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Abstract The many-body perturbative and Green’s-function approaches for eval-
uating electron binding energies and electron affinities are compared,
and it is shown that they are equivalent and both virtually exact. The
former approach leads to Brueckner orbitals and the latter to Dyson
orbitals, and it is shown that the two concepts are identical for a single
valence electron or valence hole. The eigenvalue yields the exact binding
energy/affinity, including correlation and relaxation effects. This result
can be shown to hold also under more general conditions.
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1. Introduction
The electron binding energy or removal energy represents the energy

needed to remove an electron from an electronic system and is given
by the energy difference between the final and initial states of the pro-
cess. There exist today a number of more or less sophisticated methods
for evaluating this quantity. In the Hartree-Fock method, the orbital
energy eigenvalue is according to Koopmans’ theorem [1] equal to the
corresponding removal energy (with opposite sign), if the remaining or-
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bitals are assumed to be frozen. This implies that the effect of ’relax-
ation’ is neglected – an effect which for inner-shell ionization can be
quite appreciable. A simple and popular way of including the relaxation
effect in an approximate way is to perform separate self-consistent-field
calculations of the system before and after the ionization – a technique
commonly known as the ∆SCF method. In this technique also approx-
imate methods with local exchange can be used without any noticeable
loss of accuracy. This technique has been frequently used since the 1960’s
for atoms and somewhat later for molecules.

Since the Koopmans and the ∆SCF techniques are based upon the
single-particle picture, true many-body effects are not included. These
effects can be handled by means of many-body perturbation theory (MBPT)
[2] or Green’s-function technique (GF) [3], and particularly the latter
method is now frequently used in quantum chemistry.

Treating the ionization process by means of MBPT, leads to Brueckner
orbitals or maximum-overlap orbitals [4–6], while the GF technique leads
to what is now known as Dyson orbitals [7, 8]. It has been known for
quite some time that the Brueckner orbitals leads to the correct binding
energy [2, 9, 10], which is also the case for the Dyson orbitals [11]. Never-
theless, there has been some confusion lately in the quantum-chemistry
community about the relation between these techniques and to what ex-
tent they are equivalent. In the present work the two techniques will be
compared and it is shown that for a single electron outside closed shells
– or a single hole in closed shells – the concepts of Brueckner and Dyson
orbitals are identical. It can be shown that this is true also under more
general conditions, as will be discussed in a forthcoming publication.

During recent years amazingly accurate electron binding energies have
also been evaluated for atoms as well as complex molecules by means of
density-functional theory (DFT) [12, 13], but we shall not be concerned
with this technique here.

In the next section we shall summarize the many-body perturbation
theory (MBPT) and its graphical representation (for further details, see,
for instance, ref. [2]). Those who are familiar with these concepts can
go directly to Section 3.

2. Many-body perturbation theory

2.1 The Bloch equation
We are interested in solving the Schrödinger equation for a number of

states of an N -electron system

HΨα = EαΨα (α = 1, 2, . . . d), (1)
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known as the target states. The Hamiltonian is (in atomic units, e =
m = h̄ = 4πε0 = 1)

H =
N∑

i=1

(
− 1

2
∇2

i + vext(xi)
)

+
N∑

i<j

1
rij

, (2)

where −1
2∇2 represents the kinetic energy, vext(x) the external (nuclear)

potential and 1/rij the interelectronic interaction.
The Hamiltonian is partitioned in the standard way into a zeroth-

order Hamiltonian and a perturbation

H = H0 + H ′. (3)

The zeroth-order Hamiltonian is supposed to be of single-particle type

H0 =
N∑

i

h0(i) =
N∑

i

(
− 1

2
∇2

i + vext(xi) + ui

)
, (4)

and the perturbation is then

H ′ = −
N∑

i

ui +
N∑

i<j

1
rij

. (5)

Here, ui is an optional potential, which can be a local function or a
nonlocal potential, such as the Hartree-Fock potential.

The single-electron orbitals are eigenfunctions of h0

h0 φi(x) = εi φi(x), (6)

and the Slater determinants ({ΦK}) composed of these orbitals form the
basis of our calculation. These are eigenfunctions of H0

H0 ΦK = EK
0 ΦK (7)

with the eigenvalue equal to the sum of the eigenvalues of the occupied
orbitals

EK
0 =

occ∑

i

εi. (8)

For each of the target states there exist a model state, Ψα
0 , confined to

a functional subspace of eigenfunctions of H0, known as the model space
(P). We define a wave operator in such a way that it transforms each
model function to the corresponding exact wave function

Ψα = Ω Ψα
0 (α = 1, 2, . . . d). (9)
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We employ intermediate normalization, 〈Ψα|Ψα
0 〉 = 1, which implies that

PΩP = P, (10)

where P is the projection operator for the model space. All states that
are degenerate with a model state and that can be mixed with that state
by the perturbation must be included in the model space.

Operating on the Schrödinger equation (1) by P from the left yields

HeffΨα
0 = EαΨα

0 , (11)

where
Heff = PHΩP (12)

is the effective Hamiltonian. Thus, the model functions (9) are eigen-
functions of the effective Hamiltonian with the eigenvalues being the cor-
responding exact energies.

The wave operator satisfies the Bloch equation [14–17, 2]
[
Ω,H0

]
P =

(
H ′Ω− ΩW

)
P. (13)

Here, the model space need not be degenerate. W is referred to as the
effective interaction and in intermediate normalization given by

W = PH ′ΩP. (14)

By expanding the wave operator perturbatively

Ω = 1 + Ω(1) + Ω(1) + · · · (15)

a generalized Rayleigh-Schrödinger perturbation expansion can directly
be generated from the Bloch equation [17, 2]. Then by diagonalizing
the matrix of Heff (12), the model functions and the energy of the tar-
get states are obtained to the corresponding accuracy, and the target
functions can be constructed.

2.2 Second quantization and the particle-hole
formalism

Instead of an order-by-order expansion of the wave-operator and the
effective Hamiltonian, it is in many-body theory often more efficient
to employ iterative or all-order procedures, based on the formalism of
second quantization, a procedure we shall here summarize.

The operators a†i and ai are time-independent single-electron creation
and annihilation operators, which, respectively, create and annihilate a
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single-electron part of the many-electron wave function. These operators
satisfy the anti-commutation rules

{a†i , a†j} = a†ia
†
j + a†ja

†
i = 0

{ai, aj} = aiaj + ajai = 0

{a†i , aj} = a†iaj + aja
†
i = δij , (16)

where δij is the Kronecker delta factor. A quantum-mechanical operator
can then be expanded as

O = C+a†i 〈i|O1|j〉 aj +
1
2!

a†ia
†
j 〈ij|O2|kl〉 alak+· · · = O0+O1+O2+· · · ,

(17)
where C is a number, representing the zero-body part, the next term is
the one-body part etc. Unless otherwise explicitly stated, we employ here
the summation convention with summation over all values of repeated
indices appearing only on one side of an equation. The ’matrix elements’
are given by

〈i|O1|j〉 =
∫

dx1 φ†i (x1)O1 φj(x1)

〈ij|O2|kl〉 =
∫∫

dx1 dx2 φ†i (x1)φ
†
j(x2)O2 φk(x1)φl(x2)

etc. (18)

where dx represents the three-dimensional volume element.
Normally, in field theory, a vacuum level |0〉 is defined, related to

the empty space with no particles. Then a†i |0〉 = |i〉 represents a state
with a single electron in the electron state i, corresponding to the single-
electron function φi(x) etc. In nonrelativistic theory all operators then
refer to particles states (with positive energy). In relativistic theory, also
hole states (positron states) with negative energy appear.

In many-body atomic or molecular theory it is usually more convenient
to define a vacuum level |0〉 in relation to a suitable closed-shell system
(core). Then a†i |0〉 represents a system with a single electron i outside
the core, provided that the electron state i is not present in the core.
Similarly, ai |0〉 represents a system with a hole in the core, provided the
state i is initially present in the core.

We assume that the vacuum is a many-electron state, represented by
a single determinant, and we can then separate the single-particle states
into the two categories:

core states, occupied in the vacuum state;
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particle states, not occupied in the vacuum state.

We also introduce ’particle-hole’ (p-h) operators according to

b†i =
{

a†i (i particle state)
ai (i core state),

bi =
{

ai (i particle state)
a†i (i core state).

(19)

Thus, the b†i operator creates an electron in a particle state (above the
vacuum level) or annihilates an electron in a core state – ’creates a hole’
– below the vacuum level and v.v.

In principle, the operators might be time dependent with time running
from right to left, so that the leftmost operator corresponds to the latest
time. We refer to the ordering right-left as the time ordering.

In standard field theory a second-quantized operator is said to be
normal ordered or in normal form, if all creation operators appear to
the left of the annihilation operators. In the particle-hole formalism
we define normal order so that all particle-hole creation operators (b†)
appear to the left of the particle-hole annihilation operators (b). We shall
use curly brackets to denote an operator in normal form, {A}.

Wick’s theorem The order between second-quantized operators can
be changed by using the anti-commutation rules (16), which might lead
to contractions. If x, y are creation/annihilation operators, then a con-
traction is defined as the difference between the time-ordered and normal-
ordered forms

x y = x y − {x y}. (20)

From the anti-commutation rules it then follows that

a†i a†j = ai aj = a†i aj = 0 and ai a
†
j = δij . (21)

Wick’s theorem [18] states that a second-quantized operator can be ex-
pressed as the normal form plus all possible normal-ordered contractions
(single, double etc)

A = {A}+ {A}. (22)

All terms are then in normal form.
In applying Wick’s theorem for a product of operators, it is convenient

first to normal order each of the components. Then the theorem can be
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formulated as follows [2]:
If A and B are operators in normal form, then the product is equal to
the normal product plus all normal-ordered contractions between A and
B,

A B = {A B}+ {AB}. (23)

No contractions within the operators will occur. This form of the theo-
rem is particularly convenient in constructing the many-body diagrams.

Normal form of the perturbation The perturbation (5) can be
expressed in second quantization as

H ′ = a†i 〈i| − u|j〉 aj +
1
2
a†ia

†
j 〈ij|

1
r12
|kl〉 alak, (24)

(summation over the indices of the creation/annihilation operators being
understood) and normal ordering this operator may lead to contractions
within the operator. For the one-body term there will be a contraction
only if i = j is a core state, which leads to

a†i 〈i| − u|j〉 aj =
core∑

i

〈i| − u|i〉+ {a†iaj} 〈i| − u|j〉. (25)

This contains a zero-body and a normal-ordered one-body part.
Similarly, the two-body term yields [2, p.240]

1
2
a†ia

†
j 〈ij|r−1

12 |kl〉 alak =
core∑

i,j

[〈ij|r−1
12 |ij〉 − 〈ij|r−1

12 |ji〉
]

+
core∑

k

{a†iaj}
[〈ik|r−1

12 |jk〉 − 〈ik|r−1
12 |kj〉] +

1
2
{a†ia†jalak}〈ij|r−1

12 |kl〉, (26)

which contains a zero-body and normal-ordered one- and two-body parts.
The normal-ordered one-body part in Eq. (26) represents the Hartree-
Fock potential of the core (vacuum state), vHF. Combined with the
one-body part of the potential term (25), the complete normal-ordered
one-body part of the perturbation can be expressed by means of an
’effective potential ’,

{a†iaj}〈i|veff |j〉 = {a†iaj}〈i|vHF − u|j〉. (27)

Summarizing, the normal-ordered perturbation can be expressed

H ′ = H0 + H1 + H2, (28)
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where the terms represent the normal-ordered zero-, one- and two-body
parts, respectively,

H0 =
core∑

i

〈i| − u|i〉+
core∑

i,j

[〈ij|r−1
12 |ij〉 − 〈ij|r−1

12 |ji〉
]

H1 = {a†iaj}〈i|veff |j〉 = {a†iaj}〈i|vHF − u|j〉
H2 =

1
2
{a†ia†jalak}〈ij|r−1

12 |kl〉.
If the orbitals are generated in the HF potential of the core, i.e., the
vacuum for the normal ordering, the one-body part of the normal-ordered
perturbation vanishes.

2.3 Graphical representation of MBPT
Graphically, we adopt the convention that

a particle/core state is represented by a line directed up/down.

A valence (particle or core) state is denoted by double arrows, as shown
in Fig. 1.1, but a single arrow can represent valence as well as nonvalence
states.

66 ??66
66

??
??

particle valence particle core valence core
particle states core states

Figure 1.1. Graphical representation of the four kinds of orbitals.

Furthermore, we assume that

a particle creation/annihilation (a†/a) operator is represented by
a line directed from/towards a vertex.

From this it follows that

particle-hole creation/annihilation operators (b†/b) appear above/below
the vertex.

The only p-h annihilation that can occur when operating on the model
space are valence p-h annihilation. Thus,

bnonvalenceP = 0. (29)
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Figure 1.2. Graphical representation of the normal-ordered one- and two-body parts
of the perturbation (28). The dotted line represents the electrostatic interaction
between the electrons and the circle with a cross represents the ’effective potential’
(27), which vanishes if the orbitals are generated in the HF potential of the core
(vacuum state). Lines directed upwards/downwards represent particle/core states.

This implies that no other free lines than valence lines are allowed at
the bottom of a diagram when operating to the right on the model space.
Similarly, no other free lines than valence lines are allowed at the top of
a diagram when operating to the left on the model space. An operator
that operates to the right as well as to the left on the model space, PAP ,
is said to be closed and represented by a closed diagram with no other
free lines then valence lines. A diagram that is not closed is said to be
open.

A diagram with no free lines at all represents a zero-body operator,
a diagram with one line in and out represents a normal-ordered one-
body operator etc. The normal-ordered one- and two-body parts of the
perturbation (28) are shown in Fig. 1.2.

2.4 Linked-Diagram expansion
When the perturbation expansion is expressed in second-quantized or

diagrammatic form, it is found that so-called unlinked terms/diagrams
are largely eliminated. A diagram is said to be unlinked, if it contains
a disconnected, closed part. The cancellation of the unlinked diagrams
can be indicated in the following way.

With the operators expressed in normal form, we can apply Wick’s
theorem in the form (23) on the r.h.s. of the Bloch equation (13), yielding
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[
Ω,H0

]
P =

(
{H ′Ω}+ {H ′Ω} − {ΩW} − {ΩW}

)
P. (30)

The unlinked part of {H ′Ω} can be shown to be cancelled by {ΩW}, if
the model space is complete, which implies that it contains all determi-
nants that can be formed by the valence electrons. This leaves

[
Ω,H0

]
P =

(
{H ′Ω}Linked + {H ′Ω} − {ΩW}

)
P. (31)

The first term on the r.h.s. is disconnected but still ’linked ’ with our
definitions, since all separate parts are open. The remaining terms would
be linked if Ω is linked. Then it can be shown by induction that only
linked terms remain, or

[
Ω,H0

]
P =

[(
H ′Ω− ΩW

)
P

]
Linked

. (32)

The last term represent co-called folded diagrams [19, 2]. Here, the
diagrams of Ω and W are connected by one or several valence lines,
and the diagrams are conventionally drawn in a ”folded” way, as will
be illustrated below. Obviously, this terms appears only for open-shell
systems with valence particles or holes present.

An even more effective form of MBPT is the Coupled-Cluster Ap-
proach (CCA), where the wave operator is expressed in exponential
form [20–23], a procedure frequently used in quantum chemistry [24–27].
For general open-shell systems it is convenient to use the normal-ordered
exponential form [28, 29, 2]

Ω = {eS} = 1 + S +
1
2
{S2}+ · · · (33)

(where again the curly brackets are used to denote normal order). All the
results we shall derive here are valid also in the coupled-cluster approach,
but for simplicity we shall stick to the standard many-body formalism.

Using second quantization, the wave operator can be separated into
normal-ordered one-, two-,.. body parts

Ω = 1 + Ω1 + Ω2 + . . . (34)

or
Ω = 1 + {a†iaj}xi

j +
1
2!
{a†ia†jalak}xij

kl + · · · (35)

It follows from (10) that in intermediate normalization all wave-operators
terms are open – except the trivial unit term. The graphical form of the
one- and two-body parts is given in Fig. 1.3, assuming no valence holes.
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Figure 1.3. Graphical representation of the one- and two-body parts of the normal-
ordered wave operator (35), assuming no valence holes. The diagrams are open, which
means that all lines are not allowed to be valence lines.

Since the wave operator operates to the right on the model space (29),
only valence lines are allowed at the bottom.

By applying Wick’s theorem on the r.h.s. of the Bloch equation (13),
the identification, using the partitioning (34), leads to a set of coupled
equations [

Ωn,H0

]
P =

[(
H ′Ω− ΩW

)
P

]
Linked, n

. (36)

Solving these equations self-consistently, for instance, with the approxi-
mation

Ω = 1 + Ω1 + Ω2, (37)

yields the effect of single and double excitations to all orders of pertur-
bation theory. We shall refer to this as the pair approximation.

3. MBPT treatment of a single electron outside
closed shells

We consider now the special case of a single (valence) electron outside
a closed-shell core, and we shall use the MBPT formalism of the previous
section to derive the equation for the valence Brueckner orbital. In the
next section we shall treat the same problem using the Green’s-function
or propagator method.

The model space can in this case be restricted to a single determinant
(model function) Φ, which is an eigenfunction of H0 (4),

H0 Φ = E0 Φ, (38)

and the projection operator for the model space is

P = |Φ〉〈Φ|. (39)

The Bloch equation (32) becomes

(E0 −H0)ΩP =
[
(H ′Ω− ΩW )P

]
Linked

, (40)



12

and the coupled equations (36)

(E0 −H0)ΩnP =
[
(H ′Ω− ΩW )P

]
Linked, n

, (41)

where W = PH ′ΩP is the effective interaction (14).
The single target function is given by

Ψ = ΩΦ (42)

and the total energy of the system by

E = 〈Φ|HΩ|Φ〉 = E0 + 〈Φ|W |Φ〉. (43)

Our vacuum state is chosen to be the ground state of the ion core. We
generate the orbitals in the HF potential of the core, which means that
the one-body part of the normal-ordered perturbation (28) vanishes.

3.1 The pair approximation
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Figure 1.4. Graphical representation of the Ω1 and Ω2 equations in the pair approx-
imation (37) (leaving out exchange variants). The last diagram in each equation is a
folded diagram, which appears only when the incoming line is a valence line. The box
represents the effective interaction (14). For simplicity, all incoming lines are directed
upwards, although at most one incoming orbital can in our case be a valence line.
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With the pair approximation (37) the wave-operator equations (41)
become

(E0 −H0)Ω1P =
[(

H ′Ω− Ω1W1

)
P

]
Linked, 1

(E0 −H0)Ω2P =
[(

H ′Ω− Ω2W1

)
P

]
Linked, 2

W1 = (PH ′ΩP )Linked, 1. (44)

From the first equation we obtain

(εp − εr)〈Φr
p|Ω1|Φ〉 = 〈Φr

p|H ′Ω− Ω1W1|Φ〉Linked, 1, (45)

where Φr
p is the a determinant with the occupied orbital p of Φ replaced

by an unoccupied (virtual) orbital r. Similarly, the Ω2 equation is ob-
tained by projecting on the second equation in (44) by a doubly excited
function.

The graphical form of the equations (44) is given in Fig. 1.4. Since we
have assumed here that the orbitals are generated in the HF potential of
the ion core, there is no one-body part of the normal-ordered perturba-
tion (28), and the bare H ′ term will not contribute to the one-body equa-
tion. The first diagram on the r.h.s. of this equation represents H ′Ω1,
the next two H ′Ω2 and the last (folded) diagram the term −Ω1W1. The
latter appears only when the incoming line is a valence line. Convention-
ally, the internal valence line of a folded diagram is drawn downwards.
In the Ω2 equation the first diagram represents H ′, the next two H ′Ω1,
the next four H ′Ω2 and the last diagram the folded term −Ω2W1. Since
there is only one valence electron in our case, the effective interaction
in the folded diagram can only be of one-body type. Exchange variants
are left out.

3.2 The removal energy

E = E0 + +

66
66

p

66
66

p

Figure 1.5. Total energy of a system with a single electron outside a core of closed
shells is given by the zeroth-order energy and the zero-body and the one-body parts
of the effective interaction W (14). The latter parts are given in more detail in Fig.
1.6.



14

The total energy of our system is according to Eq. (43) given by the
zeroth-order energy in addition to the expectation value of the effective
interaction W in the model state. Since W = PH ′ΩP , we obtain the
corresponding graphical representation by ‘closing’ the diagrams of the
wave operator Ω by operating with the perturbation H ′, so that no other
free lines than valence lines should appear. Since in the present case we
have only one valence line, this can result in zero-order diagrams with
no free lines, representing the zero-body part of the effective interaction
W , W0, and one-body diagrams with a single valence line in and out,
representing the one-body part, W1, as illustrated in Fig. 1.5. The one-
and two-body parts are illustrated in more details in Fig. 1.6.
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Figure 1.6. Graphical representation of the zero-body (W0) and one-body (W1) parts
of the effective interaction (14), obtained by ’closing’ the diagrams of the wave op-
erator by the perturbation H ′. The zero-body part has no free lines at all and the
one-body part a single valence line (p) in and out, but no other free lines (self-energy
diagrams). Exchange variants are left out.

Since there is no one-body part of the normal-ordered perturbation
in our case, the zero-body part of the effective interaction can only be
achieved by closing the two-body part of the wave operator (33), as is
illustrated in the top line of Fig. 1.6. The bottom line of the figure
shows the one-body part of the effective interaction.

The total energy of the ion core, which is a closed-shell system, is
given by the zeroth-order energy of that system and the zero-body part
(W0) of the effective interaction, as illustrated in Fig. 1.7. We employ
here the principle of valence universality [30], which implies that the
wave-operator amplitudes are independent of the degree of ionization.
Therefore, the zero-body parts of the effective interaction are identical
for the neutral and ionized systems.
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Ecore = Ecore
0 +

Figure 1.7. Total energy of the ion core is given by the zeroth-order energy and the
zero-body part W0 of the effective interaction (14), i.e., closed diagrams with no free
lines. The zero-body part is in our formalism identical to that of the neutral system
in Fig. 1.5.

The removal energy of the valence electron is given by the difference
between the total energies of the neutral system and the ion core

−BE = E − Ecore. (46)

Since the zero-body contributions cancel, it follows that the removal
energy is given by the orbital (HF) eigenvalue and the one-body part of
the effective interaction,

−BE = εp + 〈Φ|W1|Φ〉, (47)

as illustrated in Fig. 1.8. This is the exact ionization energy, including
correlation as well as relaxation effects. The one-body diagrams are
shown more explicitly in Fig. 1.6, where the second diagram represents
the correlation effect and the last diagram the relaxation, i.e., the effect
due to modification of the core orbitals at the removal of the valence
electron.

−BE = εp +

66
66

p

66
66

p

Figure 1.8. The (negative of the) removal energy of the valence electron is given
by the orbital Hartree-Fock eigenvalue in addition to the one-body part (W1) of the
effective interaction (14). The diagrammatic representation of the latter is given in
Fig. 1.6. This includes proper as well as improper self-energy diagrams.

The one-body part of the effective interaction is of self-energy (SE)
type and can be expressed as the expectation value of a self-energy op-
erator

〈Φ|W1|Φ〉 = 〈Φ|H ′Ω|Φ〉Linked,1 = 〈p|Σ(εp)|p〉. (48)
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Defining
δεp = 〈Φ|W1|Φ〉 = 〈p|Σ(εp)|p〉, (49)

the (negative of the) removal energy is from (47)

−BE = εp + δεp. (50)

3.3 Brueckner and Dyson orbitals
Single excitations represented by the single-particle equation (45) and

the top line in Fig. 1.4 are one-body effects and can therefore in princi-
ple be included in a single-particle model. We shall now consider such
excitations from the valence state (p) in some detail.

We start with the single-particle equation (45)

(εp − εr)〈Φr
p|Ω1|Φ〉 =

[〈Φr
p|H ′Ω|Φ〉 − 〈Φr

p|Ω1|Φ〉〈Φ|W1|Φ〉
]
Linked,1

, (51)

where we have inserted the projection operator for the model space (39),
P = |Φ〉〈Φ|, in the last term. The matrix element 〈Φr

p|Ω1|Φ〉 is the ampli-
tude of the Ω1 operator for the single excitation p → r and is graphically
represented by the Ω1 diagrams in Fig. 1.4. Using the definition (49),
we can express the folded term above as −δεp 〈Φr

p|Ω1|Φ〉, and Eq. (51)
then becomes

(εp + δεp − εr)〈Φr
p|Ω1|Φ〉 = 〈Φr

p|H ′Ω|Φ〉Linked,1. (52)

Thus, we see that the effect of the folded term is simply to shift the
energy denominator of the Ω1 operator by the amount δεp. We can then
leave out the folded part of the Ω1 equation, if we make the following
replacement in the energy denominator,

εp → ε∗p = εp + δεp. (53)

Using the self-energy operator, the result can be expressed in analogy
with the one-body effective interaction (48) as

(ε∗p − εr)〈Φr
p|Ω1|Φ〉 = 〈r|Σ(εp)|p〉, (54)

defining the general SE operator by

〈r|Σ(εp)|p〉 = 〈Φr
p|H ′Ω|Φ〉Linked,1 (55)

(which is consistent with the definition of the diagonal part (49)). This
is illustrated in Fig. 1.9. This can also represent the Ω1 amplitude, if
we apply the modified denominator (53).
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Figure 1.9. Graphical representation of the nondiagonal part of the self-energy op-
erator Σ(εp). This representation is analogous to the diagonal part shown in Fig. 1.6
(no folded part). This can also represent the corresponding part of the wave operator,
if we apply the modified energy shift (53). As before, exchange variants are left out.

We can now form a new orbital for the valence electron, φ∗(x), by
adding the contribution (54) to the HF orbital, φ(x) = 〈x|p〉,

φ∗p(x) = 〈x|p∗〉 = 〈x|p〉+ 〈x|r〉〈Φr
p|Ω1|Φ〉 = 〈x|p〉+

〈x|r〉〈r|Σ(εp)|p〉
ε∗p − εr

.

(56)
By replacing the HF orbital of the valence electron in the determinant
Φ by the modified orbital, φ∗p(x), all single excitations from the valence
electron of the exact wave function will be included. Therefore, the mod-
ified orbital is the Brueckner orbital for the valence electron [4, 5, 10].

In order to show more explicitly that the modified orbital (56) is a
Brueckner orbital, we can form a single excitation from the modified
valence orbital p∗ into a virtual orbital s∗, which we denote by Φs∗

p .
The virtual orbital must be orthogonalized against the modified valence
orbital, i.e.,

〈s∗|p∗〉 = 〈s∗|p〉+ 〈s∗|r〉〈Φr
p|Ω1|Φ〉 = 0. (57)

But this can also be expressed
〈
Φs∗

p

∣∣[|Φ〉+ |Φr
p〉〈Φr

p|Ω1|Φ〉
]

=
〈
Φs∗

p

∣∣Ψ〉 = 0, (58)

which is the Brillouin-Brueckner or maximum-overlap condition for the
valence electron [4, 5].

We consider here only the Brueckner orbital for the valence electron,
while the core orbitals are left as HF orbitals. The modified valence or-
bital then satisfies the maximum-overlap condition with the core orbitals
frozen.

When the SE diagrams are generated perturbatively by inserting the
iterated one- and two-body wave-operator parts in the expansion in Fig.
1.9, also improper SE parts can appear, i.e., parts that can be separated
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into two allowed SE parts by cutting a single orbital line. When such a
separation is not possible, the SE part is said to be proper. Therefore,
the general SE operator can be expanded in terms of proper SE parts, as
illustrated in Fig. 1.10. We assume here that the energy denominators
of the single-particle equation are evaluated by means of the modified
energy (53), which eliminates folded diagrams from the expansion, so
that the intermediate lines (s) in the figure are virtual (nonvalence)
lines.
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Σ =

66r

66
66

p

Σ∗ +

66r

Σ∗

66s

66
66

p

Σ∗
+ · · ·

Figure 1.10. The general self energy (Σ) can be expanded in proper self energies
(Σ∗). The energy denominators are evaluated by means of the modified energy (53),
which implies that there are no folded diagrams in the expansion.

Using the proper self energy, the Brueckner-orbital equation (56) can
be expressed in the form of a Dyson equation

〈x|p∗〉 = 〈x|p〉+
〈x|r〉〈r|Σ∗(εp)|p∗〉

ε∗p − εr
, (59)

where the Brueckner orbital appears also on the r.h.s. of the equation.
This is illustrated in Fig. 1.11. We recall that r represents here virtual
state, i.e., a particle state different from the valence state (p).
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Figure 1.11. Dyson equation for generating the Brueckner valence orbital (56). The
thick line represents the Brueckner orbital and the thinner lines HF orbitals. The
large box represents the general self energy (Σ) and the small box the proper self
energy (Σ∗).



Comparison between the perturbative and Green’s-function approaches 19

The Brueckner orbital (59) satisfies the differential equation

(ε∗p − h0)〈x|p∗〉 = (ε∗p − h0)〈x|p〉+ 〈x|r〉〈r|Σ∗(εp)|p∗〉. (60)

Using the definition (53), the first term on the r.h.s. can be expressed

(ε∗p − h0)〈x|p〉 = δεp〈x|p〉,
since h0〈x|p〉 = εp〈x|p〉. According to the relation (49), δεp is equal to
the diagonal element of the SE operator, which we can also express in
terms of the proper SE and the Brueckner orbital

δεp = 〈p|Σ(εp)|p〉 = 〈p|Σ∗(εp)|p∗〉. (61)

This leads to

(ε∗p − h0)〈x|p∗〉 = 〈x|r〉〈r|Σ∗(εp)|p∗〉, (62)

summed over all particle states, including the valence orbital but exclud-
ing core states. But it follows from the definition (55) that the matrix
element

〈i|Σ(εp)|p〉 = 〈Φi
p|H ′Ω|Φ〉Linked,1 = 〈i|Σ∗(εp)|p∗〉 = 0,

when i is a core state, since 〈Φi
p| would then vanish. Therefore, we can let

the sum in (62) run over all states, and using the identity
∑

all i |i〉〈i| = 1,
this yields

(ε∗p − h0)〈x|p∗〉 = 〈x|Σ∗(εp)|p∗〉. (63)

The self-energy operator is obtained by forming a one-body operator
by operating with the perturbation on the wave operator. In principle,
this will contain also folded diagrams. We have seen that the folded
diagram of the single-particle equation in Fig. 1.4 has the effect of
modifying the energy denominator of the Ω1 operator, when the valence
electron is being excited. This is true also for the S2 equation, and we
can leave out the folded diagram also from this equation, if we make the
same energy-denominator shift (53). This has the effect that the energy
parameter of the SE operator will be shifted in the same way,

Σ∗(εp) → Σ∗(ε∗p), (64)

and then no folded diagrams from the S2 equation will appear. Then
the expressions (56) and (59) for the Brueckner orbital become

〈x|p∗〉 = 〈x|p〉+
〈x|i〉〈i|Σ(ε∗p)|p〉

ε∗p − εi
= 〈x|p〉+

〈x|i〉〈i|Σ∗(ε∗p)|p∗〉
ε∗p − εi

, (65)
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where according to the discussion above, i can run over all orbitals.
Similarly, the Dyson equation (63) becomes

(ε∗p − h0)〈x|p∗〉 = 〈x|Σ∗(ε∗p)|p〉. (66)

This can also be expressed

h0 〈x|p∗〉+ 〈x|Σ∗(ε∗p)|x′〉〈x′|p∗〉 = ε∗p〈x|p∗〉 (67)

or in integral form

h0 φ∗p(x) +
∫

dx′Σ∗(x, x′, ε∗p) φ∗p(x
′) = ε∗p φ∗p(x). (68)

Here, 〈x|Σ∗(ε∗p)|x′〉 = 〈x|Σ∗(ε∗p)|x′〉 is the proper self energy in the co-
ordinate representation. Eq. (67)/(68) is the eigenvalue equation of the
Brueckner orbital for the valence electron, and according to the relation
(50) the eigenvalue ε∗p represents the exact removal energy of the valence
electron. Σ∗(x, x′, ε∗p) is the nonlocal potential of the Brueckner orbital,
discussed in by Lindgren and Salomonson [10].

The solution of the Dyson equation (67) is known also as the Dyson
orbital [31], and it follows from the present analysis that for a single
valence electron outside closed shells the Brueckner and Dyson orbitals
are identical concepts.

The treatment above holds also for a state with a single hole in a
closed-shell core, and the eigenvalue then represents the corresponding
electron affinity. It will also hold in principle under more general condi-
tions, as will be demonstrated in a forthcoming publication.

3.4 Application to the alkali atoms
As an illustration of the procedure descried above, we consider some

calculations on the alkali atoms (see Table 1.1). For lithium ground state
and first excited state, our calculation [9] yields about 99% of the many-
body effect, i.e., relaxation and correlation effects. The remaining effect
is manly due to three-body effects. A similar calculation by Johnson
et al. [32] was performed only to third order, which yielded 95-97 % of
the effect. Later Blundell et al. [33] have performed a relativistic all-
order calculations with singles and doubles (no coupled clusters), which
yielded essentially the same result as that of Lindgren. Kaldor et al. [34]
have more recently performed relativistic coupled-cluster calculations on
all the alkali atoms, yielding about 99 % of the many-body effect for 2s
but only 96 % for the 2p state.

For the ground state of the sodium atom, a very accurate calcula-
tion has been performed by Salomonson and Ynnerman [35]. This is a
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Table 1.1. Binding energies for the Li and Na atoms (micro Hartrees)

Lithium atom

22S 22P Reference

Expt’l 198 159 130 246
Hartree-Fock 196 304 128 637

Difference 1 854 1 609

Many-Body calc. 1 850 1 584 Lindgren (1985)
1 855 1 582 Blundell (1989)
1 835 1 534 Eliav (1994)

Sodium atom

22S Reference

Expt’l 188 163
Hartree-Fock 182 873

Difference 6 830

Many-Body calc. 6 840 Salomonson (1991)
6 399 Johnson (1988)
6 385 Eliav (1994)

singles-and-doubles coupled-cluster calculation (CCSD), but also impor-
tant three-body clusters are included. The three-body effects were found
to be particularly important in this case and amounted to as much as 6
% of the many-body effect. With these effects included, 99.85 % of the
many-body effect could be accounted for. The calculations of Johnson
et al. and of Kaldor et al. do not include any three-body effects.

4. The propagator or Green’s-function method

4.1 Definition of the Green’s function
In this section we shall consider the same problem as in the previous

section, using the propagator or Green’s-function method [36]. As be-
fore, we consider a single electron outside closed shells, and we define
the ion core as the vacuum state for the second quantization.

Using the creation/annihilation operators (16) and the orbitals (6),
we define the electron field operators in the Schrödinger representation
by

ψ̂S(x) = aj φj(x); ψ̂†S(x) = a†j φ∗j (x), (69)

using the summation convention mentioned before. In the Heisenberg
picture (HP), the wavefunctions are time independent and the time-
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dependence is transferred to the operators,

ΨH = ΨS(t = 0) = eiHtΨS(x); OH = eiHtOS e−iHt. (70)

With the partitioning (3) the operators and wavefunctions in the in-
teraction picture (IP) are related to those in the Schrödinger picture
by

ΨI(t) = eiH0t ΨS(t); OI(t) = eiH0t OS e−iH0t. (71)

In this picture the electron-field operators (69) become

ψ̂I(x) = eiH0t aj φj(x) e−iH0t = aj φj(x) e−iεjt = aj 〈x|j〉 e−iεjt

ψ̂†I (x) = a†j φ∗j (x) eiεjt = a†j 〈j|x〉 eiεjt. (72)

The single-particle Green’s function is defined [37, p.64]

iG(x, x0) =

〈
0
∣∣T [ψ̂H(x)ψ̂†H(x0)]

∣∣0〉

〈0| 0〉 , (73)

where ψ̂H(x) is the electron field operator and |0〉 the vacuum state
(in our case the exact ground state of the ion core) in the Heisenberg
picture, and T is the time-ordering operator, which orders the operators
with increasing time from right to left (obeying the anti-commutation
rules (16)). Assuming the vacuum state to be normalized, this can be
expressed

iG0(x, x0) =
〈
0
∣∣Θ(t−t0) ψ̂H(x)ψ̂†H(x0)−Θ(t0−t) ψ̂†H(x0)ψ̂H(x)

∣∣0〉
, (74)

where Θ(t− t0) is the step function (=1 if t > t0 and =0 if t < t0).

4.2 The Fourier transform of the Green’s
function

We consider first the retarded Green’s function for which t > t0,

iG+(x, x0) =
〈
0
∣∣ψ̂H(x)ψ̂†H(x0)

∣∣0〉
. (75)

Inserting a complete set of eigenstates of the full Hamiltonian with a
single electron outside the vacuum (core),

H|Ψn〉 = En|Ψn〉 (76)

and transforming back to the Schrödinger representation (70), leads to
the Lehmann representation

iG+(x, x0) =
〈
0
∣∣eiHtψ̂S(x) e−iHt

∣∣Ψn

〉〈
Ψn

∣∣eiHt0ψ̂†S(x0) e−iHt0
∣∣0〉

=
〈
0
∣∣ψ̂S(x)

∣∣Ψn

〉
e−iτ∆En

〈
Ψn

∣∣ψ̂†S(x0)
∣∣0〉

(77)
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with τ = t − t0 and ∆En = En − Ecore being the full energy change
due to the additional particle (Ecore is the energy of the core or vacuum
state).

With a small adiabatic damping, e−γτ , we can perform the Fourier
transform of the Lehmann function (77), yielding

G+(x,x0, E) =
∫ ∞

0
dτ eiEτ G+(x,x0, τ) =

〈
0
∣∣ψ̂S(x)

∣∣Ψn

〉 〈
Ψn

∣∣ψ̂†S(x0)
∣∣0〉

E −∆En + iγ
,

(78)
where we have used the relation

∫ ∞

0
dt eiαt e−γt =

i
α + iγ

. (79)

This shows that the poles of the retarded single-particle Green’s function
represent the full energy spectrum of the additional particle, including all
kinds of many-body effects.

Similarly, we can consider the advanced Green’s function for which
t < t0,

iG−(x, x0) = −〈
0
∣∣ψ̂†H(x0)ψ̂H(x)

∣∣0〉
. (80)

Inserting a complete set of intermediate states with a single hole in the
vacuum,

H|Ψh〉 = Eh|Ψh〉, (81)

leads to the Fourier transform

G−(x,x0, E) =
∫ 0

∞
dτ eiEτ G−(x, x0, τ) = −

〈
0
∣∣ψ̂†S(x)

∣∣Ψh

〉 〈
Ψh

∣∣ψ̂S(x0)
∣∣0〉

E −∆Eh − iγ
.

(82)
This shows that the poles of the advanced single-particle Green’s func-
tion represent the energy spectrum of a single hole in the core.

4.3 The perturbation expansion
In the interaction picture, using intermediate normalization, the Green’s

function (73) can be expanded in the following way [37, Eq. 9.5]

iG(x, x0) =
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
d4x1 · · ·

∫ ∞

−∞
d4xn

〈
Φ0

∣∣∣T
[
H′(x1) · · ·

· · ·H′(xn) ψ̂I(x)ψ̂†I (x0)
]∣∣∣Φ0

〉
conn

, (83)

where Φ0 is the unperturbed ground state of the vacuum or the ion
core (single determinant) and ψ̂I(x) is the electron field operator in the
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interaction picture. With H ′
I(t) being the perturbation (5), H′(x) is

defined as the perturbation density in this picture by

H ′
I(t) =

∫
dxH′(x). (84)

The expansion (83) is an alternative formulation of the linked-diagram
theorem (40), discussed in section 2. The unlinked diagrams are here
exactly cancelled by the denominator in (73). (In this case there is no
distinction between the concepts of ‘connected ’ and ‘linked ’ diagrams).

The zeroth-order Green’s function or electron propagator is given by

iG0(x,x0, τ) =
〈
Φ0

∣∣T̂ [ψ̂I(x)ψ̂†I (x0)]
∣∣Φ0

〉
= ψ̂I(x)ψ̂†I (x0) (85)

with τ = t − t0, which represents a contraction (20) between the anni-
hilation and creation field operators. Using the form (72) of the field
operators, this can also be expressed in analogy with (74) as

iG0(x, x0, τ) = Θ(τ) 〈x|p′〉〈p′|x0〉 e−iεp′τ −Θ(−τ) 〈x|h′〉〈h′|x0〉e−iε′hτ , (86)

summed over single-electron particle (p′) and hole (h′) states with posi-
tive and negative energy, respectively. The Fourier transform is obtained
in analogy with (78) and (82)

G0(x, x0, E) =
〈x|i〉〈i|x0〉
E − εi + iγi

, (87)

summed over the entire unperturbed single-particle spectrum (6). Here,
γi is a small quantity, which is positive/negative when i is a particle/hole
state. In analogy with the self-energy operator above, this can be re-
garded as the coordinate representation of a Green’s-function operator,
Ĝ0(E),

G0(x, x0, E) = 〈x|Ĝ0(E)|x0〉 (88)

with
Ĝ0(E) =

|i〉〈i|
E − εi + iγi

. (89)

Using the closure property

〈x|i〉〈i|x0〉 =
all∑

i

φ∗i (x) φi(x0) = δ(x− x0),

we have from the relation (87)

(E − h0) G0(x,x0, E) = δ(x− x0), (90)

an equation often used as the definition of the unperturbed or zeroth-
order Green’s function.
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4.4 The Dyson equation
Applying Wick’s theorem to the expansion (83), leads to terms that

can be represented by diagrams in very much the same way as in the
MBPT expansion in the previous section (see, for instance, [37, Sect.9]).
The main difference from MBPT is that the diagrams are Feynman
diagrams, including all possible time orderings between the interactions,
rather than time-ordered Goldstone diagrams. Furthermore, the in- and
outgoing free lines represent unperturbed single-electron propagators or
single-particle Green’s functions rather than single-electron orbitals.

The exact (retarded) single-particle Green’s function is represented
by all connected diagrams with one incoming and one outgoing free line
(representing the zeroth-order Green’s function), as illustrated in Fig.
1.12. This is quite analogous to the Dyson equation illustrated in Fig.
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Figure 1.12. Graphical representation of the Dyson equation for the (retarded)
single-particle Green’s function. The thick line with dots at the end represents the
exact Green’s function and the thin lines the zeroth-order Green’s function. This re-
lation is quite analogous to the Dyson equation for the Brueckner orbital, represented
in Fig. 1.11.

1.11 and corresponds to the Dyson equation

G(x, x0) = G0(x, x0) +
∫∫

d4x2 d4x1 G0(x, x2)Σ(x2, x1) G0(x1, x0)

= G0(x, x0) +
∫∫

d4x2 d4x1 G0(x, x2) Σ∗(x2, x1) G(x1, x0), (91)

where Σ(x2, x1) is the general and Σ∗(x2, x1) the proper self energy.
After the Fourier transforms this becomes, using the form (88) of the
coordinate representations,

〈x|Ĝ(E)|x0〉 = 〈x|Ĝ0(E)|x0〉+ 〈x|Ĝ0(E)|x2〉 〈x2|Σ(E)|x1〉 〈x1|Ĝ0(E)|x0〉
= 〈x|Ĝ0(E)|x0〉+ 〈x|Ĝ0(E)|x2〉 〈x2|Σ∗(E)|x1〉 〈x1|Ĝ(E)|x0〉, (92)

where as before |x〉〈x| represents space integration over x.
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Letting the first equation above operate to the right on the valence
state 〈x0|p〉, using the relation (87), yields

〈x|Ĝ(E)|x0〉 〈x0|p〉 =
〈x|p〉

E − εp + iγ
+〈x|Ĝ0(E)|x2〉〈x2|Σ(E) |x1〉 〈x1|p〉

E − εp + iγ

or

(E − εp)〈x|Ĝ(E)|x0〉〈x0|p〉 = 〈x|p〉+ 〈x|Ĝ0(E)|x2〉〈x2|Σ(E) |x1〉〈x1|p〉. (93)

Defining the r.h.s. as a modified orbital, 〈x|p∗〉, we have

〈x|p∗〉 = 〈x|p〉+
〈x|i〉〈i|x2〉 〈x2|Σ(E)|x1〉 〈x1|p〉

E − εi + iγi
. (94)

But this is identical to the first expression (65) for the Brueckner orbital,
if we replace ε∗p by E. Therefore, the modified orbital (94) is identical
to the Brueckner orbital or the Dyson orbital for the valence electron. It
follows from the identity (65) that this orbital can also be expressed

〈x|p∗〉 = 〈x|p〉+
〈x|i〉〈i|x2〉 〈x2|Σ∗(E)|x1〉 〈x1|p∗〉

E − εi + iγi
, (95)

and it satisfies the same Dyson equation (67)

h0 〈x|p∗〉+ 〈x|Σ∗(E)|x1〉〈x1|p∗〉 = E 〈x|p∗〉. (96)

This demonstrates that the all-order perturbative (or coupled-cluster)
approach and the Green’s-function approach are completely equivalent
in treating a single electron outside a closed-shell system – or a single
hole in such a system.

4.5 Application to the affinity of the calcium
atom

As an illustration of the Green’s-function technique, we consider the
calculation of the electron affinity of the Ca atom (see Table 1.2). This
is a very delicate quantity, which has resisted accurate experimental as
well as theoretical determinations for a long time. For the negative Ca
ion, the Hartree-Fock model does not even yield a bound state for the
last electron.

The first experimental observation of the negative Ca ion in the 4p
state was made by Pegg at al. in 1987 [38], and the affinity was measured
to be 43± 7 meV. The first theoretical evaluation was made shortly
afterwards by Froese-Fischer [39], who found a consistent value of the
affinity, or 45 meV. Several subsequent calculations yielded values in the
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Table 1.2. Electron affinity of Ca atom (in meV)

4p1/2 4p3/2 Reference

Theory -19 -13 Salomonson (1996)
Theory -22 -18 Avgoustoglou (1997)

Expt’l -24.55 -19.73 Petrunin (1996)
Expt’l -18.4 Walter (1992)
Expt’l -17.5 Nadeau (1992)

range 45-82 meV [40]. Later, the affinity was experimentally determined
to be only about 18 meV [41, 42], and more recently the most accurate
determination was performed by the Aarhus group with the result of 24.5
meV [43] for the ground state and about 20 meV for the first excited
state.

In 1996 we performed an extensive high-order nonrelativistic Green’s-
function calculation of the affinities of Ca in the two lowest states, with
the result of 19 and 13 meV, respectively. Shortly afterwards, Avgous-
toglou and Beck performed a relativistic Green’s-function calculation,
limited to second order, which yielded the values 22 and 18 meV, re-
spectively [44], in excellent agreement with the Aarhus results. Similar
results have been obtained also for the negative Sr ion [44, 40]. These
results show that the Green’s-function method is quite a powerful tech-
nique that can be successfully applied also to intricate system like the
negative alkaline-earth ions.

5. Summary and Conclusion
We have demonstrated that Brueckner and Dyson orbitals are iden-

tical concepts for a system with a single valence electron outside closed
shells or with a single electron hole in a closed-shell system. It is also
shown that the orbital energy eigenvalue corresponds to the exact elec-
tron binding energy or affinity, including all kinds of many-body effects.
This conclusion is supported by numerical results. Both techniques are
capable of yielding high-accuracy results also for highly correlated sys-
tems. The results shown for a single valence electron or a single valence
hole can be extended to more general system, as will be demonstrated
in a forthcoming publication.
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[23] H. Kümmel, K. H. Lührman, and J. G. Zabolitsky, Phys. Rep. 36,
1 (1978).
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