
Development of Many-Body
Perturbation Theory

How to combine with Quantum ElectroDynamics?

Ingvar Lindgren
ingvar.lindgren@physics.gu.se

Department of Physics

University of Gothenburg

ISTCP VIII Budapest Aug 2013

Slides withProsper/LATEX – p. 1/55



MBPT andQEDhave been developed

independently

for more than half a century

Slides withProsper/LATEX – p. 2/55



MBPT andQEDhave been developed

independently

for more than half a century

No serious efforts have been made

to unify the two

Slides withProsper/LATEX – p. 2/55



MBPT andQEDhave been developed

independently

for more than half a century

No serious efforts have been made

to unify the two

WHY?
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Fundamental problem
Seemingly incompatible
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Fundamental problem
Seemingly incompatible

MBPT is based upon quantum mechanics with a
single time

Ψ(t,x1,x2..)

QED is based on relativistic field theory with
individual times

Ψ(t1x1, t2x2..)

Compromise:Equal-time approximation

Very small effect in atomic/molecular physics
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How can QED effects be included in a many-body
problem in a systematic fashion?
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How can QED effects be included in a many-body
problem in a systematic fashion?

To treat correlation by QED is highly inefficient.
Works for highly charged ions with small correlation

relative to QED

For chemical systems the situation is the reversed
Correlated wave function natural starting point

First-order QEDeffects can be added to theENERGY

OFTEN INSUFFICIENT
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To go further,
QED effects should be included in the

WAVE FUNCTION
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To go further,
QED effects should be included in the

WAVE FUNCTION

QED perturbations aretime- or energy dependent

Requirestime/energy-dependent perturbation theory

Leads to a procedure where the QED effects are
included perturbatively, mixed with the electron

correlation - not added on at the final end
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Outline

Review of standard methods

• Rayleigh-Schrödinger perturbation.
Linked-diagram theorem. Bloch equation

• Relativistic MBPT. No-Virtual-Pair Approx.
• All-order methods. Coupled-cluster theory
• Methods for QED calculations
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Outline

Beyond standard methods?

• Covariant Evolution Operator method
• Combination ofMBPT and QED
• Numerical illustration: He-like systems
• Possible application to larger systems.

Coupled-Cluster QED
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MBPT Calculations
Standard non-relativistic MBPT

HΨα = EαΨα (α = 1 · · · d)

Ψα = ΩΨα
0 (α = 1 · · · d) Ω wave operator

Ψα
0 = PΨα Intermediate normalization
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MBPT Calculations
Standard non-relativistic MBPT

HΨα = EαΨα (α = 1 · · · d)

Ψα = ΩΨα
0 (α = 1 · · · d) Ω wave operator

Ψα
0 = PΨα Intermediate normalization

Linked diagram theorem
Graphical representation:Unlinked diagrams cancel

(Brueckner 1955, Goldstone 1957, Brandow 1963, Mukherjee 1986)
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MBPT Calculations
Standard non-relativistic MBPT

HΨα = EαΨα (α = 1 · · · d)

Ψα = ΩΨα
0 (α = 1 · · · d) Ω wave operator

Ψα
0 = PΨα Intermediate normalization

Bloch equation(Bloch 1958, IL 1974)
[
Ω,H0

]
P = Q

(
V Ω − ΩW

)

linked
P

−ΩW Model-space contribution

W = PVΩP Effective interaction
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Model-space contribution
[
Ω, H0

]
P = Q

(
VΩ−ΩW

)

linked
P

Second order : Ω(2)PE = ΓQ

(
VΩ(1) −Ω(1)PE ′W (1)

)
PE
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Model-space contribution
[
Ω, H0

]
P = Q

(
VΩ−ΩW

)

linked
P

Second order : Ω(2)PE = ΓQ

(
VΩ(1) −Ω(1)PE ′W (1)

)
PE

✻✻ ✻✻

✻✻ ✻✻r r

V

Unlinked

✻✻ ✻✻

✻ ✻r r

Ω(1)(E)

✻✻ ✻✻

✻ ✻q q Ω(1)(E ′)

✻✻ ✻✻

✻✻ ✻✻q q V
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Model-space contribution
[
Ω, H0

]
P = Q

(
VΩ−ΩW

)

linked
P

Second order : Ω(2)PE = ΓQ

(
VΩ(1) −Ω(1)PE ′W (1)

)
PE

✻✻ ✻✻

✻✻ ✻✻r r

V

Unlinked

✻✻ ✻✻

✻ ✻r r

Ω(1)(E)

✻✻ ✻✻

✻ ✻q q Ω(1)(E ′)

✻✻ ✻✻

✻✻ ✻✻q q V

✻✻ ✻✻

✻ ✻r r

Ω(1)(E)

Unlinked

✻✻ ✻✻

✻✻ ✻✻r r

V

+

✻✻ ✻✻

✻✻ ✻✻

✻ ✻

q q

q q

V

Ω(1)(E)

Linked

✻✻ ✻✻

✻ ✻r r

Unlinked

+

✻✻ ✻✻

✻✻ ✻✻r r +

✻✻ ✻✻

✻✻ ✻✻

✻ ✻

q q

q q

V

Ω(1)(E ′)

Linked

Unlinked diagrams cancel
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Model-space contribution
Remainder: Folded diagrams

✻✻ ✻✻

✻✻ ✻✻

✻ ✻

r r

r r

V

Ω(1)(E)

PE

PE′ −

✻✻ ✻✻

✻✻ ✻✻

✻ ✻

r r

r r

V

Ω(1)(E ′)

PE

PE′ ⇒
✻ ✻

r r

✑
✑

✑✑
✰✰
✑

✑
✑✑

✑
✑

✑✑

✰✰✑✑
✑✑

PE′ PE✻✻ ✻✻

r r

Folded

✻✻ ✻✻

✻ ✻
r r

r r

✻✻ ✻✻

PE′

PE

⇒
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Model-space contribution
Remainder: Folded diagrams
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Folded
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✻ ✻
r r

r r

✻✻ ✻✻

PE′
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⇒

(

Ω(1)(E)− Ω(1)(E ′)
) PE ′V PE

E − E ′
=
δΩ(1)

δE
PE ′V PE
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Model-space contribution
Remainder: Folded diagrams
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(
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) PE ′V PE
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=
δΩ(1)

δE
PE ′V PE

Ω(2) = ΓQV Ω(1) +
δΩ(1)

δE
W (1) = ΓQV Ω(1) − ΓQΩ

(1)W (1)
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Model-space contribution
Remainder: Folded diagrams
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(

Ω(1)(E)− Ω(1)(E ′)
) PE ′V PE

E − E ′
=
δΩ(1)
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PE ′V PE

Ω(2) = ΓQV Ω(1) +
δΩ(1)

δE
W (1) = ΓQV Ω(1) − ΓQΩ

(1)W (1)

Ω = ΓQ

[
V Ω− ΩW

]

linked
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Relativistic MBPT
(Breit 1931, Brown-Ravenhall 1951, Sucher 1980)

Dirac-Coulomb-Breit Approximation

H = Λ+

[ N∑

i=1

hD(i) +
N∑

i<j

e2

4πrij
+HB

]

Λ+
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Relativistic MBPT
(Breit 1931, Brown-Ravenhall 1951, Sucher 1980)

Dirac-Coulomb-Breit Approximation

H = Λ+

[ N∑

i=1

hD(i) +
N∑

i<j

e2

4πrij
+HB

]

Λ+

HB = −
e2

8π

∑

i<j

[αi · αj
rij

+
(αi · rij)(αj · rij)

r3ij

]

Instantaneous Breit interaction
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Relativistic MBPT
(Breit 1931, Brown-Ravenhall 1951, Sucher 1980)

Dirac-Coulomb-Breit Approximation

H = Λ+

[ N∑

i=1

hD(i) +
N∑

i<j

e2

4πrij
+HB

]

Λ+

HB = −
e2

8π

∑

i<j

[αi · αj
rij

+
(αi · rij)(αj · rij)

r3ij

]

Instantaneous Breit interaction

No-(virtual)-pair approximation (NVPA)
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QED effects
Effects beyond NVPA - Energy dependent

Orderα3 and higher

• Retardation
• Virtual pairs Non-radiative
• Radiative effects (Lamb shift etc.)

q

q

q

q

q q

q q

❅❅❅❅❅❅❘ q

q
r r

Non-radiative effects

q

q
q

q
r r ❥ q

q

q
q

Radiative effects
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All-order methods
Ω = 1 + Ω1 + Ω2 + · · ·
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All-order methods
Ω = 1 + Ω1 + Ω2 + · · ·

All-order pair function(Notre Dame, Gothenburg ...)

r rΩ2 : = + r r + r r

r r
+

r r
r r
r r

+ · · · + r r

r r
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All-order methods
Ω = 1 + Ω1 + Ω2 + · · ·

All-order pair function(Notre Dame, Gothenburg ...)

r rΩ2 : = + r r + r r

r r
+

r r
r r
r r

+ · · · + r r

r r

s s Coulomb interaction

r r Folded

Internal vertical lines: electron propagators w pos. and neg. electron states

Contains electron pair correlation to arbitrary order
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Coupled-cluster approach
Exponential Ansatz(Coster 1958, Kümmel 1972,Čižek 1965)

Closed shells (single reference)

Ω = eT = 1 + T +
1

2
T 2 +

1

3!
T 3 + · · ·

All diagramsconnected
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Coupled-cluster approach
Exponential Ansatz(Coster 1958, Kümmel 1972,Čižek 1965)

Closed shells (single reference)

Ω = eT = 1 + T +
1

2
T 2 +

1

3!
T 3 + · · ·

All diagramsconnected

Bloch equation
(
E0 −H0

)
T =

(
V ΩP − ΩW

)

conn
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Coupled-cluster approach
Normal-ordered exponential Ansatz
( IL1978, Mukherjee 1995, 97)

Open shells (multiple reference)

Ω = {eT} = 1 + T +
1

2
{T 2}+

1

3!
{T 3}+ · · ·

Eliminates spurious contractions between open-shell lines
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Coupled-cluster approach
Normal-ordered exponential Ansatz
( IL1978, Mukherjee 1995, 97)

Open shells (multiple reference)

Ω = {eT} = 1 + T +
1

2
{T 2}+

1

3!
{T 3}+ · · ·

Eliminates spurious contractions between open-shell lines

Bloch equation
[
T,H0

]
P = Q

(
V Ω − ΩW

)

conn
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Coupled-cluster approach
Open shells
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Numerical, closed shells
BH3 molecule (Shavitt et al. 1972)

Ecxitations Total Connected Disconnected
One-body 0.1 0.1
Two-body 97.2 97.2 ≤ 0.1

Three-body 0.8 0.8 ≤ 0.01

Four-body 1.9 ≤ 0.01 1.9
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QED Calculations

Standard methods
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QED Calculations
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QED Calculations

Standard methods
a)S-matrixformulation

b) Two-times Green’s function
developed by Shabaev et al. St. Petersburg

c) Covariant-evolution operatormethod
developed by the Gothenburg group
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QED Calculations

Standard methods
a)S-matrixformulation

b) Two-times Green’s function
developed by Shabaev et al. St. Petersburg

c) Covariant-evolution operatormethod
developed by the Gothenburg group
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All three methods in practice limited to two-photon exchange -

only first-order correlation. Of no interest to chemists
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QED Calculations

Standard methods
a)S-matrixformulation

b) Two-times Green’s function
developed by Shabaev et al. St. Petersburg

c) Covariant-evolution operatormethod
developed by the Gothenburg group

+
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+
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q

+
q

q

q q

q q
+

q

q
q

q
+ · · ·

All three methods in practice limited to two-photon exchange -

only first-order correlation. Of no interest to chemists

CEO has similar structure as MBPT. Basis for unification
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Beyond standard methods
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Beyond standard methods

Standard methods treatenergy-independent
(Coulomb) interactions andenergy-dependentQED
perturbationsseparately
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Beyond standard methods
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Beyond standard methods

Standard methods treatenergy-independent
(Coulomb) interactions andenergy-dependentQED
perturbationsseparately

This leaves out thecombination effect

Employingtime-dependent perturbation theory
enables us tocombine MBPT and QED

Makes it possible to treat QED and correlation
perturbatively on the same footing
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Time-dependent perturbation theory

r r

r r
+

q

q
r r + q
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q q
r r + q

q

q
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r rq q
r r

q
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Time-dependent perturbation theory

r r

r r
+

q

q
r r + q

q

r r
+ q

q

r r

r r

q q
r r + q

q

q
q

r r

r rq q
r r

q
q

+

A procedure fortime-dependent perturbation theory

has been developed based upon the

Covariant Evolution Operator(CEO) method
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Time-dependent perturbation theory

Covariant Evolution Operator (CEO)
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Time-dependent perturbation theory

Covariant Evolution Operator (CEO)
The single-particleGreen-s functioncan be defined
(in Heisenberg representation,T Wick time ordering)

G(t, t0) =

〈
0H

∣
∣T [ψ̂H(x)ψ̂

†
H(x0)]
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d3x d3x0 ψ̂
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〈
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∣T [ψ̂H(x)ψ̂

†
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r r

✻ ✻

q q✻ ✻
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✻ ✻q q
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r r

El. prop.❍❍❨
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✛
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q q✻ ✻

r r
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GF is afunction

CEO is anoperator
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Time-dependent perturbation theory

Green’s operator
Covariantevolution operator represents the time
evolution ofrelativisticwave function

ΨRel(t) = UCov(t, t0)ΨRel(t0)
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Time-dependent perturbation theory

Green’s operator
Covariantevolution operator represents the time
evolution ofrelativisticwave function

ΨRel(t) = UCov(t, t0)ΨRel(t0)

Evolution operatorsingulardue to intermediate
model-space states

Regularpart known asGreen’s operator

UCov(t, t0)P = G(t, t0)PUCov(0, t0)P
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Time-dependent perturbation theory

The Green’s operator acts as the
time-dependent relativistic wave operator
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Time-dependent perturbation theory

The Green’s operator acts as the
time-dependent relativistic wave operator

Ψα(t) = UCov(t,−∞)Ψα(−∞)

Ψα(t) = G(t, t0) PUCov(0, t0)Ψ
α(−∞)

︸ ︷︷ ︸

Ψα(t) = G(t,−∞)Ψα
0

Compare std MBPT:Ψ = ΩΨ0
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Time-dependent perturbation theory
Expansion of the Green’s operator

U(t)PE = G(t)PE ′U(0)PE

G(2)(t)PE = Q
(

G(1)(t)U (1)(0)− G(1)(t)PE ′U (1)(0)
)

PE
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Time-dependent perturbation theory
Expansion of the Green’s operator

U(t)PE = G(t)PE ′U(0)PE

G(2)(t)PE = Q
(

G(1)(t)U (1)(0)− G(1)(t)PE ′U (1)(0)
)

PE

Compare std wave operator

ΩP = ΓQ
(
V Ω− ΩPW

)
P

Ω(2)PE = ΓQ

(

VΩ(1) −Ω(1)PE ′W (1)
)

PE
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Time-dependent perturbation theory
Folded diagrams

✻✻ ✻✻
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✑
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✻✻ ✻✻

PE′
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⇒

Ω(2) = ΓQVΩ(1) +
δΩ(1)

δE
W (1) = ΓQVΩ(1) − ΓQΩ

(1)W (1)

Energy-independent perturbations
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Time-dependent perturbation theory

Bloch eqn for time-dependent perturbation theory

[
G,H0

]
= V G − GW +

[
δ∗G
δE
,H0

]

W

* derivation restricted to last interaction
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Time-dependent perturbation theory

Bloch eqn for time-dependent perturbation theory

[
G,H0

]
= V G − GW +

[
δ∗G
δE
,H0

]

W

* derivation restricted to last interaction

Compare std MBPT:

[
Ω,H0

]
= V Ω − ΩW (W = PV ΩP )

Procedures completely compatible
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Time-dependent perturbation theory

How to evaluate the QED effects

perturbatively?
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Time-dependent perturbation theory

Gell-Mann-Low theorem

HD

∣
∣Ψ

〉
=

(

H0 + VC + vT

) ∣
∣Ψ

〉
= E

∣
∣Ψ

〉
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Time-dependent perturbation theory

Gell-Mann-Low theorem

HD

∣
∣Ψ

〉
=

(

H0 + VC + vT

) ∣
∣Ψ

〉
= E

∣
∣Ψ

〉

V = VC + vT

Coulomb + Transverse

VC = e2

4πr12

vT = −
∫
d3x ψ̂(x)†ecαµAµ(x)ψ̂(x)
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Time-dependent perturbation theory

✻ ✻

Photonic Fock space
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Time-dependent perturbation theory

✻ ✻

Photonic Fock space

Perturbation should betime independent!
for Gell-Mann-Low to be valid
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Time-dependent perturbation theory
Single-photon exchange requires two perturbations

✻t
✻u

r

r✻r
✻s

E

〈rs|Vsp(E)|tu〉 =
〈

rs

∣

∣

∣

∫

∞

0
dκ f(κ)

1

E − εr − εu − κ

∣

∣

∣
tu

〉

f(κ) =
∑

l

V l(κr1) · V
l(κr2)
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Time-dependent perturbation theory
Single-photon exchange requires two perturbations

✻t
✻u

r

r✻r
✻s

E

〈rs|Vsp(E)|tu〉 =
〈

rs

∣

∣

∣

∫

∞

0
dκ f(κ)

1

E − εr − εu − κ

∣

∣

∣
tu

〉

f(κ) =
∑

l

V l(κr1) · V
l(κr2)

TWO energy-independent perturbations. The energy

dependence is given by the energy denominator.GML valid

HD

∣
∣Ψl

〉
=

(

H0 + VC + V l

) ∣
∣Ψl

〉
= E

∣
∣Ψl

〉
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Time-dependent perturbation theory
Iteration of time-independent perturbations

✻ ✻
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Time-dependent perturbation theory
Iteration of time-independent perturbations

✻ ✻
s
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Time-dependent perturbation theory
Calculating derivative of retarded interaction

r

r

p

r

q

s

E

r

r

p

r

q

s

E

V =
f(k)

E − εr − εq − k

Derivative by second

energy denominator
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Self-energy regularization
Dimensional regularization in Coulomb gauge

most appropriate to use in MBPT/QED

Never used before.

✻a

✻ ✻

s

s

✻a

=

✻a

✻ ✻

s

s

✻a

+

✻a

x r

✻

✻
✻

s

s

✻a

+

✻a

x r
x r

✻
✻
✻

✻

s

s

✻a
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Self-energy regularization
Dimensional regularization in Coulomb gauge

most appropriate to use in MBPT/QED

Never used before.

✻a

✻ ✻

s

s

✻a

=

✻a

✻ ✻

s

s

✻a

+

✻a

x r

✻

✻
✻

s

s

✻a

+

✻a

x r
x r

✻
✻
✻

✻

s

s

✻a

Zero- and one-pot. terms evaluated using Adkins formulas

Modified by J. Holmberg, PRA84, 062504 (2011)

Many-potential term obtained by evaluating the other termswith

partial-wave expansion
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Self-energy regularization
First dimensional regularization in Coulomb gauge

Self-energy of hydrogen like ions

Z Coulomb gauge Feynman gauge
18 1.216901(3) 1.21690(1)
54 50.99727(2) 50.99731(8)
66 102.47119(3) 102.4713(1)
92 355.0430(1) 355.0432(2)

D. Hedendahl and J. Holmberg, Phys. Rev. A85, 012514 (2012)
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Self-energy
Derivative of self-energy issingular
Singularity cancelled by vertex correction due to
Ward identity

δΣ

δE
= Λ0
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Self-energy
Derivative of self-energy issingular
Singularity cancelled by vertex correction due to
Ward identity

δΣ

δE
= Λ0

q

q

r rP
q

q
r r

Both are charge divergent and have to be renormalized
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Time-dependent perturbation theory
Iteration of time-dependentperturbations

QED Pair function

t t =

t tt tt t
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Time-dependent perturbation theory
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QED Pair function

t t =
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t
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r
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Numerical illustration

QED effects in He-like ions, grd state (eV)

Z Two-photon Combined QED-correlation BEYOND two-photon

Retarded Inst. Breit Retard. part Virt.Pairs Self-energy Vertex corr.

10 0.0033 0.0072 -0.0011 0.0002

14 0.0080 0.0101 -0.0019 0.0004 0.0020

18 0.0150 0.0154 -0.0027 0.0006 0.0030

24 0.0305 0.0192 -0.0042 0.0009 0.0050

30 0.052 0.0244 -0.0057 0.0013 0.0090

42 0.112 0.0286 -0.0087 0.0019

50 0.0320 -0.011 0.0024 0.0170

66 0.0400 -0.015 0.0030
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Can this be applied to larger
systems???
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Coupled-cluster CCSD
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Coupled-cluster CCSD
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MBPT-QED

QEDpotentials
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Coupled-cluster CCSD(T)
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Summary
A procedure has been developed forcombining
MBPT and QED, based upon the covariant-evolution
operator method
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Summary
A procedure has been developed forcombining
MBPT and QED, based upon the covariant-evolution
operator method

The perturbations are inserted into thewave function
and treated on the same footing as the electron
correlation

Thecompatibilitybetween this procedure and
standard MBPT implies that the QED effects can be
inserted to the degree that is relevant

The procedure has been tested for He-like ions

Application to more general systems might be
possible by using thecoupled-cluster approach
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Thank you!
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