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Abstract. The many-body perturbative and Green’s-function approaches for evalu-
ating electron binding energies and electron affinities are compared, and it is shown
that they are equivalent and both virtually exact. The former approach leads to
Brueckner orbitals and the latter to Dyson orbitals, and it is shown that the two
concepts are identical for a single valence electron or valence hole. The eigenvalue
yields the exact binding energy /affinity, including correlation and relaxation effects.
This result can be shown to hold also under more general conditions.
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2 Ingvar Lindgren

1. Introduction

The electron binding energy or removal energy represents the energy
needed to remove an electron from an electronic system and is given by
the energy difference between the final and initial states of the process.
There exist today a number of more or less sophisticated methods for
evaluating this quantity. In the Hartree-Fock method, the orbital energy
eigenvalue is according to Koopmans’ theorem [21] equal to the corre-
sponding removal energy (with opposite sign), if the remaining orbitals
are assumed to be frozen. This implies that the effect of “relaxation’
is neglected — an effect which for inner-shell ionization can be quite
appreciable. A simple and popular way of including the relaxation
effect in an approximate way is to perform separate self-consistent-
field calculations of the system before and after the ionization — a
technique commonly known as the ASCF method. In this technique
also approximate methods with local exchange can be used without
any noticeable loss of accuracy. This technique has been frequently
used since the 1960’s for atoms and somewhat later for molecules.

Since the Koopmans and the ASCF techniques are based upon the
single-particle picture, true many-body effects are not included. These
effects can be handled by means of many-body perturbation theory
(MBPT) [26] or by means of the Green’s-function technique (GF) [33],
and particularly the latter method is now frequently used in quantum
chemistry.

Treating the ionization process by means of MBPT, leads to Brueck-
ner orbitals or mazimum-overlap orbitals [7, 32, 25], while the GF
technique leads to what is now known as Dyson orbitals [8, 20]. It has
been known for quite some time that the Brueckner orbitals leads to
the correct binding energy [26, 31, 28], which is also the case for the
Dyson orbital [13]. Nevertheless, there has been some confusion lately
in the quantum-chemistry community about the relation between these
techniques and to what extent they are equivalent. In the present work
the two techniques will be compared and it is shown that for a single
electron outside closed shells — or a single hole in closed shells — the
concepts of Brueckner and Dyson orbitals are identical. It can be shown
that this is true also under more general conditions, as will be discussed
in a forthcoming publication.

During recent years amazingly accurate electron binding energies
have also been evaluated for atoms as well as complex molecules by
means of density-functional theory (DFT) [9, 42], but we shall not be
concerned with this technique here.

In the next section we shall summarize the many-body perturbation
theory (MBPT) and its graphical representation (for further details,
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see, for instance, ref. [26]). Those who are familiar with these concepts
can go directly to Section 3.

2. Many-body perturbation theory

2.1. THE BLOCH EQUATION

We are interested in solving the Schrodinger equation for a number of
states of an N-electron system

HU® = B0 (a=1,2,...d), (1)

known as the target states. The Hamiltonian is (in atomic units, e =
m=h=4mey = 1)

N 1, N
H:;(—Qvi + Vet (1)) +§7~] 2)

where —1V? represents the kinetic energy, vext(z) the external (nu-
clear) potential and 1/7;; the interelectronic interaction.

The Hamiltonian is partitioned in the standard way into a zeroth-
order Hamiltonian and a perturbation

H=Hy+ H'. (3)
The zeroth-order Hamiltonian is supposed to be of single-particle type
N N 1
Ho=)Y ho(i)=)_ ( — §V? + Vext (@) + ui>, (4)
i i
and the perturbation is then
N N4
H ==Y u+) —. (5)
i i<y i

Here, u; is an optional potential, which can be a local function or a
nonlocal potential, such as the Hartree-Fock potential.
The single-electron orbitals are eigenfunctions of hg

ho ¢i(x) = ; gi(x), (6)

and the Slater determinants ({®x}) composed of these orbitals form
the basis of our calculation. These are eigenfunctions of Hy

Hy®p = EEX @y (7)
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with the eigenvalue equal to the sum of the eigenvalues of the occupied

orbitals
occ

Eé( = 261 (8)

For each of the target states there exist a model state, ¥§, confined
to a functional subspace of eigenfunctions of Hy, known as the model
space (P). We define a wave operator in such a way that it transforms
each model function to the corresponding exact wave function

V=00 (a=1,2,...d). 9)

We employ intermediate normalization, (¥*|¥§) = 1, which implies
that
PQP = P, (10)

where P is the projection operator for the model space. All states that

are degenerate with a model state and that can be mixed with that

state by the perturbation must be included in the model space.
Operating on the Schrodinger equation (1) by P from the left yields

Heff\pg = E® 87 (11)

where

Hos = PHQP (12)

is the effective Hamiltonian. Thus, the model functions (9) are eigen-
functions of the effective Hamiltonian with the eigenvalues being the
corresponding exact energies.

The wave operator satisfies the Bloch equation [4, 3, 23, 29, 26]

[, Ho| P = (H'Q — QW) P. (13)

Here, the model space need not be degenerate. W is referred to as the
effective interaction and in intermediate normalization given by

W = PH'QP. (14)
By expanding the wave operator perturbatively
Q=1+0W 4+0® 4 ... (15)

a generalized Rayleigh-Schridinger perturbation expansion can directly
be generated from the Bloch equation [29, 26]. Then by diagonalizing
the matrix of Heg (12), the model functions and the energy of the
target states are obtained to the corresponding accuracy, and the target
functions can be constructed.
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2.2. SECOND QUANTIZATION AND THE PARTICLE-HOLE FORMALISM

Instead of an order-by-order expansion of the wave-operator and the
effective Hamiltonian, it is in many-body theory often more efficient
to employ iterative or all-order procedures, based on the formalism of
second quantization, a procedure we shall here summarize.

The operators a;-r and a; are time-independent single-electron cre-
ation and annihilation operators, which, respectively, create and anni-
hilate a single-electron part of the many-electron wave function. These
operators satisfy the anti-commutation rules

{aj»,a;} = aZTa; + a}ai =0

{ai, aj} = aiGj + a;a; = 0

{al,a;} = ala; +ajal =6y, (16)

where d;; is the Kronecker delta factor. A quantum-mechanical operator
can then be expanded as

O = Cal (1101]5) a5+ golal (6710a/M) map-t-- = O+ O+ Or -+

' (17)
where C' is a number, representing the zero-body part, the next term is
the one-body part etc. Unless otherwise explicitly stated, we employ
here the summation convention with summation over all values of
repeated indices appearing only on one side of an equation. The 'matrix
elements’ are given by

(10117) = [ a1 6{(@1) 01 ¢5(m)

(i7]O2lkl) = // dz; dxs ¢3($1)¢}(1‘2) O o (1) P (x2)
etc. (18)

where dx represents the three-dimensional volume element.

Normally, in field theory, a vacuum level |0) is defined, related to the
empty space with no particles. Then aj|0> = |i) represents a state with
a single electron in the electron state i, corresponding to the single-
electron function ¢;(x) etc. In nonrelativistic theory all operators then
refer to particles states (with positive energy). In relativistic theory,
also hole states (positron states) with negative energy appear.

In many-body atomic or molecular theory it is usually more conve-
nient to define a vacuum level |0) in relation to a suitable closed-shell
system (core). Then azT |0) represents a system with a single electron
1 outside the core, provided that the electron state ¢ is not present in
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6 Ingvar Lindgren

the core. Similarly, a; |0) represents a system with a hole in the core,
provided the state ¢ is initially present in the core.

We assume that the vacuum is a many-electron state, represented
by a single determinant, and we can then separate the single-particle
states into the two categories:

— core states, occupied in the vacuum state;
— particle states, not occupied in the vacuum state.

We also introduce ’particle-hole’ (p-h) operators according to

i — a;-r (7 particle state)
! a; (i core state),
(

by — { a%-r i. particle state) (19)
a;, (i core state).

Thus, the bj operator creates an electron in a particle state (above the
vacuum level) or annihilates an electron in a core state — ’creates a
hole’ — below the vacuum level and v.v.

In principle, the operators might be time dependent with time run-
ning from right to left, so that the leftmost operator corresponds to the
latest time. We refer to the ordering right-left as the time ordering.

In standard field theory a second-quantized operator is said to be
normal ordered or in mnormal form, if all creation operators appear
to the left of the annihilation operators. In the particle-hole formal-
ism we define normal order so that all particle-hole creation
operators (bT) appear to the left of the particle-hole creation
operators (b). We shall use curly brackets to denote an operator in
normal form, {A}.

Wick’s theorem

The order between second-quantized operators can be changed by using
the anti-commutation rules (16), which might lead to contractions. If
x,y are creation/annihilation operators, then a contraction is defined
as the difference between the time-ordered and normal-ordered forms

-
vy =zy—{zy}. (20)
From the anti-commutation rules it then follows that
1 (I 1 1
a;r a;- =a;a; = a;r a; =0 and aq; a} = 0jj. (21)
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Wick’s theorem [44] states that a second-quantized operator can be
expressed as the normal form plus all possible normal-ordered contrac-
tions (single, double etc)

-
A= {A}+{A}. (22)

All terms are then in normal form.

In applying Wick’s theorem for a product of operators, it is conve-
nient first to normal order each of the components. Then the theorem
can be formulated as follows [26]:

If A and B are operators in normal form, then the product is equal to
the normal product plus all normal-ordered contractions between A and
B7
—
AB={AB}+{AB}. (23)

No contractions within the operators will occur. This form of the theo-
rem is particularly convenient in constructing the many-body diagrams.

Normal form of the perturbation
The perturbation (5) can be expressed in second quantization as

. . 1 o1
H/:a;r (1] —u\]>aj+§aj»a} <1j\alkl) a;ag, (24)
(summation over the indices of the creation/annihilation operators
being understood) and normal ordering this operator may lead to con-
tractions within the operator. For the one-body term there will be a
contraction only if ¢ = j is a core state, which leads to

core

af (i| — ulj) a; = Y _(i] — uli) + {ala;} (i| — ulj). (25)

)

This contains a zero-body and a normal-ordered one-body part.
Similarly, the two-body term yields [26, p.240]

1 - T T =1y
gatal (ilrn |k aax = 3 [(ilriy i) — (ilriy 1)
1’7]

core

=1 =11, 1 -
+>_{ala;}[(iklris! k) — (ik|ri |kd)] + 5 {alajmar} (ijlris' k1), (26)
k

which contains a zero-body and normal-ordered one- and two-body
parts. The normal-ordered one-body part in Eq. (26) represents the
Hartree-Fock potential of the core (vacuum state), vgr. Combined with
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the one-body part of the potential term (25), the complete normal-
ordered one-body part of the perturbation can be expressed by means
of an ’effective potential’,

{ala;}ilven|s) = {ala;}ilonr — ul). (27)
Summarizing, the normal-ordered perturbation can be expressed
H,:H0+H1+H2, (28)

where the terms represent the normal-ordered zero-, one- and two-body
parts, respectively,

core core
Ho = (il —uli) + > [(ijlr ig) — (ijlris 159)]
i ,J

Hy = {afa;Hilvenls) = {afa;}ilvnr — ulj)
1 -
Hy = 3 {alajaag}(ijiri k).
If the orbitals are generated in the HF potential of the core, i.e., the vac-

uum for the normal ordering, the one-body part of the normal-ordered
perturbation vanishes.

2.3. GRAPHICAL REPRESENTATION OF MBPT

Graphically, we adopt the convention that
— a particle/core state is represented by a line directed up/down.

A valence (particle or core) state is denoted by double arrows, as shown
in Fig. 1, but a single arrow can represent valence as well as nonvalence
states.

particle valence particle core valence core
particle states core states

Figure 1. Graphical representation of the four kinds of orbitals.

Furthermore, we assume that

— a particle creation/annihilation (a'/a) operator is repre-
sented by a line directed from/towards a vertex.
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From this it follows that

— particle-hole creation/annihilation operators (b'/b) appear
above/below the vertex.

-® +v—® + +-® +A—@

HN VY, ek /\XA...

Figure 2. Graphical representation of the normal-ordered one- and two-body parts
of the perturbation (28). The dotted line represents the electrostatic interaction
between the electrons and the circle with a cross represents the ’effective potential’
(27), which vanishes if the orbitals are generated in the HF potential of the core
(vacuum state). Lines directed upwards/downwards represent particle/core states.

The only p-h annihilation that can occur when operating on the
model space are valence p-h annihilation. Thus,

bnon—valencep =0. (29)

This implies that no other free lines than valence lines are allowed at
the bottom of a diagram when operating to the right on the model space.
Similarly, no other free lines than valence lines are allowed at the top of
a diagram when operating to the left on the model space. An operator
that operates to the right as well as to the left on the model space,
PAP, is said to be closed and represented by a closed diagram with no
other free lines then valence lines. A diagram that is not closed is said
to be open.

A diagram with no free lines at all represents a zero-body operator,
a diagram with one line in and out represents a normal-ordered one-
body operator etc. The normal-ordered one- and two-body parts of the
perturbation (28) are shown in Fig. 2.
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2.4. LINKED-DIAGRAM EXPANSION

When the perturbation expansion is expressed in second-quantized or
diagrammatic form, it is found that so-called unlinked terms/diagrams
are largely eliminated. A diagram is said to be unlinked, if it contains
a disconnected, closed part. The cancellation of the unlinked diagrams
can be indicated in the following way.

With the operators expressed in normal form, we can apply Wick’s
theorem in the form (23) on the r.h.s. of the Bloch equation (13),
yielding

M1 (I
[0, Hol P = ({H'Q} + {H'Q} = {QW} — {QW}) P (30)

The unlinked part of {H'Q2} can be shown to be cancelled by {QW},
if the model space is complete, which implies that it contains all deter-
minants that can be formed by the valence electrons. This leaves

1 1
[, Ho) P = ({H'Q}vissea + {H'Q} — {QW}) P. (31)

The first term on the r.h.s. is disconnected but still 'linked with our
definitions, since all separate parts are open. The remaining terms
would be linked if € is linked. Then it can be shown by induction
that only linked terms remain, or

[Q, Ho| P = [(H') — QW) P] (32)

Linked”
The last term represent co-called folded diagrams [6, 26]. Here, the
diagrams of €2 and W are connected by one or several valence lines,
and the diagrams are conventionally drawn in a ”folded” way, as will
be illustrated below. Obviously, this terms appears only for open-shell
systems with valence particles or holes present.

An even more effective form of MBPT is the Coupled-Cluster Ap-
proach (CCA), where the wave operator is expressed in exponential
form [18, 12, 11, 22], a procedure frequently used in quantum chem-
istry [10, 36, 2, 39]. For general open-shell systems it is convenient to
use the normal-ordered exponential form [15, 30, 26]

1
Q:{es}=1+s+§{52}+~- (33)
(where again the curly brackets are used to denote normal order). All
the results we shall derive here are valid also in the coupled-cluster

approach, but for simplicity we shall stick to the standard many-body
formalism.
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Using second quantization, the wave operator can be separated into
normal-ordered one-, two-,.. body parts

Q=14+ +0+... (34)

or

) 1 .
Q=1+ {alaj}a’ + o {alalaar} 2} + - (35)

It follows from (10) that in intermediate normalization all wave-
operators terms are open — except the trivial unit term. The graphical
form of the one- and two-body parts is given in Fig. 3, assuming no
valence holes. Since the wave operator operates to the right on the
model space (29), only valence lines are allowed at the bottom.

Figure 3. Graphical representation of the one- and two-body parts of the nor-
mal-ordered wave operator (35), assuming no valence holes. The diagrams are open,
which means that all lines are not allowed to be valence lines.

By applying Wick’s theorem on the r.h.s. of the Bloch equation (13),
the identification, using the partitioning (34), leads to a set of coupled
equations

[€2,, Ho| P = [(H'Q — QW) P] (36)

Linked, n’
Solving these equations self-consistently, for instance, with the approx-
imation

Qzl—{—Ql—l—Qg, (37)

yields the effect of single and double excitations to all orders of pertur-
bation theory. We shall refer to this as the pair approzimation.

3. MBPT treatment of a single electron outside closed shells

We consider now the special case of a single (valence) electron outside a
closed-shell core, and we shall use the MBPT formalism of the previous
section to derive the equation for the valence Brueckner orbital. In the
next section we shall treat the same problem using the Green’s-function
or propagator method.
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The model space can in this case be restricted to a single determinant
(model function) ®, which is an eigenfunction of Hy (4),

Hy® = Ey ®, (38)
and the projection operator for the model space is
P = |2)(P|. (39)

The Bloch equation (32) becomes

(Eo — Ho) QP = [(H'Q - QW)P], . (40)
and the coupled equations (36)
(Eo — Ho) QP = [(H'Q — QW) P] Linked, n’ (41)
where W = PH'QP is the effective interaction (14).
The single target function is given by
U =0Qd (42)
and the total energy of the system by
E = (P|HQ|P) = Ey + (P|W|D). (43)

Our vacuum state is chosen to be the ground state of the ion core.
We generate the orbitals in the HF potential of the core, which means
that the one-body part of the normal-ordered perturbation (28) vanishes.

3.1. THE PAIR APPROXIMATION

With the pair approximation (37) the wave-operator equations (41)
become

(Eo — Ho) P = [(H'Q — 4 W3) Pl
(EO — Hg) QP = [(H,Q — QQWl)P] Linked, 2
Wi = (PH'QP)Linked, 1- (44)

Linked, 1

From the first equation we obtain
(ep — er(Pp|u[®) = (L H'Q — Q1 W1|P) Linked, 1, (45)

where @7 is the a determinant with the occupied orbital p of ® replaced
by an unoccupied (virtual) orbital r. Similarly, the Qs equation is
obtained by projecting on the second equation in (44) by a doubly
excited function.

Brueckner.tex; 30/11/2003; 10:20; p.12
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LA Mﬂ -

#

Figure 4. Graphical representation of the 21 and 22 equations in the pair approx-
imation (37) (leaving out exchange variants). The last diagram in each equation
is a folded diagram, which appears only when the incoming line is a valence line.
The box represents the effective interaction (14). For simplicity, all incoming lines
are directed upwards, although at most one incoming orbital can in our case be a
valence line.

The graphical form of the equations (44) is given in Fig. 4. Since
we have assumed here that the orbitals are generated in the HF po-
tential of the ion core, there is no one-body part of the normal-ordered
perturbation (28), and the bare H' term will not contribute to the
one-body equation. The first diagram on the r.h.s. of this equation
represents H'()q, the next two H'Qy and the last (folded) diagram the
term —Q; W71. The latter appears only when the incoming line is a va-
lence line. Conventionally, the internal valence line of a folded diagram
is drawn downwards. In the (2o equation the first diagram represents
H’, the next two H'Qq, the next four H'Q)s and the last diagram the
folded term —2oWj. Since there is only one valence electron in our case,
the effective interaction in the folded diagram can only be of one-body
type. Exchange variants are left out.

3.2. THE REMOVAL ENERGY

The total energy of our system is according to Eq. (43) given by the
zeroth-order energy in addition to the expectation value of the effective

Brueckner.tex; 30/11/2003; 10:20; p.13
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p #

E = Ey+ +

't

Figure 5. Total energy of a system with a single electron outside a core of closed
shells is given by the zeroth-order energy and the zero-body and the one-body parts
of the effective interaction W (14). The latter parts are given in more detail in Fig.
6.

interaction W in the model state. Since W = PH'QP, we obtain the
corresponding graphical representation by ‘closing’ the diagrams of
the wave operator € by operating with the perturbation H’, so that no
other free lines than valence lines should appear. Since in the present
case we have only one valence line, this can result in zero-order dia-
grams with no free lines, representing the zero-body part of the effective
interaction W, Wy, and one-body diagrams with a single valence line in
and out, representing the one-body part, Wi, as illustrated in Fig: 5.
The one- and two-body parts are illustrated in more details in Fig. 6.

Wy = —

p# p p
- [J- [0 [
p# p p

Figure 6. Graphical representation of the zero-body (Wy) and one-body (W1) parts
of the effective interaction (14), obtained by ’closing’ the diagrams of the wave
operator by the perturbation H’. The zero-body part has no free lines at all and the
one-body part a single valence line (p) in and out, but no other free lines (self-energy
diagrams). Exchange variants are left out.

Since there is no one-body part of the normal-ordered perturbation
in our case, the zero-body part of the effective interaction can only be
achieved by closing the two-body part of the wave operator (33), as is
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illustrated in the top line of Fig. 6. The bottom line of the figure shows
the one-body part of the effective interaction.

E‘COI‘G — E(()JOI'E +

Figure 7. Total energy of the ion core is given by the zeroth-order energy and the
zero-body part Wy of the effective interaction (14), i.e., closed diagrams with no free
lines. The zero-body part is in our formalism identical to that of the neutral system
in Fig. 5.

The total energy of the ion core, which is a closed-shell system, is
given by the zeroth-order energy of that system and the zero-body part
(Wo) of the effective interaction, as illustrated in Fig. 7. We employ here
the principle of valence universality [27], which implies that the
wave-operator amplitudes are independent of the degree of ionization.
Therefore, the zero-body parts of the effective interaction are identical
for the neutral and ionized systems.

The removal energy of the valence electron is given by the difference
between the total energies of the neutral system and the ion core

—BE = E — E%°, (46)

Since the zero-body contributions cancel, it follows that the removal
energy is given by the orbital (HF) eigenvalue and the one-
body part of the effective interaction,

_BE =g, + (B|W;|®), (47)

as illustrated in Fig. 8. This is the exact ionization energy, in-
cluding correlation as well as relaxation effects. The one-body
diagrams are shown more explicitly in Fig. 6, where the second diagram
represents the correlation effect and the last diagram the relaxation,
i.e., the effect due to modification of the core orbitals at the removal
of the valence electron.

The one-body part of the effective interaction is of self-energy (SE)
type and can be expressed as the expectation value of a self-energy
operator

(@[W1]®@) = (P|H'Q|®)Linked,1 = (P|Z(ep)Ip)- (48)
Defining
dep = (D[W1[®) = (p[%(ep)Ip), (49)
the (negative of the) removal energy is from (47)
_BE =¢, + ¢, (50)
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'}
't

Figure 8. The (negative of the) removal energy of the valence electron is given by
the orbital Hartree-Fock eigenvalue in addition to the one-body part (W7) of the
effective interaction (14). The diagrammatic representation of the latter is given in
Fig. 6. This includes proper as well as improper self-energy diagrams.

—BE = ¢, +

3.3. BRUECKNER AND DYSON ORBITALS

Single excitations represented by the single-particle equation (45) and
the top line in Fig. 4 are one-body effects and can therefore in principle
be included in a single-particle model. We shall now consider such
excitations from the valence state (p) in some detail.

We start with the single-particle equation (45)

(€p = &r (D7 || ®) = [(Pp| H'QY @) — (7] | @) (DWW | )] (51)

Linked,1’
where we have inserted the projection operator for the model space
(39), P = |®)(®|, in the last term. The matrix element (®}[;[®)
is the amplitude of the ; operator for the single excitation p — r
and is graphically represented by the ; diagrams in Fig. 4. Using the
definition (49), we can express the folded term above as —de;, (®p[€21|®P),
and Eq. (51) then becomes

(ep + S2p — £,) (B1| | D) = (OF|H'Q D) pinked. 1 (52)

Thus, we see that the effect of the folded term is simply to shift the
energy denominator of the 2; operator by the amount de,. We can then
leave out the folded part of the €2y equation, if we make the following
replacement in the energy denominator,

ep — €, = €p + dep. (53)

Using the self-energy operator, the result can be expressed in analogy
with the one-body effective interaction (48) as

(ep — er)( Pyl [®) = (r[X(ep)[p), (54)
defining the general SE operator by
(r[2(ep)|p) = (PPl H'QP) Linked,1 (55)
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(which is consistent with the definition of the diagonal part (49)). This
is illustrated in Fig. 9. This can also represent the €21 amplitude, if we
apply the modified denominator (53).

o= | {(b+ )+
p# Py p#

Figure 9. Graphical representation of the nondiagonal part of the self-energy opera-
tor X(gp). This representation is analogous to the diagonal part shown in Fig. 6 (no
folded part). This can also represent the corresponding part of the wave operator,
if we apply the modified energy shift (53). As before, exchange variants are left out.

We can now form a new orbital for the valence electron by adding
the contribution (54) to the HF orbital,

G3(@) = (alp’) = {elp) + (i) (@) ]2) = (alp) + DLTEE)
T

T s6)
By replacing the HF orbital of the valence electron in the determinant
® by the modified orbital, ¢y (x), all single excitations from the
valence electron of the exact wave function will be included.
Therefore, the modified orbital is the Brueckner orbital for the
valence electron [7, 32, 28|.

In order to show more explicitly that the modified orbital (56) is a
Brueckner orbital, we can form a single excitation from the modified
valence orbital p* into a virtual orbital s*, which we denote by @Z*.
The virtual orbital must be orthogonalized against the modified valence
orbital, i.e.,

(s*[p*) = (s"Ip) + (s"[r}(Pp|€21|®) = 0. (57)
But this can also be expressed

(@5 |[|®) + |@p) (@)[ |@)] = (5

0) =0, (58)

which is the Brillouin-Brueckner or maximum-overlap condi-
tion for the valence electron [7, 32].

We consider here only the Brueckner orbital for the valence electron,
while the core orbitals are left as HF orbitals. The modified valence
orbital then satisfies the maximum-overlap condition with the core
orbitals frozen.
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18 Ingvar Lindgren

When the SE diagrams are generated perturbatively by inserting the
iterated one- and two-body wave-operator parts in the expansion in Fig.
9, also improper SE parts can appear, i.e., parts that can be separated
into two allowed SE parts by cutting a single orbital line. When such a
separation is not possible, the SE part is said to be proper. Therefore,
the general SE operator can be expanded in terms of proper SE parts,
as illustrated in Fig. 10. We assume here that the energy denominators
of the single-particle equation are evaluated by means of the modified
energy (53), which eliminates folded diagrams from the expansion, so
that the intermediate lines (s) in the figure are virtual (non-valence)
lines.

Z = Z* + S A _|_ oo
E*

vt

Figure 10. The general self energy (X) can be expanded in proper self energies (7).

The energy denominators are evaluated by means of the modified energy (53), which
implies that there are no folded diagrams in the expansion.

Using the proper self energy, the Brueckner-orbital equation (56)
can be expressed in the form of a Dyson equation

(@|r) {r[%" (ep) ")
€y —Er

(x|p") = (z[p) + ; (59)

where the Brueckner orbital appears also on the r.h.s. of the equation.
This is illustrated in Fig. 11. We recall that r represents here virtual
state, i.e., a particle state different from the valence state (p).

The Brueckner orbital (59) satisfies the differential equation

(ep = ho)(x[p®) = (g, — ho)(@|p) + (®|r) (r[X"(ep)|p").  (60)
Using the definition (53), the first term on the r.h.s. can be expressed
(€p = ho)(z|p) = dep(z|p),

since ho(x|p) = ep(x|p). According to the relation (49), de, is equal to
the diagonal element of the SE operator, which we can also express in
terms of the proper SE and the Brueckner orbital

dep = (pE(ep)Ip) = (PI3"(ep)|p7)- (61)
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g = r} + |z = P
p# p**

Figure 11. Dyson equation for generating the Brueckner valence orbital (56). The
thick line represents the Brueckner orbital and the thinner lines HF orbitals. The
large box represents the general self energy (X) and the small box the proper self
energy (X%).

+
7

-

This leads to
(ep — ho)([p*) = (x|r)(r|Z*(p)|p%), (62)

summed over all particle states, including the valence orbital but ex-
cluding core states. But it follows from the definition (55) that the
matrix element

(i[S(ep)[p) = (DL H'QP)Linked 1 = (i[Z*(ep)Ip*) = 0,

when ¢ is a core state, since (@;\ would then vanish. Therefore, we
can let the sum in (62) run over all states, and using the identity
Zalli ‘Z> <Z’ = 1, this ylelds

(ep — ho){®|p") = ([%7(ep)|p") (63)

The self-energy operator is obtained by forming a one-body operator
by operating with the perturbation on the wave operator. In principle,
this will contain also folded diagrams. We have seen that the folded
diagram of the single-particle equation in Fig. 4 has the effect of mod-
ifying the energy denominator of the 2; operator, when the valence
electron is being excited. This is true also for the Sy equation, and we
can leave out the folded diagram also from this equation, if we make
the same energy-denominator shift (53). This has the effect that the
energy parameter of the SE operator will be shifted in the same way,

3 (ep) = X¥(ep); (64)

and then no folded diagrams from the S, equation will appear. Then
the expressions (56) and (59) for the Brueckner orbital become

{@[0)(i[2(ep) ) _ @lp) + (@|0) (1|2 (e5) ")

52—52' 5;;—62-

(x|p™) = (=|p) + , (65)
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where according to the discussion above, ¢ can run over all orbitals.
Similarly, the Dyson equation (63) becomes

(5 — ho)(x|p*) = (@[S*(ep)[p. (66)
This can also be expressed
ho (z(p") + ([ (p) |2’ ) (@' [p") = e (z[p”) (67)

or in integral form
hody(@) + [ 4o (@' ) @) =5 dh@). (69)

Here, (x|X*(ey)|x’) = (x|X*(cp)|2’) is the proper self energy in the co-
ordinate representation. Eq. (67)/(68) is the eigenvalue equation of the
Brueckner orbital for the valence electron, and according to the relation
(50) the eigenvalue g, represents the eract removal energy of
the valence electron. ¥*(x,x',¢;) is the nonlocal potential of the
Brueckner orbital, discussed in by Lindgren and Salomonson [28].

The solution of the Dyson equation (67) is known also as the Dyson
orbital [35], and it follows from the present analysis that for a sin-
gle valence electron outside closed shells the Brueckner and
Dyson orbitals are identical concepts.

The treatment above holds also for a state with a single hole in a
closed-shell core, and the eigenvalue then represents the correspond-
ing electron affinity. It will also hold in principle under more general
conditions, as will be demonstrated in a forthcoming publication.

3.4. APPLICATION TO THE ALKALI ATOMS

As an illustration of the procedure descried above, we consider some
calculations on the alkali atoms. For lithium ground state and first
excited state, our calculation [31] yields about 99% of the many-body
effect, i.e., relaxation and correlation effects. The remaining effect is
manly due to three-body effects. A similar calculation by Johnson et
al. [19] was performed only to third order, which yielded 95-97 % of
the effect. Later Blundell et al. [5] have performed a relativistic all-
order calculations with singles and doubles (no coupled clusters), which
yielded essentially the same result as that of Lindgren. Kaldor et al. [14]
have more recently performed relativistic coupled-cluster calculations
on all the alkali atoms, yielding about 99 % of the many-body effect
for 2s but only 96 % for the 2p state.

For the ground state of the sodium atom, a very accurate calcu-
lation has been performed by Salomonson and Ynnerman [41]. This
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Table I. Binding energies for the Li and Na atoms (micro Hartrees)

H H Lithium H Sodium H
H H 229 22p \ Ref. H 329 \ Ref. H
Expt’l 198 159 | 130 246 188 163
Hartree-Fock 196 304 | 128 637 182 873
H Difference H 1854 1 609 \ H 6 830 \ H
Many-Body calc. 1 850 1584 | [31] 6 840 | [41]
1855 1582 | [5] 6399 | [19]
1835 1534 | [14] 6385 | [14]

is a singles-and-doubles-coupled-cluster calculation (CCSD), but also
important three-body clusters are included. The three-body effects were
found to be particularly important in this case and amounted to as
much as 6 % of the many-body effect. With these effects included, 99.85
% of the many-body effect could be accounted for. The calculations of
Johnson et al. and of Kaldor et al. do not include any three-body effects.

4. The propagator or Green’s-function method

4.1. DEFINITION OF THE GREEN’S FUNCTION

In this section we shall consider the same problem as in the previous
section, using the propagator or Green’s-function method [24]. As be-
fore, we consider a single electron outside closed shells, and we define
the ion core as the vacuum state for the second quantization.

Using the creation/annihilation operators (16) and the orbitals (6),
we define the electron field operators in the Schrédinger representation
by

Us(@) = a; dj(); Pl(@) = a] ¢5(x), (69)

using the summation convention mentioned before. In the Heisenberyg
picture (HP), the wavefunctions are time independent and the time-
dependence is transferred to the operators,

Uy = Ug(t = 0) = g (2); Oy = etoge 1t (70)

With the partitioning (3) the operators and wavefunctions in the in-
teraction picture (IP) are related to those in the Schrédinger picture

Brueckner.tex; 30/11/2003; 10:20; p.21



22 Ingvar Lindgren
by
Ui(t) = ot Tg(t);  Oy(t) = eiflot Og e—iHot, (71)

In this picture the electron-field operators (69) become

i) = e a; (@) 70 = a5 ¢(x) e = ay (] ) e

O (x) = af ¢j(x) €' = af (jlz) 9", (72)

The single-particle Green’s function is defined [16, p.64]

(O|T [ (2)dbf (20)]]0)
< 0) ’

where 1[1H(a:) is the electron field operator and |0) the vacuum state
(in our case the exact ground state of the ion core) in the Heisenberg
picture, and 7' is the time-ordering operator, which orders the operators
with increasing time from right to left (obeying the anti-commutation
rules (16)). Assuming the vacuum state to be normalized, this can be
expressed

iG (2, o) =

(73)

iGo(, z0) = (0|0 (t—to) tu (2)1hf) (z0)—O (to—t) P (wo) b (x)|0), (

where O(t — t¢) is the step function (=1 if ¢ > tg and =0 if ¢ < t).

4.2. THE FOURIER TRANSFORM OF THE GREEN’S FUNCTION

We consider first the retarded Green’s function for which t > tg,

iG ¢ (2, 20) = (0] dm(z)f; (20)]0). (75)

Inserting a complete set of eigenstates of the full Hamiltonian with a
single electron outside the vacuum (core),

H‘\pn> = En|\11n> (76)

and transforming back to the Schrodinger representation (70), leads to
the Lehmann representation

Gy (z,20) = (0[] g(x) e W, ) (U, [e100) () e 710 |0)
= (Ol (@) ) e~ (W[ (0) 0) (77)

with 7 =t —tg and AE,, = E,, — Fcore being the full energy change due
to the additional particle (Fcore is the energy of the core or vacuum
state).
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With a small adiabatic damping, e 77, we can perform the Fourier
transform of the Lehmann function (77), yielding

o ; i
(78)

where we have used the relation

o i
/ dt elo‘t e_’Yt = —). (79)
0 o+ 1y
This shows that the poles of the retarded single-particle Green’s
function represent the full energy spectrum of the additional

particle, including all kinds of many-body effects.
Similarly, we can consider the advanced Green’s function for which
t < t,
iG_(x, 0) = —(0[; (x0)Pu ()] 0). (80)
Inserting a complete set of intermediate states with a single hole in the
vacuum,

H|Wp) = Ep|Wp), (81)

leads to the Fourier transform

(0] (@)[Ph) (Waldhs(x0)|0)
E — AE), — iy ’
(82)
This shows that the poles of the advanced single-particle Green’s func-
tion represent the energy spectrum of a single hole in the core.

0 .
G- (@20, ) = [ dre G (@.20.7) =

4.3. THE PERTURBATION EXPANSION

In the interaction picture, using intermediate normalization, the Green’s
function (73) can be expanded in the following way [16, Eq. 9.5]

iG(aj,xo) = ni;éo (_nl')n /_O:O d4x1 R /_O:o d4;cn <(I>0‘ T['H’(l’l) ..
M (wn) i) (w0)| [ @0) (83)

conn

where @ is the unperturbed ground state of the vacuum or the ion
core (single determinant) and ¢;(z) is the electron field operator in
the interaction picture. With Hj(t) being the perturbation (5), H'(z)
is defined as the perturbation density in this picture by

Hl(t) = / da M (x). (84)

Brueckner.tex; 30/11/2003; 10:20; p.23



24 Ingvar Lindgren

The expansion (83) is an alternative formulation of the linked-diagram
theorem (40), discussed in section 2. The unlinked diagrams are here
exactly cancelled by the denominator in (73). (In this case there is no
distinction between the concepts of ‘connected’ and ‘linked’ diagrams).

The zeroth-order Green’s function or electron propagator is given by

1
iGo(@, @0, 7) = (0| T[d1(x)] (0)][®0) = vr(x)ii (x0) ~ (85)
with 7 = t — to, which represents a contraction (20) between the an-

nihilation and creation field operators. Using the form (72) of the field
operators, this can also be expressed in analogy with (74) as

iGo(x, x0,7) = O(7) (2|p') (¢ |zo) '™ — O(=T) (|h) (I |zo)e ™™, (86)

summed over single-electron particle (p’) and hole (h') states with
positive and negative energy, respectively. The Fourier transform is
obtained in analogy with (78) and (82)

GO(waw(bE) = M7 (87)
summed over the entire unperturbed single-particle spectrum (6). Here,
vi is a small quantity, which is positive/negative when i is a par-
ticle/hole state. In analogy with the self-energy operator above, this
can be regarded as the coordinate representation of a Green’s-function
operator, Go(E),

Go(z, o, E) = (x|Go(E)|z0) (88)
with il
A i) (i
Ey=—"—.
GolB) = 7= g+ iy (89)
Using the closure property
all
)ilxo) = Zdh ) ¢i(xo) = 0(x — o),
we have from the relation (87)
(E—ho) Go(w,wo,E) = (5(:13—:1:0), (90)

an equation often used as the definition of the unperturbed or zeroth-
order Green’s function.
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4.4. THE DYSON EQUATION

Applying Wick’s theorem to the expansion (83), leads to terms that
can be represented by diagrams in very much the same way as in the
MBPT expansion in the previous section (see, for instance, [16, Sect.9]).
The main difference from MBPT is that the diagrams are Feynman
diagrams, including all possible time orderings between the interactions,
rather than time-ordered Goldstone diagrams. Furthermore, the in- and
outgoing free lines represent unperturbed single-electron propagators or
single-particle Green’s functions rather than single-electron orbitals.
The exact (retarded) single-particle Green’s function is represented
by all connected diagrams with one incoming and one outgoing free line
(representing the zeroth-order Green’s function), as illustrated in Fig.
12. This is quite analogous to the Dyson equation illustrated in Fig. 11

oo

} = L +=| = | + [&]

S

Figure 12. Graphical representation of the Dyson equation for the (retarded) sin-
gle-particle Green’s function. The thick line with dots at the end represents the exact
Green’s function and the thin lines the zeroth-order Green’s function. This relation
is quite analogous to the Dyson equation for the Brueckner orbital, represented in
Fig. 11.

and corresponds to the Dyson equation

G(z,20) = Go(w,0) + // d*zo d*zy Go(z, 22) E(22, 1) Go(1, 70)

= Go(x, 7o) + / / d'zy diay Go(x, 23) T (22, 21) Gz, 20),  (91)

where ¥(x9,x1) is the general and X*(x9,x1) the proper self energy.
After the Fourier transforms this becomes, using the form (88) of the
coordinate representations,

(@|G(E)|2o) = (x|Co(E)|xo) + (|Go(E)|a2) (2] L(E)|21) (1|Go(E)|ao)
= (2|Go(E)|@o) + (x|Co(E)|x2) (2] S*(E)|a1) (1| G(E)|wo),  (92)

where as before |x) (x| represents space integration over x.
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Letting the first equation above operate to the right on the valence
state (xo|p), using the relation (87), yields

(z1|p)

(@IGUEa0) (@0ls) = F (e Co(B) ) (w2l () o) 2

E —¢,+iy
or
(B — &) (@|G(E)|zo)(zolp) = (x|p) + (2|Go(E)|a2) (22 S(E) |21) (@1]p). (93)
Defining the r.h.s. as a modified orbital, (x|p*), we have

(i) (i|lz2) (22| X(E)|21) (1]p)
E— g+ i’yi

(x|p*) = (x|p) + : (94)
But this is identical to the first expression (65) for the Brueckner or-
bital, if we replace ¢j, by E. Therefore, the modified orbital (94) is
identical to the Brueckner orbital or the Dyson orbital for the
valence electron. It follows from the identity (65) that this orbital
can also be expressed

(@i} (i|lzg) (xo|X"(E)|21) (21]P")

(wlp") = (alp) + i—— )
and it satisfies the same Dyson equation (67)
ho (®|p”) + (@[3 (E)|1) (@1 |p™) = E (xp"). (96)

This demonstrates that the all-order perturbative (or coupled-cluster)
approach and the Green’s-function approach are completely equivalent
in treating a single electron outside a closed-shell system — or a single
hole in such a system.

4.5. APPLICATION TO THE AFFINITY OF THE CALCIUM ATOM

As an illustration of the Green’s-function technique, we consider the
calculation of the electron affinity of the Ca atom (see Table II). This
is a very delicate quantity, which has resisted accurate experimental as
well as theoretical determinations for a long time. For the negative Ca
ion, the Hartree-Fock model does not even yield a bound state for the
last electron.

The first experimental observation of the negative Ca ion in the
4p state was made by Pegg at al. in 1987 [37], and the affinity was
measured to be 43+ 7 meV. The first theoretical evaluation was made
shortly afterwards by Froese-Fischer [17], who found a consistent value
of the affinity, or 45 meV. Several subsequent calculations yielded values
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Table II. Electron affinity of Ca atom (in

meV)

‘ ‘ 4py /2 ‘ 4ps /o ‘ Reference ‘
Theory -19 -13 [40]
Theory -22 -18 [1]
Expt’l | -24.55 | -19.73 [38]
Expt’l -18.4 [43]
Expt’l -17.5 [34]

in the range 45-82 meV [40]. Later, the affinity was experimentally
determined to be only about 18 meV [43, 34], and more recently the
most accurate determination was performed by the Aarhus group with
the result of 24.5 meV [38] for the ground state and about 20 meV for
the first excited state.

In 1996 we performed an extensive high-order nonrelativistic Green’s-
function calculation of the affinities of Ca in the two lowest states,
with the result of 19 and 13 meV, respectively. Shortly afterwards,
Avgoustoglou and Beck performed a relativistic Green’s-function cal-
culation, limited to second order, which yielded the values 22 and 18
meV, respectively [1], in excellent agreement with the Aarhus results.
Similar results have been obtained also for the negative Sr ion [1, 40].
These results show that the Green’s-function method is quite a powerful
technique that can be successfully applied also to intricate system like
the negative alkaline-earth ions.

5. Summary and Conclusion

We have demonstrated that Brueckner and Dyson orbitals are identical
concepts for a system with a single valence electron outside closed shells
or with a single electron hole in a closed-shell system. It is also shown
that the orbital energy eigenvalue corresponds to the exact electron
binding energy or affinity, including all kinds of many-body effects.
This conclusion is supported by numerical results. Both techniques are
capable of yielding high-accuracy results also for highly correlated sys-
tems. The results shown for a single valence electron or a single valence
hole can be extended to more general system, as will be demonstrated
in a forthcoming publication.
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