the Green’s function can appear
also for connected diagrams, as in the covariant-evolution operator (see be-
low). If we consider a sequence of ladder diagrams of single-photon exchange,
V , as discussed in the next chapter (Fig. 6.3), considering only particle states
(no-pair), the Feynman amplitude for the Green’s function is the same as for
the covariant evolution operator (Eq. 6.20) with no model-space states,

M = 1 + ΓQ(E0)V (E0) + ΓQ(E0)V (E0)ΓQ(E0)V (E0) + · · · (5.81)

where

ΓQ(E0) =
Q

E0 −H0 + iγ
=

|rs〉〈rs|
E0 − εr − εs + iγ

is the reduced resolvent (Eq. 2.65) and E0 is the energy parameter (of the
Fourier transform) of the Green’s function. The GF becomes singular, when
there is an intermediate state |rs〉 of energy E0. Including the residuals after
removing the singularities (model-space contributions), leads as shown below
(Eq. 6.117) to a shift of the energy parameter, E0 → E = E0 +∆E,

M = 1 + ΓQ(E)V (E) + ΓQ(E)V (E)ΓQ(E)V (E) + · · · (5.82)

This is a Brillouin-Wigner perturbation expansion, and it can be summed to

M =
1

E −H + iγ
=

|n〉〈n|
E − En + iγ

(5.83)

with H = H0 + V (E) and |n〉 represents the exact eigenstates of the system
with the energy En. This agrees with the Fourier transform of the GF derived
above (Eq. 5.47), demonstrating that the transform has poles at the exact
energies. Consequently, this holds also in the open-shell case.

The Green’s-function technique yields information only about the energy
of the system. This is in contrast to the Green’s-operator formalism, to be
treated in the next chapter, which can give information also about the wave
function or state vector of the system under study.

Two-times Green’s function of Shabaev

The use of the Green’s-function technique for atomic calculations has been
further developed by Shabaev et al. [211] under the name of the ”Two-times
Green’s function” (which is equivalent to the equal-time approximation, dis-
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cussed above). This technique is also applicable to degenerate and quasi-
degenerate energy states, and we shall outline its principles here.

We return to the extended-model concept, discussed in section 2.3. Given
are a number of eigenstates (target states) of the many-body Hamiltonian

H|Ψα〉 = Eα|Ψα〉 (α = 1 · · · d) (5.84)

The corresponding model states are in intermediate normalization the pro-
jections on the model space

|Ψα0 〉 = P |Ψα〉 (α = 1 · · · d) (5.85)

The model states are generally non-orthogonal, and following Shabaev we
introduce a ”dual set” {|Ψ̃β0 〉}, defined by

|Ψ̃β0 〉〈Ψα0 | = |Ψβ0 〉〈Ψ̃α0 | = δα,β (5.86)

Then the standard projection operator becomes

P =
∑

β∈D
|Ψ̃β0 〉〈Ψβ0 | =

∑

β∈D
|Ψβ0 〉〈Ψ̃β0 | (5.87)

with the summation performed over the model space D. We also define a
alternative projection operator as

P =
∑

β∈D
|Ψβ0 〉〈Ψβ0 | P−1 =

∑

β

|Ψ̃β0 〉〈Ψ̃β0 | (5.88)

Then
P|Ψ̃α0 〉 = |Ψα0 〉 and P−1|Ψα0 〉 = |Ψ̃α0 〉 (5.89)

The Fourier transform of the retarded Green’s function is generally (Eq. 5.33)

G+(E;x,x0) = i
∑
n

〈x|Ψn〉〈Ψn|x0〉
E − En + iγ

(5.90)

where we let x,x0 represent the space coordinates of all outgoing/incoming
particles. It then follows that

∮

Γn

dEG+(E;x,x0) = −2π 〈x|Ψn〉〈Ψn|x0〉 (5.91)

and ∮

Γn

E dEG+(E;x,x0) = −2π 〈x|Ψn〉En〈Ψn|x0〉 (5.92)
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where Γn is a closed contour, encircled in the positive direction and contain-
ing the single target energy En and no other pole. (This holds if all poles
are distinct. In the case of degeneracy we can assume that an artificial inter-
action is introduced that lifts the degeneracy, an interaction that finally is
adiabatically switched off.) This yields the relation [211, Eq. (44)]

En =

∮
Γn
E dEG+(E;x,x0)∮

Γn
dEG+(E;x,x0)

(5.93)

Following Shabaev, we also introduce a ”projected” Green’s function by

g+(E;x,x0) = i
∑

β∈D

〈x|Ψβ0 〉〈Ψβ0 |x0〉
E − Eβ + iγ

(5.94)

which is the coordinate representation (see Appendix C.3) of the correspond-
ing operator

ĝ+(E) = i
∑

β∈D

|Ψβ0 〉〈Ψβ0 |
E − Eβ + iγ

= i
∑

β∈D

P |Ψβ〉〈Ψβ |P
E − Eβ + iγ

(5.95)

operating only within the model space.

The effective Hamiltonian (Eq. 2.54) is defined by

Heff |Ψα0 〉 = Eα|Ψα0 〉

and we can then express this operator as

Heff =
∑

β∈D
|Ψβ0 〉Eβ〈Ψ̃β0 | = HeffP−1 (5.96)

where
Heff =

∑

β∈D
= |Ψβ0 〉Eβ〈Ψβ0 | (5.97)

From the definition (Eq. 5.94) it follows that

Heff = − 1
2π

∮
E dE g(E) (5.98)

where the integration contour contains the energies all target states. As be-
fore, we assume that the poles are distinct.

Expanding the effective Hamiltonian (Eq. 5.96) order-by-order leads to

Heff = H(0)
eff +H(1)

eff −H(0)
eff P(1) + · · · (5.99)
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The first-order operator Heff becomes

H(1)
eff = − 1

2π

∮
E dE g(0)

+ (E) (5.100)

where

g
(0)
+ (E;x,x0) = i

∑

β∈D

〈x|Ψβ0 〉〈Ψβ0 |x0〉
E − Eβ + iγ

(5.101)

The effective Hamiltonian above is non-hermitian, as in the MBPT treat-
ment in section 2.3. It can also be given a hermitian form [211], but we shall
maintain the non-hermitian form here, since it makes the formalism simpler
and the analogy with the later treatments more transparent.

Single-photon exchange

We shall now apply the two-times Greens function above to the case of single-
photon exchange between the electrons, discussed above (Fig. 5.2). We shall
evaluate the contribution to the effective Hamiltonian in the general quasi-
degenerate case. In the equal-time approximation the (first-order) Green’s
function (Eq. 5.25) is given by

G(1)(x, x′, x0, x
′
0) =M(1)

sp (x,x′;x0,x
′
0) e−it(ω3+ω4) eit0(ω1+ω2) (5.102)

and the first-order Feynman amplitude is given by Eq. (5.23)

M(1)
sp (x,x′;x0,x

′
0) = −i

∫∫
dω3

2π
dω4

2π

∫∫
dω1

2π
dω2

2π
× SF(ω3;x,x1)SF(ω4;x′,x2) I(ω1 − ω3;x2,x1)
× SF(ω1;x1,x0)SF(ω2;x2,x

′
0) 2π∆2γ(ω1 + ω2 − ω3 − ω4) (5.103)

after integrations over z.

The Fourier transform of the Green’s function with respect to t and t0 is

G(1)(E′, E) =
∫∫

dt
2π

dt0
2π

eiE′t eiEt0 G(1)(x, x′, x0, x
′
0)

= ∆γ(E′ − ω3 − ω4)∆γ(E − ω1 − ω2)M(1)
sp (x,x′;x0,x

′
0) (5.104)

or
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G(1)(E′, E) = −i
∫∫

dω3

2π
dω1

2π
× SF(ω3;x,x1)SF(E′ − ω3;x′,x2) I(ω1 − ω3;x2,x1)
× SF(ω1;x1,x0)SF(E − ω1;x2,x

′
0) 2π∆2γ(E′ − E) (5.105)

after integrations over ω2, ω4. With the expression for the electron propagator
(Eq. 4.12) the matrix element of the Green’s function becomes

〈
rs
∣∣G(1)(E′, E)

∣∣tu〉 =
〈
rs
∣∣∣
∫∫

dω3

2π
dω1

2π

× 1
ω3 − εr + iγu

1
E′ − ω3 − εs + iγs

I(ω1 − ω3)

× 1
ω1 − εt + iγt

1
E − ω1 − εu + iγu

∣∣∣tu
〉

2π∆2γ(E′ − E) (5.106)

With |rs〉 and |tu〉 in the model space, this is the same as the matrix element
of the projected Green’s function (Eq. 5.94), considering only poles corre-
sponding to the relevant target states. We define the single-energy Fourier
transform by

G(E) =
∫

dE′

2π
G(E′, E) (5.107)

which yields

〈
rs
∣∣G(1)(E)

∣∣tu〉 = −i
〈
rs
∣∣∣
∫∫

dω3

2π
dω1

2π
I(ω1 − ω3)

1
E − εr − εs

[ 1
ω3 − εr + iγr

+
1

E − ω3 − εs + iγs

]

× 1
E − εt − εu

[ 1
ω1 − εt + iγt

+
1

E − ω1 − εu + iγu

]∣∣∣tu
〉

(5.108)

We assume here that the initial and final states lie in the model space with
all single-particle states involved being particle states. The relevant poles are
here

E = εt + εu = Ein and E = εr + εs = Eout

The contribution of the first pole is

−i
2πi

〈
rs
∣∣∣
∫∫

dω3

2π
dω1

2π
I(ω1 − ω3)

× Ein

Ein − Eout

[ 1
ω3 − εr + iγ

+
1

Ein − ω3 − εs + iγ

]

×
[ 1
ω1 − εt + iγ

+
1

Ein − ω1 − εu + iγ

]∣∣∣tu
〉

(5.109)

The last bracket yields −2πi∆γ(ω1 − εt), and integration over ω1 yields
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i
〈
rs
∣∣∣
∫
ω3 I(εt − ω3)

× Ein

Ein − Eout

[ 1
ω3 − εr + iγ

+
1

Ein − ω3 − εs + iγ

]∣∣∣tu
〉

(5.110)

Similarly the other pole yields

i
〈
rs
∣∣∣
∫

dω1

2π
I(ω1 − εr)

× Eout

Ein − Eout

[ 1
ω1 − εt + iγ

+
1

Eout − ω1 − εu + iγ

]∣∣∣tu
〉

(5.111)

The matrix element of P(1) is similar with Ein and Eout in the numerator
removed. The matrix element of H(0)

eff P(1) is obtained by multiplying by Eout,
and the first-order contribution then becomes

〈rs|H(1)
eff |tu〉 = i

〈
rs
∣∣∣
∫

dω3

2π
I(εt − ω3)

×
[ 1
ω3 − εr + iγ

+
1

Ein − ω3 − εs + iγ

]∣∣∣tu
〉

(5.112)

The photon interaction is in the Feynman gauge given by Eq. (4.46)

I(q;x1,x2) =
∫

2c2κ dκ fF (κ;x1,x2)
q2 − c2κ2 + iη

(5.113)

with fF given by Eq. (4.55). This gives

I(εt − ω3) =
∫

2c2κdκ fF (κ;x1,x2)
(εt − ω3)2 − c2κ2 + iη

(5.114)

with the poles at ω3 = εt ± (−iη). Integrating the relation (Eq. 5.112) over
ω3 then yields

〈rs|H(1)
eff |tu〉 =

〈
rs
∣∣∣
∫
cdk fF

[ 1
εt − εr − (κ− iη)

+
1

εu − εs − (κ− iη)

]∣∣∣tu
〉

(5.115)

This agrees with the result obtained with the covariant evolution operator
(CEO) method in the next chapter (Eq. 6.16). The CEO result is more gen-
eral, since it is valid also when the initial and/or final states lie in the com-
plementary Q space, in which case the result contributes to the wave function
or wave operator.

In contrast to the S-matrix formulation the Green’s-function method is
applicable also when the initial and final states have different energies, which
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makes it possible to evaluate the effective Hamiltonian in the case of an
extended model space and to handle the quasi-degenerate case.

The two-times Green’s function has in recent years been successfully ap-
plied to numerous highly charged ionic systems by Shabaev, Artemyev et al.
of the St. Petersburg group for calculating two-photon radiative effects, fine
structure separations and g-factors of hydrogenic systems [7, 239, 6, 238].
Some numerical results are given in Chapter 7.



Chapter 6

Covariant evolution operator and
Green’s operator

The third method we shall consider for numerical QED calculation on bound
states is the covariant-evolution-operator (CEO) method, developed during
the last decade by the Gothenburg group [124]. This procedure is based upon
the non-relativistic time-evolution operator, discussed in chapter 3, but it is
made covariant in order to be applicable in relativistic calculations. Later, we
shall demonstrate that this procedure forms a convenient basis for a covari-
ant relativistic many-body perturbation procedure, including QED as well as
correlational effects, which for two-electron systems is fully compatible with
the Bethe-Salpeter equation. This question will be the main topic of the rest
of the book.

6.1 Definition of the covariant evolution operator

In the standard time-evolution operator (Eq. 3.6), U(t, t0), time is assumed
to evolve only forwards in the positive direction, which implies that t ≥ t0.
Internally, time may run also backwards in the negative direction, which in
the Feynman/Stückelberg interpretation [218, 64] represents the propagation
of hole or antiparticle states with negative energy. However, all internal times
(ti) are limited to the interval ti ∈ [t, t0].

In the S-matrix (Eq. 4.2) the initial and final times are t0 = −∞ and
t = +∞, respectively, which implies that the internal integrations do run
over all times, making the concept Lorentz covariant .1

In order to make the time-evolution operator covariant also for finite times,
it has to be modified. This leads to what is referred to as the covariant evo-

1 See footnote in the Introduction.
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lution operator (CEO), introduced by Lindgren, Salomonson and coworkers
in the early 2000’s [115, 117, 124, 125, 126].

The CEO is, as well as the S-matrix and the Green’s function, field-
theoretical concepts, and the perturbative expansions of these objects are
quite similar. The integrations are performed over all times, and therefore,
these objects are normally represented by Feynman diagrams instead of time-
ordered Goldstone diagrams, discussed earlier (section 2.4).

The evolution operator contains generally (quasi)singularities, when it is
unlinked or when an intermediate state lies in the model space. Later in this
chapter we shall see how these singularities can be removed for the CEO, lead-
ing to what we refer to as the Green’s operator , since it is quite analogous
to the Green’s function, which is also free of singularities.

As mentioned earlier, the covariant perturbation expansion we shall formu-
late here leads for two-particle systems ultimately to the full Bethe-Salpeter
(BS) equation [125]. In principle, the BS equation has separate time vari-
ables for the individual particles, which makes it manifestly covariant. This
is also the case for the CEO as well as for the Green’s function. In most ap-
plications, however, times are equalized, so that the objects depend only on a
single time, which is known as the equal-time approximation . This makes
the procedure in line with the standard quantum-mechanical picture, where
the wave function has a single time variable, Ψ(t,x1,x2 · · · ), but the covari-
ance is then partly lost. Here, we shall mainly work with this approximation
in order to be able to combine the procedure with the standard many-body
perturbation theory.

t

6t ψ̂+ 6ψ̂+ u

-zs s1 2

6r ψ̂†+ 6ψ̂†+ s

t0

-

-
Particles

t s s
6t ψ̂± 6ψ̂± u

-zs s1 2

6r ψ̂± 6ψ̂± s

t0 s s
-

-

Part.

Holes

x x′s s6r 6sψ̂†± ψ̂†±

6t ψ̂± 6ψ̂± u

-zs s1 2

6r ψ̂± 6ψ̂± s

x0 x′0s s
6t 6uψ̂± ψ̂±

-

-

Part.

Holes

Fig. 6.1 Comparison between the standard evolution operator, the Green’s function and
the covariant evolution operator for single-photon exchange in the equal-time approxima-
tion.

As a first illustration we consider the single-photon exchange with the
standard evolution operator (Fig. 6.1, left), the Green’s function (middle)
and the CEO (right). In the standard evolution operator only particle states
(positive-energy states) are involved in the lines in and out. Therefore, this
operator is NOT Lorentz covariant. In the Green’s function there are elec-
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tron propagators on the free lines, involving particle as well as hole states
(positive- and negative-energy states), and the internal times can flow in
both directions between −∞ and +∞, which makes the concept covariant.
In the CEO electron propagators are inserted on the free lines of the stan-
dard evolution operator with integration over the space coordinates, making
it covariant. This implies that we attach a density operator [18] to the free
lines

ρ̂(x) = ψ̂†(x)ψ̂(x) (6.1)

with integration over the space coordinates. We can also see the CEO as the
Green’s function, with electron-field operators attached to the free ends.

• We generally define the Covariant Evolution Operator (CEO) in the
single-particle case by the one-body operator 2

U1
Cov(t, t0) =

∫∫
d3xd3x0 ψ̂

†(x)
〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉
ψ̂(x0) (6.2)

We use here the same vacuum expectation in the Heisenberg representa-
tion as in the definition of the Green’s function (Eq. 5.8) with two addi-
tional electron-field operators, ψ̂†(x) and ψ̂(x0), with space integrations
over x, x0. In contrast to the Green’s function, we shall assume here that
the number of photons does not need to be conserved. When this num-
ber is conserved, the vacuum expectation is a number and represents the
corresponding Green’s function. The space integration makes the electron-
field operators attached to this function, as illustrated in the figure in the
marginal (c.f. Fig. 5.1, left).

x

x0 s
s6ψ̂†

6ψ̂

6SF

6SF

• In analogy with the expression (Eq. 5.18) for the Green’s function, we can
also express the covariant evolution operator as

U1
Cov(t, t0) =

∫∫
d3xd3x0 ρ̂(x)U1(∞,−∞) ρ̂(x0) (6.3)

where the density operators are connected to the standard (one-body)
evolution operator or S-matrix.

• In expanding the S-matrix (see Eq. 5.16), we obtain

2 An ”n-body operator” is an operator with n pairs of creation/absorption operators (for
particles), while an ”m-particle” function or operator is an object of m particles outside
our vacuum. In principle, n can take any value n ≤ m, although we shall normally assume
that n = m.
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U1
Cov(t, t0) =

∞∑
n=0

1
n!

∫∫
d3x d3x0

(−i
c

)n ∫
d4x1 · · ·

∫
d4xn

× T
[
ρ̂(x)H(x1) · · ·H(xn) ρ̂(x0)

]
1

e−γ(|t1|+|t2|··· ) (6.4)

where the operators are connected to form a one-body operator.

• Similarly, the two-particle CEO becomes—in analogy with the correspond-
ing Green’s function (Eq. 5.21) and Fig. 5.1 (right)—

6SF 6SF

6SF 6SF

s s
s s
6ψ̂† 6ψ̂†

6ψ̂ 6ψ̂

x x′

x0 x′0

U2
Cov(t, t′; t0, t′0) =

∞∑
n=0

1
n!

∫∫∫∫
d3xd3x′d3x0 d3x′0

(−i
c

)n ∫
d4x1 · · ·

∫
d4xn

×T
[
ρ̂(x)ρ̂(x′)H(x1) · · ·H(xn) ρ̂(x′0)ρ̂(x0)

]
2

e−γ(|t1|+|t2|··· ) (6.5)

6.2 Single-photon exchange in the covariant-
evolution-operator formalism

We shall now consider the exchange of a single photon between the electrons
in the covariant-evolution-operator formalism. We consider here a general
covariant gauge (see section 4.3), like the Feynman gauge, and we shall
later consider the non-covariant Coulomb gauge.

We assume here that the initial state is unperturbed and return to the
more general situation in Chapter 8.

The CEO for the exchange of a single photon (Fig. 6.1, rightmost) is in
the general case given by

Usp(t, t′; t0, t′0) =
∫∫

d3xd3x′
∫∫

d3x0 d3x′0 ψ̂
†(x)ψ̂†(x′)

{
1
2

∫∫
d4x1 d4x2

× iSF(x, x1) iSF(x′, x2) (−i) e2DF(x2, x1) iSF(x1, x0)iSF(x2, x
′
0) e−γ(|t1|+|t2|)

}

×ψ̂(x′0)ψ̂(x0) (6.6)

(with DF defined in Eq. 4.19) in analogy with the corresponding S-matrix and
Green’s-function expressions. The expression in the curly brackets is the cor-
responding Green’s function (Eq. 5.22) (the denominator does not contribute
in first order). The CEO contains additional electron creation/annihilation
operators and integration over the space coordinates at the initial and final
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times. This makes the CEO into an operator, while the Green’s function is a
function.

x x′s s6r 6sψ̂† ψ̂†

6a ψ̂ 6ψ̂ b

-zs s1 2
6r ω1 6ω2 s

r r
E0

x x′s s6r 6s

6a 6b

-r r6r 6s
r r

E0

x x′s s6r 6s6s

6a 6b

- rr6r 6s
r r

E0

Fig. 6.2 The evolution-operator diagram for single-photon exchange.

When the initial state is unperturbed, it implies with the adiabatic damp-
ing that the initial time (t0, t′0..) is −∞. From the definition of the electron
propagator (Eq. 4.8) it can be shown that, as t0 → −∞,

∫
d3x0 iSF(x, x0) ψ̂(x0)⇒ ψ̂(x) (6.7)

when the incoming state is a particle state. Therefore, we can leave out the
propagators on the incoming lines, as illustrated in the first diagram of Fig.
6.2, corresponding to the expression

Usp(t, t′;−∞) =
∫∫

d3xd3x′ ψ̂†(x)ψ̂†(x′)

{
1
2

∫∫
d4x1 d4x2 iSF(x, x1)

× iSF(x′, x2) (−i)e2DF(x2, x1) e−γ(|t1|+|t2|)
}
ψ̂(x2)ψ̂(x1) (6.8)

Identification with the expression for the second quantization (Appendix B),
leads to the matrix element

〈rs|Usp(t, t′;−∞)|ab〉 = ei(tεr+t′εs)
∫∫

dt1dt2
〈
rs
∣∣x,x′〉〈x,x′|iSF(x, x1)

× iSF(x′, x2) (−i)e2DF(x2, x1)|x1,x2〉〈x1,x2|
∣∣ab〉 e−i(t1εa+t2εb) e−γ(|t1|+|t2|)

where we for clarity have indicated the integration variables (see Appendix
C.3).

The external-time dependence is here e−it(ω1−εr) e−it′(ω2−εr), which in the
equal-time approximation (t = t′) becomes e−it(ω1+ω2−εr−εs). Since in the
limit γ → 0 ω1 + ω2 = εa + εb = E0 is the initial energy and εr + εs is the
final energy, we have in this limit
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〈rs|Usp(t,−∞)|ab〉 = e−it(E0−εr−εs) 〈rs|Msp|ab〉 (6.9)

or
Usp(t,−∞)|ab〉 = e−it(E0−H0) |rs〉〈rs|Msp|ab〉 (6.10)

where Msp represents the Feynman amplitude . This is defined as the op-
erator without the external time dependence, in analogy with the Green’s
function (Eq. 5.23) (see also Appendix H.2). This yields

〈rs|Msp|ab〉 =
〈
rs
∣∣∣
∫∫

dω1

2π
dω2

2π

∫
dz
2π

iSF(ω1;x,x1) iSF(ω2;x′,x2)

× (−i)I(z;x2,x1) 2π∆γ(εa − z − ω1) 2π∆γ(εb + z − ω2)
∣∣∣ab
〉

(6.11)

and after integration over ω1, ω2 in the limit γ → 0

〈rs|Msp|ab〉 =
〈
rs
∣∣∣
∫

dz
2π

iSF(εa − z;x,x1) iSF(εb + z;x′,x2)

× (−i)I(z;x2,x1) 2π∆2γ(εb + εb − ω1 − ω2)
∣∣∣ab
〉

(6.12)

Inserting the expressions for the propagator (Eq. 4.10) and the interaction
(Eq. 4.46), then yields

〈rs|Msp|ab〉 =
〈
rs
∣∣∣ i
∫

dz
2π

1
εa − z − εr + iγr

1
εb + z − εs + iγs

∫
2c2κ dκ f(κ)
z2 − c2κ2 + iη

∣∣∣ab
〉

(6.13)

With the identity (Eq. 4.75), this can be expressed

〈rs|Msp|ab〉 =
1

E0 − εr − εs 〈rs|Vsp|ab〉 (6.14)

or
Msp(x,x′)|ab〉 =

1
E0 −H0

Vsp|ab〉 (6.15)

where Vsp is the potential for single-photon exchange (Eq. 4.77),

〈rs|Vsp|ab〉 =
〈
rs
∣∣∣
∫ ∞

0

cdk f(κ)
[ 1
εa − εr − (cκ− iγ)r

+
1

εb − εs − (cκ− iγ)s

]∣∣∣ab
〉

(6.16)

The evolution operator (Eq. 6.10) then becomes

Usp(t,−∞)
∣∣ab〉 =

e−it(E0−H0)

E0 −H0
Vsp|ab〉 (6.17)
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The results above hold in any covariant gauge, like the Feynman
gauge. They do hold also for the transverse part in the Coulomb
gauge by using the transverse part of the f function (Eq. 4.60).

The result (Eq. 6.16) is identical to the Green’s-function result (Eq. 5.115),
when the final state, |rs〉, lies in the model space. In the CEO case the final
state can also lie in the complementary Q space, in which case the evolution
operator contributes to the wave function/operator.

The CEO result can be represented by means of two time-ordered Feyn-
man diagrams, as shown in Fig. 6.2. We then see that the denominators are
given essentially by the Goldstone rules of standard many-body perturbation
theory [61, sect. 12.4], i.e., the unperturbed energy minus the energies of the
orbital lines cut by a horizontal line, in the present case including also −k
for cutting the photon line.3

When the initial and final states have the same energy, the potential
(Eq. 6.16) above becomes

〈cd|Vsp|ab〉 =
〈
cd
∣∣∣
∫ ∞

0

2k dk f(k)
q2 − k2 + iγ

∣∣∣ab
〉

(6.18)

where cq = εa−εc = εd−εb, which is the energy-conservative S-matrix result
(Eq. 4.46), (Eq. 4.52).

We have seen here that the covariant evolution operator for single-photon
exchange has the time dependence e−it(E0−H0), which differs from that of the
non-relativistic evolution operator Eq. (3.11). We shall return to this question
at the end of this chapter.

Single-photon ladder

We can now construct the covariant evolution operator for some ladder-type
interactions provided no hole states are appearing in the intermediate states.
The diagram in Fig. 6.3 represents two reducible single-photon interactions
with an intermediate time (t′) that separates the interactions. The Feyn-
man amplitude is then obtained by combining two single-photon interactions
(Eq. 6.16) with corresponding resolvents,

MPE = Γ (E)Vsp(E)Γ (E)Vsp(E)PE (6.19)

3 It should be observed that a Goldstone diagram is generally distinct from a ”time-ordered
Feynman diagram”, as is further analyzed in Appendix I.
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t s s6 6

6 6-s s
t′ s s6 6

6 6-s s
6 6E

Fig. 6.3 Feynman diagram representing second-order ladder diagramEq. (6.19).

PE is the projection operator of the part of the model space with energy E ,
and Γ (E) is the resolvent (Eq. 2.64).

This procedure can be repeated to a general single-photon ladder

MLaddPE = Γ (E)Vsp(E)Γ (E)Vsp(E) · · ·Γ (E)Vsp(E)PE (6.20)

The corresponding part of the evolution operator is according to Eq. (6.10)

U0(t,−∞)Ladd PE = e−it(E−H0)MLaddPE (6.21)

where subscript ”0” is used to indicate that there are no intermediate model-
space states (see further below). This evolution operator can be singular due
to intermediate and/or final model-space states, which can be eliminated by
means of counterterms, leading to ”folds” (model-space contributions, MSC),
as we shall demonstrate below.

It should be observed that

• in the equal-time approximation the interactions and the resol-
vents as well as the time factor of the ladder without folds all
depend on the energy of the initial, unperturbed state .

The folds will affect the time dependence, as will be discussed in section
(Eq. 6.9). In Part III we shall treat the ladder in the presence of virtual pairs
and higher-order interactions and see how the procedure can be fitted into a
many-body procedure.
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6.3 Multi-photon exchange

General

We shall now briefly consider the general case of multi-photon exchange. We
can describe this by means of a general many-body potential, which we can
separate into one-, two-,... body parts,

V = V1 + V2 + V3 + · · · (6.22)

and which contains all irreducible interactions.4 By iterating such a potential,
all reducible interactions will be generated. In Figs 6.4 and 6.6 we illustrate
the one- and two-body parts of this potential, including radiative effects—
vacuum polarization, self energy, vertex correction (see section 2.6)— which,
of course, have to be properly renormalized (see Chapter 12).

V1
xeefghr = ×fir + ×firr

r
+ r
rr
r

+ · · ·

Fig. 6.4 Graphical representation of the one-body part of the effective potential
(Eq. 6.22), containing the one-body potential in Fig. 6.5 as well as irreducible one-body
potential diagrams, including radiative effects.

×gjr = ×r + r r�
���
���
���
���
��?+ r
r

Fig. 6.5 Graphical representation of the ”extended” effective potential interaction. This
is analogous to the effective potential in Fig. 2.3, but the internal lines represent here all
orbitals (particles as well as holes). This implies that the last two diagrams include the
(renormalized) vacuum polarization and self energy.

The one-body potential contains an effective-potential interaction (Fig.
6.5) in analogy to that in ordinary MBPT (Eq. 2.73). In the effective potential
here, however, the internal lines can be hole lines as well as particle lines. This

4 Concerning the definition of the concepts ”reducible” and ”irreducible”, see section 2.6.
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V2r r =

r r r
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r r r
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rr
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r
· · ·

Fig. 6.6 The two-body part of the effective potential (Eq. 6.22) contains all irreducible
two-body potential diagrams.

implies that the second diagram on the r.h.s. in Fig. 6.5 contains the direct
Hartree-Fock potential as well as the radiative effect of vacuum polarization
and the last diagram the exchange part of the HF potential as well as the
and electron self energy (both radiative effects properly renormalized). All
heavy lines here represent orbitals in the external (nuclear) potential, which
implies that the vacuum polarization contains the Uehling potential [229] (see
section 4.6) as well as the Wickmann-Kroll [233] correction, discussed earlier
in section 4.6.

Irreducible two-photon exchange *

We consider next the general two-photon exchange, illustrated in Fig. 6.7,
still assuming the equal-time approximation and unperturbed initial state.

x x′s s6r 6s

6r ω3 6ω4 s

r r
-z
′s s3 4

6t ω1 6ω2 u

-zs s1 2

6a 6bE

x x′s s6r 6s

6r ω3 6ω4 s

r r
6t ω1 6ω2 u6s
s

z6 s
s

z′

1

2

3

4

6a 6bE
Fig. 6.7 Covariant-evolution-operator diagrams for two-photon ladder and ”cross”.
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Uncrossing photons

Generalizing the result for single-photon exchange (Eq. 6.6), we find that the
kernel of the first (ladder)diagram becomes

iSF(x, x3) iSF(x′, x4) (−i)e2DF(x4, x3) iSF(x3, x1) iSF(x4, x2) (−i)e2DF(x2, x1) (6.23)

This leads to the Feynman amplitude in analogy with Eq. (6.11)

Msp(x,x′;x0,x
′
0) =

∫∫∫∫
dω1

2π
dω2

2π
dω3

2π
dω4

2π

∫∫
dz
2π

dz′

2π
iSF(ω3;x,x3)

× iSF(ω4;x′,x4) (−i)I(z′;x4,x3) iSF(ω1;x3,x1) iSF(ω2;x4,x2)
× (−i)I(z;x2,x1) 2π∆γ(εa − ω1 − z) 2π∆γ(εb − ω2 + z)
× 2π∆γ(ω1 − z′ − ω3) 2π∆γ(ω2 + z′ − ω4) (6.24)

Integration over ω1, ω2 leads to

Msp(x,x′) =
∫∫

dω3

2π
dω4

2π

∫∫
dz
2π

dz′

2π
iSF(ω3;x,x3) iSF(ω4;x′,x4)

× (−i)I(z′;x4,x3) iSF(εa − z;x3,x1) iSF(εb + z;x4,x2)
× (−i)I(z;x2,x1) 2π∆2γ(εa − z − z′ − ω3) 2π∆2γ(εb + z + z′ − ω4) (6.25)

and over ω3, ω4

Msp(x,x′) =
∫∫

dz
2π

dz′

2π
iSF(εa − z − z′;x,x3) iSF(εb + z + z′;x′,x4)

× (−i)I(z′;x4,x3) iSF(εa − z;x3,x1) iSF(εb + z;x4,x2) (−i)I(z;x2,x1) (6.26)

Integration over z′ leads to the denominators

1
E − εr − εs

[ 1
εa − εr − z − (cκ′ − iγ)r

+
1

εb − εs + z − (cκ′ − iγ)s

]

and the remaining part of the integrand is

1
E − εt − εu

[ 1
εa − εt − z + iγt

+
1

εb + z + iγu

] 1
z2 − c2κ2 + iη

Crossing photons

For the crossed-photon exchange in Fig. 6.7 (right) the corresponding result
is
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Msp(x,x′;x0,x
′
0) =

∫∫∫∫
dω1

2π
dω2

2π
dω3

2π
dω4

2π

∫∫
dz
2π

dz′

2π
iSF(ω3;x,x4)

× iSF(ω4;x′,x2) (−i)I(z′;x4,x3) iSF(ω1;x4,x1) iSF(ω2;x2,x3)
× (−i)I(z;x2,x1) 2π∆γ(εa − ω1 − z) 2π∆γ(εb − ω2 − z′)
× 2π∆γ(ω1 − z′ − ω3) 2π∆γ(ω2 + z − ω4) (6.27)

Integration over the omegas yields

Msp(x,x′) =
∫∫

dz
2π

dz′

2π
iSF(εa + z′ − z;x,x4) iSF(εb + z − z′;x′,x2)

× (−i)I(z′;x4,x3) iSF(εa − z;x4,x1) iSF(εb − z;x2,x3) (−i)I(z;x2,x1) (6.28)

Integration over z′ leads to the denominators

1
E − εr − εs

[ 1
εa − εr − z − (cκ′ − iγ)r

+
1

εb − εs + z − (cκ′ − iγ)s

]

and the remaining part of the integrand is

1
εa − εt − z + iγt

1
εb − εu − z + iγu

1
z2 − c2κ2 + iη

To evaluate the integrals above is quite complicated, but they are consid-
ered in detail in ref. [124, App.A2] and in the thesis of Björn Åsén [8]. The
two-photon effects have been evaluated for heliumlike ions, and some results
are shown in the following chapter.

Potential with radiative parts

Two-photon potentials with self-energy and vacuum-polarization insertions
can also be evaluated in the covariant-evolution-operator formalism, as dis-
cussed in ref. [124]. We shall not consider this any further here, but return
to these effects in connection with the MBPT-QED procedure in Chapter 8.

6.4 Relativistic form of the Gell-Mann–Low theorem

We have in Chapter 3 considered the non-relativistic form of the Gell-Mann–
Low theorem, and we shall now extend this to the relativistic formalism. This
theorem plays a fundamental role in the formalism we shall develop here.
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We shall start with
• a conjecture that the time evolution of the relativistic state vector

is governed by the CEO in the equal-time approximation (in the
interaction picture), in analogy with the situation in the non-relativistic
case (Eq. 3.6) (c.f. ref. [19, sect. 6.4]),

∣∣χα
Rel

(t)
〉

= UCov(t, t0)
∣∣χα

Rel
(t0)

〉
(6.29)

We shall later demonstrate that this conjecture is consistent with the stan-
dard quantum-mechanical picture (Eq. 6.120) (see also Eq. 9.13). It should
be noted that the evolution operator does not generally preserve the (inter-
mediate) normalization.

It can now be shown as in the non-relativistic case in section 3.3 that the
conjecture above leads to a
• relativistic form of the Gell-Mann–Low theorem for a general

quasi-degenerate model space

∣∣χα
Rel

(0)
〉

=
∣∣Ψα

Rel

〉
= lim
γ→0

UCov(0,−∞)
∣∣Φα

Rel

〉

〈Ψ0
α
Rel
|UCov(0,−∞) |Φα

Rel
〉 (6.30)

which is quite analogous to the non-relativistic theorem (Eq. 3.46). Here,
|Φα

Rel
〉 is, as before, the parent state (Eq. 3.32), i.e., the limit of the corre-

sponding target state, as the perturbation is adiabatically turned off,
∣∣Φα

Rel

〉
= Cα lim

t→−∞
∣∣χα

Rel
(t)
〉

(6.31)

(Cα is a normalization constant) and |Ψ0
α
Rel
〉 = P |Ψα

Rel
〉 is the (normalized)

model state.

• The state vector |Ψα
Rel
〉 satisfies a relativistic eigenvalue equation , anal-

ogous to the non-relativistic (Schrödinger-like) Gell-Mann–Low equa-
tion (Eq. 3.35), (

H0 + VF

) ∣∣Ψα
Rel

〉
= Eα

∣∣Ψα
Rel

〉
(6.32)

where VF is the perturbation, used in generating the evolution operator
(Eq. 6.5).

In proving the relativistic form of the GML theorem, we observe that the
covariant evolution operator differs from the corresponding non-relativistic
operator particularly by the replacement of the electron-field operators by the
corresponding density operators (Eq. 6.1). It then follows that the commuta-
tor of H0 with the covariant operator is the same as with the nonrelativistic
operator, which implies that the proof in section 3.3 can be used also in the
covariant case.
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A condition for the GML theorem to hold is as in the non-relativistic
case that the perturbation is time-independent in the Schrödinger
picture (apart from damping), which is the case for the perturbation we
shall use here (see further below).

6.5 Field-theoretical many-body Hamiltonian

In the unified MBPT-QED procedure we shall develop we shall apply the
Coulomb gauge in order to be able to utilize the developments of the MBPT
procedure. In this gauge we separate the interaction between the electrons in
the instantaneous Coulomb interaction and the transverse interaction, with
the Coulomb part being (Eq. 2.109)

VC =
N∑

i<j

e2

4πε0 rij
(6.33)

The exchange of a virtual transverse photon is represented by TWO pertur-
bations of the one-body perturbation

vT(t) =
∫

d3xH(t,x) (6.34)

where the perturbation density given by Eq. (4.4)

H(x) = H(t,x) = −ψ̂†(x) ecαµAµ(x) ψ̂(x) (6.35)

with Aµ being the quantized, transverse radiation field (see Appendix F.2).
The total perturbation is then

VF = VC + vT (6.36)

The perturbation (Eq. 6.35) represents the emission/absorption of a pho-
ton. Therefore, with this perturbation the GML equation works in a pho-
tonic Fock space ,5 where the number of photons is not preserved. (The
perturbation above is not time-independent in the Schrödinger picture as
required by the GML relation, but it can be transformed into equiva-
lent, time-independent interactions, as will be demonstrated in section 10.1)
(Eq. 10.10).

5 Also the Fock space is a form of Hilbert space, and therefore we shall refer to the Hilbert
space with a constant number of photons as the restricted (Hilbert) space and the space
with a variable number of photons as the (extended) photonic Fock space (see Appendix
A.2).
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The model many-body Hamiltonian we shall apply is primarily a sum
of Dirac single-electron Hamiltonians in an external (nuclear) field (Furry
picture) (Eq. 2.108)

hD = cα · p̂ + βmc2 + vext (6.37)

(As before, we may include an optional potential, u, in the model Hamiltonian
(Eq. 2.49)—and subtract the same quantity in the perturbation—in order to
improve the convergence rate for many-electron systems.)

However, since the number of photons is no longer constant in the space
we work in, we have to include in the model Hamiltonian also the radiation
field, HRad (see Appendix Eqns G.12 and B.20), yielding

H0 =
∑

hD +HRad (6.38)

The full field-theoretical many-body Hamiltonian will then be

H = H0 + VF = H0 + VC + vT (6.39)

sometimes also referred to as the many-body Dirac Hamiltonian . This
leads with the GML relation (Eq. 6.32) to the corresponding Fock-space
many-body equation 6

HΨ = EΨ (6.40)

In comparing our many-body Dirac Hamiltonian with the Coulomb-Dirac-
Breit Hamiltonian of standard MBPT (Eq. 2.113), we see that we have in-
cluded the radiation field, HRad, and replaced the instantaneous Breit inter-
action with the transverse field interaction, vT, in addition to removing the
projection operators.

Using second quantization (see App. B and E),

• the field-theoretical many-body Hamiltonian (Eq. 6.39) becomes

H =
∫

d3x ψ̂†(x)
(
cα · p̂+ βmc2 + vext(x)− ecαµAµ(x)

)
ψ̂(x)

+HRad +
1
2

∫∫
d3x1 d3x2 ψ̂

†(x1) ψ̂†(x2)
e2

4πε0r12
ψ̂(x2) ψ̂(x1) (6.41)

where vext(x) is the external (nuclear) field of the electrons (Furry picture).

We have here assumed that the Coulomb gauge is employed, and therefore
the operator Aµ(x) represents only the transverse part of the radiation

6 This equation is not completely covariant, because it has a single time, in accordance
with the established quantum-mechanical picture. This is the equal-time approximation,
mentioned above and further discussed later. In addition, a complete covariant treatment
would require that also the interaction between the electrons and the nucleus is treated in
a covariant way by means of the exchange of virtual photons (see, for instance, ref. [212]).
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field. (As mentioned previously, it is quite possible to use the Coulomb
gauge in QED calculation, as demonstrated by Adkins [1], Rosenberg [191]
and others.)

• By treating the Coulomb and the transverse photon interactions
separately, a formal departure is made from a fully covariant
treatment. However, this procedure is, when performed properly,
in practice equivalent to the use of a covariant gauge.

We define the wave-operator in analogy with the non-relativistic case
(Eq. 2.37) 7

|Ψα〉 = Ω|Ψα0 〉 (α = 1 · · · d) (6.42)

but now acting in the extended photonic Fock space.

The effective Hamiltonian has the same definition as before (Eq. 2.38),
which leads to

Heff = PHΩP (6.43)

and the effective interaction is defined by

Veff = Heff − PH0P = P (H −H0)ΩP (6.44)

or using the Hamiltonian (Eq. 6.39)

Veff = PVFΩP = P
(
VC + vT

)
ΩP (6.45)

This is a Fock-space relation, and the corresponding relation in the restricted
space without uncontracted photons is given by Eq. (6.123).

By solving the many-body equation (Eq. 6.40) iteratively, all possible per-
turbations will be produced. This is the basic principle of the covariant rel-
ativistic many-body perturbation procedure we shall develop in this book.
How this can be accomplished will be discussed in the following. First, we
shall treat the simple case of single-photon exchange.

6.6 Green’s operator

Definition

The vacuum expectation used to define the Green’s function (Eq. 5.8) con-
tains singularities in the form of unlinked diagrams, where the disconnected

7 In the following we shall leave out the subscript ”Rel”.
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parts represent the vacuum expectation of the S-matrix. This is a number,
and it then follows that the singularities could be eliminated by dividing
by this number. For the covariant evolution operator (CEO) (Eq. 6.2) the
situation is more complex, since this in an operator, and the disconnected
parts will also in general be operators. Therefore, we shall here proceed in a
somewhat different manner.

As mentioned,

• we shall refer to the regular part of the CEO as the Green’s opera-
tor—in the single-particle case denoted G(t, t0)—due to its great similarity
with the Green’s function. We define the single-particle Green’s operator
by the relation 8

U(t, t0)P = G(t, t0) · PU(0, t0)P (6.46)

where P is the projection operator for the model space, and analogously
in the many-particle case. Below we shall demonstrate that the Green’s
operator is regular .

The definition of the Green’s operator contains the important concept of a
heavy dot , which is defined in the following way.

If the operators are disconnected, there is no difference between the dot
product and an ordinary (normal-ordered) product. If the operators are con-
nected to a diagram of ladder type in Fig. 6.3 (Eq. 6.20), then we have seen
that all interactions in an ordinary product depend on the energy of the
initial state. We now introduce the convention that in a dot product the
operators do not operate beyond the heavy dot .9

The definitions above imply that the interactions and the resolvents
to the left of the dot depend on the energy of the unperturbed state
at the position of the dot . If we operate to the right on the part of the
model space PE of energy E and the intermediate model-space state lies in
the part PE′ of energy E ′, we can express the two kinds of products as





APE′BPE = A(E) PE′B(E)PE

A · PE′BPE = A(E ′) PE′B(E)PE

(6.47)

8 The Green’s operator is closely related—but not quite identical—to the reduced covariant
evolution operator, previously introduced by the Gothenburg group [124].
9 This can be compared with the situation in the MBPT Bloch equation (Eq. 2.56),
where—using the heavy dot—the folded term could be expressed Ω � PVeffP , indicating
that the energy parameters of the wave operator depend on the intermediate model-space
state.
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with the energy parameter of A equal to E in the first case and to E ′ in the
second case. By the hooks we indicate that the operators must be connected
by at least one contraction. We shall soon see the implication of this definition.

Relation between the Green’s operator and many-body
perturbation procedures

From the conjecture (Eq. 6.29) and the definition (Eq. 6.46) we have in the
limit of vanishing damping

|χα(t)〉 = NαU(t,−∞)|Φα〉 = NαG(t,−∞) · PU(0,−∞)P |Φα〉 (6.48)

where Nα is the normalization constant

Nα =
1

〈Ψα0 |U(0,−∞|Φα〉 (6.49)

making the state vector intermediately normalized for t = 0. Here, |Φα〉 is
the parent state (Eq. 6.31), and |Ψα〉 = NαU(0,−∞)|Φα〉 is the target state
(for t = 0). The model state is

|Ψα0 〉 = P |Ψα〉 = NαPU(0,−∞)|Φα〉

This leads directly to

• the relation ∣∣χα(t)
〉

= G(t,−∞)
∣∣Ψα0

〉
(6.50)

which implies that the time dependence of the relativistic state vec-
tor is governed by the Green’s operator .

• Therefore, the Green’s operator can be regarded as a time-dependent
wave operator—but it is NOT an evolution operator in the sense, dis-
cussed in section 3.1.

• For the time t = 0 we have the covariant analogue of the standard
wave operator of MBPT (Eq. 2.37)

|χα(0)〉 = |Ψα〉 = ΩCov|Ψα〉 (6.51)

with
ΩCov = G(0,−∞) (6.52)

It follows directly from the definition (Eq. 6.46) that

PG(0,−∞)P = P (6.53)
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and the relation above can also be expressed

ΩCov = 1 +QG(0,−∞) (6.54)

We note here that it is important that the Green’s operator is defined with
the dot product (Eq. 6.46). The definition of the wave operator (Eq. 2.37) can
be expressed

|Ψα〉 = ΩCov · P |Ψα〉 = ΩCov · PU(0,−∞)|Φα〉 (6.55)

indicating that the energy parameter of the wave operator depends on the
intermediate model-space state.

We shall also define a covariant effective interaction, analogous to the
operator of MBPT (Eq. 2.55). The time dependence of the relativistic state
vector is formally the same as that of the non-relativistic one (Eq. 2.15)
(which is verified below (Eq. 6.120)) , i.e., in interaction picture

∣∣χα(t)
〉

= e−it(Eα−H0)
∣∣χα(0)

〉
= e−it(Eα−H0)

∣∣Ψα〉 (6.56)

or
i
∂

∂t

∣∣χα(t)
〉

= (Eα −H0)|χα(t)〉 (6.57)

With the relation (Eq. 6.50) this yields for the time t = 0

i
(
∂

∂t

∣∣χα(t)
〉)

t=0

|Ψα〉 = i
(
∂

∂t
G(t,−∞)

)

t=0

|Ψα0 〉 = (Eα −H0)|Ψα〉 (6.58)

Here, the rhs becomes, using the GML relation (Eq. 6.32) and the wave-
operator relation (Eq. 6.51),

(H −H0)|Ψα〉 = VF|Ψα〉 = VFΩCov|Ψα0 〉 (6.59)

These relations hold for all model states, which leads us to the important
operator relation for the entire model space

i
(
∂

∂t
G(t,−∞)

)

t=0

P = VFΩCovP (6.60)

which we refer to as the reaction operator. Projecting this onto the model
space, yields according to the definition (Eq. 6.44) to

• the covariant relativistic effective intercation

V Cov
eff = PVFΩCovP = P

(
i
∂

∂t
G(t,−∞)

)
t=0

P (6.61)
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This is a relation in the photonic Fock space , closely analogous to the
corresponding relation of standard MBPT (Eq. 2.55) (c.f. the relation Eq.
6.123).

Our procedure here is based upon quantum-field theory, and the Green’s
operator can be regarded as a field-theoretical extension of the tradi-
tional wave-operator concept of MBPT, and it serves as a connection
between field theory and MBPT .

6.7 Model-space contribution

We shall now demonstrate how the singularities of the covariant evolution op-
erator can be eliminated in the general multi-reference case. We assume that
the initial time is t0 = −∞. We also work in the equal-time approximation,
where all final times are the same.

We work in the restricted Hilbert space with no uncontracted pho-
tons and consider a ladder of complete single-photons interactions (Eq. 6.21),
transverse and Coulomb parts (see Fig. 6.3). (We shall later expand this to
more general, irreducible interactions,)

We start by expanding the relation (Eq. 6.46) order by order, using the
fact that U (0)(0)P = P ,

U (0)(t)P = G(0)(t) · PU (0)(0)P = G(0)(t)P
U (1)(t)P = G(1)(t)P + G(0)(t) · PU (1)(0)P
U (2)(t)P = G(2)(t)P + G(1)(t) · PU (1)(0)P + G(0)(t) · PU (2)(0)P
U (3)(t)P = G(3)(t)P + G(2)(t) · PU (1)(0)P + G(1)(t) · PU (2)(0)P

+ G(0)(t) · PU (3)(0)P (6.62)

etc.

It follows from Eq. (6.21) that the time dependence of the ladder is given
by e−it(Ein−Eout), where Ein and Eout represent the incoming and outgoing
energies. When operating on the part of the model space of energy E , the
operator can be expressed as

U(t)PE = e−it(E−H0) U(0)PE (6.63)

Solving the equations (Eq. 6.62) for the Green’s operator, we then have
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G(0)(t)P = U (0)(t)P
G(1)(t)P = U (1)(t)P − G(0)(t) · PU (1)(0)P
G(2)(t)P = U (2)(t)P − G(0)(t) · PU (2)(0)P − G(1)(t) · PU (1)(0)P
G(3)(t)P = U (3)(t)P − G(0)(t) · PU (3)(0)P − G(1)(t) · PU (2)(0)P

− G(2)(t) · PU (1)(0)P (6.64)

etc. We shall demonstrate that the negative terms above, referred to as coun-
terterms, will remove the singularities of the evolution operator.

It follows directly from the definition of the dot product above that the
singularities due to disconnected parts are exactly eliminated by the coun-
terterms. Therefore, we need only consider the connected (ladder) part, and
we consider a fully contracted two-body diagram as an illustration (Fig. 6.3).
It is sufficient for our present purpose to consider only positive intermediate
states, as in Eq. (6.20).

Lowest orders

From the above it follows that the zeroth-order Green’s operator is

G(0)(t, E)PE = U (0)(t, E)PE = e−it(E−H0)PE = PE (6.65)

(For clarity, we insert the energy parameter in the operator symbol.)

In first order we have from Eq. (6.64)

G(1)(t, E)PE = U (1)(t, E)PE − G(0)(t, E ′)PE′U (1)(0, E)PE (6.66)

where we observe that the the Green’s operator in the counterterm has the
energy parameter E ′, due to the heavy dot in the expression (Eq. 6.64). The
first term is (quasi)-singular, when the final state lies in the model space, and
we shall show that this singularity is eliminated by the counterterm.

From Eq. (6.63) we have

PE′U (1)(t, E)PE = PE′G(0)(t, E)U (1)(0, E)PE

(with the energy parameter E in the Green’s operator) and hence the corre-
sponding part of the Green’s operator (Eq. 6.66) becomes

PE′G(1)(t, E)PE =
(
G(0)(t, E)− G(0)(t, E ′)

)
PE′ U (1)(0, E)PE (6.67)

(P commutes with H0). According to Eq. (6.20)
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PE′U (1)(0, E)PE = PE′Γ (E)Vsp(E)PE = PE′
1

E −H0
Vsp(E)PE = PE′

Vsp(E)
E − E ′ PE

(6.68)
and hence we can express the first-order Green’s operator (Eq. 6.66) as

G(1)(t, E)PE = QU (1)(t, E)PE +
δG(0)(t, E ′, E)

δE PE′VspPE (6.69)

where QU (1)(t, E) = G(0)(t, E)ΓQ(E)V (E)PE . We assume here that there is
a summation over E ′, so that the entire intermediate model-space is covered.
The difference ratio above is defined

δG(0)(t, E ′, E)
δE =

G(0)(t, E)− G(0)(t, E ′)
E − E ′ ⇒ ∂G(0)(t, E)

∂E (6.70)

which turns into a derivative at complete degeneracy. Furthermore,

PE′VspPE = PE′V
(1)
eff PE (6.71)

is the first-order effective interaction, which is in accordance with the Fock-
space expression (Eq. 6.45) (see also Eq. 6.123).

The first-order elimination process is illustrated in Fig. 6.8.

s s6 6

6 6

6 6
-s s

G(0)(E)

U(1)(E) PE′

PE

-
s s6 6

6 6

6 6
-s s

G(0)(E ′)

U(1)(E) PE′

PE

⇒ s s6 6

6 6

6 6
-s sPE′

PE

Fig. 6.8 Illustration of the elimination of singularity of the first-order evolution operator,
due to a final model-space state. The double bar represents the difference ratio/derivative
of the zeroth-order Green’s operator (c.f. Fig. 6.9).

In second order we have from Eq. (6.21)

U
(2)
0 (t, E)LaddPE = U

(1)
0 (t, E)U (1)

0 (0, E)PE (6.72)

This can be (quasi)singular, if the final or intermediate state lies in the model
space.

If there is a model-space state only at the final state, the counterterm
will lead—in complete analogy with the previous case (Eq. 6.69)—to the
contribution

δG(0)(t, E ′′, E)
δE PE′′W

(2)
0 PE′ (6.73)

where
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PE′′W
(2)
0 PE′ = PE′′Vsp(E)ΓQ(E)Vsp(E)PE (6.74)

is the second-order effective interaction without any intermediate model-space
state.

If there is an intermediate model-space state in the second-order evolution
operator (Eq. 6.72), we have

U
(1)
0 (t, E)PE′U

(1)
0 (0, E)PE = U0(t, E)

PE′
E − E ′ Vsp(E)PE (6.75)

The singularity will here be eliminated in a similar way by the corresponding
counterterm (Eq. 6.64). If also the final state lies in the model space, there is
an additional singularity, which is eliminated by replacing U (1)

0 (t, E) by the
corresponding Green’s operator (Eq. 6.69), yielding for the entire second-
order Green’s operator

G(2)(t, E)PE = G(0)(t, E)ΓQ(E)V E)ΓQ(E)V E)PE +
δG(0)(t, E ′′, E)

δE PE′′W
(2)
0 PE

+
δG(1)(t, E ′, E)

δE PE′VspPE (6.76)
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Q

PE′

PE

⇒
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-s s
Q

PE′

PE

Fig. 6.9 Elimination of singularity of the second-order evolution operator, due to an
intermediate model-space state. This leads to a residual contribution that corresponds to
the folded diagram in standard many-body perturbation theory (Fig. 2.5). In addition,
there can be a singularity at the final state, as in first order (see Fig. 6.8).

The second-order elimination process, due to intermediate model-space
state, is illustrated in Fig. 6.9, and the corresponding part of the Green’s
operator is illustrated in Fig. 6.10. This process is quite analogous to the
appearance of folded diagram, discussed in connection with standard MBPT
(Eq. 2.81). Since we are here dealing with Feynman diagrams, it is more log-
ical to draw the ”folded” part straight, indicating the position of the ”fold”
by a double bar from which the denominators of the upper part are to be
evaluated. (The elimination process in first order has no analogy in stan-
dard MBPT, since there final model-space states do not appear in the wave
function.)
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Fig. 6.10 Elimination of the singularity of the second-order evolution operator due to an
intermediate model-space state.

For t = 0 we have from Eq. (6.76)

QG(2)(0, E)PE = ΓQ(E)Vsp(E)ΓQ(E)Vsp(E)PE +Q
δG(1)(t, E ′, E)

δE PE′V
(1)
eff PE

(6.77)

which is quite analogous to the corresponding second-order wave operator in
ordinary time-independent perturbation theory (Eq. 2.69). The only differ-
ence is here that the derivative of the first-order Green’s operator leads in
addition to the standard folded term to a term with the energy-derivative
of the interaction. The latter term is sometimes referred to as the reference-
state contribution [152], but here we shall refer to both terms as the model-
space contribution (MSC), which is more appropriate in the general multi-
reference case.

We have assumed so far that in the ladder the interactions are identical.
If the interactions are different , some precaution is required. We see in
the second-order expression that the differential/derivative in the last term
should refer to the SECOND interaction, while if we treat this in an order-
by-order fashion we would get the differential of the FIRST interaction. If
the interactions are in order V1 and V2, then last term above becomes

δ(ΓQV2)
δE PE′V1PE (6.78)

(leaving out the arguments). This issue will be further discussed below.

All orders *

The procedure performed above can be generalized to all orders of perturba-
tion theory. We still consider a two-particle system in the ladder approxima-
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tion. The treatment here follows mainly those of refs [125, 126] but is more
general.

We consider an evolution operator in the form of a ladder (Eq. 6.21) with
a general interaction, V (E), and with all intermediate model-space states
removed, including also the zeroth-order term,

U0(t, E)PE = G(0)(t, E)
(

1 + Γ (E)V (E) + Γ (E)V (E)ΓQ(E)V (E) + · · ·
)
PE (6.79)

which may have a final model-space state. The corresponding Green’s oper-
ator is according to Eq. (6.64)

U0(t, E)PE − G(0)(t, E) · PE′
(
U0(0, E)− 1

)
PE (6.80)

which can be expressed

QU0(t, E)PE + δG(0)(t, E ′, E) · PE′
(
U0(0, E)− 1

)
PE (6.81)

But in analogy with (Eq. 6.68) we have

PE′
(
U0(0, E)− 1

)
PE =

PE′W0(E)PE
E − E ′ (6.82)

where W0 is the effective interaction without intermediate model-space states
or folds, in analogy with Eq. (6.74),

W0(E)PE =
(
V (E) + V (E)ΓQ(E)V (E) + · · ·

)
PE (6.83)

Then the relation Eq. (6.81) becomes

QU0(t, E)PE +
δG(0)(t, E ′, E)

δE PE′W0PE (6.84)

The second term eliminates the singularity due to the final model-space state,
and we shall refer also to this as a folded contribution, in analogy with those
eliminating intermediate model-space singularities.

The Green’s operator with no folds (intermediate or final) is

G0(t, E)PE = G(0)(t, E)PE +QU0(t, E)PE

= G(0)(t, E)
(

1 + ΓQ(E)V (E) + ΓQ(E)V (E)ΓQ(E)V (E) + · · ·
)
PE (6.85)

The evolution operator with exactly one intermediate model-space state
can be expressed (G(0)(0) = 1)

QU0(t, E)PE′
(
U0(0, E)− 1

)
PE (6.86)
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and the folded part of Eq. (6.84) provides a final fold, yielding the Green’s
operator with one intermediate or final fold,

G1(t, E) =
δG0(t, E , E ′)

δE PE′W0PE (6.87)

The evolution operator with two intermediate folds can be expressed in
analogy with Eq. (6.86)

U2(t, E)PE = QU0(t, E)PE′
(
U0(0, E)− 1

)
PE′
(
U0(0, E)− 1

)
PE (6.88)

The two leftmost factors represent the Green’s operator (Eq. 6.86) with one
intermediate fold, and including also a final fold we can replace this by the
operator (Eq. 6.87)

G1(t, E ′)PE′′
(
U0(0, E)− 1

)
PE

This represents the operator with exactly two intermediate or final model-
space state with the singularity due to the leftmost one being eliminated.
Eliminating also the second fold leads to the Green’s operator with two folds

G2(t, E)PE =
δG1(t, E ′, E)

δE PE′W0(E)PE (6.89)

Continuing this precess leads to (with somewhat simplified notations)

G(t, E)PE =
(
G0(t, E) + G1(t, E) + G2(t, E) + · · ·

)
PE

=

[
G0(t, E) +

(δG0(t, E)
δE +

δG1(t, E)
δE + · · ·

)
W0

]
PE

This yields

G(t, E)PE = G0(t, E)PE +
δG(t, E)
δE W0PE (6.90)

Here, the second term represents all intermediate/final folds (model-space
contributions). This relation is valid for the entire model space and it is
consistent with ref. [126, Eq. (54)] but more general. The expressions given
here are valid for all times and for the final state in P as well as Q spaces.
The corresponding wave-operator relation is obtained by setting t = 0.

We can find an alternative expression for the folded term in Eq. (6.90) by
considering

G = G0 + G1 + G2 + · · ·
From the expressions above we find



6.7 Model-space contribution 151

G1 =
δG0

δE W0

G2 =
δG1

δE W0 =
δ

δE
(δG0

δE W0

)
W0 =

δ2G0

δE2
W 2

0 +
δG0

δE
δW0

δE W0

=
δ2G0

δE2
W 2

0 +
δG0

δE W1 (6.91)

with
Wn =

δWn−1

δE W0 (6.92)

being the effective interaction with exactly n folds. Similarly,10

G3 =
δG2

δE W0 =
δ3G0

δE3
W 3

0 +
δ2G0

δE2

δW0

δE W 2
0 +

δ2G0

δE2
W1W0 +

δG0

δE
δW1

δE W0

or

G3 =
δ3G0

δE3
W 3

0 +
δ2G0

δE2
2W1W0 +

δG0

δE W2

Summing this sequence, leads to

G = G0 +
δG0

δE (W0 +W1 +W2 + · · · )

+
δ2G0

δE2
(W 2

0 + 2W0W1 + · · · ) +
δ3G0

δE3
(W 3

0 + · · · ) + · · · (6.93)

It can be shown by induction [125] that this leads to

G = G0 +
∞∑
n=1

δnG0

δEn
(
W0 +W1 +W2 + · · · )n (6.94)

Here,
Veff = W0 +W1 +W2 + · · · (6.95)

is the total effective interaction, which leads to

10

δG
δE =

GE − GE′
E − E ′ ;

δ

δE
� δG
δE V

�
=

�
δG
δE
�
EVE −

�
δG
δE
�
E′VE′

E − E ′

=

�
δG
δE
�
EVE −

�
δG
δE
�
E′VE +

�
δG
δE
�
E′VE −

�
δG
δE
�
E′VE′

E − E ′ =
δ2G
δE2

V +
δG
δE

δV

δE
δ

δE V
2 =

δ

δE VE′′VE = VE′′
VE − VE′
E − E ′ = V

δV

δE
This can be generalized to

δn(AB)

δEn =
nX

m=0

δmA

δEm
δn−mB
δEn−m

(see further ref. [126, App. B])
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G(t, E)PE = G0(t, E)PE +
∑
n=1

δnG0(t, E)
δEn

(
Veff

)n
PE (6.96)

This relation is consistent with the results in refs [125, Eq. (100)] and [125,
Eq.100], where more details of the derivations are given. As the previous
relation (Eq. 6.90), it is valid for all times and with the final state in Q as
well as P space. In case the interactions are different, the derivatives should
be taken of the latest interactions.

We can generalize the treatment here and replace the single-photon poten-
tial by the two-body part of the complete irreducible multi-photon exchange
potential (Eq. 6.22) in Fig. 6.6, V ⇒ V2 = V.

It follows from the treatment here that the counterterms eliminate all
singularities so that the Green’s operator is completely regular at all
times.

Linkedness of the Green’s operator

All parts of the expansions above are linked, so this demonstrates that

• the Green’s operator is completely linked also in the multi-
reference case .

• The linkedness of the single-particle Green’s operator can be ex-
pressed, using Eq. (6.4),

G1(t, t0) =

[ ∞∑
n=0

1
n!

∫∫
d3xd3x0

(−i
c

)n ∫
d4x1 · · ·

∫
d4xn

×〈0∣∣T [ρ̂(x)H(x1) · · ·H(xn) ρ̂(x0)
]∣∣0〉 e−γ(|t1|+|t2|··· )

]

linked+folded

(6.97)

and similarly in the many-particle case.

• This represents a field-theoretical extension of the linked-diagram
theorem of standard many-body perturbation theory (Eq. 2.82).

6.8 Bloch equation for Green’s operator *

We now want to transform the general expression above for the Green’s op-
erator into a general Bloch-type of equation (Eq. 2.56) that, in principle, can
be solved iteratively (self-consistently). Iterations can be performed, only if
the in- and outgoing states contain only particle states of positive energy (no
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holes). Therefore, we assume this to be the case. If we have an interaction
with hole states in or out, we can apply a Coulomb interaction, so that all in-
and outgoing states are particle states, as will be discussed further in later
chapters.

We still work in the restricted Hilbert space with complete single-photon
(or multi-photon) interactions.

We want to have an equation of the form
[G(n),H0

]
P = V G(n−1)P + folded (6.98)

or
G(n)PE = G(0)PE + ΓQ

(
V G(n−1) + folded

)
PE (6.99)

where V is the last interaction.

We start from the relation (Eq. 6.90),

G = G0 +
δG
δE W0 (6.100)

where
G = G0 + G1 + G2 + · · ·

and Gm is the operator with exactly m intermediate/final folds,

Gm =
δGm−1

δE W0

Furthermore, the total effective interaction is (Eq. 6.95)

Veff = W0 +W1 +W2 + · · · (6.101)

where Wm is the effective interaction (Eq. 6.92) with m folds and

Wm =
δWm−1

δE W0 (6.102)

The folded contribution of order n > 0 is according to Eq. (6.99)

G(n) − ΓQV G(n−1) − G(0) = G(n)
0 − ΓQV G(n−1)

0 − G(0)

+ G(n)
1 − ΓQV G(n−1)

1 + G(n)
2 − ΓQV G(n−1)

2 + · · ·

We then see that in the case of no folds we have (Eq. 6.85)

G(n)
0 − ΓQV G(n−1)

0 − G(0) = 0 (6.103)

In the case of a single fold we have
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∆1 = G(n)
1 − ΓQV G(n−1)

1 =
(δG0

δE W0

)(n)

− ΓQV
(δG0

δE W0

)(n−1)

Here, all terms cancel except those where the last factor of ΓQV is being
differentiated in the first part of ∆1 and, in addition, terms with a fold in
the final state. Obviously, those terms do not appear in the second part of
the difference. This yields 11

∆1 =
(δ∗G0

δE W0

)(n)

(6.104)

where we have introduced the notation δ∗, with the asterisk indicating that
the differentiation applies only to the last interaction , including the
associated resolvent, ΓQV ,

δ∗(ΓQVaΓQVb · · · )
δE =

δ(ΓQVa)
δE ΓQVb · · · (6.105)

and, in addition, differentiation of G(0) in case there is no ΓQV factor.

In the case of two folds we have

∆2 = G(n)
2 − ΓQV G(n−1)

2 =
(δG1

δE W0

)(n)

− ΓQV
(δG1

δE W0

)(n−1)

=
[ δ
δE
(δG0

δE W0

)
W0

](n)

− ΓQV
[ δ
δE
(δG0

δE W0

)
W0

](n−1)

=
[δ2G0

δE2

(
W0

)2](n)

− ΓQV
[δ2G0

δE2

(
W0

)2](n−1)

+
[δG0

δE W1

](n)

− ΓQV
[δG0

δE W1

](n−1)

With the convention above we can express the folds

∆2 =
(δ∗G0

δE W1

)(n)

+
(δ∗G1

δE W0

)(n)

Continuing this process leads to the total folded contribution

(δ∗G0

δE +
δ∗G1

δE + · · ·+ · · ·
)(

W0 +W1 + · · ·
)

=
δ∗G
δE Veff

11 Distinguishing the various interactions, we can write

G0 = G(0)
�
1 + ΓQV1 + ΓQV1ΓQV2 + · · · �

∆1 =
h δG0

δE − ΓQV1
δG0

δE
i
W0 =

h δG(0)

δE + G0
δ(ΓQV1)

δE
�
1 + ΓQV2 + · · · �iW0 =:

δ∗G1

δEh δ2G0

δE2
− ΓQV1

δ2G0

δE2

i
W0 =

"
δ2G(0)

δE2
+
δG(0)

δE
δ(ΓQV1)

δE
�
1 + ΓQV2 + · · · �

+ G(0) δ
2(ΓQV1)

δE2

�
1 + ΓQV2 + · · · �+ G(0) δ(ΓQV1)

δE
δ(ΓQV2)

δE
�
1 + ΓQV3 + · · · �+ · · ·

#
W0 =:

δ∗G1

δE
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with differentiation with respect to the last factor of ΓQV and to
G(0), when no factor of ΓQV appears.

• We then have the generalized Bloch equation for an arbitrary energy-
dependent interaction (V)

G = G(0) + ΓQV G +
δ∗G
δE Veff (6.106)

where veff is given by Eq. (6.101).

• This equation is valid also when the interactions are different, and
then it can be expressed more explicitly as (n > 0)

G(n) = ΓQVnG(n−1) +
n−1∑
m=0

δ∗G(m)

δE
(
Veff

)(n−m) (6.107)

where Vn is the last interaction and the operator G(m) is formed
by the m last interactions.

We can check the formula (Eq. 6.106) by considering the first few orders,

G(0) = e−it(E−H0)

G(1) = ΓQV G(0) +
δG(0)

δE W
(1)
0

G(2) = ΓQV G(1) +
δG(0)

δE V
(2)
eff +

δ∗G(1)

δE W
(1)
0 (6.108)

where the last term becomes

δ∗G(1)

δE W
(1)
0 =

δ(ΓQV )
δE G(0)W

(1)
0 +

δ2G(0)

δE2

(
W

(1)
0

)2 (6.109)

This can easily be shown to reproduce the expansions (Eq. 6.90) and (Eq. 6.96).

We can also illustrate the validity of the generalized Bloch equation
(Eq. 6.106) by considering the third-order case with different interactions,
V1, V2, V3, (see Fig. 6.11). For simplicity we assume t = 0 and therefore make
the replacement G → Ω.

If there is no model-space state directly after the first interaction (Fig. a),
the contribution becomes

Ω(2)ΓQV1P =
(
ΓQV3ΓQV2 +

δ(ΓQV3)
δE PV2

)
ΓQV1P

using the second-order expression (Eq. 6.78) with the last two interactions
(V2, V3).



156 6 Covariant evolution operator and Green’s operators s6 6

-s s-s s-s s
Q

P
V1

V2

V3

Ω(2)

(a)

-s s-s s-s s
P

P

δΩ(2)

δE

V
(1)
eff

(b)
Fig. 6.11 Third-order Green’s operator with different interactions.

With a model-space state directly after the first interaction (Fig. b) the
contribution is

δΩ(2)

δE V
(1)
eff =

δ

δE
(
ΓQV3ΓQV2 +

δ(ΓQV3)
δE PV2

)
PV1P

=

(
δΓQV3

δE ΓQV2 + ΓQV3
δΓQV2

δE +
δ2ΓQV3

δE2
PV2 +

δΓQV3

δE P
δV2

δE P
)
PV1P

We can now identify the terms above with the Bloch equation (Eq. 6.106),
where the differentiation should apply to the last interaction. Then we have

ΓQV3Ω
(2) = ΓQV3 ΓQV2 ΓQV1P + ΓQV3

δ(ΓQV2)
δE PV1P

δ∗Ω(2)

δE V
(1)
eff =

δΓQV3

δE ΓQV2 PV1P +
δ2ΓQV3

δE2
PV2 PV1P

δ∗Ω(1)

δE V
(2)
eff =

δΓQV3

δE
(
W

(2)
0 +W

(2)
1

)

=
δΓQV3

δE
(
PV2 ΓQV1P + P

δV2

δE PV1P
)

the sum of which is identical to the sum of the two previous expressions.

In most applications we want to have an expression for the wave operator
in the form of a Bloch equation, where we start from a wave operator ΩI and
then add an interaction V that might be different from those involved in ΩI.
The Bloch equation is then of the form

ΩP =
(
ΩI + ΓQ(E)V ΩI + folded

)
P

where we want to find the form of the folded part. We then make the re-
placement Ω0 ⇒ ΓQV ΩI0 in the expression (Eq. 6.96), where ΩI0 is the wave
operator without folds, yielding
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Ω =
∑
n=0

δn(ΓQV ΩI0)
δEn

(
Veff

)n (6.110)

The sum can be reformulated as, noting the modified differentiating rules
given above,

Ω =
∑
n=0

δn(ΓQV ΩI0)
δEn

(Veff

)n =
∑
n=0

n∑
m=0

δmΓQV

δEm
(
Veff

)m δn−mΩI0

δEn−m
(Veff

)n−m

=
∑
m=0

δmΓQV

δEm
(
Veff

)m ∑
n=m

δn−mΩI0

δEn−m
(
Veff

)n−m =
∑
m=0

δmΓQV

δEm ΩI

(
Veff

)m

(6.111)

and this leads to the relation

Ω = ΓQV ΩI +
∑
n=1

δn(ΓQV )
δEn ΩI

(
Veff

)n (6.112)

Since the full wave operator appears only on the left-hand side, this equation
does not have to be solved self-consistently.

We can understand the appearance of the sequence of difference ratios
above in the following way. Each model-space contribution (MSC) should
contain a differentiation of all the following interactions. In ΩI the last in-
teraction, V, is not involved, and therefore a differentiation of ΓQV for each
interaction in ΩI is required.

We can illustrate the formula above with the third-order case considered
previously (Fig. 6.11), now assuming that we have two Coulomb interactions
(VC), followed by an energy-dependent potential (V ). Then we have instead

Ω(3)P = ΓQV ΓQVCΓQVCP +
δΓQV

δE PVCΓQVCP

+
δΓQV

δE ΓQVCPVCP − ΓQV Γ 2
QVCPVCP +

δ2ΓQV

δE2
PVCPVCP

which can be expressed

Ω(3)P = ΓQV ΩI
(2)P +

δΓQV

δE
(
ΩI

(1)V
(1)
eff +ΩI

(0)V
(2)
eff

)
+
δ2ΓQV

δE2
ΩI

(0)
(
V

(1)
eff

)2

where
ΩI

(1) = ΓQVC V
(1)
eff = PVCP

ΩI
(2) = ΓQVCΓQVC − Γ 2

QVCPVCP V
(2)
eff = PVCΓQVCP

This is in agreement with the general formula (Eq. 6.112).
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6.9 Time dependence of the Green’s operator.
Connection to the Bethe-Salpeter equation *

Single-reference model space

Operating with the relation (Eq. 6.96) on a model function, Ψ0, of energy E0,
yields

G(t, E0)
∣∣Ψ0

〉
=
[
G0(t, E) +

∞∑
n=1

δnG0(t, E)
δEn

(
∆E)n

]
E=E0

∣∣Ψ0

〉
(6.113)

We have here used the fact (Eq. 6.44) that

Veff |Ψ0〉 = (E − E0)|Ψ0〉 = ∆E|Ψ0〉 (6.114)

The expansion (Eq. 6.113) is a Taylor series, and the result can be expressed

G(t, E0)|Ψ0〉 = G0(t, E)|Ψ0〉 (6.115)

where G0 is the Green’s operator without model-space states (Eq. 6.85). This
implies that the sum in Eq. (6.113), representing

• the model-space contributions (MSC) to all orders, has the effect
of shifting the energy parameter from the model energy E0 to the
target energy E.

From the relations (Eq. 6.21) and (Eq. 6.64) we have the Green’s operator
for the ladder without MSC in the present case, including also the zeroth
order and the time factor,

G0(t, E0)|Ψ0〉 = e−it(E0−H0)

×
[
1 + ΓQ(E0)V (E0) + ΓQ(E0)V (E0)ΓQ(E0)V (E0) + · · ·

]
|Ψ0〉 (6.116)

The result (Eq. 6.115) then implies that the Green’s operator with model-
space contributions (MSC) becomes

G(t, E0)|Ψ0〉 = G0(t, E)|Ψ0〉 = e−it(E−H0)

×
[
1 + ΓQ(E)V (E) + ΓQ(E)V (E)ΓQ(E)V (E) + · · ·

]∣∣Ψ0

〉
(6.117)

• shifting also the energy parameter of the time dependence .12

12 We observe here that also the zeroth-order term has changed its time dependence, which
is a consequence of the fact that the zeroth-order Green’s operator, G(0), is being modified
by the expansion (Eq. 6.96).
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From this it follows that

i
∂

∂t
G(t, E0)

∣∣Ψ0

〉
= (E −H0)G(t, E0)

∣∣Ψ0

〉
(6.118)

and, using Eq. (6.52),
(

i
∂

∂t
G(t, E0)

)

t=0

∣∣Ψ0

〉
= (E −H0)Ω

∣∣Ψ0

〉
(6.119)

According to Eq. (6.50) the Green’s operator has the same time-dependence
as the state vector, in the interaction picture

|χ(t)〉 = e−it(E−H0) |Ψ〉 (6.120)

(with |Ψ〉 = |χ(0)〉), which implies that the result above—which is a con-
sequence of the initial conjecture (Eq. 6.29)—is in accordance with the
elementary quantum-mechanical result (Eq. 2.15) and Eq. (3.2).

Setting the time t = 0, yields with the identity (Eq. 6.52), Ω|Ψ0〉 =
G(0, E0)|Ψ0〉, the corresponding relation for the wave operator

|Ψ〉 = Ω|Ψ0〉 =
[
1 + ΓQ(E)V (E) + ΓQ(E)V (E)ΓQ(E)V (E) + · · ·

]∣∣Ψ0

〉
(6.121)

which is the Brillouin-Wigner expansion of the wave function.

From the relation (Eq. 6.83) we have that the effective interaction without
folds is

W0(E0)
∣∣Ψ0

〉
= P

(
V (E0) + V (E0)ΓQ(E0)V (E0) + · · ·

)∣∣Ψ0

〉
(6.122)

It can be shown in the same way as for the wave function that inclusion of
the folds (MSC) leads to the replacement E0 → E (see ref. [125]) and to the
expression for the full effective interaction (Eq. 6.95)

Veff

∣∣Ψ0

〉
= W0(E)

∣∣Ψ0

〉
= P

(
V (E) + V (E)ΓQ(E0)V (E) + · · ·

)∣∣Ψ0

〉

But according to the definition (Eq. 6.44), Veff = P (H−H0)ΩP , which gives

Veff

∣∣Ψ0

〉
= P (H −H0)ΩP = PV (E)Ω

∣∣Ψ0

〉
(6.123)

This is an expression for the effective interaction in the restricted Hilbert
space with no uncontracted photons, equivalent to the photonic-Fock-space
relation (Eq. 6.45). This is analogous to the MBPT result (Eq. 2.55), but
now the perturbation is energy dependent.



160 6 Covariant evolution operator and Green’s operator

We can generalize this treatment by replacing the single-photon potential
V by the irreducible multi-photon potential in Fig. 6.6, V ⇒ V2 = V. Then
we have from Eq. (6.117)

G(t, E0)|Ψ0〉 = G0(t, E)|Ψ0〉 = e−it(E−H0)

×
[
1 + ΓQ(E)V(E) + ΓQ(E)V(E)ΓQ(E)V(E) + · · ·

]∣∣Ψ0

〉
(6.124)

and

Veff

∣∣Ψ0

〉
= P (E −H0)Ω

∣∣Ψ0

〉
= PV(E)Ω

∣∣Ψ0

〉
(6.125)

From the relation (Eq. 6.118) we have

Q

(
i
∂

∂t
G(t, E0)

)

t=0

∣∣Ψ0

〉
= Q(E −H0)Ω

∣∣Ψ0

〉

= Q
[
V(E) + V(E)ΓQ(E0)V(E) + · · ·

]∣∣Ψ0

〉
= QV(E)Ω

∣∣Ψ0

〉

Combining this with Eq. (6.125), leads to the Schrödinger-like equation in
the restricted space (

H0 + V(E)
)
|Ψ〉 = E|Ψ〉 (6.126)

and an energy-dependent Hamilton operator

H = H0 + V(E) (6.127)

These relation can be compared with the corresponding GML relations
(Eq. 6.32) and (Eq. 6.39) in the photonic Fock space. The equation (Eq. 6.126)
is identical to the effective-potential form of the Bethe-Salpeter equation
(Eq. 9.20).

Multi-reference model space

We shall now investigate the time dependence of the Green’s operator
in a general, quasi-degenerate model space. We can express the relation
(Eq. 6.96), using the general perturbation, as

G(t, E)PE = G0(t, E)PE +
∞∑
n=1

δnG0(t, E)
δEn

(Veff

)n
PE (6.128)
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valid in the general multi-reference (quasi-degenerate) case, where PE is the
part of the model space with energy E and Veff is given by Eq. (6.138). This
can be formally expressed as an operator relation

G(t,H∗0 )P = G0(t,H∗0 )P +
∞∑
n=1

δnG0(t,H∗0 )
δ(H∗0 )n

(V∗eff

)n
P (6.129)

valid in the entire model space. We have here introduced the symbolA∗, which
implies that the operator A operates directly on the model-space state to the
right. Thus, H∗0BPE = EBPE = BH∗0PE . Similarly, H∗effB|Ψα0 〉 = EαB|Ψα0 〉 =
BH∗eff |Ψα0 〉.

In analogy with Eq. (6.45) we have

Veff |Ψα0 〉 = P (Eα −H0)Ω|Ψα0 〉 = PV(Eα)Ω|Ψα0 〉 (6.130)

or in operator form

V∗effP = P (H∗eff −H0)Ω P = PV(H∗eff)ΩP (6.131)

The relation (Eq. 6.129) is a Taylor expansion in analogy with Eq. (6.115),
yielding

G(t,H∗0 )P = G0(t,H∗eff)P (6.132)

using the fact (Eq. 6.44) that

H∗eff = PH∗0P + V∗eff (6.133)

From Eq. (6.116) it follows

G0(t, E)PE = e−it(E−H0)

×
[
1 + ΓQ(E)V(E) + ΓQ(E)V(E)ΓQ(E)V(E) + · · ·

]
PE (6.134)

or in operator form

G0(t,H∗0 )P = e−it(H∗0−H0)

×
[
1 + ΓQ(H∗0 )V(H∗0 ) + ΓQ(H∗0 )V(H∗0 )ΓQ(H∗0 )V(H∗0 ) + · · ·

]
P (6.135)

This leads in analogy with Eq. (6.117), using the relation (Eq. 6.115), to

G(t,H∗0 )P = G0(t,H∗eff)P = e−it(H∗eff−H0)
[
1 + ΓQ(H∗eff)V(H∗eff)

+ ΓQ(H∗eff)V(H∗eff)ΓQ(H∗eff)V(H∗eff) + · · ·
]
P (6.136)

From this we conclude that
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• the general time dependence of the Green’s operator is given by

i
∂

∂t
G(t,H∗0 )P = (H∗eff −H0)G(t,H∗0 )P (6.137)

This gives with Eq. (6.133)

P

(
i
∂

∂t
G(t,H∗0 )

)

t=0

P = V∗effP (6.138)

which is the expected result.

In analogy with the single-reference case, the effective interaction becomes

Veff = PV(H∗eff)Ω P (6.139)

and the Schrödinger-like equation [125, Eq. 113]

(
H0 + V(Eα)

)
|Ψα〉 = Eα)|Ψα〉 (6.140)

This agrees with the equation derived in ref. [125, Eq. 133], and it is equivalent
to the Bethe-Salpeter-Bloch equation , discussed in Chapter 9 (Eq. 9.30).



Chapter 7

Numerical illustrations to Part II

In this chapter we shall give some numerical illustrations of the three QED
methods described in Part II, the S-matrix, the Two-times Green’s function
and the Covariant-evolution-operator methods.

7.1 S-matrix

Electron self energy of hydrogenlike ions

In the early days of quantum-electrodynamics the effects were calculated an-
alytically, applying a double expansion in α and Zα. For high nuclear charge,
Z, such an expansion does not work well, and it is preferable to perform the
evaluation numerically to all orders of Zα. The first numerical evaluations
of the electron self energy on heavy, many-electron atoms were performed
by Brown et al. in the late 1950’s [35] and by Desiderio and Johnson in
1971 [51], applying a scheme devised by Brown, Langer, and Schaefer [34]
(see sect. 12.3).

An improved method for self-energy calculations, applicable also for lighter
systems, was developed and successfully applied to hydrogenlike ions by Peter
Mohr [147, 149, 150, 151, 142]. The energy shift due to the first-order electron
self energy is conventionally expressed as

∆E =
α

π

(Zα)4

n3
F (Zα)mc2 (7.1)

where n is the main quantum number. The function F (Zα) is evaluated
numerically, and some results are given in Table 7.1.
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Table 7.1 The F (Zα) function for the ground state of hydrogenlike mercury.

Reference F (Zα)
Desiderio and Johnson [51] 1.48
Mohr [146] 1.5032(6)
Blundell and Snyderman [25] 1.5031(3)
Mohr [142] 1.5027775(4)

To perform accurate self-energy calculations for low Z is complicated due
to slow convergence. Mohr has estimated the first-order Lamb shift (self en-
ergy + vacuum polarization) by means of elaborate extrapolation from heav-
ier elements and obtained the value 1057.864(14) MHz for the 2s−2p1/2 shift
in neutral hydrogen [149], in excellent agrement with the best experimental
value at the time, 1057.893(20) MHz. More recently, Jentschura, Mohr and
Soff [92] have extended the method of Mohr in order to calculate directly the
self energy of light elements down to hydrogen with extremely high accuracy.
Accurate calculations have also been performed for highly excited states [93].

The original method of Mohr was limited to point-like nuclei but was
extended to finite nuclei in a work with Gerhard Soff [154]. An alternative
method also applicable to finite nuclei has been devised by Blundell and
Snyderman [25, 26].

Lamb shift of hydrogenlike uranium

In high-energy accelerators, like that at GSI in Darmstadt, Germany, highly
charged ions up to hydrogenlike uranium can be produced. For such systems
the QED effects are quite large, and accurate comparison between experimen-
tal and theoretical results can here serve as an important test of the QED
theory in extremely strong electromagnetic fields—a test that has never been
performed before.

The first experimental determination of the Lamb-shift in hydrogenlike
uranium was made by the GSI group (Stöhlker, Mokler et al.) in 1993 [217].
The result was 429(23) eV, a result that has gradually been improved by
the group, and the most recent value is 460.2(4.6) eV [216]. The shift is here
defined as the experimental binding energy compared to the Dirac theory for a
point nucleus, implying that it includes also the effect of the finite nuclear size.
In Table 7.2 we show the various contributions to the theoretical value. The
self-energy contribution was evaluated by Mohr [142] and the finite-nuclear-
size effect by Mohr and Soff [154]. The vacuum-polarization, including the
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Fig. 7.1 Second-order contributions to the Lamb shift of hydrogenlike ions (c.f. Fig. 5.3).

Table 7.2 Ground-state Lamb shift of hydrogenlike uranium (in eV, mainly
from ref. [152].)

Correction Value Reference
Nuclear size 198.82
First-order self energy 355,05 [142, 154]
Vacuum polarization -88.59 [179]
Second-order effects -1.57
Nuclear recoil 0.46
Nuclear polarization -0.20
Total theory 463.95
Experimental 460.2 (4.6)
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Wickmann-Kroll correction (see section 4.6), was evaluated by Persson et
al. [179]. The second-order QED effects, represented by the diagrams in Fig.
7.1, have also been evaluated. Most of the reducible part was evaluated by
Persson et al. [178]. The last two irreducible too-loop diagrams are much
more elaborate to calculate and have only recently been fully evaluated by
Yerokhin et al. [241] 1

The main uncertainty of the theoretical calculation on hydrogenlike ura-
nium stems from the finite-nuclear-size effect, which represents almost half of
the entire shift from the Dirac point-nuclear value. Even if the experimental
accuracy would be significantly improved, it will hardly be possible to test
with any reasonable accuracy the second-order QED effects, which are only
about one percent of the nuclear-size effect. For that reason other systems,
like lithium-like ions, seem more promising for testing such effects.

Lamb shift of lithiumlike uranium

Table 7.3 2s− 2p1/2 Lamb shift of lithiumlike uranium (in eV).

Correction Ref. [23] Ref. [178] Ref. [239]
Relativistic MBPT 322.41 322.32 322.10
1. order self energy -53.94 -54.32
1. order vacuum polarization (12.56) 12.56
1. order self energy + vac. pol. -41.38 -41.76 -41.77
2. order self energy + vac. pol. 0.03 0.17
Nuclear recoil (0.10) (-0.08) -0.07
Nuclear polarization. (0.10) (0.03) -0.07
Total theory 280.83(10) 280.54(15) 280.48(20)
Experimental 280.59(9)

The 2s − 2p1/2 Lamb shift of lithiumlike uranium was measured at the
Berkeley HILAC accelerator by Schweppe et al. in 1991 [208]. The first theo-
retical evaluations of the self energy was performed by Cheng et al. [41] and
the complete first-order shift, including vacuum polarization by Blundell [23],
Lindgren et al. [122], and Persson et al. [178], the latter calculation including
also some reducible second-order QED effects. Later, more complete calcula-
tions were performed by Yerokhin et al. [239]. The results are summarized in
Table 7.3.
1 See section 2.6.
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In lithiumlike systems the nuclear-size effect is considerably smaller than in
the corresponding hydrogenlike system and can be more easily accounted for.
The second-order QED effects in Li-like uranium are of the same order as the
present uncertainties in theory and experiment, and with some improvement
these effects can be tested. Therefore, systems of this kind seem to have the
potential for the most accurate test of high-field QED at the moment.

Two-photon non-radiative exchange in heliumlike ions

6 6

6 6
-s s-s s

6 6

6 6

6 66s
s

6 s
s
6 6

Fig. 7.2 Feynman diagrams representing the two-photon exchange (ladder and cross) for
heliumlike ions.

Accurate S-matrix calculations of the non-radiative two-photon exchange
for heliumlike ions (ladder and cross), corresponding to the Feynman dia-
grams in Fig. 7.2, have been performed by Blundell et al. [24] and by Lind-
gren et al. [120]. The results are illustrated in Fig. 7.3 (taken from ref. [120]).
In the figure the contributions are displayed versus the nuclear charge, rel-
ative to the zeroth-order non-relativistic ionization energy, Z2/2 (in atomic
Hartree units). The vertical scale is logarithmic, so that -1 corresponds to α,
-2 to α2 etc.

As comparison, we show in the top picture of Fig. 7.3 the energy con-
tribution due to first-order Coulomb and Breit interactions as well as the
first-order Lamb shift, corresponding to Feynman diagrams shown in the top
line of Fig. 7.4.

For low Z the first-order Coulomb interaction is proportional to Z, the
first-order Breit interaction to Z3α2, and the first-order Lamb shift to Z4α3.
For high Z we can replace Zα by unity, and then after dividing by Z2, all
first-order effects tend to α as Z increases, as is clearly seen in the top picture
of Fig. 7.3 (see also Fig. 10.9 and Table 10.1).

An additional Coulomb interaction reduces the effect for small Z by a
factor of Z. Therefore, the Coulomb-Coulomb interaction, i.e., the leading
electron correlation, is in first order independent of Z and the Coulomb-Breit
interaction proportional to Z2α2. The screened Lamb shift is proportional to
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One- and two-photon exchange

Fig. 7.3 Various contributions to the ground-state energy of He-like ions. The top picture
represents the first-order contributions, the middle picture the second-order contributions
in the NVPA as well as the screened Lamb shift, and the bottom picture contributions
due to retardation and virtual pairs (see Fig. 7.4). The values are normalized to the non-
relativistic ionization energy, and the scale is logarithmic (powers of the fine-structure
constant α).
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Z3α3 and the second-order Breit interaction (in the no-pair approximation)
to Z4α4. After division with Z2, we see (second picture of Fig. 7.3) that all
second-order effects tend to α2. The corresponding Feynman diagrams are
shown in the second row of Fig. 7.4.

The third picture in Fig. 7.3 shows the effect of the retarded Coulomb-Breit
and Breit-Breit interactions without and with virtual pairs, corresponding to
diagrams in the bottom row of Fig. 7.4. For low Z these effects are one order
of α smaller than the corresponding unretarded interactions with no virtual
pairs, while for high Z they tend—rather slowly—to the same α2 limit. It is
notable that for the Coulomb-Breit interactions the retardation and virtual
pairs have nearly the same effect but with opposite sign. For the Breit-Breit
interactions the effects of single and double pairs have opposite sign and the
total effect changes its sign around Z = 40.
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Fig. 7.4 Feynman diagrams representing the one- and two-photon exchange, separated
into Coulomb, instantaneous Breit and retarded Breit interactions.

More recently, Mohr and Sapirstein have performed S-matrix calculations
also on the excited states of heliumlike ions and compared with second-order
MBPT calculations in order to determine the effect of non-radiative QED,
retardation and virtual pairs [153], and some results are shown in Table 7.4.
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Table 7.4 Two-photon effects on some excited states of heliumlike ions (in
µHartree, from ref. [153].)

Z 2 3S1 2 3P0 2 3P2

30 MBPT -49 541 -88 752 -75 352
QED -8.7 145 77.6

50 MBPT -53 762 -123 159 -79 949
QED 64 1340 767

80 MBPT -66 954 -251 982 -93
QED 966 9586 5482

Electron correlation and QED calculations on ground
states of heliumlike ions

The two-electron effect on the ground-state energy of some heliumlike ions has
been measured by Marrs et al. at Livermore Nat. Lab. by comparing the ion-
ization energies of the corresponding heliumlike and hydrogenlike ions [137].
(The larger effect due to single-electron Lamb shift is eliminated in this type
of experiment.) Persson et al. [181] have calculated the two-electron contribu-
tion by adding to the all-order MBPT result the effect of two-photon QED,
using dimensional regularization (see Chapter 12). The results are compared
with the experimental results as well as with other theoretical estimates
in Table 7.5. The results of Drake were obtained by expanding relativis-
tic and QED effects in powers of α and Zα, using Hylleraas-type of wave
functions [56]. The calculations of Plante et al. were made by means of rela-
tivistic MBPT and adding first-order QED corrections taken from the work
of Drake [184], and the calculations of Indelicato et al. were made by means
of multi-configurational Dirac-Fock with an estimate of the Lamb shift [87].
The agreement between experiments and theory is quite good, although the
experimental accuracy is not good enough to test the QED parts, which lie
in the range 1-5 eV. The agreement between the various theoretical results
is very good—only the results of Drake are somewhat off for the heaviest
elements, which is due to the shortcoming of the power expansion.

g-factor of hydrogenlike ions. Mass of the free electron

The Zeeman splitting of hydrogenlike ions in a magnetic field is another good
test of QED effects in highly charged ions. The lowest-order contributions to
this effect are represented by the Feynman diagrams in Fig. 7.5.
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Table 7.5 Two-electron effects on the ground-state energy of heliumlike ions
(in eV, from ref. [181].)

Z Plante et al. Indelicato et al. Drake Persson et al. Expt’l
32 652.0 562.1 562.1 562.0 562.5±1.5
54 1028.4 1028.2 1028.8 1028.2 1027.2±3.5
66 1372.2 1336.5 1338.2 1336.6 1341.6±4.3
74 1574.8 1573.6 1576.6 1573.9 1568±15
83 1880.8 1886.3 1881.5 1876±14
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Fig. 7.5 Feynman diagrams representing the lowest-order contributions to the Zeeman
effect of hydrogenlike ions. Diagrams (b) and (c) represent the leading self-energy correction
to the first-order effect (a) and (d) and (e) the leading vacuum-polarization correction.

The bound-electron g-factor can be expanded as [182]

gJ = −2

{
1
3

[
1 + 2

√
1− (Zα)2

]
1 +

α

π

(1
2

+
(Zα)2

12
+ · · ·

)}
(7.2)

where Z is the nuclear charge. The first term represents the relativistic value
with a correction from the Dirac value of order α2. The second term, propor-
tional to α is the leading QED correction, known as the Schwinger correction,
and the following term, proportional to α3, is the next-order QED correction,
first evaluated by Grotsch [79].

Numerical calculations to all orders in Zα have been performed by Blundell
et al. [27] (only self-energy part, (b,c) in Fig. 7.5) and by the Gothenburg
group [182, 15] (incl. the vacuum polarization (d,e)). The results are displayed
in Fig. 7.6, showing the comparison between the Grotsch term (the leading
QED correction beyond the Schwinger correction) and the numerical result.
(The common factor of 2α/π has been left out.) More accurate calculations
have later been performed by the St Petersburg group, including also two-
loop corrections and the nuclear recoil [240, 242].

The g-factors of hydrogenlike ions have been measured with high accuracy
by the Mainz group, using an ion trap of Penning type [80, 13]. The accuracy
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Table 7.6 Theoretical contributions to the g-factor of hydrogenlike carbon
(mainly from ref. [14])

Correction Value
Dirac theory 1.998 721 3544

Finite nuclear-size corr. +0.000 000 0004
Nuclear recoil +0.000 000 0876

Free-electron QED, first order +0.002 322 8195
Free-electron QED, higher orders +0.000 003 5151

Bound-electron QED, first order +0.000 000 8442
Bound-electron QED, higher orders -0.000 000 0011

Total theory 2.001 041 5899

Fig. 7.6 The first-order, numerically evaluated, QED correction to the gj value of hydro-
genlike ions, compared with the leading analytical (Grotsch) term (Eq. 7.2). Both results
are first-order in α but the numerical result is all order in Zα, while the Grotsch result
contains only the leading term (from ref. [182]). A common factor 2α/π is left out.

of the experimental and theoretical determinations is so high that the main
uncertainty is due to the experimental mass of the electron. Some accurate
date for H-like carbon are shown in Table 7.6. By fitting the theoretical and
experimental values, a value of the electron mass (in atomic mass units)
me = 0.0005485799093(3), is deduced from the carbon experiment and the
value me = 0.0005485799092(5) from a similar experiment on oxygen [13].
These results are four times more accurate than the previously accepted
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value, me = 0.0005485799110(12) [145]. The new value is now included in
the latest adjustments of the fundamental constants [143, 144].

7.2 Green’s-function and covariant-evolution-operator
methods

Fine-structure of heliumlike ions

The two-times Green’s function and the covariant-evolution-operator meth-
ods have the important advantage over the S-matrix formulation that they
can be applied also to quasi-degenerate energy levels. As an illustration we
consider here the evaluation of some fine-structure separations of the low-
est P state of heliumlike ions (see Table 7.7). The calculations of Plante et
al. [184] are relativistic many-body calculations in the NVPA scheme (see
section 2.6) with first-order QED-energy corrections, taken from the work of
Drake [56]. The calculations by Åsén et al. [117, 8], using the recently devel-
oped covariant-evolution-operator method, was the first numerical evaluation
of QED effects (non-radiative) on quasi-degenerate energy levels. It can be
noted that the energy of the 1s2p 3P1 state, which a linear combination of
the closely spaced states 1s2p1/2 and 1s2p1/3, could not be evaluated by the
S-matrix formulation (see, for instance, the above-mentioned work of Mohr
and Sapirstein [153]). Later, calculations have also been performed on these
systems by the St Petersburg group, using the two-times-Green’s-function
method [7], where also the radiative parts are evaluated numerically.

The accuracy of the experimental and theoretical fine-structure results is
not sufficient to distinguish between the first-order energy QED corrections
and the numerical evaluation of Åsen and Artemyev. On the other hand,
the experimental accuracy of the separation of Fluorine (Z=9) seems to be
sufficient to test even higher-order QED effects. Here, present theory cannot
match the experimental accuracy, but this might be a good testing case for
the new combined QED-correlation procedure, discussed in the following.

As a second illustration we consider the transition 1s2s 1S0− 1s2p 3P1 for
He-like silicon, which has recently been very accurately measured by Myers
et al. [52] (see Table 7.8). Corresponding calculations have been performed by
Plante et al. [184], using relativistic MBPT with first-order QED correction
and by Artemyev et al. [7], using the two-times Green’s function. Here, it
can be seen that the experiment is at least two orders of magnitude more
accurate then the theoretical estimates. Also here the combined MBPT-QED
corrections are expected to be significant.
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Table 7.7 The 1s2p 3P fine structure of He-like ions. (Values for Z=2, 3 given
in MHz and the remaining ones in µHartree.)

Z 3P1 −3P0
3P2 −3P0

3P2 −3P1 Ref. Expt’l Ref. Theory
2 29616.95166(70) 2291.17759(51) Gabrielse et al. [243]

29616.9527(10) Giusfredi et al. [71]
29616.9509(9) Hessels et al. [70]

2291.17753(35) Hessels et al. [30]
29616.9523(17) 2291.1789(17) Pachucki et al. [237]

3 155704.27(66) -62678.41(65) Riis et al. [190]
-62678.46(98) Clarke et al. [43]

155703.4(1,5) -62679.4(5) Drake et al. [56]
9 701(10) 5064(8) 4364.517(6) Myers et al. [162]

680 5050 4362(5) Drake et al. [56]
681 5045 4364 Plante et al. [184]
690 5050 4364 Åsén et al. [8, 124]

10 1371(7) 8458(2) 7087(8) Curdt et al. [47]
1361(6) 8455(6) 7094(8) Drake et al. [56]
1370 8469 7099 Plante et al. [184]
1370 8460 7090 Åsén et al. [117]

12 3789(26) 20069(9) 16280(27) Curdt et al. [47]
3796(7) Myers et al. [163]
3778(10) 20046(10) 16268(13) Drake et al. [56]
3796 20072 16276 Plante et al. [184]
3800,1 20071 Artemyev et al. [7]

14 40707(9) Curdt et al. [47]
8108(23) 40708(23) 32601(33) Drake et al. [56]
8094 40707 32613 Plante et al. [184]

40712 Artemyev et al. [7]
18 124960(30) Kukla et al. [101]

124810(60) Drake et al. [56]
23692 124942 101250 Plante et al. [184]
23790 124940 101150 Åsén et al. [117]

124945(3) Artemyev et al. [7]

Energy calculations of 1s2s levels of heliumlike ions

The covariant-evolution-operator method has also been applied by Åsén et
al. [9, 8] to evaluate the two-photon diagrams in Fig. 7.2 for the first excited
S states of some heliumlike ions. The results are compared with relativistic
MBPT results, in order to determine the non-radiative QED effects, as in
Table 7.4 above. The results are shown in Table 7.9, where comparison is
also made with some results of Mohr and Sapirstein [153].
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Table 7.8 The transition 1s2s 1S0 − 1s2p 3P1 for He-like Si (in cm−1)

Reference
Expt’l 7230.585(6) Myers et al. [52]
Theory 7231.1 Plante et al. [184]

7229(2) Artemyev et al. [7]

Table 7.9 Two-photon calculations on the 1s2s 1S, 3S states of heliumlike
ions (in µHartree, first two columns from Åsén et al. [9], last column from
Mohr and Sapirstein [153].)

Z 2 3S0 2 3S1 2 3S1

10 MBPT -116 005 -47 638
QED 6.2 -1.2

18 MBPT -119 381 -48 158
QED 3.8 4.6

30 MBPT -128 349 -49 542 -49 541
QED 93 6.9 8.7

60 MBPT -177 732 -57 025 -57 023
QED 2358 216 224





Part III

Quantum-electrodynamics beyond
two-photon exchange:

Field-theoretical approach to
many-body perturbation theory





Chapter 8

Covariant evolution combined with
electron correlation

In Part I we have considered some standard methods for many-body calcu-
lations on atomic systems. These methods are well developed and can treat
certain electron-correlation effects to essentially all orders of perturbation
theory. In Part II we have considered three different methods for numerical
QED calculations on bound systems, which have been successfully applied
to various problems. All these methods are, however, in practice limited to
one- and two-photon exchange, implying that electron correlation can only be
treated in quite a restricted way. For many systems the electron correlation
is of great importance, and in order to evaluate the QED effects accurately,
it may be necessary to take into account also the combination of QED
and correlational effects, which has not been done previously.

In this third Part we shall demonstrate that one of the methods pre-
sented in the previous part, the covariant-evolution-operator method, forms
a suitable basis for a combined QED-MBPT procedure.1 This leads to a
perturbative procedure that is ultimately equivalent to an extension of
the relativistically covariant Bethe-Salpeter equation , valid also in
the multi-reference case and referred to as as the Bethe-Salpeter-Bloch
equation . In this work we shall normally use the Coulomb gauge, and we
shall apply the equal-time approximation, discussed in Chapter 6. In Chapter
10 we shall illustrate how this procedure can be implemented and give some
numerical results.
1 The treatment in this third Part is largely based upon the refs [126, 127, 85]) and the
thesis of Daniel Hedendahl [83].
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180 8 Covariant evolution combined with electron correlation

8.1 General single-photon exchange

In the treatment of single-photon exchange in Chapter 6 the incoming state
was assumed to be unperturbed. We shall now generalize this treatment
and allow the incoming state to be perturbed, involving particle as well
as hole states. As mentioned, we shall deal particularly with the Coulomb
gauge, where the total interaction is according to Eq. (4.57) separated into a
Coulomb and a transverse part (see Fig. 8.1)

IC = IC
C + IC

T (8.1)

The corresponding single-photon potential is similarly separated into

Vsp = VC + VT (8.2)

We start with the transverse part and consider the Coulomb part later.

x x′s s6 6

6t ω1 6ω2 u

s s1 2

6r ω3 6ω4 s

x0 x′0s s
6 6E

x x′s s6 6

6t ω1 6ω2 u

-zs s1 2

6r ω3 6ω4 s

x0 x′0s s
6 6E

Fig. 8.1 In the Coulomb gauge the single-photon exchange is separated into a Coulomb
and a transverse (Breit) part.

Transverse part

The kernel of the transverse part of the single-photon exchange in Coulomb
gauge is according to Eq. (6.6) given by

iSF(x, x1) iSF(x′, x2) (−i)IC
T (x2, x1) iSF(x1, x0) iSF(x2, x

′
0) e−γ(|t1|+|t2|)

(8.3)

The external time dependence is (with the notations in the figure) in the
equal-time approximation in analogy with the previous case (Eq. 6.9)

e−it(ω3+ω4−εr−εs) eit0(ω1+ω2−εt−εu)
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Fig. 8.2 Time-ordered evolution-operator diagrams for single-photon exchange, transverse
part.

As before, we can argue that in the limit γ → 0 ω1 +ω2 = ω3 +ω4 = E , i.e.,
equal to the initial energy, and the dependence becomes

e−it(E−εr−εs) eit0(E−εt−εu)

We then have the relation

UT(t, t0) = e−it(E−H0)MT eit0(E−H0) (8.4)

where MT is the corresponding Feynman amplitude , defined as before
(Eq. 6.11). This yields

MT(x,x′;x0,x
′
0) =

1
2

∫∫∫∫
dω1

2π
dω2

2π
dω3

2π
dω4

2π

∫
dz
2π

iSF(ω3;x,x1)

× iSF(ω4;x′,x2) (−i)IC
T (z;x2,x1) iSF(ω1;x1,x0) iSF(ω2;x2,x

′
0)

× 2π∆γ(ω1 − z − ω3) 2π∆γ(ω2 + z − ω4) (8.5)

leaving out the internal space integrations. (The factor of 1/2 is, as before,
eliminated when a specific matrix element is considered).

After integrations over ω2, ω3, ω4, the amplitude becomes

MT(x,x′,x0,x
′
0) =

1
2

∫∫
dω1

2π
dz
2π

iSF(ω1 − z;x,x1) iSF(E − ω1 − z;x′,x2)

× (−i)IC
T (z;x2,x1) iSF(ω1;x1,x0) iSF(E − ω1;x2,x

′
0) (8.6)

Inserting the expressions for the electron propagator (Eq. 4.10) and the in-
teraction (Eq. 4.46) a specific matrix element becomes

〈rs|MT|ab〉 =
〈
rs
∣∣∣ − i

∫
dω1

2π

∫
dz
2π

1
ω1 − z − εr + iγr

1
E − ω1 + z − εs + iγs

× 1
ω1 − εt + iγt

1
E − ω1 − εu + iγu

∫
2c2κ dκ fC

T (κ)
z2 − c2κ2 + iη

∣∣∣ab
〉

(8.7)



182 8 Covariant evolution combined with electron correlation

where fC
T is the transverse part of the f function in Coulomb gauge (Eq. 4.60).

Integration over z now yields—in analogy with the treatment in Chapter 6—

MT = (−i)2

∫
cdκ fC

T (κ)

times the propagator expressions

1
E − εr − εs

[ 1
ω1 − εr − (cκ− iγ)r

+
1

E − ω1 − εs − (cκ− iγ)s

]

and
1

E − εt − εu
[ 1
ω1 − εt + iγt

+
1

E − ω1 − εu + iγu

]

We have now four combinations that contribute depending on the sign of
the orbital energies (after integration over ω1):

sgn(εr) 6= sgn(εt) :
sgn(εt)

εt − εr − (cκ− iγ)r

sgn(εs) = sgn(εt) :
sgn(εt)

E − εt − εs − (cκ− iγ)s

sgn(εu) = sgn(εr) :
sgn(εu)

E − εr − εu − (cκ− iγ)r

sgn(εu) 6= sgn(εs) :
sgn(εu)

εu − εs − (cκ− iγ)s
(8.8)

times (−i).

The Feynman amplitude for the transverse part of the single-photon ex-
change now becomes

MT = Γ (E) iVT(E)Γ (E) (8.9)

where Γ (E) is the resolvent (Eq. 2.64). This yields for the present process

〈
rs
∣∣MT(E)

∣∣tu〉 =
i

E − εr − εs
〈
rs
∣∣∣VT(E)

∣∣∣tu
〉 1
E − εt − εu (8.10)

where VT(E) is now the generalized transverse-photon potential

〈
rs
∣∣VT(E)

∣∣tu〉 =
〈
rs
∣∣∣
∫
cdκ fC

T (κ)
[
± t±r∓
εt − εr ± cκ

± t±s±
E − εt − εs ∓ cκ ±

u±r±
E − εr − εu ∓ cκ ±

u±s∓
εu − εs ± cκ

]∣∣∣tu
〉

(8.11)

Here, t± etc. represent projection operators for particle/hole states, respec-
tively. The upper or lower sign should be used consistently in each term,
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inclusive the sign in the front, but all combinations of upper and lower signs
in the four term should be used, corresponding to the 16 time-ordered com-
binations, shown in Fig. 8.3.

It should be noted that the expression above is valid also for the entire
interaction in any covariant gauge, using the appropriate f function.
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Fig. 8.3 All 16 time-ordered diagrams corresponding to the transverse single-photon ex-
change given by Eq. (8.11).

We shall now illustrate the potential (Eq. 8.11) by giving explicit expres-
sions in a few cases.

No virtual pairs

s s
6t 6u
-s s6r 6s

E
s s

The potential becomes here



184 8 Covariant evolution combined with electron correlation

〈
rs
∣∣VT(E)

∣∣tu〉 =
〈
rs
∣∣∣
∫
c dκ fC

T (κ) ×
[ 1
E − εr − εu − cκ +

1
E − εt − εs − cκ

]∣∣∣tu
〉

(8.12)

and the Feynman amplitude agrees with the previous result (Eq. 6.16). This
agrees with the result of the evaluation of the corresponding time-ordered
diagram according to the rules of Appendix I.

Single hole in (t)

The potential becomes here

〈
rs
∣∣VT(E)

∣∣tu〉 =
〈
rs
∣∣∣
∫
cdκ fC

T (κ) ×
[ −1
εt − εr − cκ +

1
E − εr − εu − cκ

]∣∣∣tu
〉

(8.13)

s s
@
@
@
@
@
@Rt

6s
s6r

6u
6ss s

E which can also be expressed
〈
rs
∣∣VT(E)

∣∣tu〉 = −(E − εt − εu)×
〈
rs
∣∣∣
∫
cdκ fC

T (κ)
1

εt − εr − cκ
1

E − εr − εu − cκ
∣∣∣tu
〉

(8.14)

and the denominators of the Feynman amplitude become

− 1
E − εr − εs

1
εt − εr − cκ

1
E − εr − εu − cκ (8.15)

This agrees with the evaluation rules of Appendix I. We see here that one of
the resolvents in Eq. (8.9) can be singular (”Brown-Ravenhall effect”), which
is eliminated by the potential.

Single hole out (r)

s s
s s6t

6u
6s

6 s
s
�
�
�
�
�
�	
r

E

The potential (Eq. 8.11) becomes

〈
rs
∣∣VT(E)

∣∣tu〉 =
〈
rs
∣∣∣
∫
cdκ fC

T (κ) ×
[ 1
εt − εr + ck

+
1

E − εt − εs − cκ
]∣∣∣tu

〉
(8.16)

The denominators can here be expressed

(E − εr − εs) 1
εt − εr + cκ

1
E − εt − εs − cκ (8.17)
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and the denominators of the Feynman amplitude becomes

1
εt − εr + cκ

1
E − εt − εs − cκ

1
E − εt − εu − cκ (8.18)

which agrees with the evaluation rules of Appendix I.

Double hole in t,u

The potential (Eq. 8.11) is here

〈
rs
∣∣VT(E)

∣∣tu〉 =
〈
rs
∣∣∣
∫
cdκ fC

T (κ) ×
[ −1
εt − εr − cκ +

−1
εu − εs − cκ

]∣∣∣tu
〉

(8.19)

s ss s
�
�
�
�
�
�	u

@
@
@
@
@
@Rt -s s6r 6s

E and the denominators of the Feynman amplitude become

−1
E − εr − εs

[ 1
εt − εr − cκ +

1
εu − εs − cκ

] 1
E − εt − εu (8.20)

We shall demonstrate explicitly here that this agrees with the evaluation rules
of Appendix I. With one time-ordering t34 > t2 > t > −∞ and ∞ > t34 > t2
the time integrations yield

(−i)3

∫ −∞
t34

dt2 e−id2t2

∫ ∞
t2

dt34 e−id34t34

∫ −∞
t2

dt1 e−id1t1 (8.21)

Together with the alternative time ordering 1↔ 2 this becomes

−1
d1234d34

[ 1
d1

+
1
d2

]
(8.22)

with the notations of Appendix I, which is identical to the result (Eq. 8.20).
Note that this is NOT in agreement with the standard Goldstone rules of
MBPT [118].

Single hole in and out (t,s)

The potential (Eq. 8.11) yields

〈
rs
∣∣VT(E)

∣∣tu〉 =
〈
rs
∣∣∣
∫
cdκ fC

T (κ)

[
−1

εt − εr − cκ

+
−1

E − εt − εs + cκ
+

1
E − εu − εr − cκ +

1
εu − εs + cκ

]∣∣∣tu
〉

(8.23)
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Using the notations of Appendix I

d1 = εt − εr − cκ; d2 = εu − εs + cκ; d3 = εa − εt − cκ;

d4 = εb − εu + cκ; d34 = E − εt − εu;

d134 = E−εr−εu−cκ; d234 = E−εt−εs+cκ; d1234 = E−εr−εs
the bracket above becomes

− 1
d1
− 1
d234

+
1
d2

+
1
d134

=
d1234d34

d134d234

[ 1
d2
− 1
d1

]
(8.24)

and the denominators of the Feynman amplitude (Eq. 8.10)

1
d134d234

[ 1
d2
− 1
d1

]
=

1
d1d2

[ 1
d134

− 1
d234

]
(8.25)

which agrees with the rules of Appendix I.

Coulomb interaction

The Coulomb part of the interaction is obtained in a similar way (see Fig.
8.4). In analogy with Eq. (8.5) we now have

MC =
1
2

∫∫
dω1

2π
dω3

2π

∫
dz
2π

iSF(ω1) iSF(E0 − ω1)(−i)IC
C iSF(ω3) iSF(E0 − ω3)

leaving out the space coordinates. After z integration, using Eq. (4.63b), and
with the explicit form of the propagators this leads to

〈rs|MC|ab〉 =
〈
rs
∣∣∣ − i

∫∫
dω1

2π
dω3

2π
1

ω1 − εr + iγr
1

E0 − ω1 − εs + iγs

× VC
1

ω3 − εt + iγt
1

E0 − ω3 − εu + iγu

∣∣∣ab
〉

=
〈
rs
∣∣∣± i

E0 − εr − εs VC
1

E0 − εt − εu
∣∣∣ab
〉

(8.26)

where VC is the Coulomb interaction (Eq. 2.109). Here, the plus sign is used
if sgn(εt) = sgn(εu) = sgn(εr) = sgn(εs) and the minus sign if sgn(εt) =
sgn(εu) 6= sgn(εr) = sgn(εs).
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Fig. 8.4 Same as Fig. 8.3 for the Coulomb interaction.

8.2 General QED potential

We shall now see how the potential above can be extended to include also
crossing Coulomb interactions as well as various radiative effects.

Single photon with crossed Coulomb interaction *

x x′s s6 6

6t ω5

6ω1 v

6r ω3s s1 2? r
r

z

4

3

6ω6 u

6w ω2

6ω4 s

x0 x′0s s
6 6E

x x′s s6 6

6t ω5

6ω1 v

6r ω3s s1 26s
s

z

4

3

6ω6 u

6w ω2

6ω4 s

x0 x′0s s
6 6E

Fig. 8.5 Feynman diagram representing the exchange of a retarded covariant photon with
crossing Coulomb interaction.

We start by considering a transverse photon with a crossing Coulomb
interaction (Fig. 8.5), using the Coulomb gauge.

The Feynman amplitude becomes for the left diagram
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M(x,x′;x0,x
′
0) =

1
2

∫∫
dω1

2π
dω2

2π

∫∫
dω3

2π
dω4

2π

∫∫
dω5

2π
dω6

2π

∫
dz
2π

× iSF(ω3;x,x4) iSF(ω4;x′,x2) iSF(ω1;x4,x1) iSF(ω2;x2,x3)
× iSF(ω5;x1,x0) iSF(ω6;x3,x

′
0) (−i)IC

T (z;x4,x3) (−i)VC(x2,x1)
× 2π∆γ(ω1 − z − ω3) 2π∆γ(ω6 + z − ω2)
× 2π∆γ(E − ω5 − ω6) 2π∆γ(ω1 + ω4 − ω5 − ω2) (8.27)

Integrations over ω3, ω4, ω5, ω6 lead in the adiabatic limit to

ω3 = ω1 − z, ω4 = E − ω1 + z, ω5 = E − ω2 + z, ω6 = ω2 − z

and to

M(x,x′;x0,x
′
0) =

1
2

∫∫
dω1

2π
dz
2π

iSF(ω1 − z;x,x4) iSF(E − ω1 + z;x′,x2)

× iSF(ω1;x4,x1) iSF(ω2;x2,x3)iSF(E − ω2 + z;x1,x0)
× iSF(ω2 − z;x2,x

′
0) (−i)IC

T (z;x2,x3) (−i)VC(,x4,x3) (8.28)

More explicitly the electron propagators become

1
(ω1 − εv + iηv)

1
(E − εr − εs)

[
1

(ω1 − z − εr + iγr)
+

1
(E − ω1 + z − εs + iγs)

]

× 1
(ω2 − w + iηw)

1
E − εt − εu)

[
1

(E − ω2 + z − εt + iγt)
+

1
(ω2 − z − εu + iγu)

]

(8.29)

The integrations over ω1, ω2 lead in analogy with Eq. (8.8) to

sgn(εv) 6= sgn(εr) : ± v±r∓
εv − z − εr ∓ iγ

=: ±v±r∓
a∓

sgn(εv) = sgn(εs) : ± v±s±
E − εv + z − εs ± iγ

=: ±v±s±
b±

sgn(εw) = sgn(εw) : ± w±t±
E − εw + z − εt ± iγ

=: ±w±t±
c±

sgn(εw) 6= sgn(εu) : ± w±u∓
εw − z − εu ∓ iγ

=: ±w±u∓
d∓

(8.30)

times (−i)2. Here, the first two terms should be combined with the last two,
and the propagators (Eq. 8.28) reduce to

1
E − εr − εr

1
E − εt − εu ×[

± v±r∓
a∓

± v±s±
b±

][
± w±t±

c±
∓ w∓t∓

c∓
± w±u∓

d∓
∓ w∓u±

d±

]
(8.31)
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Upper or lower sign should be used consistently in all four operators in each
product. We use here the notations





A± = εv − εr ∓ cκ
B± = E − εv − εs ∓ cκ
C± = E − εw − εt ∓ cκ
D± = εw − εu ∓ cκ





a± = εv − z − εr ± iγ
b± = E − εv + z − εs ± iγ
c± = E − εw + z − εu ± iγ
d± = εw − z − εu ± iγ

(8.32)

The photon interaction has one pole in each half-plane, and for the com-
binations where the electron propagator poles are in the same half-plane the
z integration leads directly to the replacement a± → A± etc. This part then
becomes 1/(E − εr − εr) 1/(E − εt − εu) times

VC1 =
[v±r∓
A∓

+
v±s±
B±

][w±t±
C±

+
w±u∓
D∓

]
(8.33)

Again, upper or lower sign should be used consistently in all four operators in
each product. Expressing the Feynman amplitude in analogy with Eq. (8.10),

〈
rs
∣∣M(E)

∣∣tu〉 =
i

E −H0

〈
rs
∣∣∣VTC(E)

∣∣∣tu
〉 1
E −H0

(8.34)

the corresponding part of the potential becomes

〈rs|VTC)1|tu〉 =
∫
cdκ fC

T (κ)〈vs|VC|tw〉〈rw|VC1|vu〉 (8.35)

When the electron propagators have one pole in each half-plane, we have
to separate the propagators as before. For instance, the product

−v±r∓
a∓

w∓u∓
c∓

= − v±r∓
εv − z − εr ∓ iγ

w∓t∓
E − εw + z − εt ∓ iγ

is rewritten as

−v±r∓w∓t∓
a+ c

[ 1
a∓

+
1
c∓

]
⇒ −v±r∓w∓t∓

a+ c

[ 1
A∓

+
1
C∓

]

after z integration, or

− v±r∓w∓t∓
E − εw − εt + εv − εr

[ 1
εv − εr ± cκ +

1
E − εw − εt ± cκ

]

Similarly,

−v±r∓
a∓

w∓u±
d±

= − v±r∓
εv − z − εr ∓ iγ

w∓u±
εw − z − εu ± iγ

is rewritten as
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v±r∓w∓u±
a− d

[ 1
a∓
− 1
d±

]
⇒ v±r∓w∓u±

a− d
[ 1
A∓
− 1
D±

]

But A∓ −D± = a− d, so this can also be written as

−v±r∓w∓u±
A∓ D±

All similar combinations lead to

VC2 = −v±r∓w∓t∓
a+ c

[ 1
A∓

+
1
C∓

]
− v±r∓w∓u±

A∓ D±
− v±s±w∓t∓

B± C∓
− v±s±w∓u±

b+ d

[ 1
B±

+
1
D±

]

(8.36)

where upper and lower sings are used consistently in all four operators in
each term. The notations are defined in Eq. (8.32). This complete expression
is quite complicated, particularly due to the denominator a+ c.

Eqs (8.33) and (8.36) represent the complete potential for all 64 time-
ordered diagrams, corresponding to the Feynman diagram in Fig. 8.5,

〈rs|VTC|tu〉 =
∫
cdκ fC

T (κ) 〈vs|VC|tw〉〈rw|VC1 + VC2|vu〉 (8.37)

We can simplify the results above by assuming that the incoming orbitals
t, u are particle states. Then Eq. (8.33) reduces to

[v+r−
A−

+
v+s+

B+

]w+t+
C+

+
[v−r+

A+
+
v−s−
B−

]w−u+

D+
(8.38)

and Eq. (8.36) to

−v−r+w+t+
a+ c

[ 1
A+

+
1
C+

]
− v+s+w−u+

b+ d

[ 1
B+

+
1
D+

]
(8.39)

With no pairs we then have

v+s+

B+

w+t+
C+

=
v+s+w+t+

(E − εv − εs − cκ)(E − εw − εt − cκ)

with single pair (v)

−v−r+w+t+
a+ c

[ 1
A+

+
1
C+

]
= − v−r+w+t+
E − εw − εt + εv − εr

[ 1
εv − εr − cκ+

1
E − εw − εt − cκ

]

and double pairs (v, w)

v−r+

A+

w−u+

D+
=

v−r+w−u+

(εv − εr − cκ)(εw − εu − cκ)
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This corresponds to the time-ordered diagrams shown below, and the results
are in agreement with the evaluation rules for time-ordered diagrams. Also
here some diagrams are complicated to evaluate, due to the denominator
a+ c.

r r
6t

6v
6r r r? q
q

6u
6w

6s

r r
E

r r
6t
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AA

A
AA
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AU
v

6rr r
-q q6u6w
6s
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E

r r
6t
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6rr r
- qq
6u
6w

6s

r r
E

r r
6t
@@@@@@Rv

6rr r6r r6u@@@@@@Rw
6s

r r
E

Another, probably more reasonable approximation. is to assume that the
intermediate states v, w are particle states. Then only the simpler term
(Eq. 8.33) survives, yielding

VC1+ =
[v+r−
A−

+
v+s+

B+

][w+t+
C+

+
w+u−
D−

]
(8.40)

and the potential

〈rs|V +
TC|tu〉 =

∫
cdκ fC

T (κ) 〈vs|VC|tw〉〈rw|VC1+|vu〉 (8.41)

This part of the potential can be generated by iterating the pair equation, as
discussed in Chapter 10. This is true also for repeated Coulomb crossings.

Electron self energy and vertex correction

x

6a

6t ω16

s
s z

1

2
6r ω2

s
x s
6r

6a

s s2 1
�t

Fig. 8.6 Diagram representing the transverse and Coulomb parts of the first-order self-
energy of a bound electron in the covariant-evolution-operator formalism (c.f. Fig. 4.9).
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Next, we shall see how some radiative effects, previously treated in the
S-matrix formalism (see section 4.6) can be included in the QED potential.
Since we are using the Coulomb gauge, we have to treat the Coulomb and
transverse parts separately as in section 4.6.

We start with the transverse part, illustrated in Fig. 8.6 (left). The kernel
is here (c.f. Eq. 4.84)

iSF(x, x2) iSF(x2, x1) (−i)IC
T (x2, x1) (8.42)

where IC
T is the transverse part of the interaction (Eq. 4.59). The Feynman

amplitude becomes in analogy with previous cases (Eq. 8.4)

MSE(x) =
∫∫

dω1

2π
dω2

2π
dz
2π

iSF(ω2;x,x2) iSF(ω1;x2,x1)

× (−i)IC
T (z;x2,x1) 2π∆γ(εa − ω1 − z) 2π∆γ(ω1 − ω2 + z) (8.43)

integrated over the internal space coordinates and with the energy parameters
given in the figure. After integration over the omegas, this becomes

MSE(x)
∫

dz
2π

iSF(εa;x,x2) iSF(εa − z;x2,x1) (−i)IC
T (z;x2,x1) (8.44)

The matrix element of the evolution operator is

〈r|USE(t)|a〉 = e−it(εa−εr) 〈rt|MSE(x)|ta〉 (8.45)

which we can express

〈
r
∣∣USE(t)

∣∣a〉 =
e−it(εa−εr)

εa − εr
〈
r
∣∣− iΣ(εa)

∣∣a〉 (8.46)

where Σ(εa) is the self-energy operator (Eq. 4.85)

〈r|Σ(εa)|a〉 =
〈
rt
∣∣∣
∫

dz
2π

iSF(εa − z;x2,x1) IC
T (z;x2,x1)

∣∣∣ta
〉

(8.47)

Inserting the explicit expressions for the propagators, yields

〈r|Σ(εa)|a〉Trans =
〈
rt
∣∣∣
∫

cdκ fC
T (κ)

εa − εt − (cκ− iη)t

∣∣∣ta
〉

(8.48)

consistent with the diagonal S-matrix (Eq. 4.89).

It should be noted that the self energy is diagonal in energy in the S-
matrix formulation, due to the energy conservation, while also non-diagonal
parts will appear in the covariant-evolution formulation. As we shall see, only
the diagonal part is divergent and has to be renormalized, as will be discussed
in Chapter 12.
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The Coulomb part of the self energy (Fig. 8.6 right) becomes in analogy
with the S-matrix result (Eq. 4.95)

〈r|Σ(εa)|a〉Coul =
1
2

〈
rt
∣∣∣ e2

4π2ε0r12

∫
2κ dκ sinκr12

κ2

∣∣∣ta
〉

=
1
2

sgn(εt)
〈
rt
∣∣∣VC

∣∣∣ta
〉

(8.49)

with summation over positive- as well as negative-energy states.

General two-electron self energy

x x′s s
6r ω3

6

s
s z

1

2

6v

6t ω1

6ω2 u

x0 x′0s s
E

Fig. 8.7 General two-electron self energy with incoming and outgoing electron propaga-
tors.

We consider now a general self-energy operator (transverse part) in analogy
with the general single-photon exchange in section 8.1, illustrated in Fig. 8.7.
(The Coulomb part can be treated similarly.) The kernel is now

iSF(x, x2) iSF(x2, x1) (−i)IC
T (x2, x1) iSF(x1, x0) iSF(x′, x′0) e−γ(|t1|+|t2|)

(8.50)
and the Feynman amplitude

MSE(x,x′;x0,x
′
0) =

∫∫∫∫
dω1

2π
dω2

2π
dω3

2π
dω4

2π

∫
dz
2π

iSF(ω3;x,x2)

× iSF(ω4;x2,x1) iSF(ω1;x1,x0) iSF(ω2;x′,x′0) (−i)IC
T (z;x2,x1)

× 2π∆γ(ω1 − z − ω4) 2π∆γ(ω4 + z − ω3) 2π∆γ(E − ω1 − ω2) (8.51)

After integrations over ω2, ω3, ω4 this becomes

MSE(x,x′,x0,x
′
0) =

∫∫
dω1

2π
dz
2π

iSF(ω1;x,x2) iSF(ω1 − z;x2,x1)

× (−i)IC
T (z;x2,x1) iSF(ω1;x1,x0) iSF(E − ω1;x′,x′0) (8.52)
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as before, leaving out the internal integrations. Integration over z now yields

MSE = (−i)2

∫
cdκ fC

T (κ)

times the propagator expressions

1
εr − εv − (−iγ)v

[ 1
ω1 − εr + iγr

− 1
ω1 − εv − (cκ− iγ)v

]

and
1

E − εt − εu
[ 1
ω1 − εt + iγt

+
1

E − ω1 − εu + iγu

]
(8.53)

The integration over ω1 yields another factor of −i, and this leads in analogy
with Eq. (8.10) to

〈
ru
∣∣MSE(E)

∣∣tu〉 =
i

εr − εv − (cκ− iγ)v

〈
ru
∣∣∣VSE(E)

∣∣∣tu
〉 1
E − εt − εu (8.54)

where VSE(E) is the potential

〈
rs
∣∣VSE(E)

∣∣tu〉 =
〈
rs
∣∣∣
∫
cdκ fC

T (κ)
[
± t±r∓
εt − εr

± r±u±
E − εr − εu ∓

t±v∓
εt − εv ± cκ ∓

v±u±
E − εu − εv ∓ cκ

]∣∣∣tu
〉

(8.55)

If all states are particle states, we find that the bracket above becomes

1
E − εr − εu −

1
E − εu − εv − cκ =

εr − εv − cκ
(E − εr − εu)(E − εu − εv − cκ)

and the Feynman amplitude

i

(E − εr − εu)(E − εu − εv − cκ)
1

E − εt − εu (8.56)

in agreement with the evaluation rules for time-ordered diagrams, derived in
Appendix I.

Next, we consider some specific cases with virtual holes, and, as before,
we apply the potential to a Coulomb interaction.

hole out (r) (remaining ones particle states)s s�
�
�
�
�
�	
r

6

r
r6v
6t

6us s
E

s s�
�
��

�
�
��

�
���
r 6

rr6v
6t 6us s
E

The Feynman amplitude (Eq. 8.54) becomes
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i
εr − εv − cκ

[ 1
εt − εr −

1
E − εu − εv − ck

] 1
E − εt − εu (8.57)

This corresponds to the two time-ordered diagrams in the marginal.

hole in (t)

The Feynman amplitude becomes

i
εr − εv − cκ

[
− 1
εt − εr +

1
E − εr − εu +

1
εt − εv − cκ −

1
E − εu − εv − ck

]

× 1
E − εt − εu (8.58)

which can also be expressed as

i
[ −1

(εr − εt)(εt − εv − cκ)
+

1
(E − εr − εu)(E − εu − εv − cκ)

]

× 1
E − εt − εu (8.59)

After some additional algebra this can be shown to be identical to

−i
(εt − εv − cκ)(E − εr − εu)

[ 1
E − εu − εv − cκ +

1
εt − εr

]
(8.60)

corresponding to the time-ordered diagrams in the marginal.
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General vertex correction
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Fig. 8.8 General vertex correction with incoming and outgoing electron propagators.

The general vertex correction (transverse part), illustrated in Fig. 8.8,
leads to
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MVx(x,x′,x0,x
′
0) =

∫∫
dω1

2π
dω1

2π

∫
dz
2π

iSF(ω3;x,x2) iSF(ω3 − z;x2,x3)

× iSF(E − ω3;x′,x4)(−i)IC
T (z;x2,x1) (−i)VC(x4,x3) iSF(ω1 − z;x3,x1)

× iSF(ω1;x1,x0) iSF(E − ω1;x4,x
′
0) (8.61)

More explicitly, the electron propagators become

1
E − εr − εs

1
ω3 − εw − z − iγw

[ 1
ω3 − εr + iγr

+
1

E − ω3 − εs + iγs

]

times

1
E − εt − εu

1
ω1 − εv − z − iγv

[ 1
ω1 − εt + iγt

+
1

E − ω1 − εu + iγu

]
(8.62)

If the energies of the orbitals v and w have the same sign, then the integration
over z leads to

MVx = −i
∫
cdκ fC

T (κ)

times

1
E − εr − εs

1
ω3 − εw − (cκ− iγ)w

[ 1
ω3 − εr + iγr

+
1

E − ω3 − εs + iγs

]

and

1
E − εt − εu

1
ω1 − εv − (cκ− iγ)v

[ 1
ω1 − εt + iγt

+
1

E − ω1 − εu + iγu

]
(8.63)

and to the Feynman amplitude, in analogy with Eq. (8.54),

〈
rs
∣∣MVx(E)

∣∣tu〉 =
i

E − εr − εs
〈
rs
∣∣∣VVx(E)

∣∣∣tu
〉 1
E − εt − εu (8.64)

where VVx(E) is the potential

〈
rs
∣∣VVx(E)

∣∣tu〉 =
〈
ws
∣∣VC

∣∣vu〉〈rv
∣∣
∫
cdκ fC

T (κ)

×
[
± r±w∓
εr − εw ± ck ±

s±w±
E − εs − εw ∓ cκ

][
± t±v∓
εt − εv ± cκ ±

v±u±
E − εu − εv ∓ cκ

]∣∣wt〉

(8.65)

If the orbitals v and w are of different kind (particle or hole), the evaluation
becomes more complicated. This case is expected to be less important.

If all states are particle states, we find that the brackets above become

1
E − εs − εw − cκ

1
E − εu − εv − cκ
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in agreement with the evaluation rules for time-ordered diagrams. If r is a
hole state and the others particle states, we have instead

[
− 1
εr − εw − cκ +

1
E − εs − εw − cκ

]
× 1
E − εu − εv − cκ

= − E − εr − εs
(εr − εw − cκ)(E − εs − εw − cκ)

× 1
E − εu − εv − cκ

This leads to the denominators of the Feynman amplitude (Eq. 8.64)

− 1
(εr − εw − cκ)(E − εs − εw − cκ)(E − εu − εv − cκ)(E − εt − εu)

and corresponds to the time-ordered diagram
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Vertex correction with further Coulomb iterations

The Coulomb interactions of the vertex correction can be iterated before the
photon interaction is closed, in the same way as for the retarded photon with
crossed Coulomb, treated above, leading to diagrams of the type shown in
Fig. 8.9 Assuming that the intermediate states v, w, as well as the statess s
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Fig. 8.9 Vertex correction with double Coulomb interactions.
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between the Coulomb interactions are particle states, the corresponding ana-
lytical expression is obtained from Eq. (8.64) by replacing the matrix element
〈ws|VC|vu〉 by

〈ws|VC
|xy〉〈xy|

E − εx − εy − cκVC|vu〉

General two-body potential

We can now form a general ”two-body QED potential” by adding the contri-
butions derived above,

V QED = Vsp + VTC + VSE + VVx (8.66)

where Vsp, as before, represents the combined Coulomb and transverse-
photon exchange (Eq. 8.2). This is illustrated in Fig. 8.10. Here, particle
as well as holes are allowed in and out.s s

V QED
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Fig. 8.10 Feynman diagram representing the ”QED potential”, V QED, in Eq. (8.66). The
first diagram on the rhs includes the Coulomb potential.

8.3 Unification of the MBPT and QED procedures.
Connection to Bethe-Salpeter equation

We shall now see how the general QED potentials, derived above by means
of the field-theoretical Green’s operator, can be combined with the standard
MBPT procedure, leading to a unified MBPT-QED procedure. The procedure
is valid for an arbitrary (quasi-degenerate) model space and equivalent to
an extension of the standard Bethe-Salpeter equation , referred to as
the Bethe-Salpeter-Bloch equation , briefly mentioned in section 6.9 and
further discussed in the next chapter (see also ref. [125]). The procedure is
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also applicable to systems with more than two electrons, as will be briefly
discussed at the end of the present chapter.

MBPT-QED procedure

The general potentials derived above—with possible hole states on the in- and
outgoing lines—cannot be used iteratively in the way discussed in Chapter
6. Therefore, it cannot be used directly in a Bloch equation, like that in
Eq. (6.106). For that purpose we shall insert one extra Coulomb interaction,
when holes are present, leading to the replacements

V QED ⇒ V QED +V QEDΓQ(E)VC +VCΓQ(E)V QED +VCΓQ(E)V QEDΓQ(E)VC

(8.67)
illustrated in Fig. 8.11. This potential has only particle states (positive energy)
in and out, and can therefore be used iteratively in a Bloch equation.

When we have a single negative-energy state in the output, we can have a
vanishing denominator of the final resolvent, which leads to a singularity of
the Brown-Ravenhall type [36]. As demonstrated, though, at the beginning of
the present chapter, such singularities cancel when combined with the general
potential. But then it is of vital importance that the potential and resolvent
appear in ”matching pairs”. This will always be the case when the modified
potential (Eq. 8.67) is applied.
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Fig. 8.11 Illustration of the modified potential (Eq. 8.67), which can be iterated. It has
only positive-energy states in and out and is free from the Brown-Ravenhall effect.

Inserting the modified potential (Eq. 8.67) into the Bloch equation (Eq. 6.106),
leads to

ΩQED = 1 + ΓQV
QEDΩQED +

δ∗ΩQED

δE V QED
eff (8.68)

where V QED
eff = PV QED(H∗eff)ΩQEDP is the corresponding effective interac-

tion (Eq. 6.139). In the last folded term only the last interaction, with the
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corresponding resolvent is differentiated (see Eq. 6.105). The modified poten-
tial (Eq. 8.67) is here regarded as a single unit. This equation is illustrated
graphically by the Dyson-type of equation in Fig. 8.12. The iterative expan-
sion of the equation is displayed in Fig. 8.13. Solving the equation iteratively
is equivalent to solving the corresponding version of the Bethe-Salpeter-Bloch
equation (see Eqs 6.140 and 9.30).s s

ΩQED6 6

6 6

=

s s
6 6+

s s
6 6s sV QED

Q6 6

6 6
ΩQED

+

s s
6 6

6 6P

δ∗ΩQED

δE

V QED
eff

6 6

Fig. 8.12 Graphical representation of the single-photon Bloch equation (Eq. 8.68). The
last diagram represents the ”folded” term, i.e., the last term of the equation. This equation
can be compared with the Bethe-Salpeter equation in Fig. 9.4, valid only in the single-
reference case, where there is no folded contribution. The order-by-order expansion of this
equation is illustrated in Fig. 8.13.
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Fig. 8.13 Graphical representation of the order-by-order expansion of the Bloch equation
in Fig. 8.12.

The potential discussed above represents the dominating part of the QED
effects. In order to get further, also irreducible combinations of transverse
interactions should be included (see Fig. 6.6). Formally, we can express the
corresponding Bloch equation

ΩQED = 1 + ΓQVQEDΩQED +
δ∗ΩQED

δE VQED
eff (8.69)

where VQED is the QED potential, based upon the generalized multi-photon
potential, used previously (Fig. 6.6), and VQED

eff is the corresponding effective
interaction (Eq. 6.139). This corresponds to the full Bethe-Salpeter-Bloch
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equation (without singles). For the time being, though, it does not seem
feasible to go beyond a single transverse photon. However, the two-photon
exchange can be approximated by including one retarded and one instanta-
neous transverse (Breit) interaction.

The potential (Eq. 8.67) can also be combined with standard pair functions
without virtual pairs (Fig. 2.6). This leads to the Bloch equation

ΩQED = ΩI + ΓQV
QEDΩQED +

δ∗ΩQED

δE V QED
eff (8.70)

illustrated in Fig. 8.14 (and analogously in the generalized case). This implies
that the Coulomb interaction is iterated to much higher order than the trans-
verse interaction. But since the Coulomb interaction normally dominated
heavily over the transverse interaction, this procedure usually represents a
much faster way of generating a perturbative scheme than that represented
by Eq. (8.68) and Fig. 8.12.
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Fig. 8.14 Graphical representation of the Bloch equation (Eq. 8.70), where a standard
pair function (ΩI) is combined with a QED potential.

In the next section we shall describe how the QED potential (Eq. 8.67)
can be used in a coupled-cluster expansion , in analogy with the standard
procedure of MBPT, described in section 2.5. Then also single-particle effects
can be included in a systematic way, and the procedure would, in principle,
be fully equivalent to the complete Bethe-Salpeter-Bloch equation
with singles, applicable also to open-shell systems. This approach will
also make it possible to apply the procedure to more than two electrons.

In the next chapter we shall analyze the Bethe-Salpeter and the Bethe-
Salpeter-Bloch equations further. In Chapter 10 we shall discuss how the
iterative procedure discussed here with a single transverse photon can be
implemented and give some in numerical illustrations. The renormalization
procedure will be discussed in Chapter 12.
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8.4 Coupled-cluster-QED expansion

With the interactions derived above we can construct an effective QED-
Coupled-Cluster procedure in analogy with that employed in standard MBPT,
described in section 2.5 (see ref. [127]). Considering the singles-and-doubles
approximation (Eq. 2.105)

S = S1 + S2 (8.71)

the MBPT/CC equations are illustrated in Fig. 2.8. In order to obtain the
corresponding equations with the covariant potential (Eq. 6.6), we make the
replacements illustrated in Fig. 8.15, which leads to the equations, illustrated
in Fig. 8.16.
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6 6⇒
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Fig. 8.15 Replacements to be made in the CC equations in Fig. 2.8 in order to generate
the corresponding CC-QED equations (c.f. Figs 6.4 and 6.5). The wavy line in the second
row represents the modified potential (Eq. 8.67) with only particle states in and out.

The CC-QED procedure can also be applied to systems with more than two
electrons. For instance, if we consider the simple approximation (Eq. 2.101)

Ω = 1 + S2 +
1
2
{S2

2}

then we will have in addition to the pair function also the coupled-cluster
term, illustrated in Fig. 8.17 (left). Here, one or both of the pair functions
can be replaced by the QED pair function in Fig. 8.12 (right) in order to insert
QED effects on this level. In addition, of course, single-particle clusters can
be included, as in the two-particle case discussed above (Fig. 8.15).

We can summarize the results obtained here in the following
way:
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Fig. 8.16 Diagrammatic representation of the QED-coupled-cluster equations for the op-
erators S1 and S2. The second diagram in the second row and the diagrams in the fourth
row are examples of coupled-cluster diagrams. The last diagram in the second row and the
three diagrams in the last row represent folded terms (c.f. the corresponding standard CC
equations in Fig. 2.8.)

• When all one- and two-particle effects are included, the MBPT-
QED procedure is fully compatible with the two-particle Bethe-
Salpeter(-Bloch) equation—including singles.

• The advantage of the MBPT-QED procedure is—thanks to the
complete compatibility with the standard MBPT procedure—that
the QED potentials need to be included only in cases where the
effect is expected to be sufficiently important.
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Fig. 8.17 Diagrammatic representing of the QED-coupled-cluster term
1

2
S2

2 with stan-

dard pair functions (left) and one and two inserted QED pair function, defined in Fig. 8.12,
(right).

The procedure described here is based on the use of the Coulomb
gauge (Eq. 6.41), and therefore not strictly covariant. As men-
tioned, however, in practice it is equivalent to a fully covariant
procedure, and, furthermore, it seems to be the only feasible way
for the time being to treat effects beyond two-photon exchange in
a systematic fashion.



Chapter 9

The Bethe-Salpeter equation

In this chapter we shall discuss the Bethe-Salpeter equation and its relation
to the procedure we have developed so far. We shall start by summarizing
the original derivations of the equation by Bethe and Salpeter and by Gell–
Mann and Low, which represented the first rigorous covariant treatments
of the bound-state problem. We shall demonstrate that this field-theoretical
treatment is completely compatible with the presentation made here. The
treatments of Bethe and Salpeter and of Gell-Mann and Low concern the
single-reference situation, while our procedure is more general. We shall later
in this chapter extend the Bethe-Salpeter equation to the multi-reference case,
which will lead to what we refer to as the Bethe-Salpeter-Bloch equation in
analogy with corresponding equation in MBPT.

9.1 The original derivations by the Bethe-Salpeter
equation

The original derivations of the Bethe-Salpeter equation by Salpeter and
Bethe [201] and by Gell-Mann and Low [69] were based upon procedures de-
veloped in the late 1940’s for the relativistic treatment of the scattering of two
or more particles by Feynman [64, 63], Schwinger [210, 209], Tomanaga [228]
and others, and we shall here summarize their derivations.

205
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Fig. 9.1 Examples of Feynman graphs representing scattering amplitudes in Eqs (Eq. 9.1)
and (Eq. 9.2) of the Salpeter-Bethe paper [201]. The first diagram is irreducible, while the
second is reducible, since it can be separated into two allowed diagrams by a horizontal
cut.

Derivation by Salpeter and Bethe

Salpeter and Bethe [201] start their derivation from the Feynman formalism
of the scattering problem [64, 63], illustrated in terms of Feynman graphs.
A Feynman diagram represents in Feynman’s terminology the ”amplitude
function” or ”kernel” for the scattering process, which in the case of two-
particle scattering, denoted K(3, 4; 1, 2), is the probability amplitude for one
particle propagating from one space-time point x1 to another x3 and the other
particle from space-time x2 to x4. For the process involving one irreducible
graph G(n), i.e., a graph that cannot be separated into two simpler graphs,
as illustrated in Fig. 9.1 (left part), the kernel is given by (in Feynman’s
notations)

K(n)(3, 4; 1, 2) = −i
∫∫∫∫

dτ5 · · · dτ8K+a(3, 5)K+b(4, 6)

× G(n)(5, 6; 7, 8)K+a(7, 1)K+b(8, 2) (9.1)

where K+a,K+b represent free-particle propagators (positive-energy part).
For a process involving two irreducible graphs, the kernel illustrated in the
right part of the figure becomes

K(n,m)(3, 4; 1, 2) = −i
∫∫∫∫

dτ5 · · · dτ8K+a(3, 5)K+b(4, 6)

× G(n)(5, 6; 7, 8)K(m)(7, 8; 1, 2) (9.2)

This leads to the sequence illustrated in Fig. 9.2, where G∗ represents the
sum of all irreducible two-particle self-energy graphs. From this Salpeter and
Bethe arrived at an integral equation for the total kernel
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Fig. 9.2 Graphical representation of the expansion of the Feynman kernel in terms of
irreducible graphs.

K(3, 4; 1, 2) = K+a(3, 1)K+b(4, 2)− i
∫∫∫∫

dτ5 · · · dτ8K+a(3, 5)K+b(4, 6)

× G∗(5, 6; 7, 8)K(7, 8; 1, 2) (9.3)

This is the equation for the two-particle Greens function (Eq. 5.80) in the
form of a Dyson equation, in our notations written as

G(x, x′;x0, x
′
0) = G0(x, x′;x0, x

′
0) +

∫∫∫∫
d4x1d4x2d4x′1d4x′2

×G0(x, x′;x2, x
′
2) (−i)Σ∗(x2, x

′
2;x1, x

′
1)G(x1, x

′
1;x0, x

′
0) (9.4)

and depicted in Fig. 9.3 (see also Fig. 5.8). Note that the two-particle ker-
nel K in the terminology of Feynman and Salpeter-Bethe corresponds to our
Green’s function G, and the irreducible interaction G∗ corresponds to our
proper self-energy Σ∗. The proper (or irreducible) self energy is identical
to the irreducible two-particle potential in Fig. 6.6. Furthermore, the elec-
tron propagators are in the Feynman-Salpeter-Bethe treatment free-particle
propagators. Note that the intermediate lines in Fig. 9.3 represent a Green’s
function, where the singularities are eliminated.
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Fig. 9.3 Graphical representation of the integral equation (Eq. 9.3) for the Feynman
kernel of Salpeter and Bethe—identical to the Dyson equation for the two-particle Green’s
function (Fig. 5.8).
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Salpeter and Bethe then argued that a similar equation could be set up
for the bound-state wave function. Since the free lines of the diagrams in the
Feynman formulation represent free particles, they concluded that the first
(inhomogeneous) term on the r.h.s. could not contribute, as the bound-state
wave function cannot contain any free-particle component. This leads in their
notations to the homogeneous equation

Ψ(3, 4) = −i
∫∫∫∫

dτ5 · · · dτ8K+a(3, 5)K+b(4, 6)G∗(5, 6; 7, 8)Ψ(7, 8) (9.5)

This is the famous Bethe-Salpeter equation . In the Furry picture we use
here, where the basis single-electron states are generated in an external (nu-
clear) potential, the inhomogeneous term does survive, and the equation be-
comes in our notations

Ψ(x, x′) = Φ(x, x′) +
∫∫∫∫

d4x1d4x2d4x′1d4x′2

× G0(x, x′;x2, x
′
2) (−i)Σ∗(x2, x

′
2;x1, x

′
1)Ψ(x1, x

′
1) (9.6)

This is the inhomogeneous Bethe-Salpeter equation we shall use, and it is
graphically depicted in Fig. 9.4.

Derivation by Gell-Mann and Low

The derivation of Gell-Mann and Low [69] starts from the ”Feynman two-
body kernel”, used in the definition of the Green’s function (Eq. 5.20) (in
their slightly modified notations),

K(x1, x2;x3, x4) =
〈
Ψ0

∣∣T [ψ̂H(x1)ψ̂H(x2)ψ̂†H(x4)ψ̂†H(x3)]
∣∣Ψ0

〉
(9.7)

T is the time-ordering operator (Eq. 2.27) and ψ̂H, ψ̂
†
H are the particle-field

operators in the Heisenberg representation. Ψ0 is the vacuum (ground state)
of the interacting system in the Heisenberg picture, |0H〉.

In an Appendix of the same paper Gell-Mann and Low derive a relation
between the interacting (Ψ0) and the non-interacting (Φ0) vacuum states
(both in the interaction picture)

cΨ0 =
U(0,−∞)Φ0

〈Φ0|U(0,−∞)|Φ0〉 (9.8)

which is the famous Gell-Mann–Low theorem (Eq. 3.29), discussed previ-
ously. Here, c is a normalization constant (equal to unity in the intermediate
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normalization that we use). This can be eliminated by considering

1 = 〈Ψ0|Ψ0〉 =
〈Φ0|U(∞,−∞)|Φ0〉

c2〈Φ0|U(∞, 0)|Φ0〉〈Φ0|U(0,−∞)|Φ0〉 (9.9)

Inserting the expression (Eq. 9.8) into the kernel (Eq. 9.7), utilizing the re-
lation (Eq. 9.9), yields

K(x1, x2;x3, x4) =
〈Φ0|U(∞, 0)T [ψ̂H(x1)ψ̂H(x2)ψ̂†H(x4)ψ̂†H(x3)]U(0,−∞)|Φ0〉

〈Φ0|U(∞,−∞)|Φ0〉
(9.10)

which is equivalent to the field-theoretical definition of the Green’s function
G(x1, x2;x3, x4) in Eq. (5.20).

Ψ

x x′s s
=

Φ

x x′s s
+

x x′

x2

x1

x′2
x′1

Σ∗(x2, x′2;x1, x′1)

Ψ

s s
ss ss

Fig. 9.4 Graphical representation of the inhomogeneous Bethe-Salpeter equation
(Eq. 9.6). Σ∗ represents the proper self energy, which contains all irreducible interaction
graphs and is identical to the irreducible two-particle potential in Fig. 6.6. This equation
can be compared with that represented in Fig. 8.12, valid also in the multi-reference case.

Gell-Mann and Low then conclude that expanding the expression above
in a perturbation series leads to the two-body kernel of Feynman in terms
of Feynman diagrams, as we have performed in Chapter 5. This is identical
to the expansion given by Salpeter and Bethe, and hence leads also to the
integral equation (Eq. 9.3). Gell-Mann and Low then use the same arguments
as Salpeter and Bethe to set up the Bethe-Salpeter equation (Eq. 9.5) for the
wave function. In addition, they argue that single-particle self-energy parts
can easily be included by modifying the single-particle propagators.

The derivation of Gell-Mann and Low, which starts from the field-theoretical
definition of the Green’s function, has a firm field-theoretical basis. This is
true, in principle, also of the derivation of Salpeter and Bethe, which is based
upon Feynman diagrams for scattering of field-theoretical origin.

In the next subsection we shall see how the Bethe-Salpeter equation can
be motivated from the graphical form of the Dyson equation in Fig. 9.3.
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Analysis of the derivations of the Bethe-Salpeter
equation
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Fig. 9.5 Graphical illustration of the Eqs. 9.11 and 9.12.

We can understand the Bethe-Salpeter equation graphically, if we let the
Dyson equation in Fig. 9.3 act on the zeroth-order state, Φ(x0, x

′
0), which

we represent by two vertical lines without interaction. (The treatment can
easily be extended to the situation, where the model function is a linear
combination of straight products.) From the relation (Eq. 6.7) we see that
the electron propagator acting on an electron-field operator (with space in-
tegration) shifts the coordinates of the operator. Therefore, acting with the
zeroth-order Green’s function on the model function, shifts the coordinates
of the function according to

Φ(x, x′) =
∫∫

d3x0 d3x′0G0(x, x′;x0, x
′
0)Φ(x0, x

′
0) (9.11)

This is illustrated in Fig. 9.5 (left) and corresponds to the first diagram on
the rhs of Fig. 9.4. Similarly, operating with the full Green’s function in Fig.
9.5 on the model function leads to

Ψ(x, x′) =
∫∫

d3x0 d3x′0G(x, x′;x0, x
′
0)Φ(x0, x

′
0) (9.12)

illustrated in Fig. 9.5 (right). Then the entire equation (Eq. 9.6), illustrated
in Fig. 9.4, is reproduced.

The equation (Eq. 9.12) is consistent with the definition of the classical
Green’s function (Eq. 5.1), which propagates a wave function from one space-
time point to another—in our case from one pair of space-time point to
another. This equation can also be expressed as an operator equation

|Ψ(t, t′)〉 = G(t, t′; t0, t′0) |Ψ(t0, t′0)〉 (9.13)

where G is the Green’s operator, introduced in section 6.6. The coordinate
representation of this equation
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〈x,x′|Ψ(t, t′)〉 = 〈x,x′|G(t, t′; t0, t′0)|x0,x
′
0〉 〈x0,x

′
0|Ψ(t0, t′0)〉 (9.14)

is identical to Eq. (9.12).

This implies that

• the Green’s function is the coordinate representation of the
Green’s operator and that

• the four-times Green’s operator represents the time propagation
of the two-particle Bethe-Salpeter state vector .

In the equal-time approximation this is consistent with our previous result
(Eq. 6.50) and with our conjecture (Eq. 6.29).

It is of interest to compare the Bethe-Salpeter equation (Eq. 9.6), depicted
in Fig. 9.4, with the Dyson equation for the combined QED-electron corre-
lation effects in Fig. 8.12. If in the latter more and more effects are included
in the QED potential, then the Coulomb interactions, represented by the
standard pair function, become insignificant. Then this equation is identical
to the Bethe-Salpeter equation. To solve the original BS equation iteratively,
however, is extremely tedious and often very slowly converging, due to the
dominating Coulomb interaction. As mentioned in the previous chapter, the
QED-correlation equation is expected to be a faster road to reach the same
goal. One- and two-photon exchange in the QED potential will very likely
yield extremely good results, while such effects in the BS equation will often
be quite insufficient (c.f. the discussion about the QED methods in Part II).

9.2 Quasi- and effective-potential approximations.
Single-reference case

In the equal-time approximation, where we equalize the times of the two
particles in the Bethe-Salpeter equation (Eq. 9.6), we can make a Fourier
transformation of it with a single energy parameter as in the treatment of
the single-particle Green’s function in section 5.2. The Q part, falling outside
the model space, then leads to

QΨ(E) = QG0(E) (−i)Σ∗(E)Ψ(E) (9.15)

leaving out the space coordinates and integrations.

Replacing the zeroth-order Green’s function with the resolvent (Eq. 5.43)

G0(E) =
i

E −H0
(9.16)
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we obtain

Q(E −H0)Ψ(E) = QΣ∗(E)Ψ(E) (9.17)

If we identify the proper self energy with the generalized potential (Eq. 8.11)

V(E) = Σ∗(E) (9.18)

the equation above leads together with the relation (Eq. 6.125)

P (H −H0)ΩΨ(E) = PV(E)Ψ(E) (9.19)

to

• the effective-potential form of the Bethe-Salpeter equation

(E −H0)|Ψ〉 = V(E)|Ψ〉 (9.20)

frequently used in various applications. This equation was also derived above,
using the Green’s operator only (Eq. 6.126).

The equation (Eq. 9.20) can also be expressed

|Ψ〉 = |Ψ0〉+
Q

E −H0
V(E)|Ψ〉 (9.21)

where Ψ0 is the model state Ψ0 = PΨ . This is equivalent to the Lippmann-
Schwinger equation [130], frequently used in scattering theory. Formally,
the equation (Eq. 9.20) can also be expressed in the form of the time-
independent Schrödinger equation

HΨ = EΨ (9.22)

where H is the energy-dependent Hamiltonian

H(E) = H0 + V(E) (9.23)

The equation (Eq. 9.20) operates entirely in the restricted Hilbert space
with constant number of photons. This can be related to the equivalent equa-
tion (Eq. 6.32), derived by means of the Gell-Mann–Low theorem, which op-
erates in the photonic Fock space. We can then regard the equation above as
the projection of the Fock-space equation onto the restricted space.
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9.3 Bethe-Salpeter-Bloch equation. Multi-reference case

We can extend the treatment above to the general multi-reference case. From
the expression Eq. (6.117), using the fact that the Green’s operator at time
t = 0 is identical to the wave operator (Eq. 6.52), we have in the single-
reference case (one-dimensional) model space

|Ψ〉 = Ω|Ψ0〉 =
[
1 + ΓQ(E)V(E) + ΓQ(E)V(E)ΓQ(E)V (E) + · · ·

]∣∣Ψ0

〉
(9.24)

where |Ψ0〉 is the model state, |Ψ0〉 = P |Ψ〉, and

ΓQ(E) =
Q

E −H0

is the reduced resolvent Eq. (2.65).

Operating on Eq. (9.24) from the left with Q(E −H0) now yields

Q(E −H0)|Ψ〉 = QV(E)|Ψ〉 (9.25)

which is identical to the equation (Eq. 9.17) with the identification (Eq. 9.18).

For a general multi-dimensional (quasi-degenerate) model space we have
similarly

Q(Eα −H0)|Ψα〉 = QV(Eα)|Ψα〉 (9.26)

and
P (Eα −H0)|Ψα〉 = PV(Eα)|Ψα〉 (9.27)

This leads to
(Eα −H0)|Ψα〉 = V(Eα)|Ψα〉 (9.28)

or in operator form

(H∗eff −H0)ΩP = V(H∗eff)ΩP (9.29)

using the notations introduced in section 6.9. But

H∗effΩP = ΩHeffP = ΩH0P +ΩVeffP

which yields the commutator relation
[
Ω,H0

]
P = V(H∗eff)ΩP −ΩPVeffP (9.30)

where according to Eq. (6.139) VeffP = PV(H∗eff)ΩP . Here, the energy para-
meter of V(H∗eff) is given by the model-space state to the far right, while the
energy parameter of Ω of the folded term depends on the intermediate model-
space state (see footnote in section 6.6). This equation is valid in the general
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multi-reference (quasi-degenerate) situation and represents an exten-
sion of the effective-potential form (Eq. 9.20) of the Bethe-Salpeter equation.
Due to its close resemblance with the standard Bloch equation of MBPT
(Eq. 2.56), we refer to it as the Bethe-Salpeter-Bloch equation . This is
equivalent to the generalized Bethe-Salpeter equation, derived in Chapter 6
(Eq. 6.140).

In analogy with the MBPT treatment in section (Eq. 2.5), we can separate
the BS-Bloch equation into

[
Ω1,H0

]
P =

(
V(H∗eff)ΩP −ΩPVeff(H∗0 )P

)
linked,1

[
Ω2,H0

]
P =

(
V(H∗eff)ΩP −ΩPVeff(H∗0 )P

)
linked,2

(9.31)

etc. It should be noted that the potential operator V(H∗eff) is an operator or
matrix where each element is an operator/matrix. In the first iteration we set
Heff = H0 and in the next iteration Heff = H0+V (1)

eff etc. Continued iterations
correspond to the sum term in the expression (Eq. 6.96), representing the
model-space contributions. The two-particle BS-Bloch equation above is an
extension of the ordinary pair equation, discussed in section 2.5 (Fig. 2.6).

The Bethe-Salpeter-Bloch equation leads to a perturbation expansion of
Rayleigh-Schrödinger or linked-diagram type, analogous to the that of stan-
dard MBPT expansions. It differs from the standard Bloch equation by the
fact that the Coulomb interaction is replaced by all irreducible multi-photon
interactions.

Solving the BS-Bloch equation (Eq. 9.30) is NOT equivalent to solving the
single-state equation for a number of states. The Bloch equation (Eq. 9.30)
leads to a Rayleigh/Schrödinger/linked-diagram expansion with folded terms
that is size extensive. The single-state equation (Eq. 9.20), on the other hand,
leads to a Brillouin-Wigner expansion (se footnote in section 2.4), that is not
size extensive.

Due to the very complicate form of the potential of the Bethe-Salpeter-
Bloch equation, it is very difficult to handle this equation in its full extent.
In the previous chapters we have considered a simpler way of achieving es-
sentially the same goal.

9.4 Problems with the Bethe-Salpeter equation

There are several fundamental problems with the Bethe-Salpeter equation
and with relativistic quantum mechanics in general, as briefly mentioned in
the Introduction. Dyson says in his 1953 paper [59] that this is a subject ”full



9.4 Problems with the Bethe-Salpeter equation 215

of obscurities and unsolved problems”. The question concerns the relation
between the three-dimensional and the four-dimensional wave functions. In
standard quantum mechanics the three-dimensional wave function describes
the system at a particular time, while the four-dimensional two-particle wave
function describes the probability amplitude for finding particle one at a
certain position at a certain time and particle two at another position at
another time etc. The latter view is that of the Bethe-Salpeter equation, and
Dyson establishes a connection between the two views. The main problem is
here the individual times associated with the particles involved, the physical
meaning of which is not completely understood. This problem was further
analyzed by Wick [235] and Cutkoski [48] and others. The relative time of
the particles leads to a number of anomalous or spurious states—states which
do not have non-relativistic counterparts. This problem was analyzed in detail
in 1965 by Nakanishi [165], and the situation was summarized in 1997 in a
comprehensive paper by Namyslowski [166].

The Bethe-Salpeter equation was originally set up for the bound-state
problem involving nucleons, such as the ground state of the deuteron. The
equation has lately been extensively used for scattering problems in quantum
chromodynamics, quark-quark/antiquark scattering. The equation has also
been used for a long time in high-accuracy works on simple atomic systems,
such as positronium, muonium, hydrogen and heliumlike ions. The problems
with the BS equation, associated with the relative time, are most pronounced
at strong coupling and assumed to be negligible in atomic physics, due to the
very weak coupling. One important question is, of course, whether this is true
also in the very high accuracy that is achieved in recent time.

To attack the BS equation directly is very complicated, and for that reason
various approximations and alternative schemes have been developed. The
most obvious approximation is to eliminate the relative time of the particles,
the equal-time approximation or external-potential approach. The first appli-
cation of this technique seems to be have been made in the thesis of Sucher
in the late 1950’s [219, 221] for the evaluation of the leading QED correc-
tions to the energy levels of the helium atom. This work has been extended
by Douglas and Kroll [55] and by Drake, Zhang and coworkers [247, 244],
as will be further discussed in the Chapter 11. Another early application of
an effective-potential approach was that of Grotch and Yennie [78] to ob-
tain high-order effects of the nuclear recoil on the energy levels of atomic
hydrogen. They derived an ”effective potential” from scattering theory and
applied that in a Schrödinger-like equation. A similar approach was applied
to strongly interacting nucleons in the same year by Gross [76], assuming
one of the particles was ”on the mass shell”. Related techniques have been
applied to bound-state QED problems among others by Caswell and Lep-
age [39] and by Bodwin, Yennie and Gregorio [29]. A more formal derivation
of a ”quasi- potential” method for scattering as well as bound-state problems
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was made by Todorov [226], starting from the Lippmann-Schwinger scatter-
ing theory [130].

Several attempts have been made to correct for the equal-time approxima-
tion. Sazdjian [202, 203] has converted the BSE into two equations, one for the
relative time and one eigenvalue equation of Schrödinger type. Connell [44]
has developed a series of approximations, which ultimately are claimed to
lead to the exact BSE. The approaches were primarily intended for strong
interactions, but Connell tested the method on QED problems.



Chapter 10

Implementation of the MBPT-QED
procedure with numerical results

In this chapter we shall see how the combined covariant-evolution-QED ap-
proach developed in the previous chapters can be implemented numerically. In
principle, this is equivalent to solving the complete Bethe-Salpeter equation
perturbatively, but in practice, of course, approximations have to be made.
We shall consistently work in the Coulomb gauge.1

We shall restrict ourselves here to the exchange of a single transverse
photon together with a number of Coulomb interactions. We shall first apply
the procedure in the no-pair case, and later a different procedure in the
presence of virtual pairs will be applied. We work in the photonic Fock space
and initially we shall derive some relations for that space.

10.1 The Fock-space Bloch equation

We have seen earlier that with the perturbation (Eq. 6.35)

H(x) = H(t,x) = −ψ̂†(x) ecαµAµ(x) ψ̂(x) (10.1)

the wave function partly lies in an extended photonic Fock space, where the
number of photons is no longer constant. According to the Gell-Mann–Low
theorem we have a Schrödinger-like equation (Eq. 6.32) in that space

(H0 + VF)|Ψα〉 = Eα|Ψα〉 (10.2)

where VF is the perturbation (Eq. 6.36) with the Coulomb and the trans-
verse parts, VF = VC + vT. We shall demonstrate below that, for single-

1 This chapter is mainly based upon the refs [126, 85] and, in particular, on the thesis of
Daniel Hedendahl [83].
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photon exchange, this leads to a perturbation that is time-independent in
the Schrödinger picture, which is a requirement for the GML theorem. Fur-
thermore, in working in the extended space with uncontracted perturbations
it is necessary to include in the model Hamiltonian (H0) also the energy
operator of the photon field (Eq. 6.38)

H0 = H0 + cκ a†i (k) ai(k) (10.3)

where κ = |k|.
The wave operator is, as before, given by the Green’s operator at t = 0

(Eq. 6.52), which may now contain uncontracted photon terms

|Ψα〉 = Ω|Ψα0 〉 (10.4)

|Ψα0 〉 = P |Ψα〉 is the corresponding model state, which lies entirely within
the restricted space with no uncontracted photons.

From the GML equation (Eq. 10.2) it can be shown in the same way as
for the restricted space that the standard Bloch equation (Eq. 2.56) is still
valid also in the extended space

[
Ω,H0

]
P =

(
VFΩ −ΩVeff

)
P (10.5)

The effective interaction is here given by Veff = PVFΩP (Eq. 6.61). The
equation is formally the same as in the standard MBPT (Eq. 2.56), but the
operators involved now have somewhat different interpretation.

The expressions for single transverse-photon exchange are given by Eq. (8.11).
In the Coulomb gauge these expressions involve the functions fC

T , given by
Eq. (4.60)

fC
T (κ) =

e2

4π2ε0

[
α1 · α2

sin(κr12)
r12

− (α1 ·∇1) (α2 ·∇2)
sin(κr12)
κ2 r12

]
(10.6)

By means of the expansion theorem

sinκr12

κr12
=
∞∑

l=0

(2l + 1)jl(κr1)jl(κr2)Cl(1) ·Cl(2), (10.7)

where jl(κr) are radial Bessel functions and Cl vector spherical harmon-
ics [118], we can express the function fC

T as a sum of products of single-
electron operators [126, App.A]

fC
T (κ) =

∞∑

l=0

[
V lG(κr1) · V lG(κr2) + V lsr(κr1) · V lsr(κr2)

]
(10.8)
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where

V lG(κr) =
e

2π
√
ε0

√
κ(2l + 1) jl(κr)αCl (10.9a)

V lsr(κr) =
e

2π
√
ε0

√
κ

2l + 1

[√
(l + 1)(2l + 3) jl+1(κr) {αCl+1}l

+
√
l(2l − 1) jl−1(κr) {αCl−1}l

]
(10.9b)

In Eq. (10.6) the first term represents the Gaunt interaction and the second
term the scalar retardation, which together form the Breit interaction (see
Appendix F.2). Each term in the expansion—which are all time independent
in the Schrödinger picture—will together with the Coulomb interaction (VC =
e2/4πr12) form the (time-independent) perturbation

VF = VC + V lG(κr) + V lsr(κr) (10.10)

10.2 Single-photon potential in Coulomb gauge. No
virtual pairs

We consider first the case where no virtual pairs are present. Inserting the
perturbation (Eq. 10.10) into the Bloch equation (Eq. 10.5), yields

[
Ω,H0

]
P =

(
VC + V l

)
ΩP −Ω Veff (10.11)

where we use V l as a short-hand notation for the Gaunt and scalar-retardation
parts in Eq. (10.10). We consider first a number of instantaneous Coulomb
interaction, forming a standard pair function (Eq. 2.97), including also the
zeroth order,

ΩIPE =
[
1 + ΓQ(E)IPair

]
PE (10.12)

This includes also the folds and is represented by the first diagram in Fig.
10.1. Then we can perturb this by one of the V l terms, representing part of
the transverse Breit interaction, leading to the equation

[
Ωl, H0

]
PE = V lΩIPE −ΩlPE′IPairPE (10.13)

or
(E − h0(1)− h0(2)− cκ)|Ωlab〉 = V l|ΩIab〉 − |Ωlcd〉〈cd|IPair|ab〉 (10.14)
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(E , E ′ are here the energies of the unperturbed states |ab〉 and |cd〉, respec-
tively). This equation has the solution

〈ru|Ωlab〉 =
〈
ru
∣∣∣ V l

E − εr − εu − cκ
∣∣∣ΩIab

〉

−
〈
ru
∣∣∣ V l

(E − εr − εu − cκ)(E ′ − εr − εu − cκ)

∣∣∣ΩIcd

〉〈
cd
∣∣IPair

∣∣ab〉 (10.15)

where ΩIpq represents a pair function (Eq. 10.12) starting from the state
|pq〉. Here, the first term is represented by the second diagrams in the figure
10.1 and the last term by the third ”folded” diagram. The double bar in-
dicates here the double denominator, which yields the first-order derivative
(difference ratio) of the potential.
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Fig. 10.1 Expansion of the Bloch equation (Eq. 10.11) in the Fock space, no virtual pairs,
leading to single-photon exchange, including folded diagrams.

By adding a second perturbation V l, we can complete the single-photon
exchange between the electrons, which corresponds to solving the pair equa-
tion

(E − h0(1)− h0(2)
)
ΩspPE = V lΩlPE −ΩspPE′IPairPE (10.16)

This yields

〈rs|Ωsp|ab〉 =
〈rs|V l|ru〉〈ru|V l|ΩIab〉

(E − εr − εs)(E − εr − εu − cκ)

− 〈rs|V l|ru〉〈ru|V l|ΩIcd〉
(E − εr − εs)(E − εr − εu − cκ)E ′ − εr − εu − cκ)

〈
cd
∣∣IPair

∣∣ab〉

−〈rs|Ωsp|cd〉〈cd|IPair|ab〉
E − εr − εs (10.17)

This is illustrated by the last two diagrams of Fig. 10.1 (except for the final
folded contribution).
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Summing over κ and l, including the Gaunt as well as the scalar-retardation
parts and considering photon emission from both electrons, we see that the
result is in agreement with the Bloch equation (Eq. 8.68) to first order

ΩspPE = ΓQ(E)VspΩIPE +
δ(ΓQVsp)

δE PE′IPairPE

= ΓQ(E)VspΩIPE + ΓQ(E)
δVsp

δE PE′IPairPE − ΓQ(E)ΓQ(E ′)Vsp PE′IPairPE

(10.18)

with (the first part of) the potential (Eq. 6.16),

〈rs|Vsp(E0)|tu〉 =
〈
rs
∣∣∣
∫ ∞

0

cdκ fC
T (κ)

×
[ 1
E0 − εr − εu − cκ +

1
E0 − εt − εs − cκ

∣∣∣tu
〉

(10.19)

(The second part of the potential is generated by emitting a photon from the
second electron.)

We see that

• the energy dependence of the potential is generated by an energy
denominator and the energy derivative (difference ratio) by a
folded contribution (double denominator), when operating in the
extended space (Eq. 10.15).

After the first interaction V l1 it is possible to add one or more Coulomb
interactions, before closing the photon, corresponding to the first diagram
in Fig. 10.2. This can be achieved by another iteration of the pair equation
(Eq. 10.14)

(E − h0(1)− h0(2)− cκ)ΩlPE = VCΩ
lPE −ΩlPE′IPairPE (10.20)

6t
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-r r6 6s s
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Fig. 10.2 Crossing Coulomb interactions before closing the retarded interaction (left).
Continuing the process leads to the single transverse-photon exchange combined with high-
order electron correlation, including crossing Coulomb interactions (right).
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Instead of closing the uncontracted perturbation on the other electron, it
can be closed on the same electron as the emission occurred from. This leads
to a self-energy interaction, represented by the first diagram in Fig. 10.3.
This is a radiative effect (see section 2.6), which is infinite and has to be
renormalized, as discussed in Chapter 12.

A second perturbation V l can also be applied without contracting the
first one, leading to diagrams indicated by he second and third diagrams in
Fig. 10.3. Closing these photons, lead to irreducible two-photon interactions,
discussed in section 8.2.
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Fig. 10.3 Second-order contribution to the wave operator in the extended Fock space.

10.3 Single-photon exchange. Virtual pairs

Illustration

The iterative procedure of the previous section works well in the no-pair situ-
ation, when the repeated single-photon exchange leads to reducible diagrams
of ladder type, which means that they can in time-ordered form be separated
into legitimate diagrams by horizontal cuts.

In the presence of virtual pairs we have to use a different procedure. As we
have seen above (section 8.3), we have to combine the general potential with
Coulomb interactions (Eq. 8.67) in order to be able to treat the potential
in an iterative process. This will at the same time eliminate the so-called
Brown-Ravenhall effect of vanishing energy denominators.

This potential (Eq. 8.67) can be used directly in the Bloch equation
(Eq. 8.68). In principle, we can use the corresponding full potential with
QED effects Eq. (8.67), but for simplicity we shall consider only the pure
single-photon part.
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We use pair functions (Eq. 10.12) as input, and perturbing this with the
potential (Eq. 8.67), leads in next order to

ΩspP =
(
ΓQV

QEDΩI +
δ(ΓQV QED)

δE ΩI PI
Pair
)
P (10.21)

For the evaluation we use, as before, the expansion (Eq. 10.8)

〈
rs
∣∣fC

T (κ)
∣∣tu〉 =

∞∑

l=0

[〈s|V lG(κr2)|u〉 · 〈r|V lG(κr1)|t〉

+ 〈s|V lsr(κr2)|u〉 · 〈r|V lsr(κr1)|t〉] (10.22)

6r 6s

{Usp

-s s
6t 6us s
6 6s s
6a 6b

VP
Vsp

VC

ΩIab

As an illustration we consider the second term in Fig. 8.11 (shown above),
when there is a single hole (t) (c.f. Eq. 8.13). Then Eq. (10.21) becomes

ΩspP =
(
ΓQUspΩI +

δ(ΓQUsp)
δE ΩI PI

Pair
)
P (10.23)

where Usp = VspΓQVC represents the transverse photon (Vsp) with a Coulomb
interaction. Here, only the first and the third terms of the potential Vsp

(Eq. 8.11) are relevant, yielding for the first term

|r+s+〉
E − εr − εs

[
− 〈s+|V l|u+〉〈r+|V l|t−〉

εt − εr − cκ +
〈s+|V l|u+〉〈r+|V l|t−〉
E − εr − εu − cκ

]

× 〈t−u+|VC|ΩIab〉
E − εt − εu (10.24)

where again V l represent the Gaunt and the scalar-retardation potentials for
the two electrons.

In order to evaluate the expression above, we first perform an additional
iteration of the pair equation (Eq. 10.12)
(E − h0(1)− h0(2)

)|Ω±ab〉 = VC|ΩIab〉 − ΓQVC|ΩIcd〉〈cd|IPair|ab〉 (10.25)

yielding a new pair function with a single hole output. The solution can be
expressed in analogy with Eq. (10.15)
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〈t−u+|Ω±ab〉 =
〈t−u+|VC|ΩIab〉
E − εt − εu

− 〈t−u+|VC|ΩIcd〉
(E − εt − εu)(E ′ − εt − εu)

〈
cd
∣∣IPair

∣∣ab〉 (10.26)

The first part of the solution, illustrated in Fig. 10.4 (a), represents the last
factor in the expression (Eq. 10.24). The second folded part will be used later
in constructing the complete folded contribution.
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Fig. 10.4 (a-c): Generating a pair function with a hole output (Eq. 10.25), combined with
a single-particle perturbation V1, and closed with a perturbation V2. The last diagram
contains a crossing Coulomb interaction, as discussed at the end of the section.

In evaluating the first term within the square brackets of Eq. (10.24) we
first multiply the pair function (Eq. 10.26) without folded contribution by

− 〈r+|V l1 |t−〉
εt − εr − cκ

yielding

〈r+u+|Ωlab〉 = −〈r+|V l1 |t−〉〈t−u+|Ω±ab〉
εt − εr − cκ = − 〈r+|V l1 |t−〉

εt − εr − cκ
〈t−u+|VC|ΩIab〉
E − εt − εu

and represented by the diagram (b) in Fig. 10.4. Then we close the photon by
multiplying with 〈s+|V l2 |u+〉 and including the final denominator, yielding

〈r+s+|Ωsp|ab〉 = −〈s+|V l2 |u+〉
E − εr − εs

〈r+|V l1 |t−〉
εt − εr − cκ

〈t−u+|VC|ΩIab〉
E − εt − εu (10.27)

which agrees with the corresponding part of Eq. (10.24) (Fig. 10.4 c).

The second term in the brackets of Eq. (10.24) is evaluated in a similar
way with a different denominator.

The folded contribution is in lowest order from Eq. (10.21)

δ(ΓQUsp)
δE |ΩIcd〉 〈cd|IPair|ab〉 =

δ(ΓQVspΓQVC)
δE |ΩIcd〉 〈cd|IPair|ab〉 (10.28)
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Here,

δ(ΓQVspΓQVC)
δE =

δΓQ
δE VspΓQVC + ΓQ

δVsp

δE ΓQVC + ΓQVsp
δ(ΓQVC)

δE (10.29)

The difference ratio δ(ΓQVC)/δE is obtained from the folded part of
Eq. (10.26) (VC is energy independent). Similarly, the difference ratio of the
relevant part of Vsp is obtained by including an extra factor

− 1
E ′ − εr − εu − cκ

Finally, the difference ratio of ΓQ is

δΓQ
δE = − 1

(E ′ − εr − εs)(E − εr − εs)

It should be noted that the last term in Eq. (10.29) is combined with the
pair function (Eq. 10.26) with folded contribution, while the other terms are
combined with that function without that contribution. This is important in
order to avoid the singularities of Brown-Ravenhall type, mentioned above.

Full treatment

We shall now generalize the treatment above and consider all 16 combinations
of the single-photon exchange (Eq. 8.11) (see Fig. 8.3) essentially in one single
step.

To begin with we leave out the folded contribution. Then the expression
to evaluate is

〈r|V l|t〉 〈s|V l|u〉 〈tu|VC|ΩIab〉
E − εr − εs

×
[
± t±r∓
εt − εr ± cκ ±

t±s±
E − εt − εs ∓ cκ ±

u±r±
E − εr − εu ∓ cκ ±

u±s∓
εu − εs ± cκ

]

(10.30)

If we in this expression make the substitution tr ↔ us, we get an identical
result but with a and b interchanged. Therefore, we can replace the expression
above by the much simpler expression
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Fig. 10.5 Representation of the pair function in Eq. (10.25) iterated one extra time and
separated into four blocks, depending on the signs of the outgoing orbital energies.

〈r|V l|t〉 〈s|V l|u〉 〈tu|VC|ΩIab +ΩIba〉
E − εr − εs

[
± t±r∓
εt − εr ± cκ ±

u±r±
E − εr − εu ∓ cκ

]

(10.31)

The last expression can be evaluated in the following way. We first evaluate
the matrix element 〈tu|VC|ΩIab〉 by iterating the pair equation (Eq. 10.25)
once, allowing negative-energy states as output. We can separate the solutions
into four block, depending on the signs of the outgoing orbital energies, as
illustrated in the matrix in Fig. 10.5.

Next, we evaluate the matrix elements 〈r|V1|t〉 for each value of κ and l,
and separate them in a similar way, shown in Fig. 10.6.

We now multiply the matrices in Figs 10.6 and 10.5 (in that order), leading
to the matrix in Fig.10.7. Here, we include the two denominator terms in the
brackets of Eq. (10.31) and sum over all t, particle as well as hole states.

Finally, we multiply the result by 〈s|V2|u〉 and sum over κ and l, corre-
sponding to closing the photon (c.f. Fig. 10.4 c), and apply the final denom-
inator in Eq. (10.31).

If the input orbitals a, b are different, the procedure is repeated with a↔ b.

The folded contribution in Eq. (10.21) is evaluated in a similar way (c.f.
Eq. 10.28).
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Fig. 10.6 The matrix elements 〈r|V1|t〉, separated in analogy with Fig. 10.5.
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Fig. 10.7 Result of multiplying the matrices in Figs 10.6 and 10.5. The t line represents
particle as well as hole states.

Higher orders

In most of the cases treated above it is possible also to insert Coulomb inter-
action before the photon interaction is completed, as discussed in the no-pair
case. This is the case when the orbitals u, r or t, s are of the same kind (par-



228 10 Implementation of the MBPT-QED procedure with numerical results

ticle or hole), as indicated in Fig. 10.4 (d). This corresponds to including
another part of the potential in Eq. (8.66).

After the completion of the single-photon exchange, the iteration process
can be continued with further Coulomb interactions, leading to the com-
plete single-photon exchange with electron correlation, including
all combinations of particles and holes, as illustrated in Fig. 10.8.

s s6 6

-s s
6 6

6 6

s s
6 6

Fig. 10.8 The Feynman diagrams representing a single transverse photon exchange com-
bined with high-order electron correlation (heavy horizontal line). The internal vertical
lines represent electron propagators with particle and holes. The numerical evaluation of
this diagram is given below.

10.4 Numerical results

Two-photon exchange

In Chapter 7 (Fig. 7.3) we showed the results of two-photon exchange for the
ground-state of heliumlike ions, calculated using the S-matrix formulation.
In Table 10.1 we compare these results with those obtained by Hedendahl
et al. [85, 83], in testing the new covariant method described in the present
chapter. The agreement, which is found to be very good, is also displayed
in Fig. 10.9, where the solid lines represent the old S-matrix results and the
squares the new covariant method. As before, the scale is logarithmic and
the norm is the non-relativistic ionization energy.
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Table 10.1 Comparisons between two-photon effects for He-like ions ground
states, evaluated with the S-matrix and the Covariant-evolution-operator
methods (in µ Hartree) (see Fig. 7.3).

Coul.-Breit Coul.-Breit. Coul.Breit
Z Method NVPA Retard. VP Uncrossed.
6 S-matrix -1054,2 31,4 -10,1
6 CEO -1054,9 31,5 -10,0

10 S-matrix -2070,4 122,3 -45,9
10 CEO -2071,0 122,4 -45,9
14 S-matrix -5515 292,8 -121,5
14 CEO -5517 292,8 -121,2
18 S-matrix -8947 553,1 -247,3
18 CEO -8950 553,3 -248,2
30 S-matrix -23629 1909,2 -1008
30 CEO -23632 1909,9 -1010

Coulomb-Breit NVPA

Coulomb-Breit retarded

Coulomb-Breit virt. pairs

Two-photon exchange

Fig. 10.9 Comparison of some two-photon exchange contributions (Coulomb-Breit
NVPA, Coulomb-Breit retardation, and Coulomb-Breit virtual pairs, no correlation) for
the ground-state of some heliumlike ions obtained by S-matrix calculations (see Fig. 7.3)
(heavy lines) and by means of the covariant-evolution procedure (squares), described in
this chapter (see Table: 10.1, c.f.Fig. 7.3 in Chapter 7) (from refs [85, 83]).
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Coulomb-Breit NVP (ret. and unret.)

Coulomb-Breit retarded

Coulomb-Breit virt. pairs

Doubly-retarded two-photon exchange

Beyond two-photon exchange

α2

α3

α4

r r
r r
-r r r rq q
r r
r rq qr rr rr r
r r r r

@@@@@@R q qr r 6r r6 rr
Fig. 10.10 The effect of electron correlation beyond two-photon exchange—Coulomb-
Breit NVPA, Coulomb-Breit retardation with and without Coulomb crossings, and
Coulomb-Breit virtual pairs, all WITH electron correlation, for the ground-state of he-
liumlike ions (c.f. Fig.10.9) (from refs [85],[83]). For comparison the effect of pure retarded
two-photon exchange without additional correlation is also indicated.

Beyond two photons

Calculations have also been performed of the effect of electron correlation
beyond two-photon exchange for the ground-state of heliumlike by Hedendahl
et al. [84, 85, 83]. Some results are shown in Table 10.2 and also displayed
in Fig. 10.10. The top line of the figure, representing the Coulomb-Breit
interaction with correlation without virtual pairs, contains the instantaneous
as well as the retarded Breit interaction. The former part lies within the
no-virtual-pair approximation (NVPA) and is therefore NOT a QED effect
with the definition we have previously made. In order to obtain the pure
QED effect, the instantaneous part is subtracted, yielding the retarded part,
represented by the second line of the figure. The next line represents the same
effect with Coulomb crossings, and the bottom line represents the effect of
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Table 10.2 Contributions due to electron correlation beyond two-photon ex-
change for the ground state of some heliumlike ions. This can be compared
with the corresponding two-photon exchange in Table 10.1 (in µH).

Beyond two-photon Coul.-Breit
Z Unretarded Retarded Virt.pairs
6 137 -17 2.7
10 223 -40 7.3
14 301 -68 13
18 372 -100 21
30 553 -210 46
42 688 -322 71

electron correlation on the Coulomb-Breit interaction with virtual pairs and
no crossing Coulomb interactions. The corresponding Feynman diagrams are
shown at the bottom of the figure. This represents the first numerical bound-
state calculation beyond two-photon exchange.

In the figure we have for comparison also indicated the effect due to dou-
bly retarded two-photon interactions (thin black line), estimated from the
S-matrix results. This comparison demonstrates the important result that—
starting from single-photon exchange—for light and medium-heavy el-
ements the effect of electron correlation is much more important
than a second retarded photon interaction .

Outlook

The results presented here are incomplete and represent only the non-
radiative part of the QED effect in combination with electron correlation.
The corresponding radiative effects with a single transverse photon are also
possible to evaluate. Such calculations are under way by the Gothenburg
group. The effect due to double transverse photons is presently beyond reach,
but the effect can be estimated by replacing the second transverse photon by
an instantaneous Breit interaction.

The calculations performed so far with the procedure described here con-
cern the ground states of heliumlike ions [85]. By extended the calculations
to excited states, it will be possible to make detailed comparison with exper-
imental data. For instance, very accurate data exist for some heliumlike ions,
as shown in Tables 7.7 and 7.8. In some of these cases the experimental results
are at least two orders of magnitude more accurate than the best theoretical
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estimates made so far. Furthermore, it seems that standard procedures ap-
plied until now cannot be significantly improved in this respect, so—in order
to be able to make significant progress— there might be a need for a new,
improved procedure, like the MBPT-QED procedure presented here. Then,
it might be possible for the first time to observe the combined effect of QED
and electron correlation.



Chapter 11

Analytical treatment of the
Bethe-Salpeter equation

11.1 Helium fine structure

The leading contributions to the helium fine structure beyond the first-order
relativistic contribution (NVPA, see, section 2.6) were first derived in 1957
by Araki [5] and Sucher [219, 221], starting from the Bethe-Salpeter (BS)
equation [201] and including the non-relativistic as well as the relativistic mo-
mentum regions. Following the approach of Sucher, Douglas and Kroll [55]
have derived all terms of order α4 H(artree) 1, where no contributions in
the relativistic region were found. The same approach was later used by
Zhang [244, 249] to derive corrections of order α5 logα H and of order α5

H in the non-relativistic region and recoil corrections to order α4m/M H
(see also ref. [246]). Later some additional effects of order α5 H due to rela-
tivistic momenta were found by Zhang and Drake [248]. The radiative parts
are treated more rigorously by Zhang in a separate paper [245]. Using a
different approach, Pachucki and Sapirstein [172] have derived all contribu-
tions of order α5 H and reported some disagreement with the early results of
Zhang [244].2

We shall here follow the approach of Sucher in his thesis [221]. This is
based directly on the BS equation, which makes it possible to identify the
contributions in terms of Feynman diagrams and therefore to compare them
with the results obtained in the previous chapters. This approach of Sucher
is closely followed by Douglas and Kroll [55] and by Zhang [244], and we shall
in our presentation make frequent references to the corresponding equations
of Sucher (S), Douglas and Kroll (DK), and Zhang (Z).

1 H(artree) is the energy unit of the Hartree atomic unit system (see Appendix K.1). In
the relativistic unit system the energy unit is mc2 = α−2H.
2 The present paper is largely based upon the paper [116].

233
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11.2 The approach of Sucher

The treatment of Sucher starts from the Bethe-Salpeter equation (Eq. 9.5),
which in our notations (Eq. 9.6) reads, leaving out the inhomogeneous term
(S 1.1, DK 2.5),

Ψ(x, x′) =
∫∫∫∫

d4x1d4x2d4x′1d4x′2

× G′0(x, x′;x2, x
′
2) (−i)Σ∗(x2, x

′
2;x1, x

′
1)Ψ(x1, x

′
1) (11.1)

G′0 is the zeroth-order two-particle Green’s function, dressed with all kinds
of single-particle self energies. Σ∗ is identical to the irreducible potential V
(Fig. 6.6). The undressed zeroth-order Green’s function is, using the relation
(Eq. 5.38),

G0(x, x′;x2, x
′
2) = G0(x, x2)G0(x′, x′2) = iSF(x, x2) iSF(x′, x′2) (11.2)

and the corresponding dressed function is then

G′0(x, x′;x2, x
′
2) = G(x, x2)G(x′, x′2) = iS′F(x, x2) iS′F(x′, x′2) (11.3)

where G is the full single-particle Green’s function, generated in the field
of the nucleus (Furry representation) (see Fig. 5.1) and S′F the correspond-
ingly dressed electron propagator. The Green’s functions satisfy the relation
(Eq. 5.36) (S 1.5)

(
i
∂

∂t
− h1

)
G(x, x0) = iδ4(x− x0) (11.4)

which leads to (S 1.6), DK 2.19)

(
i
∂

∂t
− h1

)(
i
∂

∂t′
− h2

)
Ψ(x, x′) = i

∫∫∫∫
d4x1d4x2d4x′1d4x′2

× δ4(x− x2) δ4(x′ − x′2)Σ∗(x2, x
′
2;x1, x

′
1)Ψ(x1, x

′
1)

= i
∫∫

d4x1d4x′1Σ
∗(x, x′;x1, x

′
1)Ψ(x1, x

′
1) (11.5)

where h1,2 are the Dirac single-electron Hamiltonians for electron 1 and 2.

We assume that the wave function is of the form

Ψ(x, x′) = Ψ(T, τ,x,x′) = e−iET Ψ(τ,x,x′) (11.6)

where T = (t + t′)/2 is the average time and τ = t − t′ is the relative time.
Then

i
∂

∂t
Ψ(x, x′) =

(
E/2 + i

∂

∂τ

)
Ψ(x, x′)
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i
∂

∂t′
Ψ(x, x′) =

(
E/2− i

∂

∂τ

)
Ψ(x, x′)

leading to (S 1.9, DK 2.23)

(
E/2 + i

∂

∂τ
− h1

)(
E/2− i

∂

∂τ
− h2

)
Ψ(τ, x, x′)

= i
∫

dτ1
∫∫

d3x1d3x′1Σ
∗(τ,x,x′; τ1,x1,x

′
1)Ψ(τ1,x1,x

′
1) (11.7)

leaving out the average time.

Sucher then transfers to the momentum representation, but we shall here
still work in the coordinate representation with a Fourier transform only of
the time variables.

We define the Fourier transform with respect to time

F (ε) =
∫

dτ eiετ F (τ) (11.8)

and the inverse transformation

F (τ) =
∫

dε
2π

e−iετ F (ε) (11.9)

Fourier transforming Eq. (11.7) with respect to τ , yields
(
E/2 + ε− h1

)(
E/2− ε− h2

)
Ψ(ε,x1,x

′
1)

= i
∫

dτ1
∫∫

d3x1d3x′1Σ
∗(ε,x,x′; τ1,x1,x

′
1)Ψ(τ1,x1,x

′
1) (11.10)

Performing the Fourier transform of the rhs with respect to τ1, yields
∫

dτ1
∫∫

dε′1
2π

dε1
2π

e−iε′1τ1 e−iε1τ1 Σ∗(ε,x,x′; ε′1,x1,x
′
1)Ψ(ε1,x1,x

′
1)

=
∫∫

dε′1
2π

dε1
2π

2πδ(ε1 + ε′1)Σ∗(ε,x,x′; ε′1,x1,x
′
1)Ψ(ε1,x1,x

′
1) (11.11)

or (S 1.16)
(
E/2 + ε− h1

)(
E/2− ε− h2

)
Ψ(ε,x1,x

′
1)

= i
∫

dε1
2π

∫∫
d3x1d3x′1Σ

∗(ε,x,x′;−ε1,x1,x
′
1)Ψ(ε1,x1,x

′
1) (11.12)

Following Sucher, we express the relation (Eq. 11.10) in operator form
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F̂ |Ψ〉 = ĝ |Ψ〉 (11.13)

The operator F̂ has the (diagonal) coordinate representation

〈ε,x,x′|F|ε,x,x′〉 =
(
E/2 + ε− h1

)(
E/2− ε− h2

)
(11.14)

and the operator ĝ has the (non-diagonal) representation

〈ε,x,x′|ĝ|ε1,x1,x
′
1〉 =

i
2π
〈ε,x,x′|Σ̂∗|ε1,x1,x

′
1〉 (11.15)

We expand the interaction into

ĝ = ĝc + ĝ∆ (11.16)

where ĝc represents the Columbic part of ĝ

ĝc =
i

2π
Îc (11.17)

and Îc is the Coulomb interaction with the (diagonal) coordinate representa-
tion

〈ε,x,x′|Îc|ε,x,x′〉 =
e2

4π|x− x1| (11.18)

ĝ∆ represents the remaining part of ĝ

ĝ∆ = ĝT + gT×c + ĝT×c2 + ĝT×T + · · ·+ ĝrad (11.19)

where ĝT represents a single transverse photon, ĝT×c and ĝT×c2 a transverse
photon with one and two crossing Coulomb interactions, respectively, ĝT×T
with two irreducible transverse photons, and finally ĝrad all radiative correc-
tions. This corresponds to the diagrams shown in Fig. 11.1

r r + r rr r + r
rr rr r + r
r
r r
r r

+ r rr r+ r
rr r+ · · ·

Fig. 11.1 Diagrammatic representation of the approximation in (Eq. 11.19), used by
Sucher.

With the decomposition (Eq. 11.16) the relation Eq. (11.13) becomes (S
1.30, DK 3.6)

|Ψ〉 =
(F̂ − ĝ∆

)−1
ĝc |Ψ〉 (11.20)
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with the coordinate representation

〈ε,x,x′|Ψ〉 = 〈ε,x,x′|(F̂−ĝ∆
)−1|ε2,x2,x

′
2〉〈ε2,x2,x

′
2|ĝc|ε1,x1,x

′
1〉〈ε1,x1,x

′
1|Ψ〉

(11.21)
or noting that the representation of ĝc is diagonal

〈ε,x,x′|Ψ〉 = 〈ε,x,x′|(F̂ − ĝ∆
)−1|ε1,x1,x

′
1〉 ĝc 〈ε1,x1,x

′
1|Ψ〉 (11.22)

Sucher defines the equal-time wave function (S 1.32, DK 3.8)

Φ(x,x′) =
∫

dε Ψ(ε,x,x′) (11.23)

or in operator form

|Φ〉 = |ε〉〈ε|Ψ〉 (11.24)

which gives with Eq. (11.22)

〈ε,x,x′|Ψ〉 = 〈ε,x,x′|(F̂ − ĝ∆
)−1|x1,x

′
1〉 ĝc 〈x1,x

′
1|Φ〉 (11.25)

Summing over ε with the replacement (Eq. 11.17), this can be expressed (S
1.34)

|Φ〉 = i
∫

dε
2π
(F̂ − ĝ∆

)−1
Îc |Φ〉 (11.26)

Using the identity (S 1.35, DK 3.11)

(A−B)−1 ≡ A−1 +A−1B(A−B)−1 (11.27)

the BSE (Eq. 11.26) becomes (DK 3.12)

|Φ〉 = i
∫

dε
2π
[F̂−1 + F̂−1ĝ∆(F̂ − ĝ∆)−1

]
Îc |Φ〉 (11.28)

The inverse of the operator OF is

F̂−1 =
1

E/2 + ε− ĥ1

1

E/2− ε− ĥ2

(11.29)

which is a product of electron propagators in operator form (Eq. 4.14)

F̂−1 = ŜF(E/2 + ε) ŜF(E/2− ε) (11.30)

In the coordinate representation (Eq. 4.12)
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SF(ω;x,x0) =
〈x|j〉 〈j|x0〉

ω − εj + iη sgn(εj)
=
〈x|j〉 〈j|x0〉
ω − εj + iη

Λ+ +
〈x|j〉 〈j|x0〉
ω − εj − iη

Λ−

(11.31)
Integration over ε then yields (S 1.44, DK 3.24)

∫
dε
2π
F−1 = −i

〈x, x′|rs〉〈rs|x0, x
′
0〉

E − εr − εs
(
Λ++ − Λ−−

)
(11.32)

which is also the negative of the Fourier transform of the zeroth-order Green’s
function −G0(E;x,x0;x′,x′0), or in operator form

∫
dε
2π
F̂−1 = −G0(E) = − i

E − ĥ1 − ĥ2

(
Λ++ − Λ−−

)
(11.33)

Eq. (11.28) then becomes (S 1.47, DK 3.26) 3

[
h1 + h2 +

(
Λ++ − Λ−−

)
Ic +D i

∫
dε
2π
F−1g∆(F − g∆)−1Ic

]
Φ = E Φ

(11.34)
where

D = E − h1 − h2 (11.35)

This is the starting point for the further analysis.

The operator on the lhs can be written in the form Hc +H∆, where

Hc = h1 + h2 + Λ++IcΛ++ (11.36)

is the Hamiltonian of the no-(virtual-) pair Dirac-Coulomb equation (Z 16)

Hc Ψc = Ec Ψc (11.37)

and

H∆ = Λ++Ic(1−Λ++)−Λ−−Ic+D i
∫

dε
2π
F−1g∆(F−g∆)−1Ic = H∆1+H∆2

(11.38)
is the remaining ”QED part” (S 2.3, DK 3.29, Z 17). The first part H∆1

represents virtual pairs due to the Coulomb interaction and the second part
effects of transverse photons (Breit interaction).

In order to include electron self energy and vacuum polarizations, the
electron propagators (Eq. 5.37) are replaced by propagators with self-energy
insertions Σ(ε), properly renormalized (DK 2.10),

S′(ε) =
|r〉〈r|

ε− εr + βΣ(ε) + iηr
(11.39)

3 In the following we leave out the hat symbol on the operators.
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Also renormalized photon self energies have to be inserted into the photon
lines.

11.3 Perturbation expansion of the BS equation

The effect of the QED Hamiltonian (Eq. 11.38) can be expanded perturba-
tively, using the Brillouin-Wigner perturbation theory,

∆E = E − Ec = 〈Ψc|V + V ΓV + V ΓV ΓV + · · · |Ψc〉 = 〈Ψc| V

1− ΓV |Ψc〉
(11.40)

where Γ is the reduced resolvent (Eq. 2.65)

Γ = ΓQ(E) =
Q

E −Hc
=

1− |Ψc〉〈Ψc|
E −Hc

=
1− |Ψc〉〈Ψc|

Dc
(11.41)

with
Dc = E −Hc (11.42)

The unperturbed wave function is in our case one solution of the no-
pair Dirac-Coulomb equation (Eq. 11.37), Ψc, and we can assume that the
perturbation is expanded in other eigenfunctions of Hc. Q is the projection
operator that excludes the state Ψc (assuming no degeneracy). This leads to
the expansion (S 2 19-21, DK 3.43, Z 28)

∆E(1) = 〈Ψc|H∆|Ψc〉 (11.43a)

∆E(2) = 〈Ψc|H∆ΓH∆|Ψc〉 (11.43b)

∆E(3) = 〈Ψc|H∆ΓH∆ΓH∆|Ψc〉 (11.43c)

etc.

Since Λ++|Ψc〉 = |Ψc〉 and Λ−−|Ψc〉 = 0, it follows that 〈Ψc|H∆1|Ψc〉 ≡ 0,
and the first-order correction becomes (DK 3.44)

∆E(1) = 〈Ψc|H∆2|Ψc〉 = 〈Ψc|D i
∫

dε
2π
F−1JF−1Ic|Ψc〉 (11.44)

and (DK 3.45)
J = g∆(1−F−1g∆)−1 (11.45)

The second-order corrections are (DK 3.46) 4

4 Note that the two Ic in Eq. 11.46a are missing from ref. [55, Eq.3.46]. Eq. 11.46b agrees
with ref. [244, Eq.30] but not with ref. [55], where the factor IcL++ should be removed.



240 11 Analytical treatment of the Bethe-Salpeter equation

∆E(2)
a = 〈Ψc|H∆1 Γ H∆1|Ψc〉 = −〈Ψc|IcΛ−− Γ Λ−−Ic|Ψc〉 (11.46a)

∆E
(2)
b = 〈Ψc|H∆1 Γ H∆2|Ψc〉 = 〈Ψc|IcΛ−−DΓ i

∫
dε
2π
F−1JF−1Ic|Ψc〉

(11.46b)

∆E(2)
c = 〈Ψc|H∆2 Γ H∆1|Ψc〉 = 〈Ψc|D i

∫
dε
2π
F−1JF−1Ic Γ Λ−−Ic|Ψc〉(11.46c)

∆E
(2)
d = 〈Ψc|H∆2 Γ H∆2|Ψc〉

= 〈Ψc|D i
∫

dε
2π
F−1JF−1Ic Γ D i

∫
dε
2π
F−1JF−1Ic|Ψc〉 (11.46d)

These formulas can be simplified, noting that

Λ−−ΓD = Λ−−
Q

E −Hc
(E − h1 − h2) (11.47)

which, using the relation (Eq. 11.42), becomes (DK 3.41)

Λ−−ΓD = Λ−−
(

1 +
Λ++IcΛ++

E −Hc

)
= Λ−− (11.48)

According to DK ∆E
(2)
a , ∆E

(2)
c and ∆E(3) do not contribute to the fs in

order α4 (Hartree). This holds also in the next order according to Zhang, but
∆E(3) will contribute to the singlet energy in that order. In the relativistic
momentum region the second-order part ∆E(2)

a contributes to the energy
already in order α3 H and to the fine structure in order α5 H [244, p.1256].

Using the relation (Eq. 11.42), we have Ec −Hc = Dc −Λ++DcΛ++, and
the no-pair equation (Eq. 11.37) can be written (DK 3.51)

(Dc − Λ++Ic)Ψc = 0 (11.49)

Then the second-order correction ∆E
(2)
b (Eq. 11.46b) can be expressed

∆E
(2)
b = 〈Ψc|(Ic −Dc) i

∫
dε
2π
F−1JF−1Ic|Ψc〉 (11.50)

This can be combined with the first-order correction ∆E(1) (Eq. 11.44), yield-
ing

〈Ψc|(Ic +∆E) i
∫

dε
2π
F−1JF−1Ic|Ψc〉 (11.51)

with
∆E = E − Ec = D −Dc (11.52)
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Here, the ∆E term differs in sign from (DK 3.54) and (Z 37).

The reason for the discrepancy between our result here and those of DK
and Z, seems to be that the latter make the replacement (DK 3.48)

F−1 = S1S2 ≡
(
S1 + S2

)(
S−1

1 + S−1
2

)−1 =
S1 + S2

E − h1 − h2
= D−1

(
S1 + S2

)

(11.53)
which follows from Eq. (11.30), and then approximate D with Dc in the
second-order expression.

11.4 Diagrammatic representation

To continue we make the expansion (DK 3.45, Z 32)

J = g∆(1−F−1g∆)−1 = g∆ + g∆F−1g∆ + · · · (11.54)

where the first term represents irreducible terms and the remaining ones are
reducible. Furthermore, we make the separation (DK 3.53, Z 12)

g∆ = gT +∆g (11.55)

where gT represents the interaction of a single transverse photon and ∆g the
irreducible multi-photon exchange of Eq. (11.19). The first-order expression
(Eq. 11.44) becomes

∆E(1) = 〈Ψc|D i
∫

dε
2π
F−1

[
gT + gTF−1gT +∆g + · · · ]F−1Ic|Ψc〉 (11.56)

and the leading terms are illustrated in Figs 11.2. The first term can be
expanded in no-pair and virtual-pair terms (a-c)

∆E(1) = 〈Ψc|D i
∫

dε
2π
F−1gTF−1(Λ++ +Λ+−+Λ−+ +Λ−−)Ic|Ψc〉 (11.57)

The second term in Eq. (11.56) represents in lowest order two reducible trans-
verse photons (d) and the third term irreducible (inclusive radiative) multi-
photon part, (e-h).

Similarly, the second-order expressions above become

∆E(2)
a = −〈Ψc|IcΛ−− Γ Λ−−Ic|Ψc〉 (11.58a)

∆E
(2)
b = 〈Ψc|IcΛ−− i

∫
dε
2π
F−1

[
gT + gTF−1gT +∆g + · · · ]F−1Ic|Ψc〉

(11.58b)
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Fig. 11.2 Diagrammatic representation of the first-order expression (Eq. 11.56).

∆E(2)
c = 〈Ψc|i

∫
dε
2π
F−1

[
gT + gTF−1gT +∆g + · · · ]F−1Ic Λ−−Ic|Ψc〉

(11.58c)

∆E
(2)
d = 〈Ψc|D i

∫
dε
2π
F−1

[
gT+· · · ]F−1Ic ΓD i

∫
dε
2π
F−1

[
gT+· · · ]F−1Ic|Ψc〉

(11.58d)
This is illustrated in Fig. 11.3. The first second-order contribution (Eq. 11.58a)
represents two Coulomb interactions with double pair (Fig. 11.3 a) and the
next contribution (Eq. 11.58b) in lowest order a transverse photon and a
Coulomb interaction with double pair (b). The third contribution represents
in lowest order one transverse photon and two Coulomb interactions with a
double pair (c). The last term represents two reducible transverse photons
with at least one Coulomb interaction (d).
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(a)

r rr r������ @@@@@@

(b)
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(c)

r r
r rr r

(d)

Fig. 11.3 Diagrammatic representation of the second-order expressions (Eq. 11.58a)-
(Eq. 11.58d).
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11.5 Comparison with the numerical approach

In the previous chapter we have described an approach that is presently being
developed by the Gothenburg group of treating the Bethe-Salpeter equation
numerically. This is based upon the covariant-evolution approach and the
Green’s-operator technique, described previously, and to a large extent upon
the numerical techniques developed by the group and applied to numerous
atomic systems (see section 2.7). This new technique has the advantage over
the analytical approach that all relativistic effects are automatically included
in the procedure. This simplifies the handling appreciably, and it corresponds
to the treatment of the entire section 4 of Douglas and Kroll [55] or to section
VII in the paper of Zhang [244].

The numerical technique of solving the Bethe-Salpeter equation, described
in the previous chapter, is presently only partly developed, but the effect of
one transverse photon with arbitrary number of crossing Coulomb interac-
tions can presently be handled as well as virtual pairs. This corresponds to
most of the terms gT + gT×c + gT×c2 + · · · of the expansion in Eq. (11.19)
and to the numerous formulas of section 5 of Douglas-Kroll and of section IV
of Zhang.

Also part of the multi-photon effect can be treated numerically by iterating
reducible interactions with a single transverse photon, corresponding to the
operator gTFgT in the formulas above with crossing Coulomb interactions.
These effects are treated in section 6 of Douglas and Kroll. The irreducible
interaction with several transverse photons cannot be teated at present with
the numerical technique, but this can be approximated with one retarded
and one or several unretarded photons (instantaneous Breit). Also radiative
effects can be handled with the same approximation.





Chapter 12

Regularization and renormalization

(See, for instance, Mandl and Shaw [136, Ch. 9] and Peskin and Schroeder [183,
Ch. 7].)
In previous chapters we have evaluated some radiative effects in the S-matrix
(Chapter 4) and covariant-evolution operator formulations (Chapter 8). In
the present chapter we shall discuss the important processes of renormaliza-
tion and regularization in some detail.

Many integrals appearing in QED are divergent, and these divergences
can be removed by replacing the bare electron mass and charge by the cor-
responding physical quantities. Since infinities are involved, this process of
renormalization is a delicate matter. In order to do this properly, the inte-
grals first have to be regularized, which implies that the integrals are modified
so that they become finite. This has to be done so that the process is gauge-
independent. After the renormalization, the regularization modification is
removed. Several regularization schemes have been developed, and we shall
consider some of them in this chapter. If the procedure is performed properly,
the way of regularization should have no effect on the final result.

12.1 The free-electron QED

The free-electron propagator

The wave functions for free electrons are given by Eq. (D.29) in Appendix D
{
φp+(x) = (2π)−3/2 u+(p) eip·x e−iEpt

φp−(x) = (2π)−3/2 u−(p) eip·x eiEpt
(12.1)

245
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where p is the momentum vector and p+ represents positive-energy states
(r = 1, 2) and p− negative-energy states (r = 3, 4). Ep = cp0 =

√
c2p2 +m2c4.

The coordinate representation of the free-electron propagator (Eq. 4.10) then
becomes

〈x1|Ŝfree
F |x2〉 =

∫
dω
2π

∑
p,r

φp,r(x1)φ†p,r(x2)
ω − εfree

p (1− iη)
e−iω(t1−t2) (12.2)

where εfree
p is the energy eigenvalue of the free-electron function (Ep = |εfree

p |).
The Fourier transform with respect to time then becomes

〈x1|Ŝfree
F |x2〉 =

∑
p,r

φp,r(x1)φ†p,r(x2)
ω − εfree

p (1− iη)
⇒

=
∫

d3p
(2π)3

∑
r

ur(p)u†r(p)
eip·(x1−x2)

ω − εfree
p (1− iη)

=
∫

d3p
(2π)3

[
u+(p)u†+(p)

1
ω − Ep (1− iη)

+ u−(p)u†−(p)
1

ω + Ep (1− iη)

]
eip(x1−x2)

The square bracket above is the Fourier transform of the propagator, and
using the relations (D.35, D.36), this becomes 1

Sfree
F (ω,p) =

1
2

[ 1
ω − Ep (1− iη)

+
1

ω + Ep (1− iη)

]

+
cα · p + βmc2

2p0

[ 1
ω − Ep (1− iη)

− 1
ω + Ep (1− iη)

]

=
ω + cα · p + βmc2

ω2 − E2
p + iη

=
ω + cα · p + βmc2

ω2 − (c2p2 −m2c4) (1− iη)

=
1

ω − (cα · p + βmc2) (1− iη)
(12.3)

with E2
p = c2p2

0 = c2p2 +m2c4 and αβ = −βα. This can also be expressed

Sfree
F (ω,p) =

1
ω − hfree

D (p) (1− iη)
(12.4)

where hfree
D (p) is the momentum representation of the free-electron Dirac

Hamiltonian operator (Eq. D.21), ĥfree
D (p̂).

Formally, we can write Eq. (12.3) in covariant four-component form with
ω = cp0 with cp0 disconnected from Ep =

√
c2p2 +m2c4—known as off

1 In the following we shall for simplicity denote the electron physical mass by m instead
of me.
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the mass-shell . Then we have 2

Sfree
F (p) = cSfree

F (ω,p) = β
1

6p −mc+ iη
(12.5)

with 6p = γσp
σ = βασp

σ = β(p0 −α · p) = (p0 +α · p)β (see Appendix D).
Note that the two transforms differ by a factor of c (c.f. section 4.3, see also
Appendix K).

The free-electron self energy

6p r ω

6q s 6

s
s z k

µ

ν
6p′r′ ω

Fig. 12.1 Diagram representing the first-order free-electron self energy.

The S-matrix for the first-order free-electron self energy (Fig. 12.1) is ob-
tained from Eqs (4.84, 4.44) with the momentum functions (Eq. 12.1) after
time integrations

S(2)(ω; p′, r′,p, r) = e2c2
∫

dz
2π

∫∫
d3x d3x′ u†r′(p

′) e−ip′·x′

× αν iSfree
F (ω − z;x′,x)αµur(p) eip·x iDFµν(z,x′ − x) (12.6)

The relation between the momentum and coordinate representations are

Sfree
F (ω;x′,x) =

∫
d3q

(2π)3
Sfree

F (ω,q) eiq·(x′−x) (12.7)

DFνµ(z;x′,x) =
∫

d3k

(2π)3
Dfree

Fνµ(z,k) eik·(x′−x) (12.8)

Integration over the space coordinates then yields

2 The factor of β appears here because we define the electron propagator (Eq. 4.9) by

means of ψ̂† instead of the more conventionally used
¯̂
ψ = ψ̂†β.
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S(2)(ω; p′, r′,p, r) = e2c2
∫

d3q
(2π)3

∫
d3k

(2π)3
δ3(p− q− k) δ3(p′ − q− k)

×u†r′(p′)
∫

dz
2π

ανSfree
F (ω − z,k) αµ Dfree

Fνµ(z,k)ur(p) (12.9)

and integration over q

S(2)(ω; p′, r′, p, r) = δ3(p′ − p)u†r′(p
′) (−i)Σfree(ω,p)ur(p) (12.10)

where

Σfree(ω,p) = ie2c2
∫

dz
2π

∫
d3k

(2π)3
ανSfree

F (ω − z,k)αµDFνµ(z,k)

In covariant notation we have, using z = ck0,

Σfree(p) = ie2c2
∫

d4k

(2π)4
ανSfree

F (p− k)αµDFνµ(k) (12.11)

which is the free-electron self energy function. With the expression (Eq. 12.5)
for the free-electron propagator this becomes expressed in terms of gamma
matrices

βΣfree(p) = ie2c2
∫

d4k

(2π)4
γν

6p− 6k +mc

(p− k)2 −m2c2 + iη
γµDFνµ(k) (12.12)

or

βΣfree(p) = ie2c2
∫

d4k

(2π)4
γν

1
6p− 6k −mc+ iη

γµDFνµ(k) (12.13)

With the commutation rules in Appendix (Eq. D.58) this becomes

βΣfree(p) = −2ie2c2
∫

d4k

(2π)4

6p− 6k − 2mc
(p− k)2 −m2c2 + iη

γνγµDFνµ(k) (12.14)

and with the photon propagator (Eq. 4.28) we have in the Feynman gauge

βΣfree(p) =
2ie2c

ε0

∫
d4k

(2π)4

6p− 6k − 2mc
(p− k)2 −m2c2 + iη

1
k2 + iη

(12.15)

(As mentioned above, the factor of β is due to our definition of the electron
propagator (c.f. Eq. 12.5)).
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The free-electron vertex correction

6p′r′

6pr

Aσ(q) σr×

6pr ω

6q
6q′

Aσ(q′′) 6

s
s z k

µ

ν

6p′r′ ω

σr×

Fig. 12.2 Diagram representing the first-order free-electron vertex correction.

We consider first the single interaction with an external energy potential
(App. D.41) −eασAσ (Fig. 12.2 left). The S-matrix is given by

S(1)(ω′, ω; p′r′,pr,q) = iec
∫

d3xu†r′(p
′) e−ip′·x ασAσ(x)ur(p) eip·x (12.16)

or

S(1)(ω′, ω; p′r′,pr,q) = iec δ3(p− p′)u†r′(p
′)ασAσ(p− p′)ur(p) (12.17)

where Aσ(q) is the Fourier transform of Aσ(x).

The vertex-modified free-electron self-energy diagram in Fig. 12.2 (right)
becomes similarly

S(3)(ω′, ω; p′r′,pr) = (ie)3c2
∫

dz
2π

∫∫∫
d3x1 d3x2 d3x3 u

†
r′(p

′) e−ip′·x′

× αν iSfree
F (ω′ − z,x′,x′′)ασ Aσ(x′′)αµ iSfree

F (ω − z,x′′,x)ur(p) eip·x

× iDFµν(z,x′ − x) (12.18)

In analogy with Eq. (12.9) this becomes

S(3)(ω′, ω; p′r′,pr) = −e3c2
∫

d3q
(2π)3

∫
d3q′

(2π)3

∫
d3q′′

(2π)3

∫
d3k

(2π)3
u†r′(p

′)

×δ3(p− q− k) δ3(p′ − q′ − k) δ3(q− q′ + q′′)
∫

dz
2π

αν Sfree
F (ω′ − z,q′)

×ασ Aσ(q′′)αµ Sfree
F (ω − z,q)ur(p)DFµν(z,k) (12.19)

and after integrations over q, q′, and q′′

S(3)(ω′, ω; p′r′,pr) = ie δ3(p− p′)u†r′(p
′)Λσ(ω′, ω; p′,p)Aσ(p− p′)ur(p) (12.20)
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where

Λσ(ω′, ω; p′,p) = ie2c2
∫

dz
2π

∫
d3k

(2π)3
ανSfree

F (ω′ − z,p′ − k)

× ασS
free
F (ω − z,p− k)αµDFνµ(z,k) (12.21)

is the vertex correction function. In covariant notations this becomes in anal-
ogy with Eq. (12.10)

Λσ(p′, p) = ie2c

∫
d4k

(2π)4
ανSfree

F (p′ − k)ασSfree
F (p− k)αµDFνµ(k) (12.22)

In the Feynman gauge this becomes

Λσ(p′, p) = − ie2

ε0

∫
d4k

(2π)4
γµ

1
6p ′− 6k −mc+ iη

γσ

× 1
6p− 6k −mc+ iη

γµ
1

k2 + iη
(12.23)

Comparing with the self-energy function (Eq. 12.15), we find the Ward
identity (Eq. 4.100) [136, Eq. (9.60)]

∂

∂cpσ
Σ(p) = Λσ(p, p) (12.24)

Obviously, this relation holds independently of the gauge.

12.2 Renormalization process

We shall here derive expressions for the mass and charge renormalization in
terms of counterterms that can be applied in evaluating the QED effects on
bound states. The process of regularization will be treated in the next section.

Mass renormalization

We consider now a bare electron with the mass m0. The corresponding free-
electron propagator (Eq. 12.5) is then

SF
bare(ω,p) = β

1
6p c−m0c2 + iη

(12.25)
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with ω = cp0.

=

r
r

+

r
r

+

r
r
r
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+ · · · = +

r
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r
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Fig. 12.3 Dyson equation for the dressed bare-mass electron propagator.

We now ”dress” the bare-electron propagator with all kinds of self-energy
insertions in the same way as for the bound-electron propagator in Fig. 5.7.
This corresponds to the S-matrix in operator form 3

iSF(ω,p) + iSF(ω,p)(−i)Σ(ω,p) iSF(ω,p) + · · · = iSF(ω,p)
1−Σ(ω,p)SF(ω,p)

(12.26)
which leads to

SF
bare,dressed(ω,p) = β

1
6p c−m0c2 − βΣ∗bare(ω,p) + iη

(12.27)

illustrated in Fig. 12.3. Here, the box represents the irreducible or proper
self-energy insertions, Σ∗bare(ω,p), illustrated in Fig. 12.4. We shall in the
following refer to this as the free-electron self energy, Σfree(ω,p),

Σ∗bare(ω,p) = Σfree(ω,p) (12.28)

To lowest order the free-electron self energy is in analogy with Eq. (4.85)

Σfree(ω,p) = i
∫

dω
2π

Sbare
F (ω,p) Ibare(ω; p) (12.29)

where Ibare is the interaction (Eq. 4.44) in the momentum representation
with the electronic charge replaced by the bare charge, e0.

The bare-electron propagator itself is also associated with a bare-electron
charge (e0) at each vertex. The dressing of the electron propagator leads to a
modification of the electron mass as well as of the electron charge. One part
of the free-electron self energy is indistinguishable from the mass term in the
electron propagator and another part is indistinguishable from the electronic
charge, and these parts give rise to the mass renormalization and the charge

3 Note that Σ(ω,p) has the dimension of energy and that the product Σ(ω,p)SF(ω,p) is
dimensionless (see Appendix K).
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Σfree(p)= = +6

t
t 6

r
r6 + 6

t
t6 + · · ·

Fig. 12.4 Expansion of the proper self-energy operator for a bare electron.

renormalization, respectively. The modification of the electron charge is here
compensated by a corresponding modification of the vertex (to be discussed
below), so that there is no net effect on the electron charge in connection with
the electron self energy. On the other hand, there is a real modification of the
electron charge in connection with the modification of the photon propagator,
as we shall discuss later.

Instead of working with the bare-electron mass and charge with self-energy
insertions, we can use the physical mass and charge and introduce corre-
sponding counterterms (see, for instance, ref. [88, p.332]. The free-electron
propagator with the physical electron mass, m, is

SF
free(ω,p) = β

1
6p c−mc2 + iη

(12.30)

and it has its poles ”on the mass shell”, 6 p = mc (see Appendix Eq. D.19).
The dressed propagator (Eq. 12.27) should have the same pole positions,
which leads with

m = m0 + δm (12.31)

to
δmc2 = βΣfree(ω,p)

∣∣
6p=mc

(12.32)

This is the mass counterterm. We can now in the dressed operator (Eq. 12.27)
replace m0c

2 by
mc2 − βΣfree(ω,p)

∣∣
6p=mc

which leads to

SF
free,ren(ω,p) = β

1
6p c−mc2 − βΣfree

ren (ω,p) + iη
(12.33)

where
Σfree

ren (ω,p) = Σfree(ω,p)−Σfree(ω,p)
∣∣
6p=mc

(12.34)

This represents the mass-renormalization . Both the free-electron self en-
ergy and the mass counterterms are divergent, while the renormalized self
energy is finite.
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Charge renormalization

Electron self energy

The pole values (residues) of the dressed bare electron propagator should also
be the same as for the physical propagator, including the associated electronic
charges. The physical propagator (Eq. 12.30) with the electronic charge

e2Sfree
F (ω,p) = β

e2

6 p c−mc2 + iη

has the pole value βe2/c. The dressed propagator (Eq. 12.27) with the bare
electron charge is

β
e2

0

6p c−m0c2 − βΣfree(ω,p) + iη
= β

e2
0

6p c−mc2 − βΣfree
ren (ω,p) + iη

and its pole value at the pole 6p = mc is

lim
6p→mc

β

c

e2
0(6p −mc)

6p c−mc2 − βΣfree
ren (ω,p) + iη

=
β

c

e2
0

1− β ∂
∂c6p Σ

free
ren (ω,p)

∣∣
6p=mc

+ iη

using l’Hospital’s rule. This gives us the relation

e2 =
e2

0

1− β ∂
∂c 6pΣ

free
ren (ω,p)

∣∣
6p=mc

(12.35)

or

e2 = e2
0

(
1 + β

∂

∂c 6p Σ
free
ren (ω,p)

∣∣∣
6p=mc

− · · ·
)

(12.36)

Here, the second term, which is divergent, represents the first-order charge
renormalization .

It is convenient to express the free-electron self energy as

Σfree(ω,p) = A+B(6p c−mc2) + C(6p c−mc2)2 (12.37)

It then follows that the constant A is associated to the mass renormalization,

A = Σfree(ω,p)
∣∣
6p=mc

= βδmc2 (12.38)

and B with the charge renormalization,

B =
∂

∂c 6p Σ
free(ω,p)

∣∣
6p=mc

(12.39)
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From Eq. (12.36) it follows that for the charge renormalization due to the
dressing of the electron propagator becomes

e = e0(1 +B/2 + · · · ) (12.40)

The constant C represents the renormalized free-electron self energy that
is finite.

Vertex correction

The modification of the vertex function shown in Fig. 12.2, can be represented
by

ie0Γσ(p, p′) = ie0ασ − ie0βΛσ(p, p′) (12.41)

where e0 is the ”bare” electron charge. The vertex correction is divergent and
can be separated into a divergent part and a renormalized, finite part

Λσ(p, p′) = Lασ + Λren
σ (p, p′) (12.42)

The divergent vertex part corresponds to a charge renormalization, in first
order being

e = e0(1− βL) (12.43)

But this should be combined with the charge renormalization due to the
dressing of the electron propagators (Eq. 12.40), which yields

e = e0(1− βL+ βB) (12.44)

since there are two propagators associated with each vertex. Due to the Ward
identity (Eq. 12.24) it then follows that the charge renormalization due to the
electron self energy and the vertex correction exactly cancel. This holds also
in higher orders.

Photon self energy

+q q1µ 2ν
�
�
�
�q qq q-

�

2σ 3τ1µ 2ν + · · ·

Fig. 12.5 Diagram representing the first-order vacuum polarization of the single photon
(first-order photon self energy).
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We first transform the first-order photon self energy (Eq. 4.108) to the
momentum representation, using

DFνµ(x1, x3) =
∫

d4k

(2π)4
e−ik(x1−x3)DFνµ(k)

DFνµ(x4, x2) =
∫

d4k

(2π)4
e−ik′(x4−x2)DFνµ(k′)

SF(x3, x4) =
∫

d4q

(2π)4
e−iq(x3−x4)SF(q)

SF(x4, x3) =
∫

d4q

(2π)4
e−iq′(x4−x3)SF(q′) (12.45)

The space integrations over x3 and x3 gives rise to the delta functions
δ4(k − q + q′) and δ4(k′ − q + q′), yielding with the bare electron charge
e2

0,
∫

d4k

(2π)4
ie2

0α
µ
1DFνµ(k) iΠστ

3,4(k) ie2
0α

ν
2DFνµ(k)

iΠστ
3,4(k) =

∫
d4q

(2π)4
Tr
[
iασ3SF(q) iατ4SF(q − k)

]
(12.46)

The photon self energy represents a modification of the single-photon ex-
change, illustrated in Fig. 12.5,

ie2
0DFνµ(k)⇒ ie2

0DFνµ(k) + ie2
0DFµσ(k) iΠστ (k) ie2

0DFτν(k) + · · · (12.47)

With the form (Eq. 4.28) of the photon propagator in the Feynman gauge
this becomes

−ie2
0

cε0

gµν
k2 + iη

⇒ −ie2
0

cε0

gµν
k2 + iη

+
−ie2

0

cε0

gµσ
k2 + iη

iΠστ (k)
−ie2

0

cε0

gτν
k2 + iη

(12.48)

From the Lorentz covariance it follows that the polarization tensor must have
the form

Πστ (k) = −gστA(k2) + kσkτB(k2) (12.49)

and it can be shown that in this case only the second term can contribute [19,
p. 155], [136, p. 184]. This reduces the expression above to

−ie2
0

cε0

gµν
k2 + iη

⇒ −ie2
0

cε0

gµν
k2 + iη

[
1− e2

0

cε0

A(k2)
k2 + iη

]

≡ −ie2
0

cε0

gµν

k2 +
(
e20
cε0

)
A(k2) + iη

(12.50)
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The expression above represents the modification of the photon propagator
due to the photon self energy. It is infinite and it can be interpreted as a
change of the electronic charge—or charge renormalization—in analogy
with the mass renormalization treated above.

The photon propagator has a pole at k2 = 0, corresponding to the zero
photon mass (c.f. the free-electron propagator in Eq. 12.5), and the pole value
is proportional to the electron charge squared, e02. If

A(k2 = 0) = 0 (12.51)

then also the modified propagator has a pole at the same place with a pole
value proportional to

e2
0

1 + e20
cε0

dA(k2)
dk2

∣∣
k2=0

(12.52)

This cannot be distinguished from the bare charge and represents the physical
electron charge,

e2 =
e2

0

1 + e20
cε0

dA(k2)
dk2

∣∣
k2=0

≈ e2
0

[
1− e2

0

cε0

dA(k2)
dk2

∣∣
k2=0

]
(12.53)

which is the charge renormalization.

The polarization tensor may have a finite part that vanishes at k2 = 0,
Πren, which is the renormalized photon self energy . This is physically
observable.

Higher-order renormalization

The procedure described above for the first-order renormalization can be
extended to higher orders. A second-order procedure has been described by
Labzowsky and Mitrushenkov [110] and by Lindgren et al. [121], but we shall
not be concerned with that further here.

12.3 Bound-state renormalization. Cut-off procedures

Before applying the renormalization procedure, the divergent integrals have
to modified so that they become finite, which is the regularization procedure.
Details of this process depends strongly on the gauge used. Essentially all
QED calculations performed so far have been carried out in the so-called
covariant gauges (see Appendix G), preferably the Feynman gauge. In the
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remaining sections of this chapter we shall review some of the procedures
used in that gauge, and also consider the question of regularization in the
Coulomb gauge.

Several regularization procedures have been developed, and the conceptu-
ally simplest ones are the cut-off procedures. The most well-known of these
procedure is that of Pauli-Willars and another is the so-called partial-wave
regularization. An more general and more sophisticated procedure is the di-
mensional regularization, which has definite advantages and is frequently used
today. We shall consider some of these processes in the following.

Mass renormalization

When we express the Dirac Hamiltonian (Eq. 2.108) with the physical mass

~D = cα · p̂ + βmc2 + vext (12.54)

we have to include the mass counterterm (Eq. 12.32) in the perturbation
density (Eq. 6.35)

H(x) = −ecψ̂†(x)αµAµ(x) ψ̂(x)− δmc2 ψ̂†(x)βψ̂(x) (12.55)

6a

6t 6

s
s1

2
6r

-
6a

×
6r

Fig. 12.6 Diagram representing the renormalization of the first-order self-energy of a
bound electron.

The bound-electron self-energy operator is given by Eq. (8.47)

〈r|Σbou(εa)|a〉 =
〈
rt
∣∣∣
∫

dz
2π

iSbou
F (εa − z;x2,x1) I(z;x2,x1)

∣∣∣ta
〉

(12.56)

and subtracting the corresponding mass-counterterm yields the renormalized
self-energy operator

〈r|Σbou
ren (εa)|a〉 = 〈r|Σbou(εa)− βδmc2|a〉 (12.57)
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illustrated in Fig. 12.6. Here, both terms contain singularities, which have to
be eliminated, which is the regularization process.

In the regularization process due to Pauli and Villars [177], [136, Eq.
(9.21)], the following replacement is made in the photon propagator

1
k2 + iη

⇒ 1
k2 − λ2 + iη

− 1
k2 − Λ2 + iη

(12.58)

which cuts off the ultraviolet and possible infrared divergence.

Evaluation of the mass term

(See Mandl and Shaw [136, Sect. 10.2])
On the mass shell, 6 p = mc, the free-electron self energy (Eq. 12.15) be-
comes [136, Eq. 10.16]

δm c2 =
β

c
Σfree(p) |6p=mc = −i

2e2

ε0

∫
d4k

(2π)4

6 k +mc

k2 − 2pk + iη
1

k2 + iη
(12.59)

In order to evaluate this integral, we apply the Pauli-Villars regularization
scheme, which we can express as

1
k2 + iη

⇒ 1
k2 − λ2 + iη

− 1
k2 − Λ2 + iη

= −
∫ Λ2

λ2

dt
(k2 − t+ iη)2

(12.60)

By means of the identity (Eq. J.4) in Appendix J with a = k2 − t and
b = k2 − 2pk we can express the mass term

δm c2 =
4ie2

ε0

∫
d4k

(2π)4

∫ Λ2

λ2
dt
∫ 1

0

dx
( 6k +mc)x

[k2 − 2pk(1− x)− tx]3
(12.61)

With the substitutions q = −p(1 − x) and s = −tx the k integral becomes,
using the integral (Eq. J.8) and (Eq. J.9) and 6 p = mc,

∫
d4k

(2π)4

(6k +mc)x
[k2 + 2qp+ s]3

=
i

32π2

mcx(2− x)
m2c2(1− x)2 + tx

(12.62)

yielding

δmc2 =
e2mc

8π2ε0

∫ 1

0

dx (2− x) ln
Λ2x+m2c2(1− x)2

λ2x+m2c2(1− x)2
(12.63)

This is logarithmically divergent as Λ→∞ with the leading term being



12.3 Bound-state renormalization. Cut-off procedures 259

δmc2 =
e2mc

8π2ε0

∫ 1

0

dx (2− x)

[
ln
Λ2

m2
+ ln

x

(1− x)2

]
(12.64)

To evaluate the second part of the integral we need the following formulas
∫

dx lnx = x lnx− x
∫

dxx lnx =
x2 lnx

2
− x2

4
(12.65)

which leads to

I =
∫ 1

0

dx (2− x) ln
x

(1− x)2
=

3
4

(12.66)

In all unit systems with ~ = 1 the factor e2
/

4πε0 = c α, where α is the
fine-structure constant (see Appendix K), and the mass term (Eq. 12.59)
becomes

δm(Λ) c2 =
3αmc2

2π

(
ln
( Λ
mc

)
+

1
4

)
(12.67)

Bethe’s nonrelativistic treatment

Bethe’s original non-relativistic treatment of the Lamb shift [16] is of great
historical interest, and it also gives some valuable insight into the physical
process. Therefore, we shall briefly summarize it here.

From the relation (Eq. 4.90) we have the bound-state self energy, using
the Feynman gauge (Eq. 4.55),

〈x2|Σbou(εa)|x1〉 = − e2c

4πε0 r12
〈x2|αµ|t〉

∫ ∞
0

dκ sinκr12

εa − εt − cκ sgnεt
〈t|αµ|x1〉

(12.68)
where r12 = |x1 − x2|. For small k values and positive intermediate states,
this reduces to

Σbou(εa) = − e2c

4π2ε0
αµ|t〉

∫ ∞
0

κ dκ
εa − εt − cκ 〈t|α

µ (12.69)

The scalar part of αµαµ cancels in the renormalization, leaving only the
vector part to be considered,

Σbou(εa) =
e2c

4π2ε0
α|t〉 ·

∫ ∞
0

κ dκ
εa − εt − cκ 〈t|α (12.70)
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The corresponding operator for a free electron in the state p+ (see Fig. 2)
is

Σfree(p+) =
e2c

4π2ε0
α|q+〉 ·

∫ ∞
0

κ dκ
εp+
− εq+

− cκ 〈q+|α (12.71)

restricting the intermediate states to positive energies. In the momentum
representation this becomes

〈
p′+
∣∣Σfree(p+)

∣∣p+

〉
=

e2c

4π2ε0
〈p′+|α|q+〉 ·

∫ ∞
0

κdκ
εp+
− εq+

− cκ 〈q+|α|p+〉
(12.72)

But since α is diagonal with respect to the momentum, we must have q =
p = p′. Thus,

〈
p′+
∣∣Σfree(p+)

∣∣p+

〉
= −δ3

p′,p
e2

4π2ε0

∣∣〈p+|α|p+〉
∣∣2
∫ ∞

0

dκ (12.73)

Obviously, this quantity is infinite. Inserting a set of complete states, this
becomes

〈
p′+
∣∣Σfree(p+)

∣∣p+

〉
= −δ3

p′,p
e2

4π2ε0
〈p+|α|t〉 · 〈t|α|p+〉

∫ ∞
0

dκ (12.74)

The free-electron self-energy operator can then be expressed

Σfree(p+) = −δ3
p′,p

e2

4π2ε0
α|t〉 ·

∫ ∞
0

dκ 〈t|α (12.75)

which should be subtracted from the bound-electron self-energy operator
(Eq. 12.70). We can assume the intermediate states {t} to be identical to
those in the bound case. This gives the renormalized self-energy opera-
tor

Σbou
ren (εa) =

e2

4π2ε0
α|t〉 ·

∫ ∞
0

dκ
εa − εt

εa − εt − cκ 〈t|α . (12.76)

The expectation value of this operator in a bound state |a〉 yields the renor-
malized bound-electron self energy in this approximation, i.e., the correspond-
ing contribution to the physical Lamb shift,

〈
a
∣∣Σbou

ren (εa)
∣∣ a〉 =

e2

4π2ε0 r12
〈a|α|t〉 · 〈t|α|a〉

∫ ∞
0

dκ
εa − εt

εa − εt − cκ . (12.77)

This result is derived in a covariant Feynman gauge, where the quantized
radiation has transverse as well as longitudinal components. In the Coulomb
gauge only the former are quantized. Since all three vector components above
yield the same contribution, we will get the result in the Coulomb gauge
by multiplying by 2/3. Furthermore, in the non-relativistic limit we have
α→ p/c, which leads to
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〈
a
∣∣Σbou

ren (εa)
∣∣ a〉 =

e2

6π2c2ε0 r12
〈a|p|t〉 · 〈t|p|a〉

∫ ∞
0

dκ
εa − εt

εa − εt − cκ , (12.78)

which is essentially the result of Bethe.

Numerically, Bethe obtained the value 1040 MHz for the shift in the first
excited state of the hydrogen atom, which is very close to the value 1000
MHz obtained experimentally by Lamb and Retherford. Later, the exper-
imental shift has been determined to be about 1057 MHz. Bethe’s results
was, of course, partly fortuitous, considering the approximations made. How-
ever, it was the first success performance of a renormalization procedure and
represented a breakthrough in the theory of QED.

We can note that the non-relativistic treatment leads to a linear diver-
gence of the self energy, while the relativistic treatment above gives only a
logarithmic divergence.

Brown-Langer-Schaefer regularization
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6t 6

s
s1

2
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=

6a

6t 6

s
s1

2
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+

6a

x r 3
6

6
6

s
s1

2
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+

6a

x r 3x r 4
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6

s
s1

2
6a

Fig. 12.7 Expanding the bound-state self energy in free-electron states according to
Eq. (4.107)

The bound-state electron propagator can be expanded into a zero-potential
term, a one-potential term and a many-potential term

Sbou
F (ω,x2,x1) = Sfree

F (ω,x2,x1)

+
∫

d3x3 S
free
F (ω,x2,x3) v(x3)Sfree

F (ω,x3,x1)

+
∫

d3x3d3x4 S
free
F (ω,x2,x4) v(x4)Sbou

F (ω,x4,x3) v(x3)Sfree
F (ω,x3,x1)

(12.79)

which leads to the expansion of the bound-electron self energy, as illustrated
in Fig. 12.7,
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〈a|Σbou(εa)|a〉 =
〈
at
∣∣∣
∫

dz
2π

Sfree
F (εa − z;x2,x1) I(z;x2,x1)

∣∣∣ta
〉

+
〈
at
∣∣∣
∫

d3x3

∫
dz
2π

Sfree
F (εa − z;x2,x3) v(x3)Sfree

F (εa − z;x3,x1) I(z;x2,x1)
∣∣∣ta
〉

+
〈
at
∣∣∣
∫

d3x3d3x4

∫
dz
2π

∫
d3x3d3x4 S

free
F (ω,x2,x4) v(x4)Sbou

F (ω,x4,x3) v(x3)

× Sfree
F (ω,x3,x1) I(z;x2,x1)

∣∣∣ta
〉

(12.80)

where I(z;x2,x1) represents the single-photon interaction (Eq. 4.45). We can
then express this as

〈a|Σbou(εa)|a〉 = 〈a|Σfree(εa)|a〉 − 〈a|ecAσΛfree
σ (εa)|a〉+ 〈a|Σmp|a〉 (12.81)

Here, the first term on the r h s is the average of the free-electron self energy
in the bound state |a〉, the second term a vertex correction (Eq. 4.98) with
v(x) = −eασAσ, and the last term the ”many-potential” term.

We can now use the expansion (Eq. 12.37) of the free-electron self en-
ergy in Eq. (12.81), where the first term (A) will be eliminated by the mass-
counterterm in Eq. (12.57). We are then left with the average of the mass-
renormalized free-electron self energy Eq. (12.34), which is still charge diver-
gent. If we separate the vertex operator in a divergent and a renormalized
part according to Eq. (12.42), it follows from Eq. (12.44) that the charge-
divergent parts cancel, and we are left with three finite contributions, the
mass-renormalized free-electron self energy (Eq. 12.34), the many-potential
term (Eq. 12.79) and the finite part of the vertex correction (Eq. 12.42)

〈r|Σbou
ren (εa)|a〉 = 〈r|Σfree

ren (εa)|a〉 − 〈r|eAσΛfree,ren
σ (εa)|a〉+ 〈r|Σmp|a〉 (12.82)

This is the method of Brown, Langer, and Schaefer [34], introduced already
in 1959. It was first applied by Brown and Mayers [35] and later by Desidero
and Johnson [51], Cheng et al. [40, 41] and others. The problem in applying
this expression lies in the many-potential term, but Blundell and Snyder-
man [25] have devised a method of evaluating this terms numerically with
high accuracy (and the remaining terms analytically).

We can also express the renormalized, bound self energy (Eq. 12.57) as

〈r|Σbou
ren (εa)|a〉 =

(
〈r|Σbou(εa)|a〉 − 〈r|Σfree(εa)|a〉

)

+
(
〈r|Σfree(εa)|a〉 − 〈r|βδmc2|a〉

)
(12.83)

where the second term is the renormalized free-electron self energy (Eq. 12.34),
evaluated between bound states. This is illustrated in Fig. 12.8. The mass
term can be evaluated by expanding the bound states in momentum repre-
sentation
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Fig. 12.8 Illustration of the method of Brown, Langer and Schaefer.

〈r|βδmc2|a〉 = 〈r|p′, r′〉〈p′, r′|Σfree(εp)|p, r〉〈p, r|a〉 (12.84)

as illustrated in Fig, 12.9. The relation Eq. (12.83) can then be written

〈r|Σbou
ren (εa)|a〉 =

〈
r
∣∣Σbou(εa)−Σfree(εa)

∣∣a〉

+
〈
r
∣∣p′, r′〉〈p′, r′|Σfree(εa)−Σfree(εp)|p, r〉〈p, r

∣∣a〉 (12.85)

where we note that the in the last term the energy parameter of the self-
energy operator is equal to the energy of the free particle.

6a

×
6r

= 〈r|p′, r′〉

6p, r

6q, s 6

s
s z,k

1

2
6p′, r′

〈p, r|a〉

Fig. 12.9 Expansion of the mass term in momentum space.

In this way the leading mass-divergence term is eliminated, while the parts
are still charge-divergent, but this divergence is cancelled between the parts.
The elimination of the mass-renormalization improves the numerical accu-
racy.

Peter Mohr has developed the method further and included also the one-
potential part of the expansion in the two parts, thereby eliminating also the
charge divergence. In this way very accurate self-energies have been evaluated
for hydrogenic systems [146, 148, 150].
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Partial-wave regularization

An alternative scheme for regularizing the electron self energy is known as the
partial-wave regularization (PWR), introduced independently by the Gothen-
burg and Oxford groups [122, 189].

Feynman gauge

Using the expansion (Eq. 10.7)

sinκr12

κr12
=
∞∑

l=0

(2l + 1)jl(κr1)jl(κr2)Cl(1) ·Cl(2) (12.86)

the expression (Eq. 4.90) for the bound-state self energy in the Feynman
gauge can be expressed

Σbou(εa) = − e2

4π2ε0

∞∑

l=0

(2l + 1)
∫ ∞

0

cκdκ
αµjl(κr)Cl|t〉 · 〈t|αµjl(κr)Cl

εa − εt − cκ sgn(εt)
(12.87)

with a summation over the intermediate bound state |t〉, Similarly, for the
free electron

Σfree(ω) = − e2

4π2ε0

∞∑

l=0

(2l + 1)
∫ ∞

0

cκ dκ
αµjl(κr)Cl|q, s〉 · 〈q, s|αµjl(κr)Cl

ω − εq − cκ sgn(εq)
(12.88)

summed over free-electron states |q, r〉. Here, ω is the free-running energy
parameter and εq represents the energy of the free-electron state |q, s〉. On
the mass shell, ω = εp =

√
c2p2 +m2c4, this becomes

Σfree(εp) = − e2

4π2ε0

∞∑

l=0

(2l + 1)
∫ ∞

0

cκ dκ
αµjl(κr)Cl|q, s〉 · 〈q, s|αµjl(κr)Cl

εp − εq − cκ sgn(εq)
(12.89)

The PWR can be combined with the Brown-Langer-Schaefer method dis-
cussed above by expanding the remaining terms in Eq. (12.83) in a similar
way.

The free-electron self energy is diagonal with respect to the to the mo-
mentum p, when all partial waves are included, but this is NOT the case for
a truncated sum. Furthermore, it has non-diagonal elements with respect to
the spinor index r.
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Coulomb gauge

The partial-wave regularization has not yet been applied in the Coulomb
gauge, but in order to be able to include the self energy in a many-body
calculation this will be necessary.

In analogy with the Feynman-gauge result (Eq. 12.87), the transverse part
of the self energy in Coulomb gauge becomes

Σbou,trans(εa) = − e2

4π2ε0

∞∑

l=0

(2l + 1)
∫ ∞

0

cκ dκ

×αjl(κr)C
l|t〉 · 〈t|αjl(κr)Cl − (α · ∇)jl(κr)Cl|t〉〈t|(α · ∇)jl(κr)Cl/κ2

εa − εt − cκ sgn(εt)
(12.90)

using the expression (Eq. 4.92). The corresponding mass term becomes in
analogy with Eq. (12.89)

Σfree,trans(εp) = − e2

4π2ε0

∞∑

l=0

(2l + 1)
∫ ∞

0

cκdκ

× αjl(κr)C
l|q, s〉 · 〈q, s|αjl(κr)Cl − (α · ∇)jl(κr)Cl|q, s〉〈q, s|(α · ∇)jl(κr)Cl/κ2

εp − εq,s − cκ sgn(εq)
(12.91)

The Coulomb part in Coulomb gauge is obtained similarly from Eq. (4.93)

Σ(εa)bou,Coul =
e2

8π2ε0r12
sgn(εt)

×
∞∑

l=0

(2l + 1)
∫ ∞

0

2κ dκ jl(κr)Cl|t〉 · 〈t|jl(κr)Cl (12.92)

using the value −i sgn(εt)/2 for the integral, and the corresponding mass
term

Σ(εa)free,Coul =
e2

8π2ε0r12
sgn(εt)

×
∞∑

l=0

(2l + 1)
∫ ∞

0

2κ dκ jl(κr)Cl|q, s〉 · 〈q, s|jl(κr)Cl (12.93)

The main advantage of the PWR is that the bound- and free-electron self
energies are calculated in exactly the same way, which improves the numer-
ical accuracy, compared to the standard procedure, where the mass term is
evaluated analytically (Eq. 12.67). Since all terms are here finite, no further
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regularization is needed. The maximum L value, Lmax, is increased until suf-
ficient convergence is achieved. This scheme has been successfully applied in
a number of cases [122, 189].

It has been shown by Persson, Salomonson, and Sunnergren [180], that
the method of PWR gives the correct result in lowest order with an arbitrary
number of Coulomb interactions, while a correction term is needed when there
is more than one magnetic interaction. This is due to the double summation
over partial waves and photon momenta, which is not unique due to the
infinities involved. This problem might be remedied by combining this method
with dimensional regularization, as will be briefly discussed at the end of the
chapter.

12.4 Dimensional regularization in Feynman gauge *

The most versatile regularization procedure developed so far is the dimen-
sional regularization, which is nowadays frequently used in various branches
of field theory. In treating the number of dimensions (D) as a continuous
variable, it can be shown that the integrals of the radiative effects are sin-
gular only when D is an integer. Then by choosing the dimensionality to be
4− ε, where ε is a small, positive quantity, the integrals involved will be well-
defined and finite. After the renormalization one lets the parameter ε → 0.
This method has been found to preserve the gauge invariance and the va-
lidity of the Ward identity to all orders. The method was developed mainly
by ’t Hooft and Veltman in the 1970’s [225] (see, for instance, Mandl and
Shaw [136, ch. 10], Peskin and Schroeder [183, ch. 7] and Snyderman [215]).

Most applications are made in so-called covariant gauges, where the pro-
cedure is now well developed. For our purpose, however, it is necessary to
apply the Coulomb gauge, and here the procedure is less developed. Impor-
tant contributions have been made more recently, though, by Adkins [1, 2],
Heckarthon [81] and others.

Here, we shall first illustrate the method by evaluating the renormalized
free-electron self energy, using the Feynman gauge. The problem with the
Coulomb gauge will be discussed in the next section.
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Evaluation of the renormalized free-electron self
energy in Feynman gauge

We start now from the form (Eq. 12.12) of the free-electron self energy in the
Feynman gauge and the photon propagator in momentum space (Eq. 4.28)

βΣfree(p) = ie2c2
∫

d4k

(2π)4
γν

6p− 6k +mc

(p− k)2 −m2c2 + iη
γµDFνµ(k)

= − ie2c

ε0

∫
d4k

(2π)4
γµ

6p− 6k +mc

(p− k)2 −m2c2 + iη
γµ

1
k2 + iη

(12.94)

Using the Feynman integral (Eq. J.2) (second version) with a = k2 and
b = (p− k)2 −m2c2, this can be expressed

βΣfree(p) = − ie2c

ε0

∫ 1

0

dx
∫

d4k

(2π)4

γµ
( 6p− 6k +mc

)
γµ

[
k2 + (p2 − 2pk −m2c2)x

]2 (12.95)

We shall now evaluate this integral using non-integral dimension D = 4− ε,

βΣfree(p) = − ie2c

ε0

∫ 1

0

dx
∫

dDk
(2π)D

γµ
( 6p− 6k +mc

)
γµ

[
k2 + (p2 − 2pk −m2c2)x

]2

=
2ie2c

ε0

∫ 1

0

dx
∫

dDk
(2π)D

(1− ε/2)(6p − 6k)− (2− ε/2) mc[
k2 + (p2 − 2pk −m2c2)x

]2 (12.96)

after applying the anti-commutation rules for the gamma matrices in Ap-
pendix D.59. With the substitutions q = −px and s = (p2 − m2c2)x this
becomes

βΣfree(p) =
2ie2c

ε0

∫ 1

0

dx
∫

dDk
(2π)D

(1− ε/2)(6p − 6k)− (2− ε/2) mc[
k2 + 2kq + s

]2 (12.97)

which is of the form of Eqs. (G.23) and (G.24). This leads to

βΣfree(p) = −2e2c(mc)−ε

ε0(4π)D/2

∫ 1

0

dx
Γ (ε/2)
Γ (2)

[
(1− ε/2)(6p −6p x)− (2− ε/2) mc

] (m2c2

w

)ε/2

(12.98)

with w = q2−s =
[
m2c2−p2(1−x)

]
x. The Gamma function can be expanded

as (see Appendix G.3)

Γ (ε/2) =
2
ε
− γE + · · ·

with γE = 0.5722... being Euler’s constant, and furthermore
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1
(4π)D/2

=
1

(4π)2

(
1 +

ε

2
ln 4π + · · ·

)

(m2c2

w

)ε/2
= 1− ε

2
ln
( w

m2c2

)
+ · · ·

This yields

Γ (ε/2)
(4π)D/2

(m2c2

w

)ε/2
=

1
4π2

(
2/ε− γE + · · ·

)(
1 +

ε

2
ln 4π + · · ·

)(
1− ε

2
ln
(
w/m2c2

)
+ · · ·

)

=
1

4π2

[
∆− ln

( w

m2c2
+ · · ·

)]
(12.99)

where

∆ =
2
ε
− γE + ln 4π + · · · (12.100)

This leads to

βΣfree(p) = −2K

[∫ 1

0

dx
( 6p−6p x− 2mc

)[
∆− ln

( w

m2c2
+ · · ·

)]

−
∫ 1

0

dx
( 6p−6p x+mc

)
]

(12.101)

with
K =

e2c

ε0(4π)2
=
c2 α

4π

We write the denominator in Eq. (12.98) as

w = m2c2xX ; X = 1− p2

m2c2
(1− x) = −[ρ+ (1− ρ)x

]

with
ρ =

p2 −m2c2

m2c2
(12.102)

We then express the integral (Eq. 12.101) as 2K(A+B + C) with

A = −
∫ 1

0

dx
( 6p −6p x− 2mc

)
∆+

∫ 1

0

dx
( 6p −6p x−mc)

B =
∫ 1

0

dx (6p −6p x− 2mc) lnx
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C =
∫ 1

0

dx (6p −6p x− 2mc) ln
[
ρ+ (1− ρ)x

]

To evaluate this integral we can use the formulas (Eq. 12.65), yielding

∫ 1

0

dx ln(1− x) = −1
∫ 1

0

dxx ln(1− x) = −3/4

∫ 1

0

dx ln
[
ρ+ (1− ρ)x

]
= −1− ρ ln ρ

1− ρ
∫ 1

0

dxx ln
[
ρ+(1−ρ)x

]
=

ρ

(1− ρ)

(
1+

ρ ln ρ
1− ρ

)
− 1

4(1− ρ)2

(
1+2ρ2 ln ρ−ρ2

)

which gives
A = −(6p /2− 2mc)∆+ (6p /2−mc)

B = −3 6p /4 + 2mc

C = − 6p ρ
(1− ρ)

(
1+

ρ ln ρ
1− ρ

)
+

6p
4(1− ρ)2

(
1+2ρ2 ln ρ−ρ2

)
−( 6p−2m

)(
1+

ρ ln ρ
1− ρ

)

=6p
[
− 1

(1− ρ)

(
1 +

ρ ln ρ
1− ρ

)
+

ρ2 ln ρ
2(1− ρ)2

+
1 + ρ

4(1− ρ)

]
+ 2mc

(
1 +

ρ ln ρ
1− ρ

)

Subtracting the on-the-mass-shell value (6p = m, ρ = 0), yields for the A
and B terms

(A+B)ren = − 6p −mc
2

(
∆+

1
2

)

For the C term the on-shell value is 5mc/4, yielding

Cren = −6p
{
ρ(2− ρ) ln ρ

2(1− ρ)2
+

ρ

(1− ρ)
+

3
4

}
+mc

{
2ρ ln ρ
1− ρ +

3
4

}

The total on-shell value (mass-counter term) becomes

δmc2 =
mc2 α

4π
(
3∆+ 4 + · · · ) (12.103)

Collecting all parts we obtain the following expression for the mass-
renormalized free-electron self energy
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βΣfree(p) = −c
2 α

4π

[ (
6p −mc

)(
∆+ 2 +

ρ

1− ρ +
ρ(2− ρ) ln ρ

(1− ρ)2

)

+
ρmc

1− ρ

(
1− 2− 3ρ

1− ρ ln ρ

)]
(12.104)

with ρ = (6p 2 −m2c2)/m2c2. This agrees with the result of Snyderman [215,
223].

Free-electron vertex correction in Feynman gauge

Next, we consider the free-electron vertex correction (Eq. 12.23)

Λσ(p′, p) =
ie2

ε0

∫
d4k

(2π)4
γµ

6p ′− 6k +mc

(p ′ − k)2 −m2c2 + iη
γσ

× 6p− 6k +mc

(p− k)2 −m2c2 + iη
γµ

1
k2 + iη

(12.105)

The Feynman parametrization (Eq. J.4), similar to the self-energy case, a =
k2, b = (k − p)2 −m2c2, and c = (k − p ′)2 −m2c2, yields

Λσ(p′, p) =
2ie2

ε0

∫ 1

0

dx
∫ 1−x

0

dy
∫

d4k

(2π)4

× γµ(6p ′− 6k +mc)γσ(6p − 6k +mc)γµ[
k2 + (p2 − 2pk −m2c2)x+ (p′2 − 2p ′k −m2c2)y

]3

With q = −(px+ p′y) and s = p2x+ p′2y −m2c2(x+ y) the denominator is
of the form k2 + 2kq + s

Λσ(p′, p ) =
2ie2

ε0

∫ 1

0

dx
∫ 1−x

0

dy
∫

dDk
(2π)D

γµ(6p ′− 6k +mc)γσ(6p − 6k +mc)γµ

(k2 + 2kq + s)3

=
2ie2

cε0

∫ 1

0

dx
∫ 1−x

0

dy
[
C0 + C1 + C2

]

where the index indicates the power of 6k involved,

C0 =
∫

dDk
(2π)D

γµ(6p ′ +mc)γσ(6p +mc)γµ

(k2 + 2kq + s)3

C1 =
∫

dDk
(2π)D

γµ(− 6k)γσ(6p +mc)γµ + γµ(6p ′ +mc)γσ(− 6k)γµ

(k2 + 2kq + s)3
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C2 =
∫

dDk
(2π)D

γµ 6kγσ 6kγµ
(k2 + 2kq + s)3

The coefficients C0 and C1 are convergent and we can let ε→ 0. With the
formula (Eq. G.23) (n = 3) and the contraction formulas (Eq. D.59) we then
have

C0 =
i

(4π)2

(6p +mc)γσ(6p ′ +mc)
w

with
w = s− q2 = s− (px+ p′y)2

Similarly, we have for the numerator in C1

γµ(− 6k)γσ(6p +mc)γµ+γµ(6p ′+mc)γσ(− 6k)γµ = 2(6p γσ 6k+ 6kγσ 6p ′)−8mckσ

and with Eq. (G.24)

C1 =
i

(4π)2

6p γσ 6q+ 6qγσ 6p ′ − 4mcqσ
w

The C2 coefficient is divergent and has to be evaluated with more care.
Then the situation is analogous to that of the self energy (Eq. 12.98). The
numerator becomes

γµ 6kγσ 6kγµ = −(2− ε) 6kγσ 6k − ˜6kγ̃σ˜6k

and

C2 = −
∫

dDk
(2π)D

(2− ε) 6kγσ 6k + ˜6kγ̃σ˜6k
(k2 + 2kq + s)3

which can be evaluated with Eq. (G.25).

The evaluation of the integrals above is straightforward but rather tedious.
The complete result is found in ref. [215].
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12.5 Dimensional regularization in Coulomb gauge *

Free-electron self energy in the Coulomb gauge

For our main purpose of combining MBPT and QED it is necessary to ap-
ply the Coulomb gauge in order to take advantage of the developments in
standard MBPT.

We shall first follow Adkins [1] in regularizing the free-electron self energy
in the Coulomb gauge by expressing the bound states in terms of free-electron
states. We then start from the expression (Eq. 12.12)

βΣfree(p) = ie2c2
∫

d4k

(2π)4
γν

6p− 6k +mc

(p− k)2 −m2c2 + iη
γµDFνµ(k) (12.106)

For the photon propagator we use the expressions (Eq. 4.32) and (Eq. 4.36)

DC
Fµν(k;k) =

1
cε0

[
δµ,0δν,0

k2 − δµ,iδν,j
(
gij +

kikj

k2

) 1
k2 + iη

]
(12.107)

The three terms in the propagator correspond to the Coulomb, Gaunt and
scalar-retardation parts, respectively, of the interaction (Eq. 4.59)).

The Coulomb part of the self energy becomes

ie2c

ε0

∫
d4k

(2π)4

γ0(6p− 6k +mc)γ0

(p− k)2 −m2c2 + iη
1

k2 + iη
(12.108)

=
ie2c

ε0

∫
d4k

(2π)4

p̃− k̃ +mc

(p− k)2 −m2c2 + iη
1

k2 + iη
(12.109)

using the commutation rules in Appendix (Eq. D.58). With q = −p and
s = p2−m2c2 the denominator is of the form k2+2kq+s and we can apply the
formulas (Eq. G.26) and (Eq. G.27) without any further substitution (n = 1).
This gives with k0 → q0 = −p0, ki → qiy = −piy, γ ·k = −γiki → −γ ·py
and w = p2y2 + (1− y)yp2

0 − (p2 −m2c2)y

ie2c (mc)ε

ε0

∫
dDk

(2π)D
p̃ − k̃ +mc

k2 + 2kq + s+ iη
1

k2 + iη

=
e2c

ε0 (4π)D/2

∫ 1

0

dy√
y

[
γ ·p(1− y) +mc

] Γ (ε/2)
(w/m2c2)ε/2

Using Eq. (12.99) this yielde the Coulomb contribution
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K

∫ 1

0

dy√
y

(
γ ·p (1− y) +mc

)(
∆− ln(yX)

)

with K = e2c/(ε0 (4π)2) and w = m2c2y X, X = 1 + (p2/m2c2)(1− y). This
leads to

K

∫ 1

0

dy√
y

(
(γ ·p (1− y) +mc

)(
∆− ln y − lnX

)

and the Coulomb part becomes (times K)

(4
3
γ ·p + 2mc

)
∆+

(32
9
γ ·p + 4mc

)
−
∫ 1

0

dy√
y

(
(γ ·p (1− y) +mc

)
lnX (12.110)

The Gaunt term becomes, using Eq. (12.106) and the second term of
Eq. (12.107)

− ie2c

ε0

∫
d4k

(2π)4

γi(6p − 6k +mc)γi

(p− k)2 −m2c2 + iη
1

k2 + iη
(12.111)

The denominator is here the same as in the treatment of the self energy in
the Feynman gauge, and we can use much of the results obtained there .4

In analogy with Eq. (12.95) we then have

− ie2c

ε0

∫ 1

0

dx
∫

d4k

(2π)4

γi
( 6p− 6k +mc

)
γi

[
k2 + (p2 − 2pk −m2c2)x

]2

= − ie2c

ε0

∫ 1

0

dx
∫

d4k

(2π)4

(3− ε)mc− (2− ε)(6p − 6k)− p̃+ k̃[
k2 + (p2 − 2pk −m2c2)x

]2 (12.112)

after inserting the Feynman integral (Eq. J.2) and applying the commutation
rules in Appendix (Eq. D.59).

With the substitutions k → −q = px and s = (p2 −m2c2)x the equation
above leads after applying Eqs (G.23, G.24) in analogy with (Eq. 12.98) to

4 We use the convention that µ, ν, .. represent all four components (0,1,2,3), while i, j, ..
represent the vector part (1,2,3).
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− ie2c

ε0

∫ 1

0

dx
∫

dDk
(2π)D

(3− ε)mc− (2− ε)(6p − 6k)− p̃+ k̃[
k2 + 2kq + s)

]2

=
e2c

ε0(4π)D/2

∫ 1

0

dx
[
(3− ε)mc− (2− ε) 6p (1− x)− p̃(1− x)

] Γ (ε/2)
(w/ε)ε/2

=
e2c

ε0(4π)D/2

∫ 1

0

dx
[
− (1− x)

(
3γ0p0 − γ ·p

)
+ 3mc+ ε

(
(1− x) 6p −mc)

] Γ (ε/2)
(w/ε)ε/2

where w = q2 − s = p2x2 − (p2 −m2c2)x = m2c2xY . This yields (times K)

−
∫ 1

0

dx

{[
(1− x)

(
3γ0p0 − γ ·p

)− 3mc
][
∆− ln(xY )

]
− 2
(
(1− x) 6p −mc)

}

using the relation (Eq. 12.99) and the fact that ε∆ → 2 as ε → 0. Then
the Gaunt part becomesh
− 1

2

�
3γ0p0 − 
 �p�− 3mc

i
∆− 5

4
γ0p0 − 1

4

 �p +mc+

Z 1

0
dx
h
(1− x)

�
3γ0p0 − 
 �p�− 3mc

i
lnY

(12.113)

Finally, the scalar-retardation part becomes similarly, using the third
term of Eq. (12.107) and the commutation rules (Eq. D.57),

− ie2c

ε0

∫
d4k

(2π)4

γiki (6p − 6k +mc) γjkj
(p− k)2 −m2c2 + iη

1
k2

1
k2 + iη

=
ie2c

ε0

∫
d4k

(2π)4

γikiγ
jkj(6p − 6k −mc)− 2γiki(kjpj − kjkj)

(p− k)2 −m2c2 + iη
1
k2

1
k2 + iη

= − ie2c

ε0

∫
d4k

(2π)4

6p − k̃ −mc+ 2γiki kjpj/k2

(p− k)2 −m2c2 + iη
1

k2 + iη

with γikiγ
jkj = −k2 = −kiki. With the same substitutions as as in the

Gaunt case this becomes

− ie2c

ε0

∫ 1

0

dx
∫

dDk
(2π)D

6p − k̃ −mc+ 2γiki kjpj/k2

[
k2 − 2pkx+ (p2 −m2c2)x

]2 (12.114)

With the substitutions k → −q = px and s = (p2 −m2)x the first part is of
the form Eq. (G.23) and Eq. (G.24) and becomes

e2c

ε0(4π)D/2

∫ 1

0

dx
[ 6p − p̃ x−mc] Γ (ε/2)

wε/2
(12.115)

and with Eq. (12.99)
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K

∫ 1

0

dx
[ 6p − p̃ x−mc]

(
∆− ln(xY )

)
(12.116)

with K = e2c/(ε0 (4π)2) and w being the same as in the Gaunt case, w =
q2 − s = p2x2 − p2x+m2c2x = m2c2xY .

The second part of Eq. (12.114) is of the form Eq. (G.28) and becomes
(kikj → qi q

j y2 = pi p
j x2y2 in first term, → − 1

2 g
i
j = − 1

2 δij in second)

K

∫ 1

0

dx
∫ 1

0

dy
√
y

{
2γipi pi pj pj

Γ (1 + ε/2)
w1+ε/2

− γjpj Γ (ε/2)
wε/2

}

K

∫ 1

0

dx
∫ 1

0

dy
√
y

{
2γipi pjpj
m2c2

xy

Z
− γjpj

(
∆− ln(xyZ)

)}

= K

∫ 1

0

dx
∫ 1

0

dy
√
y

{
2γ ·p p2

m2c2
xy

Z
+ γ ·p

(
∆− ln(xyZ)

)}

with w = xy
[−p2xy+p2

0x−p2+m2c2
]

= xy
[
p2(1−xy)−p2

0(1−x)+m2c2
]

=
m2c2Zxy

Integration by parts of the first term yields (times K), noting that dZ/dy =
−p2x,

−
∫ 1

0

dx
[√

y y 2γ ·p lnZ
]1

0
+ 3

∫ 1

0

dx
∫ 1

0

dy
√
y γ ·p lnZ

The total scalar-retardation part then becomes (with Z(y = 1) = Y )

∫ 1

0

dx
[ 6p − p̃ x−mc]

(
∆− ln(xY )

)
−
∫ 1

0

dx 2γ ·p lnY

+ 3
∫ 1

0

dx
∫ 1

0

dy
√
y γ ·p lnZ +

∫ 1

0

dx
∫ 1

0

dy
√
y γ ·p

(
∆− ln(xyZ)

)

or
∫ 1

0

dx
(
γ0p0(1− x)− γ ·p(1 + x)−mc

)(
∆− lnx

)
+
∫ 1

0

dy
√
y γ ·p∆

−
∫ 1

0

dx
(
γ0p0(1− x)− γ ·p(1− x)−mc

)
lnY

−
∫ 1

0

dx
∫ 1

0

dy
√
y γ ·p ln(xy) + 2

∫ 1

0

dx
∫ 1

0

dy
√
y γ ·p ln(xy)

− 3
∫ 1

0

dx
∫ 1

0

dy
√
y γ ·p lnZ
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which gives 5

(1
2
γ0p0 − 5

6
γ ·p−mc

)
∆+

3
4
γ0p0 − 5

36
γ ·p−mc

−
∫ 1

0

dx
(
γ0p0(1− x)− γ ·p(1− x)−mc

)
lnY − 3

∫ 1

0

dx
∫ 1

0

dy
√
y γ ·p lnZ

Summarizing all contributions yields the mass-renormalized free-
electron self energy in Coulomb gauge

e2c

ε0 (4π)2

[
−
(
6p −mc

)
∆− 1

2
γ0p0 +

19
6
γ ·p−

∫ 1

0

dy√
y

(
γ ·p (1− y) +mc

)
lnX

+ 2
∫ 1

0

dx
[
(1− x) 6p −mc] lnY +

∫ 1

0

dx
∫ 1

0

dy
√
y 2γ ·p lnZ

]

(12.117)

where we have subtracted the on-shell (6 p = mc) value, mc(3∆ + 4). (The
expressions for X,Y, Z are given in the text.) This is in agreement with the
the result of Adkins [1].

The treatment of the vertex correction is more complex and will not be
reproduced here. Interested readers are referred to the papers by Adkins.

12.6 Direct numerical regularization of the bound-state
self energy

As an alternative to the regularization pocedure discussed above, we shall
consider a new more direct procedure, where the regularization is performed
directly in the bound state, without any transformation to free-electron
states. This is presently being tested by the Gothenburg group [82].

5 Z 1

0
dx

Z 1

0
dy
√
y ln(xy) = −10

9
;

Z 1

0
dxx

Z 1

0
dy
√
y ln(xy) = − 1

18
;Z 1

0
dxx

Z 1

0
dy y
√
y ln(xy) = − 9
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Feynman gauge

The bound-state self-energy in the Feynman gauge is from Eq. (8.48)

〈r|Σ(εa)|a〉 =
〈
rt
∣∣∣
∫

cdκ fF(κ)
εa − εt − (cκ− iη)t

∣∣∣ta
〉

(12.118)

where κ = |k| and the function fF is given by Eq. (4.55). The integral over
κ is convergent, while the summation over t is (logarithmically) divergent.

With 3− ε dimensions of the k-vector space we make the substitution
∫

d3k

(2π)3
⇒
∫

dΩ
∫

κ2−εdκ
(2π)3−ε

and the self energy becomes

〈a|Σε(εa)|a〉 = −e
2(2π)ε

4π2ε0

〈
at
∣∣∣α

µ
1α2µ

r12

∫
cdκκ−ε sinκr12

εa − εt − (cκ− iη)t

∣∣∣ta
〉

(12.119)

which would make the expression convergent for ε 6= 0. In a similar way the
the free-electron self energy can be expressed. In analogy with the expression
(Eq. 12.85), this leads to the renormalized bound-state self energy

〈
r
∣∣Σbou

ren (εa)
∣∣a〉 = lim

ε→0

(〈
r
∣∣Σbou

ε (εa)−Σfree
ε (εa)

∣∣a〉

+
〈
r
∣∣p′, r′〉〈p′, r′

∣∣Σfree
ε (εa)−Σfree

ε (εp)
∣∣p, r〉〈p, r

∣∣a〉
)

(12.120)

Coulomb gauge

The transverse part of the self-energy expression in Coulomb gauge is in
analogy with the Feynman expression (Eq. 12.118)

〈r|Σ(εa)|a〉Trans =
〈
rt
∣∣∣
∫

cdκ fC
T (κ)

εa − εt − (cκ− iη)t

∣∣∣ta
〉

(12.121)

where fC
T is given by Eq. (4.60). The Coulomb part is given by Eq. (8.49)

〈b|Σ(εa)|a〉Coul =
1
2

sgn(εt)
〈
bt
∣∣∣ e2

4π2ε0r12

∫
2κ dκ sinκr12

κ2

∣∣∣ta
〉

(12.122)

and the renormalization can be performed as in the Feynman gauge.

The procedure of direct numerical regularization outlined here is presently
being tested by the Gothenburg group.





Chapter 13

Summary and Conclusions

The all-order forms of many-body perturbation theory (MBPT), like the
coupled-cluster approach (CCA), have been extremely successful in calcula-
tions on atomic and in particular on molecular systems. Here, the dominating
parts of the electron correlation can be evaluated to essentially all orders of
perturbation theory.

A shortcoming, however, of the standard MBPT/CCA procedures is that
quantum-electrodynamics (QED) can only be included in a very limited fash-
ion (first-order energy). Particularly for highly charged systems, QED effects
can be quite important. Certain experimental data on such systems are now
several orders of magnitude more accurate than the best available theoret-
ical calculation. It is believed that this shortcoming is due to the omitted
combination of many-body and QED effects in presently available theoreti-
cal procedures.

The procedure presented in this book, which is based upon quantum-field
theory, describes—for the first time—a road towards a rigorous unification
of QED and MBPT. The procedure is based upon the covariant evolution
operator, which describes the time evolution of the relativistic wave function
or state vector. The procedure is for two-electron systems fully compatible
with the relativistically covariant Bethe-Salpeter equation, but it is more
versatile.

The procedure is—in contrast to the standard Bethe-Salpeter equation—
applicable to a general multi-reference (quasi-degenerate) model space. It
can also be combined with the coupled-cluster approach and is, in principle,
applicable to systems with more than two electrons.

The covariant evolution operator contains generally singularities that can
be eliminated. The regular part is referred to as the Green’s operator, which
is a generalization of the Green’s-function concept.
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In principle, the Green’s operator—as well as the Bethe-Salpeter equation—
has individual times for the particles involved. Most applications, though, em-
ploy the equal-time approximation, where the times are equalized, in order to
make the procedure consistent with the quantum-mechanical picture.

The Green’s operator for time t = 0 corresponds to the wave operator
used in standard MBPT, and the time derivative at t = 0, operating within
the model space, to the many-body effective interaction. This connects the
field-theoretical procedure with the standard MBPT.

The formalism presented here has been partially tested numerically by
the Gothenburg atomic theory group, and in cases where comparison can be
made with the more restricted S-matrix formulation, very good agreement is
reported.

A big challenge is the renormalization of the radiative effects, which gener-
ally has to be performed using the Coulomb gauge, in order to take advantage
of the developments in MBPT/CCA. Schemes have been developed for this
process but so far not been implemented in a QED-MBPT procedure.

When the procedure is more developed, critical tests can be performed to
find out to what extent the new effects will improve the agreement between
theory and accurate experimental data.



Part IV

Appendices





Appendix A

Notations and definitions

A.1 Four-component vector notations

A four-dimensional contravariant vector is defined 1

x = xµ = (x0, x1, x2, x3) = (x0,x) = (ct,x) (A.1)

where µ=0,1,2,3 and x is the three-dimensional coordinate vector x =
(x1, x2, x3) ≡ (x, y, z). The four-dimensional differential is

d4x = cdt− d3x and d3x = dxdy dz

A corresponding covariant vector is defined

xµ = (x0, x1, x2, x3) = gµνx
ν = (x0,−x) = (ct,−x) (A.2)

which implies that

x0 = x0 x = −xi (i = 1, 2, 3) (A.3)

gµν is a metric tensor, which can raise the so-called Lorentz indices of the
vector. Similarly, an analogous tensor can lower the indices

xµ = gµνxν (A.4)

These relations hold generally for four-ddimensional vectors.

There are various possible choices of the metric tensors, but we shall use
the following

1 In all appendices we display complete formulas with all fundamental constants. As before.
we employ the Einstein summation rule with summation over repeated indices.
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gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (A.5)

The four-dimensional scalar product is defined as the product of a con-
travariant and a covariant vector:

ab = aµbµ = a0b0 − a · b (A.6)

where a · b is the three-dimensional scalar product

a · b = axbx + ayby + azbz

The covariant gradient operator is defined as the gradient with respect to
a contravariant coordinate vector:

∂µ =
∂

∂xµ
=
(1
c

∂

∂t
,∇
)

(A.7)

and the contravariant gradient operator analogously

∂µ =
∂

∂xµ
=
(1
c

∂

∂t
,−∇

)
(A.8)

∇ is the three-dimensional gradient operator

∇ =
∂

∂x
êx +

∂

∂y
êy +

∂

∂z
êz

where (êx, êy, êz) are unit vectors in the coordinate directions.

The four-dimensional divergence is defined

∂µA
µ =

1
c

∂A0

∂t
+∇ ·A = ∇A (A.9)

where ∇ ·A is the three-dimensional divergence

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

The d’Alembertian operator is defined

� = ∂µ∂µ =
1
c2
∂2

∂t2
−∇2 = ∇2 (A.10)

where

∇2 = ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
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is the Laplacian operator.

A.2 Vector spaces

Notations

X,Y, .. are sets with elements x, y, ..
x ∈ X means that x is an element in the set X.
N is the set of nonnegative integers. R is the set of real numbers. C is the
set of complex numbers.
Rn is the set of real n-dimensional vectors. Cn is the set of complex n-
dimensional vectors.
A ⊂ X means that A is a subset of X.
A ∪B is the union of A and B. A ∩B is the intersection of A and B.
A = {x ∈ X : P} means that A is the set of all elements x in X that satisfy
the condition P .
f : X → Y represents a function or operator, which mens that f maps
uniquely the elements of X onto elements of Y .
A functional is a unique mapping f : X → R (C) of a function space on the
space of real (complex) numbers.
The set of arguments x ∈ A for which the function f : A → B is defined is
the domain, and the set of results y ∈ B which can be produced is the range.
(a, b) is the open interval {x ∈ R : a < x < b}. [a, b] is the closed interval
{x ∈ R : a ≤ x ≤ b}.
sup represents the supremum, the least upper bound of a set
inf represents the infimum, the largest lower bound of a set.

Basic definitions

A real (complex) vector space or function space X is an infinite set of el-
ements, x, referred to as points or vectors, which is closed under addition,
x + y = z ∈ X, and under multiplication by a real (complex) number c,
cx = y ∈ X. The continuous functions f(x) on the interval x ∈ [a, b] form a
vector space, also with some boundary conditions, like f(a) = f(b) = 0.

A subset of X is a subspace of X if it fulfills the criteria for a vector space.
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A norm of a vector space X is a function p : X → [0,∞] with the
properties

• (1) p(λx) = |λ|p(x)

• (2) p(x+ y) ≤ p(x) + p(y) for all real λ (λ ∈ R) and all x, y ∈ X
• (3) that p(x) = 0 always implies x = 0.

The norm is written p(x) = ||x||. We then have ||λx|| = |λ| ||x|| and
||x+ y|| ≤ ||x|| + ||y|| and ||x|| = 0 ⇒ x = 0. If the last condition is not
fulfilled, it is a seminorm.

A vector space with a norm for all its elements is a normed space, denoted
(X, ||·||). The continuous functions, f(x), on the interval [a, b] form a normed
space by defining a norm, for instance, ||f || =

[ ∫ b
a

dt |f(t)|2]1/2. By means
of the Cauchy-Schwartz inequality, it can be shown that this satisfies the
criteria for a norm [75, p. 93].

If f is a function f : A → Y and A ⊂ X, then f is defined in the
neighborhood of x0 ∈ X, if there is an ε > 0 such that the entire sphere
{x ∈ X : ||x− x0|| < ε} belongs to A [75, p. 309].

A function/operator f : X → Y is bounded, if there exists a number C
such that

sup
0 6=x∈X

[ ||fx||
||x||

]
= C <∞

Then C = ||f || is the norm of f . Thus, ||fx|| ≤ ||f || ||x|| .
A function f is continuous at the point x0 ∈ X, if for every δ > 0 there

exists an ε > 0 such that for every member of the set x : ||x− x0|| < ε we
have ||fx− fx0|| ≤ δ [75, p. 139]. This can also be expressed so that f is
continuous at the point x0, if and only if fx→ fx0 whenever xn → x0, {xn}
being a sequence in X, meaning that fxn converges to fx0, if x converges to
x0 [224, p. 70].

A linear function/operator is continuous if and only if it is bounded [75,
p. 197, 213], [49, p. 22].

A functional f : X → R is convex if

f(tx+ (t− 1)y) ≤ tf(x) + (t− 1)f(y)

for all x, y ∈ X and t ∈ (0, 1).

A subset A ⊂ X is open, if for every x ∈ A there exists an ε > 0
such that the entire ball Br(x) = {y ∈ X| ||y − x|| < ε} belongs to A, i.e.,
Br(x) ⊂ A [20, p. 363],[75, p. 98],[224, p. 57].
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A sequence {xn} , where n is an integer (n ∈ N), is an infinite numbered
list of elements in a set or a space. A subsequence is a sequence, which is a
part of a sequence.

A sequence {xn ∈ A} is (strongly) convergent towards x ∈ A, if and
only if for every ε > 0 there exists an N such that ||xn − x|| < ε for all
n > N [75, p. 95, 348].

A sequence is called a Cauchy sequence if and only if for every ε > 0 there
exists an N such that ||xn − xm|| < ε for all m,n > N . If a sequence {xn}
is convergent, then it follows that for n,m > N

||xm − xn|| = ||(xn − x) + (x− xm)|| ≤ ||xn − x||+ ||xm − x|| < 2ε

which means that a convergent sequence is always a Cauchy sequence. The
opposite is not necessarily true, since the point of convergence need not be
an element of X [50, p. 44].

A subset A of a normed space is termed compact, if every infinite sequence
of elements in A has a subsequence, which converges to an element in A. The
closed interval [0,1] is an example of a compact set, while the open interval
(0,1) is noncompact, since the sequence 1, 1/2, 1/3... and all of its subse-
quences converge to 0, which lies outside the set [224, p. 149]. This sequence
satisfies the Cauchy convergence criteria but not the (strong) convergence
criteria.

A dual space or adjoint space of a vector space X, denoted X∗, is the space
of all functions on X.

An inner or scalar product in a vector space X is a function 〈·, ·〉 : X ×
X → R with the properties (1)

〈x, λ1y1 + λ2y2〉 = λ1〈x, y1〉+ λ2〈x, y2〉 , 〈x, y〉 = 〈y, x〉

for all x, y, y1, y2 ∈ X and all λj ∈ R , and (2) 〈x, x〉 = 0 only if x = 0.

Special spaces

Banach space

A Banach space is a normed space in which every Cauchy sequence converges
to a point in the space.
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Hilbert space

A Banach space with the norm ||x|| = +
√
〈x, x〉 is called a Hilbert space [20,

p. 364].

Fock space

A Fock space is a Hilbert space, where the number of particles is variable or
unknown.

A.3 Special functions

Dirac delta function

We consider the integral ∫ L/2

−L/2
dx eikx (A.11)

Assuming periodic boundary conditions, e−iLx/2 = eiLx/2, limits the possible
k values to k = kn = 2πn/L. Then

1
L

∫ L/2

−L/2
dx eiknx = δkn,0 = δ(kn, 0) (A.12)

where δn,m is the Kronecker delta factor

δn,m =
{

1 if m = n
0 if m 6= n

(A.13)

If we let L→∞, then we have to add a ’damping factor ’ e−γ|x|, where γ
is a small positive number, in order to make the integral meaningful,

∫ ∞
−∞

dx eikx e−γ|x| =
2γ

k2 + γ2
= 2π∆γ(k) (A.14)

In the limit γ → 0, we have

lim
γ→0

∆γ(k) =
1

2π
lim
γ→0

∫ ∞
−∞

dx eikx e−γ|x| = δ(k) (A.15)
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which can be regarded as a definition of the Dirac delta function, δ(k). For-
mally, we write this relation as

∫ ∞
−∞

dx
2π

eikx = δ(k) (A.16)

The ∆ function also has the following properties

lim
γ→0

πγ ∆γ(x) = δx,0∫ ∞
−∞

dx∆γ(x− a)∆η(x− b) = ∆γ+η(a− b) (A.17)

In three dimensions equation (Eq. A.12) goes over into

1
V

∫

V

d3x eikn·x = δ3(kn, 0) = δ(knx, 0) δ(kny, 0) δ(knz, 0) (A.18)

In the limit where the integration is extended over the entire three-dimensional
space, we have in analogy with (Eq. A.16)

∫
d3x

(2π)3
eik·x = δ3(k) (A.19)

Integrals over ∆ functions

We consider the integral
∫ ∞
−∞

dx δ(x− a) f(x) = lim
γ→0

∫ ∞
−∞

dx∆γ(x− a) f(x)

=
1

2π
lim
γ→0

∫ ∞
−∞

dx
2γ

(x− a)2 + γ2
f(x) (A.20)

The integral can be evaluated using residue calculus and leads to

∫ ∞
−∞

dx δ(x− a) f(x) = f(a) (A.21a)

provided the function f(x) has no poles. In three dimensions we have similarly
∫

d3x δ(x− x0) f(x) = f(x0) (A.21b)
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integrated over all space.

The relations above are often taken as the definition of the Dirac delta
function, but the procedure applied here is more rigorous.

Next, we consider the integral over two ∆ functions
∫

dx∆γ(x− a)∆η(x− b) =
1

(2π)2

∫
dx

2γ
(x− a)2 + γ2

2η
(x− b)2 + η2

=
1

4π2i

∫
dx
[ 1
x− a− iγ

− 1
x− a+ iγ)

] 2η
(x− b+ iη)(x− b− iη)

=
1

2πi

[ 1
b− a− i(γ + η)

− 1
b− a+ i(γ + η)

]
=

1
2π

2(γ + η)
(a− b)2 + (γ + η)2

(A.22)

after integrating the first term over the negative and the second term over
the positive half plane. Thus,

∫
dx∆γ(x− a)∆η(x− b) = ∆γ+η(a− b) (A.23)

and we see that here the widths of the ∆ functions are added.

Now we consider some integrals with the ∆ functions in combination with
electron and photon propagators that are frequently used in the main text.

First, we consider the integral with one ∆ function and an electron prop-
agator (Eq. 4.10)

∫
dω

1
ω − εj + iη

∆γ(εa − ω) =
∫

dω
2π

1
ω − εj + iη

2γ
(εa − ω)2 + γ2

=
∫

dω
2π

1
ω − εj + iη

2γ
(εa − ω + iγ)(εa − ω − iγ)

The pole of the propagator yields the contribution ∆γ(εa−εj), which vanishes
in the limit γ → 0, if εa 6= εj . Nevertheless, we shall see that this pole has a
significant effect on the result.

Integrating above over the positive half plane, with the single pole εa+ iγ,
yields

1
εa − εj + iγ + iη

and integrating over the negative half plane, with the two poles εj−iη, εa−iγ,
yields

− 2iγ
(εa − εj + iγ + iη)(εa − εj − iγ + iη)

+
1

εa − εj − iγ + iη
=

1
εa − εj + iγ + iη
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which is identical to the previous result. We observe here that the pole of the
propagator, which has a vanishing contribution in the limit γ → 0, has the
effect of reversing the sign of the iγ term.

The γ parameter originates from the adiabatic damping and is small but
finite, while the η parameter is infinitely small and only determines the po-
sition of the pole of the propagator. Therefore, if they appear together, the
γ term dominates, and the η term can be omitted. This yields

∫
dω

1
ω − εj + iη

∆γ(εa − ω) =
1

εa − εj + iγ
(A.24)

noting that the η parameter of the propagator is replaced by the damping
parameter γ.

Secondly, we consider the integral with the photon propagator (Eq. 4.31)

.

∫
dω

1
ω2 − κ2 + iη

∆γ(εa − ω) =
1

2κ

∫
dω
2π

[ 1
ω − κ+ iη

− 1
ω + κ− iη

]

2γ
(εa − ω + iγ)(εa − ω − iγ)

=
1

2κ

[ 1
εa + iγ − κ+ iη

− 1
εa − iγ + κ− iη

]

=
1

ε2
a − (κ− iγ − iη)2

(A.25)

or, neglecting the η term,

∫
dω

1
ω2 − κ2 + iη

∆γ(εa − ω) =
1

ε2
a − κ2 + iγ

(A.26)

noting that κ ≥ 0.

Finally, we consider the integrals of two ∆ functions and the propagators.
With the electron propagator we have
∫

dω
1

ω − εj + iη
∆γ(εa − ω)∆γ(εb − ω) =

1
(2πi)2

∫
dω

1
ω − εj + iη

[ 1
εa − ω − iγ

− 1
εa − ω + iγ)

][ 1
εb − ω − iγ

− 1
εb − ω + iγ)

]

Here, three of the combinations with poles on both sides of the real axis
contribute, which yields

1
2πi

[
1

(εb − εj + iγ)(εa − εb − 2iγ)
+

1
(εa − εj + iγ)(εb − εa − 2iγ)

− 1
(εa − εj + iγ)(εb − εj + iγ)

]
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The last two terms become

1
εa − εj + iγ

[ 1
εb − εa − 2iγ

− 1
εb − εj + iγ

]
≈ 1

(εb − εa − 2iγ)(εb − εj + iγ)

neglecting an imaginary term in the numerator. This leads to

∫
dω

1
ω − εj + iη

∆γ(εa − ω)∆γ(εb − ω) ≈ 1
εa − εj + iγ

∆2γ(εa − εb) (A.27)

Similarly, we find for the photon propagator

∫
dω

1
ω2 − κ2 + iη

∆γ(εa − ω)∆γ(εb − ω) ≈ 1
εa − κ2 + iγ

∆2γ(εa − εb) (A.28)

Formally, we can obtain the integral with propagators by replacing the ∆
function by the corresponding Dirac delta function, noting that we then have
to replace the imaginary parameter η in the denominator by the damping
factor γ.

The Heaviside step function

The Heaviside step function is defined

Θ(t) = 1 t′ > t

= 0 t′ < t (A.29)

The step function can also be given the integral representation

Θ(t) = i lim
ε→0

∫ ∞
−∞

dω
2π

e−iωt

ω + iε
(A.30)

from which we obtain the derivative of the step function

dΘ(t)
dt

= lim
ε→0

∫ ∞
−∞

dω
2π

ω

ω + iε
e−iωt = δ(t) (A.31)

where δ(t) is the Dirac delta function.



Appendix B

Second quantization

B.1 Definitions

(See, for instance, refs [206, Ch.5], [118, Ch.11]). In second quantization —also
known as the number representation—a state is represented by a vector (see
App. C.1) |n1, n2, · · ·〉, where the numbers represent the number of particles
in the particular basis state (which for fermions can be equal only to one or
zero).

Second quantization is based upon annihilation/creation operators cj/c
†
j ,

which annihilate and create, respectively, a single particle. If we denote by
|0〉 the vacuum state with no particle, then

c†j |0〉 = |j〉 (B.1)

represents a single-particle state. In the coordinate representation (Eq. C.19)
this corresponds to the wave function

φj(x) = 〈x|j〉 (B.2)

satisfying the single-electron Schrödinger or Dirac equation. Obviously, we
have

cj |0〉 = 0 (B.3)

For fermions the operators satisfy the anti-commutation relations

{c†i , c†j} = c†i c
†
j + c†jc

†
i = 0

{ci, cj} = cicj + cjci = 0

{c†i , cj} = c†i cj + cjc
†
i = δij (B.4)

where δij is the Kronecker delta factor (Eq. A.13). It then follows that
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c†i c
†
j |0〉 = −c†jc†i |0〉 (B.5)

which means that c†i c
†
i |0〉 represents an antisymmetric two -particle state,

which we denote in the following way 1

c†i c
†
j |0〉 = |{i, j}〉 (B.6)

The antisymmetric form is required for fermions by the quantum-mechanical
rules. A corresponding bra state is

〈0|clck = 〈{k, l}| (B.7)

and it then follows that the states are orthonormal.

In the coordinate representation the state above becomes

〈x1x2|{i, j}〉 =
1√
2

[
φi(x1)φj(x2)− φj(x1)φi(x2)

]
(B.8)

Generalizing this to a general many-particle system, leads to an antisymmet-
ric product, known as the Slater determinant,

〈x1,x2, · · ·xN |c†ac†b · · · c†N |0〉 =
1√
N !

Det{a, b, · · ·N}

=
1√
N !

∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) · · ·φ1(xN )
φ2(x1) φ2(x2) · · ·φ2(xN )
· · · · · ·

φN (x1) φN (x2) · · ·φN (xN )

∣∣∣∣∣∣∣∣
(B.9)

For an N -particle system we define one- and two-particle operators by

F =
n∑
n=1

fn (B.10)

G =
n∑

m<n=1

gmn (B.11)

respectively, where the fn and the gmn operators are identical, differing only
in the particles they operate on. In second quantization these operators can
be expressed (see, for instance, ref. [118, Sect. 11.1]) 2

1 We shall follow the convention of letting the notation |i, j〉 denote a straight product
function |i, j〉 = φi(x1)φj(x2), while |{i, j}〉 represents an antisymmetric function.
2 Occasionally, we use a ’hat’ on the operators to emphasize their second-quantized form.
We employ also the Einstein summation rule with summation over all indices that appear
twice. Note the order between the annihilation operators.
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F̂ = c†i 〈i|f |j〉 cj
Ĝ =

1
2
c†i c
†
j 〈ij|g|kl〉 clck (B.12)

etc. (note order between the operators in the two-particle case). Here,

〈i|f |j〉 =
∫

d3x1 φ
∗
i (x1) f φj(x1)

〈ij|g|kl〉 =
∫∫

d3x1 d3x2 φ
∗
i (x1)φ∗j (x2) g φk(x1)φl(x2) (B.13)

We can check the formulas above by evaluating

〈{cd}|Ĝ|{ab}〉 =
〈{cd}

∣∣1
2
c†i c
†
j 〈ij|g|kl〉 clck

∣∣{ab}〉

=
1
2
〈
0
∣∣cdcc c†i c†j 〈ij|g|kl〉 clck c†ac†b

∣∣0〉 (B.14)

Normal ordering the operators, yields

clck c
†
ac
†
b|0〉 = δk,aδl,b − δl,aδk,b

and similarly
〈0|cdcc c†i c†j = δi,dδj,c − δj,cδi,d

Then we have
〈{cd}|Ĝ|{ab}〉 = 〈cd|g|ab〉 − 〈dc|g|ab〉

which agrees with the results using determinantal wave functions (see, for
instance, ref. [118, Eq. (5.19)])

〈{cd}|Ĝ|{ab}〉 =
1
2
〈
cd− dc

∣∣Ĝ|ab− ba〉 (B.15)

We define the electron field operators in the Schrödinger representation
(Eq. 3.1) by

ψ̂S(x) = cj φj(x); ψ̂†S(x) = c†j φ
∗
j (x) (B.16)

Then the second-quantized one-body operator can be expressed

F̂ =
∫

d3x c†iφ
∗
i (x) f cjφj(x) =

∫
d3x ψ̂†S(x) f ψ̂S(x) (B.17)

and similarly

Ĝ =
1
2

∫∫
d3x1d3x2 ψ̂

†
S(x1)†S(x2) g ψ̂S(x2)ψ̂S(x1) (B.18)
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The non-relativistic Hamiltonian for an N -electron system (Eq. 2.11) con-
sists of a single-particle and a two-particle operator

H1 =
N∑
n=1

(
− ~2

2m
∇2
n + vext(xn)

)
=

N∑
n=1

h1(n)

H2 =
N∑

m<n

e2

4πε0 rmn
=

N∑
m<n

h2(m,n) (B.19)

and in second quantization this can be expressed

Ĥ =
∫

d3x1 ψ̂
†
S(x1)h1 ψ̂S(x1)+

1
2

∫∫
d3x1 d3x2 ψ̂

†
S(x1) ψ̂†S(x2)h2 ψ̂S(x2) ψ̂S(x1)

(B.20)

B.2 Heisenberg and interaction pictures

In an alternative to the Schrödinger picture, the Heisenberg picture (HP),
the states are time independent and the time-dependence is transferred to
the operators,

|ΨH〉 = |ΨS(t = 0)〉 = eiĤt/~|ΨS(t)〉 ; ÔH = eiĤt/~ÔS e
−iĤt/~ (B.21)

In perturbation theory the Hamiltonian is normally partitioned into a
zeroth-order Hamiltonian H0 and a perturbation V (Eq. 2.48), which using
second-quantized notations becomes

Ĥ = Ĥ0 + V̂ (B.22)

We can then define an intermediate picture, known as the interaction pic-
ture (IP), where, the operators and state vectors are related to those in the
Schrödinger picture by

|ΨI(t)〉 = eiĤ0t/~ |ΨS(t)〉; ÔI(t) = eiĤ0t/~ ÔS e−iĤ0t/~ (B.23)

The relation between the Heisenberg and the interaction pictures is 3

|ΨH〉 = eiĤt/~e−iĤ0t/~|ΨI(t)〉; ÔH(t) = eiĤt/~e−iĤ0t/~ ÔI eiĤ0t/~e−iĤt/~

(B.24)
Using the relation (Eq. 3.9), we then have

3 Note that Ĥ and Ĥ0 generally do not commute, so that in general eiĤt/~e−iĤ0t/~ 6=
eiV̂ t/~
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|ΨH〉 = U(0, t)|ΨI(t)〉; ÔH(t) = U(0, t) ÔI U(t, 0) (B.25)

The state vector of time-independent perturbation theory corresponds in all
pictures considered here to the time-dependent state vectors with t = 0,

|Ψ〉 = |ΨH〉 = |ΨS(0〉) = |ΨI(0)〉 (B.26)

In the Heisenberg picture (Eq. B.21) the electron-field operators (Eq. B.16)
become

ψ̂H(x) = eiĤt/~ ψ̂S(x) e−iĤt/~ ; ψ̂†H(x) = eiĤt/~ ψ̂†S(x) e−iĤt/~ (B.27)

and in the interaction picture (IP) (Eq. B.23)

ψ̂I(x) = eiĤ0t/~ψ̂S(x) e−iĤ0t/~ = eiĤ0t/~cj φj(x) e−iĤ0t/~ = cj φj(x) e−iεjt/~ = cj φj(x)

ψ̂†I (x) = c†j φ
∗
j (x) eiεjt/~ = c†j φ

∗
j (x) (B.28)

where φj(x) is an eigenfunction of H0. We also introduce the time-dependent
creation/annihilations operators in the IP by

cj(t) = cj e
−iεjt/~ ; c†j(t/~) = c†j e

iεjt/~ (B.29)

which gives

ψ̂I(x) = cj(t)φj(x) ; ψ̂†I (x) = c†j(t)φ
∗
j (x) (B.30)

From the definition Eq. (B.23) we have

∂

∂t
ÔI(t) =

∂

∂t

[
eiĤ0t/~ ÔS e−iĤ0t/~

]
= i
[
H0, ÔI(t)

]
(B.31)





Appendix C

Representations of states and
operators

C.1 Vector representation of states

A state of a system can be represented by the wave function or Schrödinger
function Ψ(x), where x stands for all (space) coordinates. If we have a
complete basis set available in the same Hilbert space (see Appendix A.2),
{φj(x)}, then we can expand the function as

Ψ(x) = ajφj(x) (C.1)

with summation over j according to the Einstein summation rule. If the
basis set is orthonormal, implying that the scalar or inner product satisfies
the relation

〈i|j〉 =
∫

dxφ∗j φj(x) = δi,j (C.2)

then the expansion coefficients are given by the scalar product

aj =
∫

dxφ∗j Ψ(x) = 〈j|Ψ〉 (C.3)

These numbers form a vector, which is the vector representation of the state Ψ
or the state vector,

∣∣Ψ〉 =




〈1|Ψ〉
〈2|Ψ〉
·
·

〈N |Ψ〉




(C.4)

Note that this is just a set of numbers—no coordinates are involved. N is
here the number of basis states, which may be finite or infinite. [The basis
set need not be numerable and can form a continuum in which case the sum
over the states is replaced by an integral.] The basis states are represented
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by unit vectors |j〉

∣∣1〉 =




1
0
0
·
·




∣∣2〉 =




0
1
0
·
·




etc. (C.5)

The basis vectors are time independent, and for time-dependent states the
time dependence is contained in the coefficients

|Ψ(t)〉 = aj(t)|j〉 (C.6)

|Ψ〉 is a ket vector, and for each ket vector there is a corresponding
bra vector 〈

Ψ
∣∣ = (a∗1, a

∗
2, · · · ) (C.7)

where the asterisk represents complex conjugate. It follows from Eq. (C.1)
that

a∗j = 〈Ψ |j〉 (C.8)

The scalar product of two general vectors with expansion coefficients aj and
bj , respectively, becomes

〈Ψ |Φ〉 = a∗j bj (C.9)

with the basis vectors being orthonormal. This is identical to the scalar prod-
uct of the corresponding vector representations

〈Ψ |Φ〉 =
(
a∗1, a

∗
2, · · ·

)



b1
b2
·
·


 (C.10)

The ket vector (Eq. C.4) can be expanded as

|Ψ〉 = |j〉〈j|Ψ〉 (C.11)

But this holds for any vector in the Hilbert space, and therefore we have the
formal relation in that space

|j〉〈j| ≡ I (C.12)

where I is the identity operator. This is known as the resolution of the identity.
Using the expression for the coefficients, the scalar product (Eq. C.9) can also
be expressed

〈Ψ |Φ〉 = 〈Ψ |j〉〈j|Φ〉 (C.13)
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which becomes obvious, considering the the expression for the identity oper-
ator.

C.2 Matrix representation of operators

The operators we are dealing with have the property that when acting on a
function in our Hilbert space they generate another (or the same) function
in that space,

Ô Ψ(x) = Φ(x) (C.14)

or with vector notations
Ô|Ψ〉 = |Φ〉 (C.15)

Expanding the vectors on the l.h.s according to the above, yields

|i〉〈i|Ô|j〉〈j|Ψ〉 = |Φ〉 (C.16)

Obviously, we have the identity

Ô ≡ |i〉〈i|Ô|j〉〈j (C.17)

The numbers 〈i|Ô|j〉 are matrix elements

〈i|Ô|j〉 =
∫

dxφ∗i (x) Ô φj(x) (C.18)

and they form the matrix representation of the operator

Ô ⇒


〈1|Ô|1〉 〈1|Ô|2〉 · · ·
〈2|Ô|1〉 〈2|Ô|2〉 · · ·
· · · · · · · · ·




Standard matrix multiplication rules are used in operations with vector and
matrix representations, for instance,

Ô|Ψ〉 = |Φ〉 ⇒


〈1|Ô|1〉 〈1|Ô|2〉 · · ·
〈2|Ô|1〉 〈2|Ô|2〉 · · ·
· · · · · · · · ·







〈1|Ψ〉
〈2|Ψ〉
·
·

〈N |Ψ〉




=




〈1|Φ〉
〈2|Φ〉
·
·

〈N |Φ〉




where
〈k|Φ〉 = 〈k|Ô|j〉〈j|Φ〉

summed over the index j.
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C.3 Coordinate representations

Representation of vectors

The coordinate representation of the ket vector |Ψ〉 (Eq. C.4) is denoted
〈x|Ψ〉, and this is identical to the corresponding state or (Schrödinger) wave
function

〈x|Ψ〉 ≡ Ψ(x) ; 〈Ψ |x〉 ≡ Ψ∗(x) (C.19)

This can be regarded as a generalization of the expansion for the expansion
coefficients (Eq. C.1), where the space coordinates correspond to a continuous
set of basis functions.

The basis functions φj(x) have the coordinate representation 〈x|j〉, and
the the coordinate representation (Eq. C.1) becomes

〈x|Ψ〉 = aj φj(x) = aj 〈x|j〉 (C.20)

The scalar product between the functions Ψ(x) and Φ(x) is

〈Ψ |Φ〉 =
∫

dxΨ∗(x)Φ(x) (C.21)

which we can express as

〈Ψ |Φ〉 =
∫

dx 〈Ψ |x〉〈x|Φ〉 (C.22)

We shall assume that an integration is always understood, when Dirac nota-
tions of the kind above are used, i.e.,

〈Ψ |Φ〉 = 〈Ψ |x〉〈x|Φ〉 (C.23)

in analogy with the summation rule for discrete basis sets. This leads to the
formal identity

|x〉〈x| ≡ I (C.24)

which is consistent with the corresponding relation (Eq. C.12) with a numer-
able basis set.

Closure property

From the expansion Eq. (C.1) we have
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Ψ(x) =
∫

dx′ φ∗j (x
′)Ψ(x′)φj(x) (C.25)

This can be compared with the integration over the Dirac delta function

Ψ(x) =
∫

dx′ δ(x− x′)Ψ(x′) (C.26)

which leads to the relation known as the closure property

φ∗j (x
′)φj(x) = δ(x− x′) (C.27)

(with summation over j). In Dirac notations this becomes

〈x|j〉〈j|x′〉 = δ(x− x′)

or
〈x|I|x′〉 = δ(x− x′) (C.28)

which implies that the delta function is the coordinate representation of the
identity operator (Eq. C.12). Note that there is no integration over the space
coordinates here.

Representation of operators

The coordinate representation of an operator is expressed in analogy with
that of a state vector

Ô ⇒ 〈x|Ô|x′〉 = Ô(x, x′) (C.29)

which is a function of x and x′. An operator Ô acting on a state vector |Ψ〉
is represented by

〈xÔ|Ψ〉 ⇒ 〈x|Ô|x′〉〈x′|Ψ〉 =
∫

dx′ Ô(x, x′)Ψ(x′) (C.30)

which is a function of x.





Appendix D

Dirac equation and the momentum
representation

D.1 Dirac equation

Free particles

The standard quantum-mechanical operator representation

E → Ê = i~
∂

∂t
; p→ p̂ = −i~∇; x→ x̂ = x (D.1)

where E, p, x represent the energy, momentum and coordinate vectors and
Ê, p̂, x̂ the corresponding quantum-mechanical operators, was previously
used to obtain the non-relativistic Schrödinger equation (Eq. 2.9). If we apply
the same procedure to the relativistic energy relation

E2 = c2p2 +m2
ec

4 (D.2)

where c is the velocity of light in vacuum and me the mass of the electron,
this would lead to

−~2 ∂
2ψ(x)
∂t2

=
(
c2p̂2 +m2

ec
4
)
ψ(x) (D.3)

which is the Schrödinger relativistic wave equation. It is also known as the
Klein-Gordon equation. In covariant notations (see Appendix, section A.1) it
can be expressed (

~2�+m2
ec

2
)
ψ(x) = 0 (D.4)

In contrast to the non-relativistic Schrödinger equation (Eq. 2.9) the
Klein-Gordon equation is non-linear and therefore the superposition principle
of the solutions cannot be applied. In order to obtain a linear equation that
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is consistent with the energy relation (Eq. D.2) and the quantum-mechanical
substitutions (Eq. D.1), Dirac proposed the form for a free electron

i~
∂ψ(x)
∂t

=
(
cα · p̂+ βmec

2
)
ψ(x) (D.5)

where α and β are constants (but not necessarily pure numbers). This equa-
tion is the famous Dirac equation for a relativistic particle in free
space .

The equivalence with the equation (Eq. D.3) requires

(cα · p̂+ βmec
2)(cα · p̂+ βmec

2) ≡ c2p̂2 +m2
ec

4

which leads to

α2
x = α2

y = α2
z = β2 = 1

αxαy + αyαx = 0 (cyclic)
αβ + βα = 0 (D.6)

where ”cyclic” implies that the relation holds for x→ y → z → x.

The solution proposed by Dirac is the so-called Dirac matrices

α =
(

0 σ
σ 0

)
; β =

(
1 0
0 −1

)
(D.7)

where σ = (σx, σy, σz) are the Pauli spin matrices

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
(D.8)

The Dirac matrices anticommute

αβ + βα = 0 (D.9)

With the covariant four-dimensional momentum vector (Eq. A.2) pµ =
(p0,−p), and the corresponding vector operator

p̂µ =
(
p̂0,−p̂

)
=
( i~
c

∂

∂t
, i~∇

)
(D.10)

the Dirac equation (Eq. D.5) becomes
(
cp̂0 − cα · p̂− βmec

2
)
ψ(x) = 0 (D.11)

or with
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αµ = (1,α) (D.12)

and αµp̂µ = p̂0−α·p̂ we obtain the covariant form of the Dirac Hamiltonian
for a free-particle

HD = −cαµp̂µ + βmec
2 (D.13)

and the corresponding Dirac equation

(
cαµp̂µ − βmec

2
)
ψ(x) = 0 (D.14)

With the Dirac gamma matrices

γµ = βαµ (D.15)

this can also be expressed (β2 = 1)

(
γµp̂µ −mec

)
ψ(x) =

(ˆ6 p−mec
)
ψ(x) = 0 (D.16)

where ˆ6 p is the ”p-slash” operator

ˆ6 p = γµp̂µ = βαµp̂µ = β
(
p̂0 −α · p̂

)
(D.17)

It should be observed that in the covariant notation p̂0 is normally discon-
nected from the energy, i.e.,

p̂0 6=
√
p̂2 +m2

ec
2 (D.18)

This is known as off the mass shell . When the equality above holds, it is
referred to as on the mass shell , which can also be expressed

p̂2 = p̂2
0 − p̂2 = m2

ec
2 or ˆ6 p = mec (D.19)

In separating the wave function into space and time parts,

ψ(x) = φp(x) e−iεpt/~ (D.20)

the time-independent part of the Dirac eqn (Eq. D.5) becomes

ĥfree
D (p̂)φp(x) = εp φp(x) (D.21)

where
ĥfree

D = cα · p̂ + βmec
2 (D.22)

is the free-electron Dirac Hamiltonian. The Dirac equation can also be
expressed (

β
εp
c
− βα · p̂−mec

)
φp(x) = 0 (D.23)
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Here, φp(x) is a four-component wave function, which can be represented by

φp(x) =
1√
V
ur(p) eip·x ; p̂φp(x) = pφp(x) . (D.24)

(Note the difference between the momentum vector p and the momentum
operator p̂). eip·x represents a plane wave, and ur(p) is a four-component
vector function of the momentum p. For each p there are four independent
solutions (r = 1, 2, 3, 4). The parameter p is in our notations φp and εp
represents p and r or, more explicitly,

φp(x) = φp,r(x) ; εp = εp,r

With the wave function (Eq. 12.1) the Dirac equation (Eq. D.23) leads to
the following equation for the ur(p) functions

(
β
εp
c
− βα · p̂−mec

)
ur(p) = 0

or (
εp/c−mec −σ · p̂
σ · p̂ −εp/c−mec

)
ur(p) = 0 , (D.25)

where each element is a 2 × 2 matrix. This eqn has two solutions for each
momentum vector p:

u+(p) = N+

(
εp/c+mec
σ · p

)
; u−(p) = N−

( −σ · p
−εp/c+mec

)
(D.26)

corresponding to positive (r = 1, 2) and negative (r = 3, 4) eigenvalues, re-
spectively. Defining the momentum component p0—to be distinguished from
the corresponding operator component p̂0 (Eq. D.10)—by

|εp| = Ep = cp0 ; p0 =
√

p2 +m2
ec

2 (D.27)

gives
u+(p) = N+

(
p0 +mec
σ · p

)
; u−(p) = N−

( −σ · p
p0 +mec

)
(D.28)

The corresponding eigenfunctions (Eq. 12.1) are

φp+(x) =
1√
V
u+(p) eip·x e−iEpt/~ φp−(x) =

1√
V
u−(p) eip·x eiEpt/~

(D.29)
including the time dependence according to Eqs (Eq. D.20), (Eq. D.27).

The vectors

u(p) = u+(p) and v(p) = u−(−p) = N−

(
σ · p

p0 +mec

)
(D.30)
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satisfy the eqns

(6 p−mec)u(p) = 0 and ( 6 p+mec) v(p) = 0, (D.31)

where p0 is given by (Eq. D.27). Note that the negative energy solution
corresponds here to the momentum −p for the electron (or +p for the
hole/positron).

Normalization
Several different schemes for the normalization of the u matrices have been
used (see, for instance, Mandl and Shaw [136, Ch. 4]). Here, we shall use

u†r′(p)ur(p) = δr′,r (D.32)

which leads to

u+(p) = |N+|2
(
p0 +mec,σ · p

)(p0 +mec
σ · p

)

= |N+|2(p0 +mec)2 + (σ · p)2 = |N+|2 2p0 (p0 +mec) (D.33)

using (σ · p)2 = p2 = p2
0 −m2

ec
2. This gives

N+ =
1√

2p0 (p0 +mec)
(D.34)

and the same for N−.

With the normalization above we have

u+(p)u†+(p) = |N+|2
(
p0 +mec
σ · p

) (
p0 +mec, σ · p

)

=
1

2p0

(
p0 +mec σ · p
σ · p p0 −mec

)
=
p0 +α · p + βmec

2p0
(D.35)

and similarly

u−(p)u†−(p) =
p0 − (α · p + βmec)

2p0
(D.36)

which gives

u+(p)u†+(p) + u−(p)u†−(p) = I (D.37)
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Dirac equation in an electromagnetic field

Classically, the interaction of an electron with electromagnetic fields is given
by the ”minimal substitution” (Eq. E.15), which in covariant notations can
be expressed 1

pµ → p̂µ + eAµ (D.38)

with the four-dimensional potential being

Aµ(x) =
(φ(x)

c
,−A(x)

)
(D.39)

This implies that the Dirac Hamiltonian (Eq. D.13) becomes

HD = −cαµ(p̂µ + eAµ) + βmec
2 (D.40)

and that the interaction with the fields is given by the term

Hint = −ecαµAµ (D.41)

D.2 Momentum representation

Representation of states

Above in section C.3 we have considered the coordinate representation of a
state vector, φa(x) = 〈x|a〉. An alternative is the momentum representation,
where the state vector is expanded in momentum eigenfunctions. A state |a〉
is then represented by φa(pr) = 〈pr|a〉, which are the expansion coefficients
of the state in momentum eigenfunctions

〈x|a〉 = 〈x|pr〉〈pr|a〉 (D.42)

with summations over p and r. The expansion coefficients become

〈pr|a〉 =
∫

d3x 〈pr|x〉〈x|a〉 =

√
1
V

∫
d3x e−ip·x u†r(p)φa(x) (D.43)

1 In many text books the minimal substitution is expressed as pµ → p̂µ + e
c
Aµ, because a

mixed unit system, like the cgs system, is used. In the SI system—or any other consistent
unit system—the substitution has the form given in the text. The correctness of this
expression can be checked by means of dimensional analysis (see App. K).
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In the limit of continuous momenta the sum over p is replaced by an integral
and V replaced by (2π)3.

Note that the momentum representation is distinct from the Fourier trans-
form. The latter is defined as

〈p|a〉 = ur(p)〈pr|a〉 =

√
1
V

∫
d3x e−ip·x φa(x)

→ (2π)−3/2

∫
d3x e−ip·x φa(x) (D.44)

using the identity (Eq. D.37).

In analogy with Eq. (C.23) we have

〈a|b〉 = 〈a|p, r〉〈p, r|b〉 (D.45)

which yields
|p, r〉〈p, r| ≡ I (D.46)

with implicit summation/integration over p and summation over r.

Representation of operators

Coordinate representation of an operator Ô: O(x2,x1) = 〈x2|Ô|x1〉
Momentum representation of an operator Ô: O(p2r2,p1r1) = 〈p2r2|Ô|p1r1〉.
Transformation between the representations

〈p2r2|Ô|p1r1〉 =
∫∫

d3x2 d3x1 〈p2r2|x2〉〈x2|Ô|x1〉〈x1|p1r1〉 (D.47)

The corresponding Fourier transform is according to (Eq. D.44)

ur2(p2)〈p2r2|Ô|p1r1〉u†r1(p1) (D.48)

Any operator with a complete set of eigenstates can be expanded as

Ô = |j〉 εt 〈j| where Ô|j〉 = εt |j〉 (D.49)

This gives the coordinate and momentum representations

〈x2|Ô|x1〉 = 〈x2|j〉 εj 〈j|x1〉 (D.50a)

〈p2r2|Ô|p1r1〉 = 〈p2, r2|j〉 εj 〈j|p1r1〉 (D.50b)
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Closure property for momentum functions

In three dimensions we have the closure property (Eq. C.27)

φ∗j (x)φj(x′) = δ3(x− x′) (D.51)

and for a continuous set of momentum eigenfunctions this becomes
∫

d3p φ∗pr(x)φpr(x′) = δ3(x− x′) (D.52)

with summation over r. This can also be expressed

〈x|pr〉〈pr|x〉 = δ3(x− x′) (D.53)

also with integration over p. From the closure property Eq. (D.51) we have

φ∗j (p, r)φj(p
′, r′) = δr,r′δ

3(p− p′) (D.54)

which leads to
〈p, r|j〉〈j|p′, r′〉 = δr,r′δ

3(p− p′) (D.55)

D.3 Relations for the alpha and gamma matrices

From the definition of the alpha matrices and the definitions in Appendix A
we find the following useful relations:

αµαµ = 1−α2 = −2
αµααµ = ααµαµ = −2α
αµβαµ = β −αβα = 4β
αµβαµ = β +αβα = −2β
αµ6Aαµ = αµβασA

σαµ = 4 6A (D.56)

where 6A is defined in Eq. (D.17). The gamma matrices satisfy the following
anti-commutation rule:

γνγµ + γµγν = 2gµν

6A 6B+ 6B 6A = 2AB (D.57)

This leads to
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γµγνγµ = −2γµ
γµ 6Aγµ = −2 6A
γµγµ = 4

γµγνγµ = −2γµ
γµ 6Aγµ = −2 6A
γ0γ0 = γ0γ0 = 1
γσγ0 = γ0γ̃σ

6Aγ0 = γ0Ã

γ0γσγ0 = γ̃σ

γ0 6Aγ0 = Ã

γ0γσγτγ0 = γ̃σγ̃τ

γ0 6A 6B γ0 = ÃB̃

γ0γβγσγτγ0 = γ̃β γ̃σγ̃τ

γ0 6A 6B 6C γ0 = ÃB̃C̃ (D.58)

where Ã = γ0A0 − γiAi = γ0 + γ ·A
With the number of dimensions being equal to 4− ε, to be used in dimen-

sional regularization (see Chapter 12), the relations become

γµγµ = 4− ε
γµγσγµ = −(2− ε)γσ
γµ 6Aγµ = −(2− ε) 6A

γµγσγτγµ = 4gστ − εγσγτ
γµ 6A 6Bγµ = 4AB − ε 6A 6B

γµγβγσγτγµ = −2γτγσγβ + εγβγσγτ

γiγ
i = 3− ε

γiγ
σγi = −(2− ε)γσ − γ̃σ

γi 6Aγi = −(2− ε) 6A− Ã
γiγ

σγτγi = 4gστ − γ̃σγ̃τ − εγσγτ
γi 6A 6B γi = 4AB − ÃB̃ − ε 6A 6B

γiγ
βγσγτγi = −2γτγσγβ − γ̃β γ̃σγ̃τ + εγβγσγτ

γi 6A 6B 6C γi = −2 6C 6B 6A − ÃB̃C̃ + ε 6A 6B 6C (D.59)





Appendix E

Lagrangian field theory

Concerning notations, see Appendix A.

E.1 Classical mechanics

In classical mechanics the Lagrangian function for a system is defined

L = T − V (E.1)

where T is the kinetic energy and V the potential energy of the system.
Generally, this depends on the coordinates qi, the corresponding velocities
q̇i = ∂qi

∂t and possible explicitly on time (see, for instance, [205, Sec. 23])

L(t; q1, q2 · · · ; q̇1, q̇2 · · · ) (E.2)

The action is defined

I =
∫

dt L(t; q1, q2 · · · ; q̇1, q̇2 · · · ) (E.3)

The principle of least action implies that

δI(q1, q2 · · · ; q̇1, q̇2 · · · ) = 0 (E.4)

which leads to the Lagrange equations

d
dt

( ∂L
∂q̇i

)
− ∂L

∂qi
= 0 (E.5)

The Hamilton function can be defined
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H = piq̇i − L (E.6)

where pi is the canonically conjugate momentum to the coordinate qi

pi =
∂L

∂q̇i
(E.7)

It then follows that
∂H

∂pi
= q̇i =

∂qi
∂t

(E.8a)

Furthermore, from the definitions above and the Lagrange equations we have

∂H

∂qi
= −ṗi (E.8b)

These are Hamilton’s canonical equations of motion.

We consider a general function of time and the coordinates and canonical
momenta f(t; pi, qi). Then the total derivative with respect to time becomes

df
dt

=
∂f

∂t
+
∂f

∂qi

∂qi
∂t

+
∂f

∂pi

∂pi
∂t

=
∂f

∂t
+
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
(E.9)

With the Poisson bracket of two functions A and B, defined by

{A,B} =
∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi
(E.10)

the derivative can be expressed

df
dt

=
∂f

∂t
+ {f,H} (E.11)

For a single-particle system in one dimension (x) the kinetic energy is
T = p2/2m, where m is the mass of the particle, which yields

L =
p2

2m
− V =

mv2

2
− V

where v = ẋ is the velocity of the particle. Furthermore, piq̇i = pẋ = p2/m =
mv2, yielding with Eq. (E.6)

H =
p2

2m
+ V =

mv2

2
+ V

which is the classical energy expression. The canonically conjugate momen-
tum (Eq. E.7) is then
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p =
∂L

∂ẋ
=
∂L

∂v
= mv

which is the classical momentum.

Electron in external field

The Lagrangian for en electron (charge -e) in an external field, Aµ =(
φ(x)/c,−A), is [136, p. 25]

L(x, ẋ) = 1
2 mẋ

2 − eA · ẋ+ eφ(x) (E.12)

where the last two terms represent (the negative of) a velocity-dependent
potential. The conjugate momentum corresponding to the variable x is then
according to Eq. (E.7)

pi → p = mẋ− eA (E.13)

Using the relation (Eq. E.6), we get the corresponding Hamilton function

H = p · ẋ− L = 1
2 mẋ

2 − eφ(x) =
1

2m
(
p + eA

)2 − eφ(x) (E.14)

We see that the interaction with the fields (φ,A) is obtained by means of the
substitutions

H → H − eφ(x) p→ p + eA (E.15)

known as the minimal substitutions.

The corresponding equations of motion can be obtained either from the
Lagrange’s or Hamilton’s equation of motion. We then have

d
dt

( ∂L
∂q̇i

)
→ d

dt

(
mẋ− eA

)

and
∂L

∂qi
→ −e∇(A · ẋ) + e∇φ(x)

The same equations are obtained from the Hamilton’s equations of motion
(Eq. E.8b). The total time derivative can in analogy with Eq. (E.9) be ex-
pressed

d
dt

=
∂

∂t
+

dx
dt

∂

∂x
+ · · · = ∂

∂t
+ ẋ · ∇

giving
d
dt

(
mẋ− eA

)
= mẍ− e∂A

∂t
− e(ẋ · ∇)A

From the identity
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ẋ× (∇×A) =∇(A · ẋ)− (ẋ · ∇)A

we then obtain the equations of the motion

mẍ = e∇φ(x) + e
∂A

∂t
− e ẋ× (∇×A) = −e(E + v ×B) (E.16)

with v = ẋ being the velocity of the electron. This is the classical equations
of motion for an electron of charge −e in an electromagnetic field. The right-
hand side is the so-called Lorentz force on an electron in a combined electric
and magnetic field. This verifies the Lagrangian (Eq. E.12).

E.2 Classical field theory

In classical field theory we consider a Lagrangian density of the type

L = L(φr, ∂µφr) (E.17)

where φr = φr(x) represent different fields and

∂µφr =
∂φr
∂xµ

(E.18)

The requirement that the action integral

I =
∫

d4xL(φr, ∂µφr) (E.19)

be stationary over a certain volume leads to the Euler-Lagrange equations

∂L
∂φr
− ∂µ ∂L

∂(∂µφr)
= 0 (E.20)

The field conjugate to φr(x) is

πr(x) =
∂L
∂φ̇r

(E.21)

where the ”dot” represents the time derivative. The Lagrangian function is
defined

L(t) =
∫

d3xL(φr, ∂µφr) (E.22)

The Hamiltonian density is defined
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H(x) = πr(x)φ̇r(x)− L(φr, ∂µφr) (E.23)

In quantized Lagrangian field theory the fields are replaced by operators,
satisfying the Heisenberg commutation rules at equal times [136, Eq. (2.31)]

[
φ̂µ(x), π̂ν(x′)

]
= i~ δµ,ν δ3(x− x′) (E.24)

with the remaining commutations vanishing. In our applications the quan-
tized field will normally be the electron field in the interaction picture
(Eq. B.28) or the electromagnetic field (Eq. G.2).

E.3 Dirac equation in Lagrangian formalism

From the Dirac equation for a free electron (Eq. D.14) we can deduce the
corresponding Lagrangian density

L(x) = ψ̂†(x)
(
i~c αµ∂µ − βmec

2
)
ψ̂(x) (E.25)

Using the relation (Eq. B.17), the space integral over this density yields the
corresponding operator

L =
∫

d3xL(x) = i~c αµ∂µ − βmec
2 = c αµpµ − βmec

2 (E.26)

(with p̂µ = i~ ∂µ) and the corresponding Hamilton operator (Eq. E.6)

H = −L = −c αµpµ + βmec
2 (E.27)

since the field are time independent. This leads to the Dirac equation for a
free electron (Eq. D.14).

We can also apply the Euler-Lagrange equations (Eq. E.20) on the La-
grangian (Eq. E.25), which leads to

∂µ
∂L

∂(∂µψ̂)
= ∂µ

(
ψ̂†(x) i~ c αµ

)

∂L
∂ψ̂

= −ψ̂†(x)βmec
2

and
∂µi~ c αµψ̂†(x) + βmec

2ψ̂†(x) = 0

with the hermitian adjoint
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(− i~ c αµ∂µ + βmec
2
)
ψ̂(x) = 0 (E.28)

which is consistent with the Dirac equation for the free electron.

In the presence of an electromagnetic field we make the minimal substitu-
tion (Eq. D.38)

pµ → pµ + eAµ(x) or ∂µ → ∂µ − ie
~
Aµ(x) (E.29)

which leads to the Lagrangian density in the presence of an electromagnetic
field

L(x) = ψ̂†(x)
(
c αµpµ − βmec

2 + ecαµAµ(x)
)
ψ̂(x) (E.30)

This gives the the corresponding Hamiltonian density

H(x) = ψ̂†(x)
(− c αµpµ + βmec

2 − ecαµAµ(x)
)
ψ̂(x) (E.31)

where the last term represents the interaction density

Hint(x) = −ψ̂†(x) ecαµAµ(x)ψ̂(x) (E.32)

The corresponding Hamilton operator can then be expresses

Ĥ =
∫

d3x1 ψ̂
†(x1)

(− c αµpµ + βmec
2 − ecαµAµ(x)

)
ψ̂(x1) (E.33)



Appendix F

Semiclassical theory of radiation

F.1 Classical electrodynamics

Maxwell’s equations in covariant form

The Maxwell equations in vector form are 1

∇ ·E = ρ/ε0 (F.1a)

∇×B =
1
c2
∂E

∂t
+ µ0 j (F.1b)

∇ ·B = 0 (F.1c)

∇×E +
∂B

∂t
= 0 (F.1d)

where ρ is the electric charge density and j the electric current density.
Eq. (F.1c) gives

B =∇×A (F.2)

where A is the vector potential. From Eq. (F.1d) it follows that the electric
field is of the form

E = −∂A
∂t
−∇φ (F.3)

where φ is the scalar potential. The equations (Eq. F.1a) and (Eq. F.1b) give
together with Eq. (F.3) and Eq. (F.2)

1 As in the previous Appendices the formulas are here given in a complete form and valid
in any consistent unit system, like the SI system (see Appendix K).
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−∇2φ− ∂

∂t
∇ ·A = ρ/ε0 = cµ0 j

0

(
∇2A− 1

c2
∂2A

∂2t

)−∇
(
∇ ·A+

1
c2
∂φ

∂t

)
= −µ0 j (F.4)

using the vector identity ∇ × (∇ ×A) = ∇(∇ ·A) −∇2A. Here, j0 = cρ
(with ε0µ0 = c−2) is the scalar or ”time-like” part of the four-dimensional
current density

j = jµ = (cρ, j) (F.5)

where the vector part is the three-dimensional current density j. Similarly,
the four-dimensional vector potential

Aµ = (φ/c,A) Aµ = (φ/c,−A) (F.6)

has the scalar part φ/c and the vector part A. With the d’Alambertian
operator (Eq. A.10), these equations can be expressed2

�φ− ∂

∂t

(∇A) = cµ0 j
0 (F.7)

�A+∇(∇A) = µ0 j (F.8)

which leads to Maxwell’s equations in covariant form

�A−∇(∇A) = µ0 j (F.9)

or
∂ν∂

νAµ − ∂µ(∂νAν) = µ0 j
µ (F.10)

Electromagnetic-field Lagrangian

We introduce the field tensor [136, Eq. 5.5]

Fµν = ∂νAµ − ∂µAν (F.11)

Then we find for instance

F 01 = ∂1A0 − ∂0A1 =
∂φ/c

∂x
− ∂Ax

∂ct
= Ex

F 12 = ∂2A1 − ∂1A2 =
∂Ax
∂y
− ∂Ay

∂x
= Bz

etc., leading to the matrix

2 Concerning covariant notations, see Appendix A.1.
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Fµν =




0 Ex/c Ey/c Ey/c
−Ex/c 0 Bx −Bz
Ey/c −Bz 0 Bx
−Ez Bx −Bx 0


 (F.12)

The Maxwell equations (Eq. F.10) can now be expressed [136, Eq. 5.2]

∂νF
µν = µ0 j

µ (F.13)

using the identity
∂ν∂

µAµ ≡ ∂µ∂νAµ

With φr = Aµ the Euler-Lagrange equations (Eq. E.20) becomes

∂L
∂Aµ

− ∂ν ∂L
∂(∂νAµ)

= 0 (F.14)

Using the field tensor (Eq. F.11) and the form of the metric tensor (Eq. A.5),
we have

FµνF
µν =

(
∂νAµ − ∂µAν

)(
∂νAµ − ∂µAν

)

=
(
∂νAµ − ∂µAν

)(
gνσ∂σg

µπAπ − gµσ∂σgνπAπ
)

(F.15)

Here, µ and ν are running indices that are summed over, and we can replace
them with µ′ and ν′, respectively. The derivative with respect to fixed µ and
ν then gives

∂

∂(∂νAµ)
Fµ′ν′F

µ′ν′ = Fµν − F νµ + Fµ′ν′g
ν′νgµ

′µ − Fν′µ′gµ
′νgν

′µ = 4Fµν

(F.16)
We then find that with the Lagrangian

L = − 1
4µ0

FµνF
µν − jµAµ (F.17)

the Euler-Lagrange equations (Eq. F.14) lead to the Maxwell equations
(Eq. F.13).

With the same Lagrangian the conjugate fields (Eq. E.21) are

πµ(x) =
∂L
∂Ȧµ

=
1
c

∂L
∂(∂0Aµ)

(F.18)

where the dot represents the time derivative and ∂0 = ∂
∂x0

= 1
c
∂
∂t = ∂0. Using

the relation (Eq. F.16), this yields
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πµ(x) = − 1
µ0c

Fµ0(x) (F.19)

The Hamiltonian is given in terms of the Lagrangian by [136, 5.31]

H =
∫

d3x sN{πµ(x)Ȧµ(x)− L} (F.20)

where N{} represents normal order [118, Ch. 11] (see section 2.2).

Lorenz condition

The Lorenz condition is 3

∇A = ∂µA
µ =∇ ·A+

1
c2
∂φ

∂t
= 0 (F.21)

and with this condition the Maxwell equations get the simple form

�A = µ0 j (F.22)

Then also the electro-magnetic fields have particularly simple form, given in
Eq. (G.2).

Continuity equation

Operating on Maxwell’s equations (Eq. F.9) with ∇ yields:

∇ (�A)−∇∇(∇A) = µ0∇j

Since � = ∇2 and ∇ commute, this leads to the continuity equation

∇j = ∂µj
µ = 0 (F.23)

Gauge invariancex

A general gauge transformation is represented by

A⇒ A+∇Λ (F.24)

3 This condition is named after the Danish physicist Ludvig Lorenz, not to be confused
with the more well-known Dutch physicist Hendrik Lorentz.
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where Λ is an arbitrary scalar.

Inserted into the Maxwell equations (Eq. F.9), this yields:

� (∇Λ)−∇(∇∇Λ) = � (∇Λ)−∇(�Λ) = 0

which shows that the Maxwell equations are gauge invariant.

Coulomb gauge

Transverse and longitudinal field components

The vector part of the electromagnetic field can be separated into transverse
(divergence-free) and longitudinal (rotation-free) components

A = A⊥ +A‖ ; ∇ ·A⊥ = 0 ; ∇×A‖ = 0 (F.25)

The electric field can be similarly separated

E = E⊥ +E‖ ; E⊥ = −∂A⊥
∂t

; E‖ = −∂A‖
∂t
−∇φ

while the magnetic field has only transverse components due to the relation
(Eq. F.2). The separated field equations (Eq. F.4) then become

∇2φ+
∂

∂t
∇ ·A‖ = −ρ/ε0 (F.26a)

(
∇2A‖ −

1
c2
∂2A‖
∂2t

)−∇
(
∇ ·A‖ +

1
c2
∂φ

∂t

)
= −µ0 j‖ (F.26b)

(
∇2 − 1

c2
∂2

∂2t

)
A⊥ = −µ0jT (F.26c)

The longitudinal and the scalar or ’time-like’ components (A‖, φ) represent
the instantaneous Coulomb interaction and the transverse components (A⊥)
represent retardation of this interaction and all magnetic interactions, as well
as the electromagnetic radiation field (see section F.2).

The energy of the electromagnetic field is given by

Erad =
1
2

∫
d3x

[ 1
µ0

∣∣B
∣∣2 + ε0

∣∣E
∣∣2
]

=
1
2

∫
d3x

[ 1
µ0

∣∣B
∣∣2 + ε0

∣∣E⊥
∣∣2
]

+
1
2

∫
d3x ε0

∣∣E‖
∣∣2 (F.27)
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The last term represents the energy of the instantaneous Coulomb field, which
is normally already included in the hamiltonian of the system. The first term
represents the radiation energy.

Semiclassically, only the transverse part of the field is quantized, while the
longitudinal part is treated classically [194, Ch. 2,3]. It should be noted that
the separation into transverse and longitudinal components is not Lorentz
covariant and therefore, strictly speaking, not physically justified, when rel-
ativity is taken into account. It can be argued, though, that the separation
(as made in the Coulomb gauge) should ultimately lead to the same result
as a covariant gauge, when treated properly.

In a fully covariant treatment also the longitudinal component is quan-
tized. The field is then represented by virtual photons with four directions of
polarizations. A real photon can only have transverse polarizations.

The Coulomb gauge is defined by the condition

∇ ·A(x) = 0 (F.28)

Using the Fourier transform

A(x) =
∫

d4k A(k) e−ikx (F.29)

this condition leads to

∂Ai

∂xi
=
∫

d4k Ai(k)(−i)ki e−ikx = 0

or
A(k) · k = 0 (F.30)

This is also known as the transversally condition and implies that there is
no longitudinal component of A. Maxwell’s equations then reduce to

∇2φ = −ρ/ε0 (F.31)

This has the solution

φ(x) =
1

4πε0

∫
d3x′

ρ(x′)
|x− x′| (F.32)

which is the instantaneous Coulomb interaction.

In free space the scalar potential φ can be eliminated by a gauge trans-
formation. Then the Lorenz condition (Eq. F.21) is automatically fulfilled in
the Coulomb gauge. The field equation (Eq. F.4) then becomes

∇2A− 1
c2
∂2A

∂2t
= 0 (F.33)
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The relativistic interaction with an atomic electron (Eq. D.41) is then in the
Coulomb gauge given by

Hint = ecα ·A⊥ (F.34)

and in second quantization (see Appendix B)

Ĥint =
∑

ij

c†j 〈i|ecα ·A⊥|j〉 cj (F.35)

where c†, c represent creation/annihilation operators for electrons. In the
interaction picture this becomes

Ĥint,I(t) =
∑

ij

c†i 〈i|ecα ·A⊥|j〉 cj ei(εi−εj)t/~ (F.36)

F.2 Quantized radiation field

Transverse radiation field

Classically the transverse components of the radiation field can be represented
by the vector potential [194, Eq. 2.14]

A(x, t) =
∑

k

2∑
p=1

[
ckp εp e

i(k·x−ωt) + c∗kp εp e
−i(k·x−ωt)

]
(F.37)

where k is the wave vector, ω = c|k| the frequency, and ckp /c∗kp represent the
amplitude of the wave with the a certain k vector and a certain polarization
εp. The energy of this radiation can be shown to be equal to [194, p.22]

Erad = 2ε0
∑

kp

ω2 c∗kp ckp = ε0
∑

kp

ω2
(
c∗kp ckp + ckr c

∗
kp

)
(F.38)

By making the substitution

ckp →
√

~
2ε0 ωV

akp and c∗kp →
√

~
2ε0 ωV

a†kp

where a†kp, /akp are photon creation/annihilation operators, the radiation en-
ergy goes over into the hamiltonian of a collection of harmonic oscillators

Hharm.osc = 1
2

∑

kp

~ω (akp a
†
kp + a†kp akp)
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Therefore, we can motivate that the quantized transverse radiation field can
be represented by the operator [194, Eq. 2.60]

A⊥(x, t) =
∑

k

√
~

2ε0ωV

2∑
p=1

[
akp εp e

i(k·x−ωt) + a†kp εp e
−i(k·x−ωt)

]
(F.39)

Breit interaction

6r
6s

6a

6s
s

1

2

6b

6r 6s

6a

B12
2 s s1

6b

Fig. F.1 Diagrammatic representation of the exchange of a single, transverse photon
between two electrons (left). This is equivalent to a potential (Breit) interaction (right).

The exchange of a single transverse photon between two electrons is il-
lustrated by the time-ordered diagram (left) in Fig. F.1, where one photon
is emitted at the time t1 and absorbed at a later time t2. The second-order
evolution operator for this process, using the interaction picture, is given by
(see section 3.1)

U (2)
γ (0,−∞) =

(−i
~

)2
∫ 0

−∞
dt2 Ĥint,I(t2)

∫ 0

−∞
dt1 Ĥint,I(t1) eγ(t1+t2) (F.40)

where γ is the parameter for the adiabatic damping of the perturbation. The
interaction Hamiltonians are in the Coulomb gauge given by (Eq. F.36) with
the vector potential (Eq. F.39)

Ĥint,I(t1) =
∑

k1

√
~

2ε0ω1V

2∑
p1=1

c†r
〈
r
∣∣(a†kp ecα · εkp e−ik·x)

1

∣∣a〉 ca e−it1(εa−εp−~ω1)/~

Ĥint,I(t2) =
∑

k2

√
~

2ε0ω2V

2∑
p2=1

c†s
〈
r
∣∣(akp ecα · εkp eik·x)

2

∣∣a〉 cb e−it2(εb−εs+~ω2)/~

(F.41)

which leads to the evolution operator
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U (2)
γ (0,−∞) = −c†rcac†scb

∑

k

e2c2

2~ ε0V
√
ω1ω2

×
∑
p1p2

〈
rs
∣∣(akpα · εp eik·x)

2

(
a†kpα · εp e−ik·x)

1

∣∣ab〉× I (F.42)

where I is the time integral. The contraction between the creation and anni-
hilation operators (Eq. G.10) yields (ω = ω1 = ω2)

∑
p1p2

〈
rs
∣∣(akpα · εp eik·x)

2

(
a†kpα · εp e−ik·x)

1

∣∣ab〉

=
2∑
p=1

〈
rs
∣∣(α · εp)2 (α · εp)1 e

−ik·r12 (r12 = x1 − x2). (F.43)

The time integral in Eq. (F.42) is

I =
∫ 0

−∞
dt2 e−it2(εb−εs+~ω+iγ)/~

∫ t2

−∞
dt1 e−it1(εa−εr−~ω+iγ)/~

= − 1
(cq + cq′ + 2iγ)(cq − ω + iγ)

(F.44)

with cq = (εa − εr)/~ and cq′ = (εb − εs)/~.
The result of the opposite time ordering t1 > t2 is obtained by the exchange

1 ↔ 2 (r12 ↔ −r12), a ↔ b, and r ↔ s, and the total evolution operator,
including both time-orderings, can be expressed

U (2)
γ (0,−∞) = c†rcac

†
scb

e2c2

2~ε0ωV
∑

k

2∑
p=1

〈
rs
∣∣(α ·εp)1(α ·εp)2M

∣∣ab〉 (F.45)

with

M =
e−ik·r12

(cq + cq′ + 2iγ)(cq − ω + iγ)
+

eik·r12

(cq + cq′ + 2iγ)(cq′ − ω + iγ)
(F.46)

This can be compared with the evolution operator corresponding to a poten-
tial interaction B12 between the electrons, as illustrated in the right diagram
of Fig. F.1,

U (2)
η (0,−∞) = c†rcac

†
scb 〈rs|B12|ab〉

(−i
~

)∫ 0

−∞
dt e−it(εa+εb−εr−εs+iη)/~

=
c†rcac

†
scb
~

〈rs|B12|ab〉
cq + cq′ + iη

(F.47)

Identification then leads to
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B12 =
e2c2

2ε0ωV

∑

kp

(α · εp)1(α · εp)2

[ e−ik·r12

cq − ω + iγ
+

eik·r12

cq′ − ω + iγ

]
(F.48)

We assume now that energy is conserved by the interaction, i.e.,

εa − εr = εs − εb or q + q′ = 0 (F.49)

It is found that the sign of the imaginary part of the exponent is immaterial
(see Appendix J.2), and the equivalent interaction then becomes

B12 =
e2

ε0V

∑

kp

(α · εp)1(α · εp)2
eik·r12

q2 − k2 + iγ
(F.50)

with ω = ck.

The εp vectors are orthogonal unit vectors, which leads to [194, Eq. 4.312]

3∑
p=1

(α · εp)1(α · εp)2 = α1 ·α2 (F.51)

This gives
2∑
p=1

(α · εp)1(α · εp)2 = α1 ·α2 − (α1 · k̂)(α2 · k̂) (F.52)

assuming ε3 = k̂ to be the unit vector in the k direction. The interaction
(Eq. F.50) then becomes in the limit of continuous momenta (App. D)

B12 =
e2

ε0

∫
d3k

(2π)3

[
α1 ·α2 − (α1 · k̂)(α2 · k̂)

] eik·r12

q2 − k2 + iγ
(F.53)

With the Fourier transforms in Appendix J this yields the retarded Breit
interaction

BRet
12 = − e2

4πε0

[
α1 ·α2

ei|q|r12

r12
− (α1 · ∇1)(α2 · ∇2)

ei|q|r12 − 1
q2 r12

]
(F.54)

Setting q = 0, we obtain the instantaneous Breit interaction (real part)

BInst
12 = − e2

4πε0

[
α1 ·α2

r12
+ 1

2 (α1 · ∇1)(α2 · ∇2) r12

]

or using

(α1 · ∇1)(α2 · ∇2) r12 = −α1 ·α2

r12
+

(α1 · r12)(α1 · r12)
r2
12
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we arrive at

BInst
12 = − e2

4πε0 r12

[
1
2 α1 ·α2 +

(α1 · r12)(α1 · r12)
2r12

]
(F.55)

which is the standard form of the instantaneous Breit interaction.

Transverse photon propagator
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+
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Fig. F.2 The two time-orderings of a single-photon exchange can be represented by a
single Feynman diagram.

We shall now consider both time-orderings of the interaction represented
in the figure simultaneously. The evolution operator can then be expressed

U (2)
γ (0,−∞) =

(−i
~

)2
∫ 0

−∞
dt2
∫ 0

−∞
dt1 T

[
Ĥint,I(t2) Ĥint,I(t1)

]
e−γ(|t1|+|t2|)

(F.56)
where

T
[
Ĥint,I(t2) Ĥint,I(t1)

]
=




Ĥint,I(t2) Ĥint,I(t1) t2 > t1

Ĥint,I(t1) Ĥint,I(t2) t1 > t2

(F.57)

In the Coulomb gauge the interaction is given by (Eq. F.36) and the vector
potential is given by (Eq. F.39). The evolution operator for the combined
interactions will then be

U (2)
γ (0,−∞) = −c†rcac†scb

e2c2

~2
×

∫ 0

−∞
dt2
∫ 0

−∞
dt1 T

[
(α ·A⊥)1 (α ·A⊥)2

]
e−it1(εa−εr+iγ)/~ e−it2(εb−εs+iγ)/~ (F.58)

Here
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T
[
(α ·A⊥)1 (α ·A⊥)2

]
=
∑

kp

~
2ωε0V

(α · εp)1 (α · εp)2

×



e−i(k1·x1−ωt1) ei(k2·x2−ωt2) t2 > t1

e−i(k2·x2−ωt2) ei(k1·x1−ωt1) t1 > t2

or with r12 = x1 − x2 and t12 = t1 − t2

T
[
(α ·A⊥)1 (α ·A⊥)2

]
=
~
ε0

2∑
p=1

(α · εp)1 (α · εp)2
1
V

∑

k

e∓i(k·r12−ωt12)

2ω
(F.59)

where the upper sign is valid for t2 > t1. This yields

U (2)
γ (0,−∞) = −c†rcac†scb

e2c2

ε0~2

∫ 0

−∞
dt2
∫ 0

−∞
dt1

×
2∑
p=1

(α · εp)1 (α · εp)2
1
V

∑

k

e∓i(k·r12−ωt12)

2ω
e−icq t12 eγ(t1+t2) (F.60)

utilizing the energy conservation (Eq. F.49).

The boxed part of the equation above is essentially the photon propaga-
tor (Eq. 4.23)

DF(1, 2) =
1
V

∑

k

e∓i(k·r12−ωt12)

2ω
⇒
∫

d3k

(2π)3

e∓i(k·r12−ωt12)

2ω
(F.61)

This can be represented by a complex integral

DF(1, 2) = i
∫

d3k

(2π)3

∫
dz
2π

eizt12

z2 − ω2 + iη
eik·r12 (F.62)

where η is a small, positive quantity. As before, the sign of the exponent
ik · r12 is immaterial. The integrand has poles at z = ±(ω − iη), assuming
ω to be positive. For t2 > t1 integration over the negative half plane yields
1

2ω e
iω t12 eik·r12 and for t1 > t2 integration over the positive half plane yields

1
2ω e

−iω t12 eik·r12 , which is identical to (Eq. F.61). The evolution operator
(Eq. F.60) can then be expressed

U (2)
γ (0,−∞) = −c†rcac†scb

e2c2

ε0~

∫ 0

−∞
dt2
∫ 0

−∞
dt1

×
2∑
p=1

(α · εp)1 (α · εp)2 DF(1, 2) e−icq t12/~ eγ(t1+t2)~ (F.63)
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Comparison with the covariant treatment

It is illuminating to compare the quantization of the transverse photons with
the fully covariant treatment, to be discussed in the next chapter. Then we
simply have to replace the sum in (Eq. F.42) by the corresponding covariant
expression

2∑
p1p2=1

(akpα · εp)1 (a†kpα · εp)2 ⇒
3∑

p1p2=0

(akp αµεµp)1 (a†kp α
νενp)2 (F.64)

The commutation relation (Eq. G.10) yields

3∑
p1p2=0

(akp αµεµp)1 (a†kp α
νενp)2 = α1 ·α2 − 1 (F.65)

We then find that the equivalent potential interaction (Eq. F.50) under en-
ergy conservation is replaced by

V12 = −e
2

ε0

∫
d3k

(2π)3

(
1−α1 ·α2

) eik·r12

q2 − k2 + iγ
(F.66)

and with the Fourier transform given in Appendix J.2

V12 =
e2

4πε0 r12

(
1−α1 ·α2

)
ei|q|r12 (F.67)

We shall now compare this with the exchange of transverse photons,
treated above. We then make the decomposition

1−α1 ·α2 =





1− (α1 · k̂)(α2 · k̂)

−α1 ·α2 + (α1 · k̂)(α2 · k̂)
(F.68)

The last part, which represents the exchange of transverse photons, is iden-
tical to (Eq. F.52), which led to the Breit interaction. The first part, which
represents the exchange of longitudinal and scalar photons, corresponds to
the interaction

VC = −e
2

ε0

∫
d3k

(2π)3

[
1− (α1 · k̂)(α2 · k̂)

] eik·r12

q2 − k2 + iγ
(F.69)

This Fourier transform is evaluated in Appendix J.3 and yields
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VC = −e
2

ε0

∫
d3k

(2π)3

(
1− q2

k2

) eik·r12

q2 − k2 + iγ
=
e2

ε0

∫
d3k

(2π)3

eik·r12

k2 − iγ
(F.70)

provided that the orbitals are generated in a local potential. Using the trans-
form in Appendix J.2, this becomes

VCoul =
e2

4πε0 r12
(F.71)

Thus, we see that the exchange of longitudinal and scalar photons corresponds
to the instantaneous Coulomb interaction, while the exchange of the trans-
verse photons corresponds to the Breit interaction. Note that this is true only
if the orbitals are generated in a local potential.

If instead of the separation (Eq. F.68) we would separate the photons into
the scalar part (p = 0) and the vector part (p = 1, 2, 3),

1−α1 ·α2 =





1

−α1 ·α2

(F.72)

then the result would be

V Ret
Coul =

e2

4ıε0 r12
ei|q|r12

V Ret
Gaunt = − e2

4πε0 r12
α1 ·α2 e

i|q|r12 (F.73)

which represents the retarded Coulomb and the retarded magnetic (Gaunt)
interaction. This implies that the longitudinal photon represents the
retardation of the Coulomb interaction, which is included in the Breit
interaction (Eq. F.54).

If we would set q = 0, then we would from (Eq. F.73) retrieve the instan-
taneous Coulomb interaction (Eq. F.71) and

− e2

4πε0
α1 ·α2 (F.74)

which is known as the Gaunt interaction. The Breit interaction will then turn
into the instantaneous interaction (Eq. F.55). This will still have some effect
of the retardation of the Coulomb interaction, although it is instantaneous.

We shall see later that the interactions (Eq. F.73) correspond to the inter-
actions in the Feynman gauge (Eq. 4.56), while the instantaneous Coulomb
and Breit incinerations correspond to the Coulomb gauge.



Appendix G

Covariant theory of Quantum
ElectroDynamics

G.1 Covariant quantization. Gupta-Bleuler formalism

With the Lorenz condition (Eq. F.21) ∂µAµ = 0 the Maxwell equations have
a particularly simple form (Eq. F.22)

�A = µ0j (G.1)

In this case the covariant electromagnetic radiation field can be expressed in
analogy with the semiclassical expression (Eq. F.39) and represented by the
four-component vector potential [136, Eq. 5.16]

Aµ(x) = A+
µ (x) +A−µ (x) =

√
~

2ωε0V

∑

kr

εµr
[
akr e

−ikx + a†kr e
ikx
]

(G.2)

However, different equivalent choices can be made, as further discussed in
section G.2. Here, we use the covariant notations

k = kµ = (k0,k) ; k0 = ω/c = |k| ; kx = ωt− k · x

defined in Appendix A.1, and r = (0, 1, 2, 3) represents the four polarization
states. Normally, the polarization vector for r = 3 is defined to be along the
k vector – longitudinal component – and for r = 1, 2 to be perpendicular –
transverse components. The component r = 0 is referred to as the time-like
or scalar component (see section F.1).

The electromagnetic-fields components are Heisenberg operators and should
satisfy the canonical commutation (quantization) rules (Eq. E.24) at equal
times [

Aµ(t,x), πν(t,x′)
]

= i~δµ,ν δ3(x− x′) (G.3)

335
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where πν(x) is the conjugate field (Eq. E.21). With the Lagrangian (Eq. F.17)
the field π0 vanishes according to the relation (Eq. F.19), which is inconsistent
with the quantization rule (Eq. G.3). In order to remedy the situation, we add
a term − λ

2µ0

(
∂νA

ν
)2 to the Lagrangian (Eq. F.17), where λ is an arbitrary

constant [88, Eq. 1-49, Eq. 3-98]

L = − 1
4µ0

FµνF
µν − λ

2µ0

(
∂νA

ν
)2 − jµAµ (G.4)

We can rewrite the extra term as

− λ

2µ0

(
∂νg

νσAσ
)(
∂νA

ν
)

Then the conjugate field (Eq. F.19) becomes [88, Eq. 3-100]

πµ(x) =
∂L

∂(∂0Aµ)
= − 1

cµ0
Fµ0 − λ

µ0
g0µ∂νA

ν (G.5)

and π0 6= 0 for λ 6= 0.

The extra term in the Euler-Lagrange equations (Eq. F.14) leads to

λ

2µ0
∂ν

∂

∂(∂νAµ)
(
∂νg

νσAσ
)(
∂νA

ν
)

=
λ

µ0
∂νg

νµ
(
∂σA

σ
)

=
λ

µ0
∂µg

µµ
(
∂σA

σ
)

= λ∂µ
(
∂σA

σ
)

The Maxwell equations (Eq. F.10) then take the modified form [88, Eq. 3-99]

∂ν∂
νAµ − (1− λ) ∂µ(∂νAν) = µ0j

µ (G.6)

Setting λ = 1 we retrieve the same simple form of Maxwell’s equa-
tions as with the Lorenz condition (Eq. G.1)—without introducing this
condition explicitly. This is usually referred to as the Feynman gauge .

The Lagrangian (Eq. G.4) is incompatible with the Lorenz condition, and
to resolve the dilemma this condition is replaced by its expectation value

〈Ψ |∂µAµ|Ψ〉 = 0 (G.7)

which is known as the Gupta-Bleuler proposal [136, 5.35].

In the Feynman gauge the commutation relations (Eq. G.3) become [136,
5.23] [

Aµ(t,x), Ȧν(t,x′)
]

= ic2µ0~gµν δµ,ν δ3(x− x′) (G.8)

To satisfy this relation, we can assume that the polarization vectors fulfill
the orthogonality/completeness relations [136, Eq. 5.18,19]



G.2 Gauge transformation 337

εµrεµr′ = grr′∑
r

grrεµrενr = gµν (G.9)

and the photon creation and absorption operators the commutation rela-
tion [136, Eq. 5.28]

[
akr, a

†
k′r′
]

= −δk,k′ grr′ (G.10)

Considering that the g-matric (Eq. A.5) used is diagonal, this leads to
∑

rr′

[
εµrakr, ενr′a

†
k′r′
]

=
∑

rr′
εµrενr′

[
akr, a

†
k′r′
]

= −gµ,νδk,k′ (G.11)

and then it follows that the field operators (Eq. G.2) satisfy the commutation
relation (Eq. G.8).

With the Lagrangian (Eq. G.4) and the conjugate fields (Eq. G.5) the
Hamiltonian of the free field (Eq. F.20) becomes in the Feynman gauge (λ =
1) [136, Eq. 5.32]

HRad = −
∑

k,r

~ω grr a†krakr (G.12)

G.2 Gauge transformation

General

The previous treatment is valid in the Feynman gauge, where the Maxwell
equations have the form (Eq. G.1), and we shall here investigate how the
results will appear in other gauges.

The interaction between an electron and the electromagnetic field is given
by the Hamiltonian interaction density (Eq. D.41)

Hint = jµA
µ (G.13)

where jµ is the current density. The Maxwell equations are invariant for
a gauge transformation (Eq. F.24) A ⇒ A + ∇Λ, which transforms this
interaction to

Hint = jµA
µ ⇒

(
Aµ +

∂Λ

∂xµ

)
jµ.

Integration over space leads after partial integration to
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∫
d3x

∂Λ

∂xµ
jµ = −

∫
d3x

∂jµ
∂xµ

Λ = 0.

Since Λ is arbitrary, it follows that

∂jµ
∂xµ

= δµjµ = ∇j = 0,

which is the continuity equation (Eq. F.23). In analogy with (Eq. F.30) the
corresponding relation in the k space is

jµ(k) kµ = 0. (G.14)

The single-photon exchange is represented by the interaction (Eq. 4.44)

I(x2, x1) = e2c2αµ1α
ν
2DFνµ(x2, x1) (G.15)

which corresponds to the interaction density jµDFνµ j
ν . In view of the rela-

tion (Eq. G.14) it follows that the transformation

DFνµ(k)⇒ DFνµ(k) + kµfν(k) + kνfµ(k)

where fµ(k) and fν(k) are arbitrary functions of k, will leave the interaction
unchanged.

Covariant gauges

In a covariant gauge the components of the electro-magnetic field are ex-
pressed in a covariant way. We shall consider three gauges of this kind.

Feynman gauge

The photon propagator in the Feynman gauge is given by the expression
(Eq. 4.28)

DFνµ(k) = −gµν
cε0

1
k2 + iη

(G.16)
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Landau gauge

With
fµ(k) =

1
cε0

kµ
(k2 + iη)2

the propagator (Eq. G.16) becomes

DFµν(k) = − 1
cε0

1
k2 + iη

(
gµν − kµkν

k2 + iη

)
(G.17)

This leads to kµDFµν = 0, which is consistent with the Lorenz condition
(Eq. F.21)

∇A = ∂µAµ = 0

Fried-Yennie gauge

With
fµ(k) =

1
2cε0

(1− λ)
kµ

(k2 + iη)2

the propagator (Eq. G.16) becomes

DFµν(k) = − 1
cε0

1
k2 + iη

(
gµν − (1− λ)

kµkν
k2 + iη

)
(G.18)

With λ = 1 this yields the Feynman gauge and with λ = 0 we retrieve the
Landau gauge. The value λ = 3 yields the Fried-Yennie gauge [65], which has
some improved properties, compared to the Feynman gauge, in the infrared
region.

Non-covariant gauge

We consider only one example of a non-covariant gauge, the Coulomb gauge,
which is of vital importance in treating the combined QED-correlation prob-
lem. Here, the Coulomb interaction is treated differently from the transverse
part.
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Coulomb gauge

With

f0 =
1

2cε0
1

k2 + iη
k0

k2 ; fi = − 1
2cε0

1
k2 + iη

ki

k2 (i = 1, 2, 3)

the propagator (Eq. G.16) can be expressed

DF00(k) =
1

cε0

(
1
k2 0

0 1
k2+iη

(
δi,j − kikj

k2

)
)

(G.19)

where the first row/column corresponds to the component µ = 0 and the
second row/column to µ = 1, 2, 3.

This leads to kiDFij = 0, which is consistent with the Coulomb condition
(Eq. F.30)

∇ ·A = ∂iAi = 0 (i = 1, 2, 3)

The formulas above can be generalized to be used in dimensional regu-
larization (see section 12.4), where the number of dimensions is non-integer
(mainly from Adikins [1], see also ’t Hooft and Veltman [225]).

Following the book by Peskin and Schroeder [183], we can by means of
Wick rotation evaluate the integral

∫
dDl

(2π)D
1

(l2 −∆)m
= i(−1)m

∫
dDl

(2π)D
1

(l2E +∆)m

= i(−1)m
∫

dΩD
(2π)4

∫ ∞
0

dl0E
lD−1
E

(l2E +∆)m

We have here made the replacements l0 = il0E and l = lE and rotated the
integration contour of lE 90o, which with the positions of the poles should
give the same result. The integration over dDlE is separated into an inte-
gration over the D-dimensional sphere ΩD and the linear integration over
the component l0E . This corresponds in three dimensions to the integration
over the two-dimensional angular coordinates and the radial coordinate (see
below).

∫
dDk

(2π)D
1

(k2 + s+ iη)n
=

i(−1)n

4πD/2
Γ (n−D/2)

Γ (n)
1

sn−D/2
(G.20)

∫
d4k

kµ

(k2 + s+ iη)n
= 0 (G.21)
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∫
dDk

(2π)D
kµkν

(k2 + s+ iη)n
=

i(−1)n

4πD/2
Γ (n−D/2− 1)

Γ (n)
1

sn−D/2−1
(G.22)

Covariant gauge

Compared to Adkins [1] Eqs (A1a), (A3), (A5a):

p→ −q; M2 → −s; ω → D/2; α→ n; ξ → n; Q = p→ −q; Aµν → gµν ; ∆→ w = q2−s
∫

dDk
(2π)D

1
(k2 + 2kq + s+ iη)n

=
i(−1)n

(4π)D/2
1

Γ (n)
Γ (n−D/2)
wn−D/2

(G.23)

∫
dDk

(2π)D
kµ

(k2 + 2kq + s+ iη)n
= − i(−1)n

(4π)D/2
1

Γ (n)
qµ

Γ (n−D/2)
wn−D/2

(G.24)

∫
dDk

(2π)D
kµkν

(k2 + 2kq + s+ iη)n
=

i(−1)n

(4π)D/2
1

Γ (n)

[
qµqν

Γ (n−D/2)
wn−D/2

+
gµν

2
Γ (n− 1−D/2)

wn−1D/2

]
(G.25)

Non-covariant gauge

Compared to Adkins [1] Eqs (A1b), (A4), (A5b):

p→ −q; M2 → −s; ω → D/2; α→ n; β → 1; ξ → n+ 1; k2 → −k2; Q = py → −qy;

Aµν → gµν + δµ,0δν,0
1− y
y

; (AQ)µ → −qµy − δµ0 (1− y)q0

∆→ w = q2y2 + (1− y)yq2
0 − sy + λ2(1− y) = −q2y2 + yq2

0 − sy + λ2(1− y)

∫
dDk

(2π)D
1

(k2 + 2kq + s+ iη)n
1

k2 − λ2

=
i(−1)n

(4π)D/2
1

Γ (n+ 1)

∫ 1

0

dy yn−1−1/2 Γ (n+ 1−D/2)
wn+1−D/2 (G.26)
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∫
dDk

(2π)D
kµ

(k2 + 2kq + s+ iη)n
1

k2 − λ2
= − i(−1)n

(4π)D/2
1

Γ (n)

×
∫ 1

0

dy yn−1−1/2
[
qµy + δµ,0 q0(1− y)

] Γ (n+ 1−D/2)
wn+1−D/2 (G.27)

6k → − 6q y − γ0q0(1− y) = γ ·q y − γ0q0

∫
dDk

(2π)D
kµkν

(k2 + 2kq + s+ iη)n
1

k2 − λ2
=

i(−1)n

(4π)D/2
1

Γ (n)

×
∫ 1

0

dy yn−1−1/2

[{[
qµy + δµ,0 q0(1− y)

][
qνy + δν,0 q0(1− y)

]}Γ (n+ 1−D/2)
wn+1−D/2

−1
2

{[
gµν + δµ,0δν,0(1− y)/y

]}Γ (n−D/2)
wn−D/2

]
(G.28)

6k → γ ·q y − γ0q0 in first part and 6k 6k → −1
2
[
γµγµ + (1− y)/y

]
in second.

∫
dDk

(2π)D
kikµkj

(k2 + 2kq + s+ iη)n
1

k2 − λ2
= − i(−1)n

(4π)D/2
1

Γ (n)

×
∫ 1

0

dy yn−1−1/2

[{
qiqµqjy3 + qiqµqjδµ0(1− y)y2

}Γ (n+ 1−D/2)
wn+1−D/2

+
1
2

{
y
(
giµqj + gµjqi + gjiqµ

)
+ δµ0 g

ij q0(1− y)
}Γ (n−D/2)

wn−D/2

]
(G.29)

G.3 Gamma function

The Gamma function can be defined by means of Euler’s integral

Γ (z) =
∫ ∞
−∞

dt tz−1e−t (G.30)

For integral values we have the relation

Γ (n) = (n− 1)! (G.31)

and generally
Γ (z) = (z − 1)Γ (z − 1) (G.32)

The Gamma function can also be expressed by means of
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1
Γ (z)

= zeγEz
∞∏
n=1

(
1 +

z

n

)
e−z/n (G.33)

where γE is Euler’s constant, γE = 0.5772...

The Gamma function is singular, when z is zero or equal to a negative
integer. Close to zero the function is equal to

Γ (ε) =
1
ε
− γE +O(ε) (G.34)

which follows directly from the expansion above. We shall¡now derive the
corresponding expression close to negative integers.

z = −1− ε

1
Γ (−1− ε) = −(1 + ε) e−γE(1+ε)

∞∏
n=1

(
1− 1 + ε

n

)
e(1+ε)/n (G.35)

The first few factors of the product
∏

are (to orders linear in ε)

−ε e1+ε = −ε e1(1 + ε)

(
1− 1 + ε

2

)
e(1+ε)/2 =

1
2

(1− ε) e1/2(1 + ε/2)

(
1− 1 + ε

3

)
e(1+ε)/3 =

2
3

(1− ε/2) e1/3(1 + ε/3)

(
1− 1 + ε

4

)
e(1+ε)/4 =

3
4

(1− ε/3) e1/4(1 + ε/4)

which in the limit becomes

−eγE

(
1 + ε

[
1− 1/2− 1/(2 · 3)− 1/(3 · 4)− · · · ]

)
≈ −eγE

using the expansion

1 + 1/2 + 1/3 + 1/4 + · · ·+ 1/M ⇒ lnM + γE (G.36)

This gives

Γ (−1− ε) =
1
ε

+ γE − 1 +O(ε) (G.37)

This can also be obtained from Eq. (G.32).
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z = −2− ε

1
Γ (−2− ε) = −(2 + ε) e−γE(2+ε)

∞∏
n=1

(
1− 2 + ε

n

)
e(2+ε)/n (G.38)

The first few factors of the product
∏

are (to orders linear in ε)

−
(

1 + ε
)

e2+ε = −(1 + ε) e2(1 + ε)

−ε/2 e(2+ε)/2 = −ε/2 e1(1 + ε/2)
(

1− 2 + ε

3

)
e(2+ε)/3 =

1
3

(1− ε) e2/3(1 + ε/3)

(
1− 2 + ε

4

)
e(2+ε)/4 =

2
4

(1− ε/2) e2/4(1 + ε/4)

(
1− 2 + ε

5

)
e(2+ε)/5 =

3
5

(1− ε/3) e2/5(1 + ε/5)

which in the limit becomes

e2γE

(
1 + ε

[
5/2− 2/(1 · 3)− 2/(2 · 4)− 2/(3 · 5)− · · · ]

)
≈ e2γE(1 + ε)

This gives

Γ (−2− ε) = −1
2

[1
ε

+ γE − 1− 1/2 +O(ε)
]

(G.39)

This is consistent with the formula

Γ (2z) = (2π)−1/222z−1/2Γ (z)Γ (z + 1/2) (G.40)

The step-down formula (Eq. G.32) yields

Γ (−3− ε) =
1

2 · 3
[1
ε

+ γE − 1− 1/2− 1/3
]

(G.41)

which can be generalized to

Γ (−N − ε) =
(−1)N−1

N !

[
1
ε

+ γE −
N∑
n=1

1
n

]
(G.42)



Appendix H

Feynman diagrams and Feynman
amplitude

In this appendix we shall summarize the rules for evaluatiig Feynman dia-
grams of the different schemes, discussed in this book. These rules are based
on the rules formulated by Feynman for the so-called Feynman amplitude, a
concept we shall also use here.

H.1 Feynman diagrams

S-matrix

The Feynman diagrams for the S-matrix have an outgoing orbital line for
each electron-field creation operator

6s66 ψ̂†(x)

and an incoming orbital line for each electron-field absorption operator

6

s
66 ψ̂(x)

and a vertex diagram

345
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µ Aµs iecαµAµ

for each interaction point.

This leads to an electron propagator for each contracted pair of electron-field
operators:

6ω s
s
66

1

2
ψ̂(x1)ψ̂†(x2) = iSF(x2, x1) = i

∫
dω
2π SF(ω;x2,x1)

and a photon propagator for each contracted pair of photon-field operators:

-zs s1,µ ν,2- Aµ(x1)Aν(x2) = iDFνµ(x2, x1) = i
∫

dz
2π DFνµ(z;x2,x1)

Thus, there is a photon interaction (Eq. 4.45), including the vertices,

-zs sµ, 1 ν, 2s ∫
dz
2π (−i)I(z;x2,x1) =

∫
dz
2π (−i) e2c2αµ1α

ν
2DFνµ(z;x2,x1)

for each photon exchange, and a corresponding diagram

1 s s2 −iVC = −i e2

4πε0r12

for each Coulomb interaction, VC, between the electrons, and a potential
diagram

×rs −iV

for each energy potential, V , (Fig. 4.6).
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Green’s function

The Feynman diagrams of the Green’s function are identical to those of the
S-matrix with the exception that all outgoing and incoming lines represent
electron orbitals.

Covariant evolution operator

The Feynman diagrams of the Covariant evolution operator are identical
to those of the Green’s function with the exception that there are cre-
ation/absorption operator lines attached to all outgoing/incoming orbital
lines.

H.2 Feynman amplitude

The Feynman amplitude, M, contains

• an electron propagator (Eq. 4.10)
∫

dω
2π

iSF(ω;x2,x1)

for each internal orbital line

• a photon interaction
∫

dz
2π

(−i)I(z;x2,x1) =
∫

dz
2π

(−i) e2c2αµ1α
ν
2DFνµ(z;x2,x1)

for each photon exchange, including the vertices;

• at each vertex space integrations and a time integral 2π∆γ(arg), where
the argument is equal to incoming minus outgoing energy parameters;

• a factor of -1 and a trace symbol for each closed orbital loop;

• The integration over the energy parameters leads to a factor of −i for each
”non-trivial”. (The integral is considered to be ”trivial”, when it contains
a ∆ function from the time integration.)

The S-matrix is related to the Feynman amplitude by (Eq. 4.110)
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S = 2π δ(Ein − Eout)M (H.1)

which gives the energy contribution (Eq. 4.111)

∆E = δEin,Eout〈 |iM| 〉 (H.2)

The the Green’s function is in the equal-time approximation related to the

Feynman amplitude, M, by (Eq. 5.25)

G(x, x′;x0, x
′
0) = e−it(E0−H0) M(x,x′;x0,x

′
0) eit0(E0−H0) (H.3)

and analogously for the covariant-evolution operator (Eq. 6.10)

U(t,−∞)|ab〉 = e−it(E0−H0) |rs〉〈rs|M|ab〉 eit0(E0−H0) (H.4)

In this formalism the contribution to the effective interaction is

〈 |Veff | 〉 = 〈 |M| 〉 (H.5)

Illustrations

6iSF 6iSF

6 6

-s s−iVsp

A:−i

s s6 6

6iSF 6iSF

6 6

-s s−iVsp

B:1

s s6 6

6iSF 6iSF
-s s−iVsp

6iSF 6iSFs s
6 6

C:i

s s6 6

6iSF 6iSF
-s s−iVsp

6iSF 6iSFs s−iIPair

6 6
D:1

s s−iIPair
6 6

6 6

6iSF 6iSF
-s s−iVsp

6iSF 6iSFs s−iIPair

6 6

E:−i

s s6 6s s−iIPair
6 6

6iSF 6iSF

6iSF 6iSF
-s s−iVsp

6iSF 6iSFs s−iIPair

6 6
F:1

Diagram A is a first-order S-matrix (section 4.4), and the Feynman am-
plitude is

M = −iVsp(E0)
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Diagram B is a first-order covariant evolution-operator diagram with the
unperturbed state as input and with outgoing electron propagators (section
6.2). Here, there are three energy parameters and two subsidiary conditions.
This leaves one non-trivial integration, giving a factor of −i. This gives a
factor of i2(−i)2 = 1 and

M = Γ (E0)Vsp(E0)

Diagram C is a first-order covariant evolution-operator diagram with in-
coming and outgoing electron propagators (section 8.1). Here, there are five
parameters and three conditions, leaving two non-trivial integrations. This
gives the factor i4(−i)3 = i and Eq. (8.9)

M = Γ (E0) iVsp(E0)Γ (E0)

Diagram D is a first-order covariant evolution-operator diagram with in-
coming pair function (section 6.2). This gives i4(−i)4 = 1

M = IPairΓ (E0)Vsp(E0)Γ (E0) IPair

Diagram E is an S-matrix diagram with incoming and outgoing pair func-
tions (section 6.2). This gives i4(−i)5 = −i and

M = −iIPairΓ (E0)Vsp(E0)Γ (E0) IPair

Diagram F is a first-order covariant evolution-operator diagram with in-
coming and outgoing pair functions (section 6.2). Here, there are 7 parameters
and 4 subsidiary conditions, yielding i6(−i)6 = 1 and

M = Γ (E0) IPairΓ (E0)Vsp(E0)Γ (E0) IPair





Appendix I

Evaluation rules for time-ordered
diagrams

In non-relativistic (MBPT) formalism all interaction times are restricted to
the interval (t,−∞), and the Goldstone diagrams are used for the graphical
representation. In the relativistic (QED) formalism, on the other hand, times
are allowed in the entire interval (∞,−∞), and then Feynman diagrams,
which contain all possible time orderings, are the relevant ones to use.

For computational as well as illustrative purpose it is sometimes useful
also in the relativistic case to work with time-ordered diagrams. It should
be observed, though, that time-ordered Feynman diagrams are distinct from
Goldstone diagrams, as we shall demonstrate here.1

When only particles states (above the Fermi level) are involved, time runs
in the positive direction, and the time-evolution operator can be expressed
(Eq. 3.12)

U(t,−∞) = 1− i
∫ t

−∞
dt1 V (t1) + (−i)2

∫ t

−∞
dt1 V (t1)

∫ t1

−∞
dt2 V (t2) + · · · (I.1)

where V (t) is the perturbation in the interaction picture (Eq. 3.16)

V (t) = −
∫

d3x ψ̂†(x)ecαµAµ(x) ψ̂(x) (I.2)

Core states and negative energy states are regarded as hole states below
the Fermi level with time running in the negative direction. Then the corre-
sponding time integration should be performed in the negative direction.

1 The treatment here is partly based upon that in ref. [124, App. C and D]
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352 I Evaluation rules for time-ordered diagrams

I.1 Single-photon exchange

t

6a

6r
-r rz

1

2

6b

6s

E

We consider first the time-ordered diagram for single-photon exchange
with only particle states involved. The time restrictions are here

t > t2 > t1 > −∞

which corresponds to the evolution operator (Eq. I.1)

(−i)2

∫ t

−∞
dt2 V (t2) e−it2d2

∫ t2

−∞
dt1 V (t1) e−it1d1 (I.3)

The contraction of the radiation-field operators gives rise to a photon
propagator (Eq. 4.18)

Aν(x2)Aµ(x1) = iDFνµ(x2, x1)

and this leads to the interaction (Eq. 4.46))

I(x2, x1) = e2c2αµ1α
ν
2DFνµ(x2, x1) =

∫
dz
2π

e−iz(t2−t1)

∫
2c2k dk f(k;x1,x2)
z2 − c2k2 + iη

The time dependence at vertex 1 then becomes e−it1d1 , where

d1 = εa − εr − z + iγ

This parameter is referred to as the vertex value and given by the incoming
minus the outgoing orbital energies/energy parameters at the vertex. Simi-
larly, we define

d2 = εb − εs + z + iγ
d12 = d1 + d2 = E − εr − εs (I.4)

with E = εa + εb. This leads to the time integrals

(−i)2

∫ t

−∞
dt2 e−it2d2

∫ t2

−∞
dt1 e−it1d1 =

e−it d12

d12

1
d1

(I.5)
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Together with the opposite time ordering, t > t1 > t2 > −∞, the denomina-
tors become

1
d12

( 1
d1

+
1
d2

)
=

1
E − εr − εs

( 1
εa − εr − z + iγ

+
1

εb − εs + z + iγ

)
(I.6)

This leads to the Feynman amplitude (Eq. 6.11)

Msp = i
∫

dz
2π

1
E − εr − εs

( 1
εa − εr − z + iγ

+
1

εb − εs + z + iγ

)

×
∫

2c2k dk f(k)
z2 − c2k2 + iη

(I.7)

or
〈rs|Msp|ab〉 =

1
E − εr − εs 〈rs|Vsp(E)|ab〉 (I.8)

with

Vsp(E) =
∫
cdk f(k)

( 1
εa − εr − ck + iγ

+
1

εb − εs − ck + iγ

)
(I.9)

If the interaction is instantaneous, then the time integral becomes

−i
∫ t

−∞
dt12 e−it12d12 =

e−it d12

d12
=

e−it (E−εr−εs)

E − εr − εs (I.10)

which for t = 0 is the standard MBPT result.

I.2 Two-photon exchange

Next, we consider the diagrams in Fig. I.1.

We extend the definitions of the vertex values:

d1 = εa − εt − z ; d2 = εb − εu + z ; d3 = εt − εr − z′ d4 = εu − εs + z′

d12 = d1 + d2 = E − εt− εu ; d13 = εa− εr − z− z′ ; d24 = εb− εs + z+ z′

d123 = E − εr − εu − z′ ; d124 = E − εt − εs + z′ ; d1234 = E − εr − εs
i.e., given by the incoming minus the outgoing energies of the vertex. There
is a damping term ±iγ for integration going to ∓∞.
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t 6r 6sr r
6r 6s
-q qz′

3

4

-q qz

1

26t
6u

6a 6b

E = εa + εb

t r r6r 6s

6r 6s
�
�
�

�
�
�

�
��t rr3 rr 2

r r
- qq z

4

1

6b
6a

6u

E

t r r6r 6s

6r

6u
�
�
�

�
�
�

�
��t rr3 rr 2

r r
-q qz

1

4

6a
6b

E

t 6r 6sr r
6r 6s

A
A
A

A
A
A

A
AUt

�
�
�
��

�
�
�
��

�
��
ur r1

r rz

2

-q qz′

3

4

6a 6b

E
Fig. I.1 Time-ordered Feynman diagrams for the two-photon ladder with only particle
states (left) and with one and two intermediate hole states (right).

No virtual pair

We consider now the first diagram above, where only particle states are in-
volved. We assume that it is reducible, implying that the two photons do not
overlap in time. Then the time ordering is

t > t4 > t3 > t2 > t1 > −∞

This leads to the time integrations

(−i)4

∫ t

−∞
dt4 e−it4d4

∫ t4

−∞
dt3 e−it3d3

∫ t3

−∞
dt2 e−it2d2

∫ t2

−∞
dt1 e−it1d1

=
e−it d1234

d1234 d123 d12 d1
(I.11)

Changing the order between t1 and t2 and between t3 and t4 leads to the
denominators

1
d1234

( 1
d123

+
1
d124

) 1
d12

( 1
d1

+
1
d2

)
(I.12)

Here, all integrations are being performed upwards, which implies that all
denominators are evaluated from below.

If the interaction 1-2 is instantaneous, then the integrations become

(−i)3

∫ t

−∞
dt4 e−it4d4

∫ t4

−∞
dt3 e−it3d3

∫ t3

−∞
dt12 e−it12d12

=
e−it d1234

d1234 d123 d12
(I.13)

and together with the other time ordering
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e−it d1234

d1234

( 1
d123

+
1
d124

) 1
d12

(I.14)

If both interactions are instantaneous, we have

(−i)2

∫ t

−∞
dt34 e−it34d34

∫ t34

−∞
dt12 e−it12d12 =

e−it d1234

d1234 d12
(I.15)

consistent with the MBPT result [118, Sect. 12.2].

Single hole

Next, we consider the two-photon exchange with a single hole, represented
by the second diagram above. We still assume that the diagram is reducible,
implying that the two photons do not overlap in time. The time ordering is
now

t > t4 > t3 > t2 > −∞ and ∞ > t1 > t4

but the order between t1 and t is not given.

If this is considered as a Goldstone diagram, all times (including t1) are
restricted to tn < t, which leads to

∫ −∞
t

dt1 e−it1d1

∫ t1

−∞
dt4 e−it4d4

∫ t4

−∞
dt3 e−it3d3

∫ t3

−∞
dt2 e−it2d2 =

= − e−it d1234

d1234 d234 d23 d2
(I.16)

Note that the last integration is being performed in the negative direction,
due to the core hole. This is illustrated in Fig. I.2 (left).

Considered as a Feynman diagram, the time t1 can run to +∞, which leads
to

∫ t4

∞
dt1 e−it1d1

∫ t

−∞
dt4 e−it4d4

∫ t4

−∞
dt3 e−it3d3

∫ t3

−∞
dt2 e−it2d2 =

=
e−it d1234

d1234 d1 d23 d2
(I.17)

Here, the last integration is still performed in the negative direction, this time
from +∞ to t4, and this leads to a result different from the previous one. In
the Goldstone case all denominators are evaluated from below, while in the
Feynman case one of them is evaluated from above (see Fig. I.2, right). For
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diagrams diagonal in energy we have d1234 = 0, and hence d1 = −d234, which
implies that in this case the two results are identical.

Let us next consider the third diagram in Fig. I.1, where the time ordering
is

t > t4 > t1 > t3 > t2 > −∞
Here, all times are limited from above in the Goldstone as well as the Feynman
interpretation, and this leads in both cases to

∫ t

−∞
dt4 e−it4d4

∫ −∞
t4

dt1 e−it1d1

∫ t1

−∞
dt3 e−it3d3

∫ t3

−∞
dt2 e−it2d2 =

= − e−it d1234

d1234 d123 d23 d2
(I.18)
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Fig. I.2 Time-ordered Goldstone and Feynman diagrams, respectively, for two-photon
exchange with one virtual pair. In the latter case one denominator (at vertex 1) is evaluated
from above.

Double holes

The last diagram in Fig. I.1, also reproduced in Fig. I.3, represents double
virtual pair. Considered as a Goldstone diagram, the time ordering is

t > t2 > t1 > t4 > t3 > −∞

which yields
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∫ t

−∞
dt2 e−it2d2

∫ t2

−∞
dt1 e−it1d1

∫ t1

−∞
dt4 e−it4d4

∫ t4

−∞
dt3 e−it3d3

=
e−it d1234

d1234 d134 d34 d3
(I.19)

This is illustrated in Fig. I.3 (left).

Considered as a Feynman diagram, we have instead ∞ > t2 > t1, which
leads to

∫ t

−∞
dt4 e−it4d4

∫ t4

−∞
dt3 e−it3d3

∫ t4

∞
dt1 e−it1d1

∫ t1

∞
dt2 e−it2d2

=
e−it d1234

d1234 d3 d12 d2
(I.20)

where two integrations are performed in the negative direction.
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Fig. I.3 Time-ordered Goldstone and Feynman diagrams, respectively, for two-photon
exchange with two virtual pairs. In the latter case two denominators, (at vertices 1 and 2)
is evaluated from above.

I.3 General evaluation rules

We can now formulate evaluation rules for the two types of diagrams consid-
ered here. For (non-relativistic) Goldstone diagrams the rules are equivalent
to the standard Goldstone rules [118, section 12.2]

• There is a matrix element for each interaction.
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• For each vertex there is a denominator equal to the vertex sum (sum of
vertex values: incoming minus outgoing orbital energies and z+iγ for cross-
ing photon line (leading to -ck after integration) below a line immediately
above the vertex.

• For particle/hole lines the integration is performed in the positive/negative
direction.

For the relativistic Feynman diagrams the same rules hold, with the
exception that

• for a vertex where time can run to +∞ the denominator should be eval-
uated from above with the denominator equal to the vertex sum above a
line immediately below the vertex (with z − iγ for crossing photon line,
leading to +ck).



Appendix J

Some integrals

J.1 Feynman integrals

In this section we shall derive some integrals, which simplify many QED
calculations considerably (see the books of Mandl and Shaw [136, Ch. 10]
and Sakurai [194, App. E], and we shall start by deriving some formulas due
to Feynman.

We start with the identity

1
ab

=
1

b− a
∫ b

a

dt
t2

(J.1)

With the substitution t = b+ (a− b)x this becomes

1
ab

=
∫ 1

0

dx
[b+ (a− b)x]2

=
∫ 1

0

dx
[a+ (b− a)x]2

(J.2)

Differentiation with respect to a, yields

1
a2b

= 2
∫ 1

0

xdx
[b+ (a− b)x]3

(J.3)

Similarly, we have

1
abc

= 2
∫ 1

0

dx
∫ x

0

dy
1

[a+ (b− a)x+ (c− b)y]3

= 2
∫ 1

0

dx
∫ 1−x

0

dy
1

[a+ (b− a)x+ (c− a)y]3
(J.4)

Next we consider the integral
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∫
d4k

1
(k2 + s+ iη)3

= 4π
∫
|k|2d|k|

∫ ∞
−∞

dk0

(k2 + s+ iη)3

The second integral can be evaluated by starting with
∫ ∞
−∞

dk0

k2
0 − |k|2 + s+ iη

=
iπ√
|k|2 − s

evaluated by residue calculus, and differentiating twice with respect to s. The
integral then becomes

∫
d4k

1
(k2 + s+ iη)3

=
3iπ2

2

∫ |k|2d|k|
(|k|2 + s)5/2

=
iπ2

2s
(J.5)

The second integral can be evaluated from the identity

x2

(x2 + s)5/2
=

1
(x2 + s)3/2

− s

(x2 + s)5/2

and differentiating the integral
∫

dx√
x2 + s

= ln
(
x+

√
x2 + s

)

yielding ∫
x2

(x2 + s)5/2
=

1
3s

For symmetry reason we find
∫

d4k
kµ

(k2 + s+ iη)3
= 0 (J.6)

Differentiating this relation with respect to kν , leads to
∫

d4k
kµkν

(k2 + s+ iη)4
=
gµν

3

∫
d4k

1
(k2 + s+ iη)3

=
iπ2gµν

6s
(J.7)

using the relation (Eq. A.4).

By making the replacements

k ⇒ k + q qnd s⇒ s− q2

the integrals (Eq. J.5) and (Eq. J.6) lead to
∫

d4k
1

(k2 + 2kq + s+ iη)3
=

iπ2

2(s− q2)
(J.8)



J.2 Evaluation of the integral
R

d3k
(2π)3

eik·r12

q2−k2+iη
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∫
d4k

kµ

(k2 + 2kq + s+ iη)3
= −

∫
d4k

qµ

(k2 + 2kq + s+ iη)3
= − iπ2qµ

2(s− q2)
(J.9)

Differentiating the last relation with respect to qν , leads to
∫

d4k
kµkν

(k2 + 2kq + s+ iη)4
=

iπ2

12

[ gµν

s− q2
+

2qµqν

(s− q2)2

]
?? (J.10)

Differentiating the relation (Eq. J.8) with respect to s, yields
∫

d4k
1

(k2 + 2kq + s+ iη)4
=

iπ2

6(s− q2)2
(J.11)

which can be generalized to arbitrary integer powers ≥ 3
∫

d4k
1

(k2 + 2kq + s+ iη)n
= iπ2 (n− 3)!

(n− 1)!
1

(s− q2)n−2
(J.12)

This can also be extended to non-integral powers

∫
d4k

1
(k2 + 2kq + s+ iη)n

= iπ2Γ (n− 2)
Γ (n)

1
(s− q2)n−2

(J.13)

and similarly
∫

d4k
kµ

(k2 + 2kq + s+ iη)n
= −iπ2Γ (n− 2)

Γ (n)
qµ

(s− q2)n−2
(J.14)

∫
d4k

kµkν

(k2 + 2kq + s+ iη)n
= iπ2Γ (n− 3)

2Γ (n)

[
(2n− 3) qµq.ν

(s− q2)n−2
+

gµν

(s− q2)n−3

]

(J.15)

J.2 Evaluation of the integral
∫

d3k
(2�)3

eik�r12

q2�k2+i�

Using spherical coordinates k = (η, θ, φ), (η = |k|), we have with d3k =
η2dη sinΘ dΘ dΦ and r12 = |x1 − x2|
∫

d3k

(2π)3

eik·(x1−x2)

q2 − k2 + iη
= (2π)−2

∫ ∞
0

η2 dη
q2 − κ2 + iη

∫ π

0

dΘ sinΘ eiκr12 cosΘ

= − i
4π2 r12

∫ ∞
0

κ dκ
(
eiκr12 − e−iκr12

)

q2 − κ2 + iη
= − i

8π2 r12

∫ ∞
−∞

κ dκ
(
eiκr12 − e−iκr12

)

q2 − κ2 + iη
(J.16)
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where we have in the last step utilized the fact that the integrand is an
even function of κ. The poles appear at κ = ±q(1 + iη/2q). eiκr12 is in-
tegrated over the positive and e−iκr12 over the negative half-plane, which
yields −e±iqr12/(4π r12) with the upper sign for q > 0. The same result is ob-
tained if we change the sign of the exponent in the numerator of the original
integrand. Thus, we have the result

∫
d3k

(2π)3

e±ik·(x1−x2)

q2 − k2 + iη
=

1
4π2r12

∫ ∞
0

2κ dκ sin(κr12)
q2 − κ2 + iη

= −e
i|q|r12

4π r12
(J.17)

The imaginary part of the integrand, which is an odd function, does not
contribute to the integral.

J.3 Evaluation of the integral
∫

d3k
(2�)3 (�1�k̂)(�2�k̂)

eik�r12

q2�k2+i�

The integral appearing in the derivation of the Breit interaction (Eq. F.53)is

I2 =
∫

d3k

(2π)3
(α1 · k)(α2 · k)

eik·r12

q2 − k2 + iη

= −(α1 · ∇1)(α2 · ∇2)
∫

d3k

(2π)3

eik·r12

k2(q2 − k2 + iη)
(J.18)

Using (Eq. J.16), we then have

I2 = − i
8π2 r12

(α1 · ∇1)(α2 · ∇2)
∫ ∞
−∞

dκ
(
eiκr12 − e−iκr12

)

(q2 − κ2 + iη)

=
1

4π2 r12
(α1 · ∇1)(α2 · ∇2)

∫ ∞
0

2κ dκ sin(kr12)
κ2(q2 − κ2 + iη)

(J.19)

The poles appear at κ = 0 and κ = ±(q + iη/2q). The pole at κ = 0 can
be treated with half the pole value in each half plane. For q > 0 the result
becomes

− 1
4π r12

eiqr12−1

q2

and for q > 0 the same result with −q in the exponent. The final result then
becomes
∫

d3k

(2π)3
(α1 · k)(α2 · k)

eik·r12

q2 − k2 + iη
= − 1

4π r12
(α1 · ∇1)(α2 · ∇2)

ei|q|r12−1

q2

=
1

4π2 r12
(α1 · ∇1)(α2 · ∇2)

∫ ∞
0

2κ dκ sin(κr12)
κ2(q2 − κ2 + iη)

(J.20)
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R

d3k
(2π)3

(�1�k̂)(�2�k̂)
eik·r12

q2−k2+iη
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Assuming that our basis functions are eigenfunctions of the Dirac hamil-
tonian ĥD, we can process this integral further. Then the commutator with
an arbitrary function of the space coordinates is

[
ĥD, f(x)

]
= cα · p̂ f(x) +

[
U, f(x)

]
(J.21)

The last term vanishes, if the potential U is a local function, yielding
[
ĥD, f(x)

]
= cα · p̂ f(x) = −icα · ∇ f(x) . (J.22)

In particular [
ĥD, e

ik·x] = −icα · ∇ eik·x = cα · k̂ eik·x (J.23)

We then find that

(α · ∇)1(α · ∇)2 e
ik·x =

1
c2

[
hD, e

ik·x
]

1

[
hD, e

ik·x
]

2
(J.24)

with the matrix element
〈
rs
∣∣(α · ∇)1(α · ∇)2 e

ik·x∣∣ ab〉 = q2 eik·x (J.25)

using the notation in (Eq. F.49). The integral (Eq. J.18) then becomes

I2 =
∫

d3k

(2π)3
(α1 · k̂)(α2 · k̂)

eik·r12

q2 − k2 + iη
=
∫

d3k

(2π)3

q2

k2

eik·r12

q2 − k2 + iη
(J.26)

provided that the orbitals are generated by a hamiltonian with a local potential.





Appendix K

Unit systems and dimensional analysis

K.1 Unit systems

SI system

The standard unit system internationally agreed upon is the SI system or
System Internationale.1 The basis units in this system are given in the fol-
lowing table

Quantity SI unit Symbol
length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

For the definition of these units the reader is referred to the NIST WEB page
(see footnote). From the basis units—particularly the first four—the units for
most other physical quantities can be derived.

1 For further details, see The NIST Reference on Constants, Units, and Uncertainty
(http://physics.nist.gov/cuu/Units/index.html).
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Relativistic or ”natural” unit system

In scientific literature some simplified unit system is frequently used for con-
venience. In relativistic field theory the relativistic unit system is mostly used,
where the first four units of the SI system are replaced by

Quantity Relativistic unit Symbol Dimension
mass rest mass of the electron m kg
velocity light velocity in vacuum c ms−1

action Planck’s constant divided by 2π ~ kgm2s−1

dielectricity dielecticity constant of vacuum ε0 A2s4kg−1m−3

In the table also the dimension of the relativistic units in SI units are shown.
From these four units all units that depend only on the four SI units kg, s, m,
A can be derived. For instance, energy that has the dimension kgm−2m−2

has the relativistic unit mec
2, which is the rest energy of the electron (≈ 511

keV). The unit for length is

~
mec

= λ/2π ≈ 0, 386× 10−12m

where λ is Compton wavelength and the unit for time is 2πc/λ ≈ 7, 77×10−4

s).

Hartree atomic unit system

In atomic physics the Hartree atomic unit system is frequently used, based
on the following four units

Quantity Atomic unit Symbol Dimension
mass rest mass of the electron m kg
electric charge absolute charge of the electron e As
action Planck’s constant divided by 2π ~ kgm2s−1

dielectricity dielectricity constant of vacuum times 4π 4πε0 A2s4kg−1m−3

Here, the unit for energy becomes

1H =
me4

(4πε0)2~3

which is known as the Hartree unit and equals twice the ionization energy
of the hydrogen atom in its ground state (≈ 27.2 eV). The atomic unit for
length is
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a0 =
4πε0~2

me2

known as the Bohr radius or the radius of the first electron orbit of the Bohr
hydrogen model (≈ 0, 529×10−10 m). The atomic unit of velocity is αc, where

α =
e2

4πε0c~
(K.1)

is the dimensionless fine-structure constant (≈ 1/137,036). Many units in
these two systems are related by the fine-structure constant. For instance,
the relativistic length unit is αa0.

cgs unit systems

In older scientific literature a unit system, known as the cgs system, was
frequently used. This is based on the following three units

Quantity cgs unit Symbol
length centimeter cm
mass gram g
time second s

In addition to the three units, it is necessary to define a fourth unit in order to
be able to derive most of the physical units. Here, two conventions are used.
In the electrostatic version (ecgs) the proportionality constant of Coulombs
law, 4πε0, is set equal to unity, and in the magnetic version (mcgs) the
corresponding magnetic constant, µ0/4π, equals unity. Since these constants
have dimension, the systems cannot be used for dimensional analysis (see
below).

The most frequently used unit system of cgs type is the so-called Gaussian
unit system, where electric units are measured in ecgs and magnetic ones in
mcgs. This implies that certain formulas will look differently in this system,
compared to a system with consistent units. For instance, the Bohr magneton,
which in any consistent unit system will have the expression

µB =
e~
2m

will in the mixed Gaussian system have the expression

µB =
e~

2mc
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which does not have the correct dimension. Obviously, such a unit system
can easily lead to misunderstandings and should be avoided.

K.2 Dimensional analysis

It is often useful to check physical formulas by means of dimensional analysis,
which, of course, requires that a consistent unit system, like the SI system, is
being used. Below we list a number of physical quantities and their dimension,
expressed in SI units, which could be helpful in performing such an analysis.

In most parts of the book we have set ~ = 1, which simplifies the formulas.
This also simplifies the dimensional analysis, and in the last column below
we have (after the sign ⇒) listed the dimensions in that case.

[force] = N =
kgm

s2
⇒ 1

ms

[energy] = J = Nm =
kgm2

s2
⇒ 1

s

[action, ~] = Js =
kgm2

s
⇒ 1

[electric potential] = V =
J

As
=
kgm2

As3
⇒ 1

As2

[electric field, E] = V/m =
kgm

As3
⇒ 1

Ams2

[magnetic field, B] = V s/m2 =
kg

As2
⇒ 1

Am2s

[vector potential, A] = V s/m =
kgm

As2
⇒ 1

Ams

[momentum, p] =
kgm

s
⇒ 1

m

[charge density, ρ] =
As

m3

[current density, j] =
A

m2

[µ0] = N/A2 =
kgm

A2s2
⇒ 1

A2ms

[ε0] = [1/µ0c
2] =

A2s4

kgm3
⇒ A2s3

m



K.2 Dimensional analysis 369

Fourier transforms

DFνµ(x1, x2) =
∫

dz
2π
DFνµ(z;x1,x2) e−iz(t2−t1)

[A(ω,x)] = s[A(x)]

[A(ω,k)] = sm3[A(x)]

[A(k)] = m4[A(x)]

Photon propagator

[DFνµ(x, x)] =
1

A2m2s2

[ε0DFνµ(x, x)] =
s

m3

[ε0DFνµ(k)] = sm

[ε0DFνµ(k0,x)] =
s

m2

[ε0DFνµ(t,x)] =
1
m2

[ε0DFνµ(z,x)] =
s2

m3
z = ck0

[ε0DFνµ(z,k)] = s2

[e2c2DFνµ(z,x) = I(z,x)] =
1
s

[e2

ε0

]
=
m

s

Electron propagator

ŜF(x, x)⇒ s

SF(x, x)⇒ 1
m3

SF(z,x)⇒ s

m3

SF(z,k)⇒ s

SF(k)⇒ m

S-matrix
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Ŝ(x, x)⇒ 1

S(z,x)⇒ s

S(z,k)⇒ m4

Self energy

Σ̂(z)⇒ 1
s

Σ(z,x)⇒ 1
sm3

Σ(z,k)⇒ 1
s

Σ(k)⇒ m

s2

Vertex

Λ(z,k)⇒ 1

Λ(p, p′)⇒ m

s
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139. Mårtensson-Pendrill, A.M., Lindgren, I., Lindroth, E., Salomonson, S., Staudte, D.S.:

Convergence of relativistic perturbation theory for the 1s2p states in low-Z heliumlike
systems. Phys. Rev. A 51, 3630–35 (1995)

140. Meissner, L., Malinowski, P.: Intermediate Hamiltonian formulation of the valence-
universal coupled-cluster method for atoms. Phys. Rev. A 61, 062,510 (2000)

141. Meyer, W.: PNO-CI studies of electron correlation effects. 1. Configuration expan-
sion by means of nonorthogonal orbitals, and application to ground-state and ionized
states of methane. J. Chem. Phys. 58, 1017–35 (1973)



References 377

142. Mohr, P.: Self-energy correction to one-electron energy levels in a strong Coulomb
field. Phys. Rev. A 46, 4421–24 (1992)

143. Mohr, P., Taylor, B.: CODATA recommended values of the fundamental constants
2002. Rev. Mod. Phys. 77, 1–107 (2005)

144. Mohr, P., Taylor, B.: CODATA recommended values of the fundamental constants
2002. Rev. Mod. Phys. (2008)

145. Mohr, P., Taylor, B.N.: CODATA recommended values of the fundamental physical
constants: 1998. Rev. Mod. Phys. 72, 351–495 (2000)

146. Mohr, P.J.: Numerical Evaluation of the 1s1/2-State Radiative Level Shift. Ann.
Phys. (N.Y.) 88, 52–87 (1974)

147. Mohr, P.J.: Self-Energy Radiative Corrections. Ann. Phys. (N.Y.) 88, 26,52 (1974)
148. Mohr, P.J.: Self-Energy Radiative Corrections. Ann. Phys. (N.Y.) 88, 26–51 (1974)
149. Mohr, P.J.: Lamb Shift in a Strong Coulomb Field. Phys. Rev. Lett. 34, 1050–52

(1975)
150. Mohr, P.J.: Self-energy of the n = 2 states in a strong Coulomb field. Phys. Rev. A

26, 2338–54 (1982)
151. Mohr, P.J.: Quantum electrodynamics of high-Z few-electron atoms. Phys. Rev. A

32, 1949–57 (1985)
152. Mohr, P.J., Plunien, G., Soff, G.: QED corrections in heavy atoms. Physics Reports

293, 227–372 (1998)
153. Mohr, P.J., Sapirstein, J.: Evaluation of two-photon exchange graphs for excited states

of highly charged heliumlike ions. Phys. Rev. A 62, 052,501.1–12 (2000)
154. Mohr, P.J., Soff, G.: Nuclear Size Correction to the Electron Self Energy. Phys. Rev.

Lett. 70, 158–161 (1993)
155. Møller, C., Plesset, M.S.: Note on an Approximation Treatment for Many-Electron

Systems. Phys. Rev. 46, 618–22 (1934)
156. Morita, T.: Perturbation Theory for Degenerate Problems of Many-Fermion Systems.

Progr. Phys. (Japan) 29, 351–69 (1963)
157. Morrison, J.: Many-Body calculations for the heavy atoms. III. Pair correlations. J.

Phys. B 6, 2205–12 (1973)
158. Morrison, J., Salomonson, S.: Many-Body Perturbation Theory of the Effective

Electron-Electron Interaction for Open-shell Atoms. Presented at the Nobel Sym-
posium.., Lerum, 1979. Physica Scripta 21, 343–50 (1980)

159. Mukherjee, D.: Linked-Cluster Theorem in the Open-Shell Coupled-Cluster Theory
for Incomplete Model Spaces. Chem. Phys. Lett. 125, 207–12 (1986)

160. Mukherjee, D., Moitra, R.K., Mukhopadhyay, A.: Application of non-perturbative
many-body formalism to open-shell atomic and molecular problems - calculation of
ground and lowest π − π∗ singlet and triplet energies and first ionization potential
of trans-butadine. Mol. Phys 33, 955–969 (1977)

161. Mukherjee, D., Pal, J.: . Adv. Chem. Phys. 20, 292 (1989)
162. Myers, E.G., Margolis, H.S., Thompson, J.K., Farmer, M.A., Silver, J.D., Tarbutt,

M.R.: Precision Measurement of the 1s2p 3P2 −3 P1 Fine Structure Interval in He-
liumlike Fluorine. Phys. Rev. Lett. 82, 4200–03 (1999)

163. Myers, E.G., Tarbutt, M.R.: Measurement of the 1s2p3P0−3P1 fine structure interval
in heliumlike magnesium. Phys. Rev. A 61, 010,501R (1999)

164. Nadeau, M.J., Zhao, X.L., Garvin, M.A., Litherland, A.E.: Ca negative-ion binding
energy. Phys. Rev. A 46, R3588–90 (1992)

165. Nakanishi, N.: Normalization condition and normal and abnormal solutions of Bethe-
Salpeter equation. Phys. Rev. 138, B1182 (1965)

166. Namyslowski, J.M.: The Relativistic Bound State Wave Function. in Light-Front
Quantization and Non-Perturbative QCD , J.P. Vary and F. Wolz, eds. (International
Institute of Theoretical and Applied Physics, Ames) (1997)

167. Nesbet, R.K.: Electronic correlation in atoms and molecules. Adv. Chem. Phys. 14,
1 (1969)



378 References

168. Oberlechner, G., Owono-N’-Guema, F., Richert, J.: Perturbation Theory for the De-
generate Case in the Many-Body Problem. Nouvo Cimento B 68, 23–43 (1970)

169. Onida, G., Reining, L., Rubio, A.: Electronic excitations: density-functional versus
many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–59 (2002)

170. Pachucki, K.: Quantum electrodynamics effects on helium fine structure. J. Phys. B
32, 137–52 (1999)

171. Pachucki, K.: Improved Theory of Helium Fine Structure. Phys. Rev. Lett. 97,
013,002 (2006)

172. Pachucki, K., Sapirstein, J.: Contributions to helium fine structure of order mα7. J.
Phys. B 33, 5297–5305 (2000)

173. Pachucky, K., Yerokhin, V.A.: Reexamination of the helium fine structure (vol 79,
062516, 2009). Phys. Rev. Lett. 80, 19,902 (2009)

174. Pachucky, K., Yerokhin, V.A.: Reexamination of the helium fine structure (vol 79,
062516, 2009). Phys. Rev. A 81, 39,903 (2010)
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196. Salomonson, S., Öster, P.: Numerical solution of the coupled-cluster single- and
double-excitation equations with application to Be and Li−. Phys. Rev. A 41, 4670–
81 (1989)
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