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Fundamental problem
Seemingly incompatible
MBPT is based upon quantum mechanics with a

\If( s L1, 332..)

QED is based on relativistic field theory with

\IJ( L1, 332..)
Compromise:

Very small effect in atomic/molecular physics
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How can QED effects be included in a many-body
problem in a systematic fashion?
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How can QED effects be included in a many-body
problem in a systematic fashion?

To treat correlation by QED is highly inefficient.
Works for highly charged ions with small correlation
relative to QED

For chemical systems the situation is the reversed

effects can be added to the
OFTEN INSUFFICIENT
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To go further,
QED effects should be included in the

QED perturbations are
Requires

Leads to a procedure where the QED effects are
iIncluded perturbatively, mixed with the electron
correlation - not added on at the final end
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Outline

Review of standard methods

» Rayleigh-Schrodinger perturbation.
_inked-diagram theorem. Bloch equation

» Relativistic MBPT. No-Virtual-Pair Approx.
 All-order methods. Coupled-cluster theory
» Methods for QED calculations
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Outline

Beyond standard methods?

» Covariant Evolution Operator method
« Combination of

* Numerical illustration: He-like systems
» Possible application to larger systems.
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MBPT Calculations
Standard non-relativistic MBPT

HU* = B0 (a=1---d)

Ue =0v5 (a=1---d) wave operator

Uy = PU® Intermediate normalization
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MBPT Calculations
Standard non-relativistic MBPT

HU* = B0 (a=1---d)

Ue =0v5 (a=1---d) wave operator

Uy = PU® Intermediate normalization

Linked diagram theorem

Graphical representation:Unlinked diagrams cancel
(Brueckner 1955, Goldstone 1957, Brandow 1963, Mukherg&Ss 1
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MBPT Calculations
Standard non-relativistic MBPT

HU* = B0 (a=1---d)

Ue =0v5 (a=1---d) wave operator

Uy = PU® Intermediate normalization

Bloch equatior(Bloch 1958, IL 1974)
Q,Hy|P =Q(VQ — QW) P

linked

W = PV I P Effective interaction
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M odel-space contribution

P = Qv ow)

linked

Second order : (Q)Pg =I'g (V L _op W(l))Pg
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M odel-space contribution

P = Qv ow)

linked

(1))pg

1% Q) (&)

1]

Second order : (Q)Pg =I'g (V O _oWp.w
t""t Q<1)( )
-1V

3
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M odel-space contribution

P = Qv ow)

linked

Second order : QPP =To(VOW — 0Wp. W) P

|.f_| .. H

Unlinked diagrams cancel
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M odel-space contribution

Remainder: Folded diagrams
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M odel-space contribution

Remainder: Folded diagrams

(Q<1>(5) — QW )) PeVFe _ Pe/V P

E—E&

0@ =TovaW 4+ wo =Tevo® — QW
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M odel-space contribution

Remainder: Folded diagrams

Q) (&)
y
Pe Pe
PV Pe
(Q(l)(g) — W) )) = Pe/V Pe
0@ =TovaW 4+ W =Tovo® — QW a

Q) =Tg[VQ—aw]
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Relativistic MBPT

(Breit 1931, Brown-Ravenhall 1951, Sucher 1980)
Dirac-Coulomb-Breit Approximation

=[S+ 3 gt

1<
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Relativistic MBPT

(Breit 1931, Brown-Ravenhall 1951, Sucher 1980)
Dirac-Coulomb-Breit Approximation

H = [ih (@)+§:4§; )

1<
B 62 [Cki ey | (Ozi y Tij)(o{j y Tij)}
— — | 3
ST b T i

Instantaneous Breit interaction
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QED effects

Effects beyond NVPA - Energy dependent

 Retardation

i

Ordera® and higher

it

Non-radiative
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All-order methods
=1+ +Q+---
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All-order methods

QQI

Q=14+ +Q +---
All-order pair function(Notre Dame, Gothenburg ...)

+ o------o+ ° +
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All-order methods

Q=14+ +Q +---
All-order pair function(Notre Dame, Gothenburg ...)

Q2 : ) — + ¢----9 + R + ¢----9 + O O O +

o ----+ Coulomb interaction

= [olded

Internal vertical lines: electron propagators w pos. argl eéectron states
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Coupled-cluster approach

Exponential Ansatoster 1958, Kimmel 1978;izek 1965)
Closed shells (single reference)

1 1
Q:eT:1+T+§T2+§T3+---

All diagrams
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Coupled-cluster approach

Exponential Ansatoster 1958, Kimmel 1978;izek 1965)
Closed shells (single reference)

1 1
Q:eT:1+T+§T2+§T3+---
All diagrams
Bloch equation

(Ey — Hp)T = (VQP — QW)
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Coupled-cluster approach

Normal-ordered exponential Ansatz
(1L1978, Mukherjee 1995, 97)

Open shells (multiple reference)

1 1
Q={e'} =1+ T+ AT} + {7} + -

Eliminates spurious contractions between open-shels line
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Coupled-cluster approach

Normal-ordered exponential Ansatz
(1L1978, Mukherjee 1995, 97)

Open shells (multiple reference)

1 1
Q={e'} =1+ T+ AT} + {7} + -

Eliminates spurious contractions between open-shels line

T,Hy|P=Q(VQ— QW)

conn
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Coupled-cluster approach

e
TTRRTRTRANN

1 e



Numerical, closed shells
BH; molecule (Shavitt et al. 1972)

Ecxitations| Total | Connected Disconnected
One-body | 0.1 0.1

Two-body 97.2 < 0.1
Three-body| 0.8 < 0.01
Four-body | 1.9 < 0.01
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QED Calculations

Standard methods
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QED Calculations

Standard methods

a)
b)

formulation

developed by Shabaev et al. St. Petersburg

C)

/

;

7

it

method
developed by the Gothenburg group

i
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QED Calculations

Standard methods
a) formulation

b)
developed by Shabaev et al. St. Petersburg

C) method
developed by the Gothenburg group

/*)*%*K*?*“

All three methods in practice limited to two-photon exchanrg
only 10f no interest to chemists
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QED Calculations

Standard methods
a) formulation

b)
developed by Shabaev et al. St. Petersburg

C) method
developed by the Gothenburg group

/*)*%*K*?*“

All three methods in practice limited to two-photon exchanrg
only 10f no interest to chemists
CEO has similar structure as MBPT. Basis for unificatio

osoner /IATeX — . 18/55




Beyond standard methods
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Beyond standard methods

Standard methods treat
(Coulomb) interactions and QED
perturbations
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Beyond standard methods

Standard methods treat
(Coulomb) interactions and QED
perturbations

This leaves out the

Employing
enables us to

Makes it possible to treat QED and correlation
perturbatively on the same footing

Slides withPr osper /IAT=X — . 19/55



Time-dependent perturbation theory

Slides withPr osper /IAT=X — o, 20/55



Time-dependent perturbation theory

A procedure for
has been developed based upon the
(CEO) method
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Time-dependent perturbation theory
Covariant Evolution Operator (CEO)
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Time-dependent perturbation theory

Covariant Evolution Operator (CEO)

The single-particle can be defined
(in Heisenberg representatidi,Wick time ordering)

On ’TWH(@&L(%)] ’0H>

G(t,ty) = < <OH|OH>
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Time-dependent perturbation theory

Covariant Evolution Operator (CEO)

The single-particle can be defined
(in Heisenberg representatidi,Wick time ordering)

On ’TWH@WL(?EO)] ’0H>
(0[O

The single-particle analogously

G(t,ty) = <

Ucov(t, to) = / / Bz Bz (On | T [t ()31 (20)] |Ox)

Slides withPr osper /IATEX — p. 21/55



Time-dependent perturbation theory

Covariant Evolution Operator (CEO)

The single-particle can be defined
(in Heisenberg representatidi,Wick time ordering)

(0u|T[Wu(@)dh(@)]0s) T TT F
G(t,ty) = (O |Omr ) H H‘:} El. prop.

The single-particle analogously

Ucov(t, to) = / / Bz Bz (On | T [t ()31 (20)] |Ox)

GFisa
CEO s an
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Time-dependent perturbation theory

Green’s operator

evolution operator represents the time
evolution of wave function

URel(t) = Ucov(t, to) Yrel(to)
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Time-dependent perturbation theory

Green’s operator

evolution operator represents the time
evolution of wave function

URel(t) = Ucov(t, to) Yrel(to)

Evolution operator due to intermediate
model-space states

part known as

UCov(ta tO)P — g(ta tO) PUCOV(O? tO)P
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Time-dependent perturbation theory

The Green’s operator acts as the
time-dependent relativistic wave operator
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Time-dependent perturbation theory

W(t) = Ucoy(t, to)P*(to)
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Time-dependent perturbation theory
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Time-dependent perturbation theory

() = G(t, to) PUcoy(0, to) T (—o0)
———m —
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Time-dependent perturbation theory

() = G(t, to) PUcoy(0, to) T (—o0)
———m —

\Ija(t) — g(tv —OO)‘I’S‘



Time-dependent perturbation theory

() = G(t, to) PUcoy(0, to) T (—o0)
———m —

P (t) = G(t, —o0) ¥y
Compare std I\/IBPT
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Time-dependent perturbation theory

Expansion of the Green’s operator
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Time-dependent perturbation theory

Expansion of the Green’s operator
U(t)Pg = P U(O)PS

Pe = Q( UM (0) — P U(l)(O))Pg

Compare std wave operator

QP =To(VQ - QPW)P

@p, =T, (v 1) _ oWp W(l))pg
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Time-dependent perturbation theory

Folded diagrams

Q) (&)
.
Pe Pe
(2) _ LoV 1) 4 W — LoV (1) _ To W)

Energy-independent perturbations
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Time-dependent perturbation theory

Folded diagrams

Q) (&)

(2) — LoV 1) 4 W — LoV 1) _ To MW7)

Energy-independent perturbations

(2) — ToV 1) _ To O 4 To w @

Energy-dependent perturbations
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Time-dependent perturbation theory

Folded diagrams

Q) (&)

(2) — LoV 1) 4 W — LoV 1) _ To MW7)

Energy-independent perturbations

(2) — ToV 1) _ To O L To w @

Energy-dependent perturbations
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Time-dependent perturbation theory

Bloch egn for time-dependent perturbation theory

* derivation restricted to last interaction
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Time-dependent perturbation theory

Bloch egn for time-dependent perturbation theory

* derivation restricted to last interaction

Compare std MBPT:

Q, Hy] = VQ — QW AR
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Time-dependent perturbation theory

How to evaluate the QED effects
perturbatively?
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Time-dependent perturbation theory

Gell-M ann-L ow theorem

Hp|W) = (HO Vo + UT) v = E|)
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Time-dependent perturbation theory

Gell-M ann-L ow theorem

Hp|W) = (HO Vo + UT) v = E|)

Coulomb + Transver se

vp = — [ d3xp(x)fecar A, (x)h(x)

Slides withPr osper /IAT=X — . 30/55



Time-dependent perturbation theory

I
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Time-dependent perturbation theory

I

Perturbation should be
for Gell-Mann-Low to be valid
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Time-dependent perturbation theory

Single-photon exchange requires two perturbations

1
(rs|Vsp (&) |tu) = rs‘/ dr f(k ‘tu>

_67"_611/_’{/

f(r) =) Vi(rr1) - Vi(kry)
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Time-dependent perturbation theory

Single-photon exchange requires two perturbations

(rs|Vsp (&) |tu) = rs‘/ dr f(k - ‘tu>

- 67" - €u — K
= Z Vikry) - Vikrs)
l

energy-independent perturbations. The energy
dependence is given by the energy denominaioi.

Hp|W,) = (Ho+ Vo + V') |®) = E|®))
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Time-dependent perturbation theory

Iteration of time-independent perturbations

.
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Time-dependent perturbation theory

Iteration of time-independent perturbations
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Time-dependent perturbation theory

Calculating derivative of retarded interaction

o P () ||
— & — &y — It

Derivative by second
p q . p‘ q
energy denominator
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Self-energy regularization

Dimensional regularization in Coulomb gauge
most appropriate to use in MBPT/QED
Never used before.

s: =
1
- =
b P>
+
x
|
- | o
+
X X
| |
- . o
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Self-energy regularization

Dimensional regularization in Coulomb gauge
most appropriate to use in MBPT/QED
Never used before.

e

Zero- and one-pot. terms evaluated using Adkins formulas
Modified by J. Holmberg, PR&4, 062504 (2011)

Many-potential term obtained by evaluating the other tenntis
partial-wave expansion
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Self-energy regularization

Self-energy of hydrogen like ions

18| 1.216901(3) | 1.21690(1)
54| 50.99727(2) | 50.99731(8)
66| 102.47119(3)| 102.4713(1)
92| 355.0430(1) | 355.0432(2)

D. Hedendahl and J. Holmberg, Phys. Re85A012514 (2012)
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Self-energy

Derivative of self-energy Is
Singularity cancelled by vertex correction due to

oy

se Mo
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Self-energy

Derivative of self-energy Is
Singularity cancelled by vertex correction due to

Y

5e = Do

Both are charge divergent and have to be renormalized
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Time-dependent perturbation theory

Iteration of time= perturbations

QED Pair function

Naas
0o
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Time-dependent perturbation theory

Iteration of time= perturbations

QED Pair function

—e9e-
obe
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Time-dependent perturbation theory

Iteration of time= perturbations

QED Pair function

¥
v
o
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Time-dependent perturbation theory

Iteration of time= perturbations

QED Pair function

||
”—
— b

—e9e-
obe
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Time-dependent perturbation theory

Iteration of time= perturbations
QED Pair function
;: ---- 3
— $---:-3
|

—e9e-
obe
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Numerical 1llustration

QED effects in He-like ions, grd state (eV)

Z Two-photon
Retarded Inst. Breit | Retard. part| Virt.Pairs | Self-energy| Vertex corr.

10 0.0033 0.0072 -0.0011 0.0002

14 0.0080 0.0101 -0.0019 0.0004 0.0020

18 0.0150 0.0154 -0.0027 0.0006 0.0030

24 0.0305 0.0192 -0.0042 0.0009 0.0050

30 0.052 0.0244 -0.0057 0.0013 0.0090

42 0.112 0.0286 -0.0087 0.0019

50 0.0320 -0.011 0.0024 0.0170

66 0.0400 -0.015 0.0030
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Can this be applied to larger
systems???
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—e90-— —o9-
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Coupled-cluster CCS



MBPT-

potentials

Il: ...... + ‘+ ..... I+ ------ +I ..... +I -----
] T




Coupled-cluster CC

*l*



Summary

A procedure has been developed dor
) based upon the covariant-evolution
operator method
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Summary

A procedure has been developed ior

) based upon the covariant-evolution
operator method

The perturbations are inserted into the
and treated on the same footing as the electron
correlation

The between this procedure and
standard MBPT implies that the QED effects can be
Inserted to the degree that is relevant

The procedure has been tested for He-like ions
Application to more general systems might be
possible by using the
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Sten Salomonson
Daniel Hedendahl
Johan Holmberg
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Thank you!
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