# Development of Many-Body Perturbation Theory 

How to combine with Quantum ElectroDynamics?

Ingvar Lindgren<br>ingvar.lindgren@physics.gu.se

Department of Physics
University of Gothenburg

ISTCP VIII Budapest Aug 2013

## MBPT and QED have been developed

 independentlyfor more than half a century

## MBPT and QED have been developed independently <br> for more than half a century

No serious efforts have been made to unify the two

## MBPT and QED have been developed independently <br> for more than half a century

No serious efforts have been made to unify the two

WHY?

## Fundamental problem

Seemingly incompatible

## Fundamental problem

Seemingly incompatible
MBPT is based upon quantum mechanics with a single time

$$
\Psi\left(t, x_{1}, x_{2 . .}\right)
$$

## Fundamental problem

Seemingly incompatible
MBPT is based upon quantum mechanics with a single time

$$
\Psi\left(t, x_{1}, x_{2 . .}\right)
$$

QED is based on relativistic field theory with individual times

$$
\Psi\left(t_{1} \boldsymbol{x}_{1}, t_{2} \boldsymbol{x}_{2 . .}\right)
$$

## Fundamental problem

Seemingly incompatible
MBPT is based upon quantum mechanics with a single time

$$
\Psi\left(t, x_{1}, x_{2 . .}\right)
$$

QED is based on relativistic field theory with individual times

$$
\Psi\left(t_{1} \boldsymbol{x}_{1}, t_{2} \boldsymbol{x}_{2 . .}\right)
$$

Compromise: Equal-time approximation

## Fundamental problem

Seemingly incompatible
MBPT is based upon quantum mechanics with a
single time

$$
\Psi\left(t, x_{1}, x_{2 . .}\right)
$$

QED is based on relativistic field theory with individual times

$$
\Psi\left(t_{1} \boldsymbol{x}_{1}, t_{2} \boldsymbol{x}_{2} . .\right)
$$

Compromise: Equal-time approximation
Very small effect in atomic/molecular physics

## How can QED effects be included in a many-body problem in a systematic fashion?

How can QED effects be included in a many-body problem in a systematic fashion?

To treat correlation by QED is highly inefficient. Works for highly charged ions with small correlation relative to QED

How can QED effects be included in a many-body problem in a systematic fashion?

To treat correlation by QED is highly inefficient. Works for highly charged ions with small correlation relative to QED

For chemical systems the situation is the reversed Correlated wave function natural starting point

How can QED effects be included in a many-body problem in a systematic fashion?

To treat correlation by QED is highly inefficient. Works for highly charged ions with small correlation relative to QED

For chemical systems the situation is the reversed Correlated wave function natural starting point

First-order QED effects can be added to the ENERGY OFTEN INSUFFICIENT

## To go further, <br> QED effects should be included in the

 WAVE FUNCTION
## To go further, QED effects should be included in the

 WAVE FUNCTION
## QED perturbations are time- or energy dependent

## To go further, QED effects should be included in the

 WAVE FUNCTION
## QED perturbations are time- or energy dependent

Requires time/energy-dependent perturbation theory

## To go further, QED effects should be included in the

 WAVE FUNCTIONQED perturbations are time- or energy dependent
Requires time/energy-dependent perturbation theory
Leads to a procedure where the QED effects are included perturbatively, mixed with the electron correlation - not added on at the final end

## Outline

## Review of standard methods

- Rayleigh-Schrödinger perturbation. Linked-diagram theorem. Bloch equation
- Relativistic MBPT. No-Virtual-Pair Approx.
- All-order methods. Coupled-cluster theory
- Methods for QED calculations


## Outline

## Beyond standard methods?

- Covariant Evolution Operator method
- Combination of MBPT and QED
- Numerical illustration: He-like systems
- Possible application to larger systems. Coupled-Cluster QED


## MBPT Calculations

## Standard non-relativistic MBPT

$$
\begin{gathered}
H \Psi^{\alpha}=E^{\alpha} \Psi^{\alpha} \quad(\alpha=1 \cdots d) \\
\Psi^{\alpha}=\Omega \Psi_{0}^{\alpha} \quad(\alpha=1 \cdots d) \quad \Omega \text { wave operator } \\
\Psi_{0}^{\alpha}=P \Psi^{\alpha} \quad \text { Intermediate normalization }
\end{gathered}
$$

## MBPT Calculations

## Standard non-relativistic MBPT

$$
\begin{gathered}
H \Psi^{\alpha}=E^{\alpha} \Psi^{\alpha} \quad(\alpha=1 \cdots d) \\
\Psi^{\alpha}=\Omega \Psi_{0}^{\alpha} \quad(\alpha=1 \cdots d) \quad \Omega \text { wave operator } \\
\Psi_{0}^{\alpha}=P \Psi^{\alpha} \quad \text { Intermediate normalization }
\end{gathered}
$$

## Linked diagram theorem

Graphical representation:Unlinked diagrams cancel
(Brueckner 1955, Goldstone 1957, Brandow 1963, Mukherjee 1986)

## MBPT Calculations

Standard non-relativistic MBPT

$$
\begin{gathered}
H \Psi^{\alpha}=E^{\alpha} \Psi^{\alpha} \quad(\alpha=1 \cdots d) \\
\Psi^{\alpha}=\Omega \Psi_{0}^{\alpha} \quad(\alpha=1 \cdots d) \quad \Omega \text { wave operator } \\
\Psi_{0}^{\alpha}=P \Psi^{\alpha} \quad \text { Intermediate normalization }
\end{gathered}
$$

Bloch equation (Bloch 1958, IL 1974)
$\left[\Omega, H_{0}\right] P=Q(V \Omega-\Omega W)_{\text {linked }} P$

$-\Omega W$
Model-space contribution
$W=P V \Omega P \quad$ Effective interaction

## Model-space contribution

$$
\left[\Omega, H_{0}\right] P=Q(V \Omega-\Omega W)_{\text {linked }} P
$$

Second order : $\Omega^{(2)} P_{\mathcal{E}}=\Gamma_{Q}\left(V \Omega^{(1)}-\Omega^{(1)} P_{\mathcal{E}} W^{(1)}\right) P_{\mathcal{E}}$

## Model-space contribution

$$
\left[\Omega, H_{0}\right] P=Q(V \Omega-\Omega W)_{\text {linked }} P
$$

Second order : $\Omega^{(2)} P_{\mathcal{E}}=\Gamma_{Q}\left(V \Omega^{(1)}-\Omega^{(1)} P_{\mathcal{E}} W^{(1)}\right) P_{\mathcal{E}}$


## Model-space contribution

$$
\left[\Omega, H_{0}\right] P=Q(V \Omega-\Omega W)_{\text {linked }} P
$$

Second order : $\Omega^{(2)} P_{\mathcal{E}}=\Gamma_{Q}\left(V \Omega^{(1)}-\Omega^{(1)} P_{\mathcal{E}^{\prime}} W^{(1)}\right) P_{\mathcal{E}}$

$\left\{\begin{array}{l}1 \\ \Omega^{(1)}\left(\mathcal{E}^{\prime}\right) \\ 1\end{array}\right.$
1


Unlinked


Unlinked Linked

## Model-space contribution

Remainder: Folded diagrams


Folded

## Model-space contribution

Remainder: Folded diagrams


Folded

$$
\left(\Omega^{(1)}(\mathcal{E})-\Omega^{(1)}\left(\mathcal{E}^{\prime}\right)\right) \frac{P_{\mathcal{E}^{\prime}} V P_{\mathcal{E}}}{\mathcal{E}-\mathcal{E}^{\prime}}=\frac{\delta \Omega^{(1)}}{\delta \mathcal{E}} P_{\mathcal{E}^{\prime}} V P_{\mathcal{E}}
$$

## Model-space contribution

Remainder: Folded diagrams


Folded

$$
\begin{gathered}
\left(\Omega^{(1)}(\mathcal{E})-\Omega^{(1)}\left(\mathcal{E}^{\prime}\right)\right) \frac{P_{\mathcal{E}^{\prime}} V P_{\mathcal{E}}}{\mathcal{E}-\mathcal{E}^{\prime}}=\frac{\delta \Omega^{(1)}}{\delta \mathcal{E}} P_{\mathcal{E}^{\prime}} V P_{\mathcal{E}} \\
\Omega^{(2)}=\Gamma_{Q} V \Omega^{(1)}+\frac{\delta \Omega^{(1)}}{\delta \mathcal{E}} W^{(1)}=\Gamma_{Q} V \Omega^{(1)}-\Gamma_{Q} \Omega^{(1)} W^{(1)}
\end{gathered}
$$

## Model-space contribution

Remainder: Folded diagrams


Folded

$$
\begin{gathered}
\left(\Omega^{(1)}(\mathcal{E})-\Omega^{(1)}\left(\mathcal{E}^{\prime}\right)\right) \frac{P_{\mathcal{E}^{\prime}} V P_{\mathcal{E}}}{\mathcal{E}-\mathcal{E}^{\prime}}=\frac{\delta \Omega^{(1)}}{\delta \mathcal{E}} P_{\mathcal{E}^{\prime}} V P_{\mathcal{E}} \\
\Omega^{(2)}=\Gamma_{Q} V \Omega^{(1)}+\frac{\delta \Omega^{(1)}}{\delta \mathcal{E}} W^{(1)}=\Gamma_{Q} V \Omega^{(1)}-\Gamma_{Q} \Omega^{(1)} W^{(1)} \\
\Omega=\Gamma_{Q}[V \Omega-\Omega W]_{\text {linked }}
\end{gathered}
$$

## Relativistic MBPT

(Breit 1931, Brown-Ravenhall 1951, Sucher 1980)
Dirac-Coulomb-Breit Approximation

$$
H=\Lambda_{+}\left[\sum_{i=1}^{N} h_{D}(i)+\sum_{i<j}^{N} \frac{e^{2}}{4 \pi r_{i j}}+H_{B}\right] \Lambda_{+}
$$

## Relativistic MBPT

(Breit 1931, Brown-Ravenhall 1951, Sucher 1980)
Dirac-Coulomb-Breit Approximation

$$
\begin{aligned}
& H=\Lambda_{+}\left[\sum_{i=1}^{N} h_{D}(i)+\sum_{i<j}^{N} \frac{e^{2}}{4 \pi r_{i j}}+H_{B}\right] \Lambda_{+} \\
& H_{B}=-\frac{e^{2}}{8 \pi} \sum_{i<j}\left[\frac{\alpha_{i} \cdot \alpha_{j}}{r_{i j}}+\frac{\left(\alpha_{i} \cdot r_{i j}\right)\left(\alpha_{j} \cdot r_{i j}\right)}{r_{i j}^{3}}\right]
\end{aligned}
$$

Instantaneous Breit interaction

## Relativistic MBPT

(Breit 1931, Brown-Ravenhall 1951, Sucher 1980)
Dirac-Coulomb-Breit Approximation

$$
\begin{aligned}
& H=\Lambda_{+}\left[\sum_{i=1}^{N} h_{D}(i)+\sum_{i<j}^{N} \frac{e^{2}}{4 \pi r_{i j}}+H_{B}\right] \Lambda_{+} \\
& H_{B}=-\frac{e^{2}}{8 \pi} \sum_{i<j}\left[\frac{\alpha_{i} \cdot \alpha_{j}}{r_{i j}}+\frac{\left(\alpha_{i} \cdot r_{i j}\right)\left(\alpha_{j} \cdot r_{i j}\right)}{r_{i j}^{3}}\right]
\end{aligned}
$$

Instantaneous Breit interaction

## QED effects

Effects beyond NVPA - Energy dependent

## Order $\boldsymbol{\alpha}^{3}$ and higher

- Retardation
- Virtual pairs Non-radiative
- Radiative effects (Lamb shift etc.)



## All-order methods

$$
\Omega=1+\Omega_{1}+\Omega_{2}+\cdots
$$

## All-order methods

$$
\Omega=1+\Omega_{1}+\Omega_{2}+\cdots
$$

All-order pair function (Notre Dame, Gothenburg ...)


## All-order methods

$$
\Omega=1+\Omega_{1}+\Omega_{2}+\cdots
$$

All-order pair function (Notre Dame, Gothenburg ...)

----- Coulomb interaction
$\rightleftharpoons$ Folded
Internal vertical lines: electron propagators w pos. and neg. electron states
Contains electron pair correlation to arbitrary order

## Coupled-cluster approach

Exponential Ansatz (Coster 1958, Kümmel 1972, Čǐ̌ek 1965)
Closed shells (single reference)

$$
\Omega=\mathrm{e}^{T}=1+T+\frac{1}{2} T^{2}+\frac{1}{3!} T^{3}+\cdots
$$

## All diagrams connected

## Coupled-cluster approach

Exponential AnsatZ (Coster 1958, Kümmel 1972, Č̌̌̌̌k 1965)
Closed shells (single reference)

$$
\Omega=\mathrm{e}^{T}=1+T+\frac{1}{2} T^{2}+\frac{1}{3!} T^{3}+\cdots
$$

All diagrams connected
Bloch equation

$$
\left(E_{0}-H_{0}\right) T=(V \Omega P-\Omega W)
$$

## Coupled-cluster approach

Normal-ordered exponential Ansatz
( IL1978, Mukherjee 1995, 97)
Open shells (multiple reference)

$$
\Omega=\left\{\mathrm{e}^{T}\right\}=1+T+\frac{1}{2}\left\{T^{2}\right\}+\frac{1}{3!}\left\{T^{3}\right\}+\cdots
$$

Eliminates spurious contractions between open-shell lines

## Coupled-cluster approach

Normal-ordered exponential Ansatz
( IL1978, Mukherjee 1995, 97)
Open shells (multiple reference)

$$
\Omega=\left\{\mathrm{e}^{T}\right\}=1+T+\frac{1}{2}\left\{T^{2}\right\}+\frac{1}{3!}\left\{T^{3}\right\}+\cdots
$$

Eliminates spurious contractions between open-shell lines

## Bloch equation

$$
\left[T, H_{0}\right] P=Q(V \Omega-\Omega W)_{\mathrm{conn}}
$$

## Coupled-cluster approach

Open shells

$$
\begin{aligned}
& f=f(1)+\frac{f}{f}+\cdots+\frac{1}{F}
\end{aligned}
$$

## Numerical, closed shells

$\mathrm{BH}_{3}$ molecule (Shavitt et al. 1972)

| Ecxitations | Total | Connected | Disconnected |
| :---: | :---: | :---: | :---: |
| One-body | 0.1 | 0.1 |  |
| Two-body | 97.2 | 97.2 | $\leq 0.1$ |
| Three-body | 0.8 | 0.8 | $\leq 0.01$ |
| Four-body | 1.9 | $\leq 0.01$ | 1.9 |

## QED Calculations

## Standard methods

## QED Calculations

## Standard methods

a) S-matrix formulation

## QED Calculations

## Standard methods

a) S-matrix formulation
b) Two-times Green's function developed by Shabaev et al. St. Petersburg

## QED Calculations

## Standard methods

a) S-matrix formulation
b) Two-times Green's function developed by Shabaev et al. St. Petersburg
c) Covariant-evolution operator method developed by the Gothenburg group

## QED Calculations

## Standard methods

a) S-matrix formulation
b) Two-times Green's function developed by Shabaev et al. St. Petersburg
c) Covariant-evolution operator method developed by the Gothenburg group


## QED Calculations

## Standard methods

a) S-matrix formulation
b) Two-times Green's function developed by Shabaev et al. St. Petersburg
c) Covariant-evolution operator method developed by the Gothenburg group


All three methods in practice limited to two-photon exchange only first-order correlation. Of no interest to chemists

## QED Calculations

## Standard methods

a) S-matrix formulation
b) Two-times Green's function developed by Shabaev et al. St. Petersburg
c) Covariant-evolution operator method developed by the Gothenburg group


All three methods in practice limited to two-photon exchange only first-order correlation. Of no interest to chemists CEO has similar structure as MBPT. Basis for unification

## Beyond standard methods

## Beyond standard methods

Standard methods treat energy-independent (Coulomb) interactions and energy-dependent QED perturbations separately

## Beyond standard methods

Standard methods treat energy-independent (Coulomb) interactions and energy-dependent QED perturbations separately
This leaves out the combination effect

## Beyond standard methods

Standard methods treat energy-independent (Coulomb) interactions and energy-dependent QED perturbations separately
This leaves out the combination effect
Employing time-dependent perturbation theory enables us to combine MBPT and QED

## Beyond standard methods

Standard methods treat energy-independent (Coulomb) interactions and energy-dependent QED perturbations separately
This leaves out the combination effect
Employing time-dependent perturbation theory enables us to combine MBPT and QED

Makes it possible to treat QED and correlation perturbatively on the same footing

## Time-dependent perturbation theory



## Time-dependent perturbation theory



A procedure for time-dependent perturbation theory has been developed based upon the
Covariant Evolution Operator (CEO) method

## Time-dependent perturbation theory Covariant Evolution Operator (CEO)

## Time-dependent perturbation theory

 Covariant Evolution Operator (CEO)The single-particle Green-s function can be defined (in Heisenberg representation, $T$ Wick time ordering)

$$
G\left(t, t_{0}\right)=\frac{\left\langle 0_{\mathrm{H}}\right| T\left[\hat{\psi}_{\mathrm{H}}(x) \hat{\psi}_{\mathrm{H}}^{\dagger}\left(x_{0}\right)\right]\left|0_{\mathrm{H}}\right\rangle}{\left\langle 0_{\mathrm{H}} \mid 0_{\mathrm{H}}\right\rangle}
$$

## Time-dependent perturbation theory

 Covariant Evolution Operator (CEO)The single-particle Green-s function can be defined (in Heisenberg representation, $T$ Wick time ordering)

$$
G\left(t, t_{0}\right)=\frac{\left\langle 0_{\mathrm{H}}\right| T\left[\hat{\psi}_{\mathrm{H}}(x) \hat{\psi}_{\mathrm{H}}^{\dagger}\left(x_{0}\right)\right]\left|0_{\mathrm{H}}\right\rangle}{\left\langle 0_{\mathrm{H}} \mid 0_{\mathrm{H}}\right\rangle}
$$

The single-particle CEO analogously

$$
U_{\mathrm{Cov}}\left(t, t_{0}\right)=\iint \mathrm{d}^{3} \boldsymbol{x} \mathrm{~d}^{3} \boldsymbol{x}_{0} \hat{\psi}^{\dagger}(x)\left\langle 0_{\mathrm{H}}\right| T\left[\hat{\psi}_{\mathrm{H}}(x) \hat{\psi}_{\mathrm{H}}^{\dagger}\left(x_{0}\right)\right]\left|0_{\mathrm{H}}\right\rangle \hat{\psi}\left(x_{0}\right)
$$

## Time-dependent perturbation theory

## Covariant Evolution Operator (CEO)

The single-particle Green-s function can be defined (in Heisenberg representation, $T$ Wick time ordering)

$$
G\left(t, t_{0}\right)=\frac{\left\langle 0_{\mathrm{H}}\right| T\left[\hat{\psi}_{\mathrm{H}}(x) \hat{\psi}_{\mathrm{H}}^{\dagger}\left(x_{0}\right)\right]\left|0_{\mathrm{H}}\right\rangle}{\left\langle 0_{\mathrm{H}} \mid 0_{\mathrm{H}}\right\rangle}
$$



The single-particle CEO analogously

$$
U_{\mathrm{Cov}}\left(t, t_{0}\right)=\iint \mathrm{d}^{3} \boldsymbol{x} \mathrm{~d}^{3} \boldsymbol{x}_{0} \hat{\psi}^{\dagger}(x)\left\langle 0_{\mathrm{H}}\right| T\left[\hat{\psi}_{\mathrm{H}}(x) \hat{\psi}_{\mathrm{H}}^{\dagger}\left(x_{0}\right)\right]\left|0_{\mathrm{H}}\right\rangle \hat{\psi}\left(x_{0}\right)
$$

GF is a function CEO is an operator

## Time-dependent perturbation theory

Green's operator
Covariant evolution operator represents the time evolution of relativistic wave function

$$
\Psi_{\operatorname{Rel}}(t)=U_{\mathrm{Cov}}\left(t, t_{0}\right) \Psi_{\mathrm{Rel}}\left(t_{0}\right)
$$

## Time-dependent perturbation theory

Green's operator
Covariant evolution operator represents the time evolution of relativistic wave function

$$
\Psi_{\mathrm{Rel}}(t)=U_{\mathrm{Cov}}\left(t, t_{0}\right) \Psi_{\mathrm{Rel}}\left(t_{0}\right)
$$

Evolution operator singular due to intermediate model-space states

## Time-dependent perturbation theory

Green's operator
Covariant evolution operator represents the time evolution of relativistic wave function

$$
\Psi_{\mathrm{Rel}}(t)=U_{\mathrm{Cov}}\left(t, t_{0}\right) \Psi_{\mathrm{Rel}}\left(t_{0}\right)
$$

Evolution operator singular due to intermediate model-space states

Regular part known as Green's operator

$$
U_{\mathrm{Cov}}\left(t, t_{0}\right) P=\mathcal{G}\left(t, t_{0}\right) P U_{\mathrm{Cov}}\left(0, t_{0}\right) P
$$

## Time-dependent perturbation theory

## The Green's operator acts as the time-dependent relativistic wave operator

## Time-dependent perturbation theory

The Green's operator acts as the time-dependent relativistic wave operator

$$
\Psi^{\alpha}(t)=U_{\mathrm{Cov}}\left(t, t_{0}\right) \Psi^{\alpha}\left(t_{0}\right)
$$

## Time-dependent perturbation theory

The Green's operator acts as the time-dependent relativistic wave operator

$$
\Psi^{\alpha}(t)=U_{\mathrm{Cov}}(t,-\infty) \Psi^{\alpha}(-\infty)
$$

## Time-dependent perturbation theory

The Green's operator acts as the time-dependent relativistic wave operator

$$
\Psi^{\alpha}(t)=U_{\mathrm{Cov}}(t,-\infty) \Psi^{\alpha}(-\infty)
$$

$$
U_{\mathrm{Cov}}\left(t, t_{0}\right) P=\mathcal{G}\left(t, t_{0}\right) P U_{\mathrm{Cov}}\left(0, t_{0}\right) P
$$

## Time-dependent perturbation theory

The Green's operator acts as the time-dependent relativistic wave operator

$$
\Psi^{\alpha}(t)=U_{\mathrm{Cov}}(t,-\infty) \Psi^{\alpha}(-\infty)
$$

$$
\Psi^{\alpha}(t)=\mathcal{G}\left(t, t_{0}\right) \underbrace{P U_{\operatorname{Cov}}\left(0, t_{0}\right) \Psi^{\alpha}(-\infty)}
$$

## Time-dependent perturbation theory

The Green's operator acts as the time-dependent relativistic wave operator

$$
\Psi^{\alpha}(t)=U_{\mathrm{Cov}}(t,-\infty) \Psi^{\alpha}(-\infty)
$$

$$
\Psi^{\alpha}(t)=\mathcal{G}\left(t, t_{0}\right) \underbrace{P U_{\mathrm{Cov}}\left(0, t_{0}\right) \Psi^{\alpha}(-\infty)}
$$

$$
\Psi^{\alpha}(t)=\mathcal{G}(t,-\infty) \Psi_{0}^{\alpha}
$$

## Time-dependent perturbation theory

The Green's operator acts as the time-dependent relativistic wave operator

$$
\Psi^{\alpha}(t)=U_{\mathrm{Cov}}(t,-\infty) \Psi^{\alpha}(-\infty)
$$

$$
\Psi^{\alpha}(t)=\mathcal{G}\left(t, t_{0}\right) \underbrace{P U_{\mathrm{Cov}}\left(0, t_{0}\right) \Psi^{\alpha}(-\infty)}
$$

$$
\Psi^{\alpha}(t)=\mathcal{G}(t,-\infty) \Psi_{0}^{\alpha}
$$

Compare std MBPT: $\Psi=\Omega \Psi_{0}$

## Time-dependent perturbation theory

Expansion of the Green's operator

$$
\begin{gathered}
U(t) P_{\mathcal{E}}=\mathcal{G}(t) P_{\mathcal{E}} U(0) P_{\mathcal{E}} \\
\mathcal{G}^{(2)}(t) P_{\mathcal{E}}=Q\left(\mathcal{G}^{(1)}(t) U^{(1)}(0)-\mathcal{G}^{(1)}(t) P_{\mathcal{E}} U^{(1)}(0)\right) P_{\mathcal{E}}
\end{gathered}
$$

## Time-dependent perturbation theory

Expansion of the Green's operator

$$
\begin{gathered}
U(t) P_{\mathcal{E}}=\mathcal{G}(t) P_{\mathcal{E}} U(0) P_{\mathcal{E}} \\
\mathcal{G}^{(2)}(t) P_{\mathcal{E}}=Q\left(\mathcal{G}^{(1)}(t) U^{(1)}(0)-\mathcal{G}^{(1)}(t) P_{\mathcal{\varepsilon}} U^{(1)}(0)\right) P_{\mathcal{E}}
\end{gathered}
$$

Compare std wave operator

$$
\begin{gathered}
\Omega P=\Gamma_{Q}(V \Omega-\Omega P W) P \\
\Omega^{(2)} P_{\mathcal{E}}=\Gamma_{Q}\left(V \Omega^{(1)}-\Omega^{(1)} P_{\mathcal{E}} W^{(1)}\right) P_{\mathcal{E}}
\end{gathered}
$$

## Time-dependent perturbation theory

Folded diagrams


Folded

$$
\Omega^{(2)}=\Gamma_{Q} V \Omega^{(1)}+\frac{\delta \Omega^{(1)}}{\delta \mathcal{E}} W^{(1)}=\Gamma_{Q} V \Omega^{(1)}-\Gamma_{Q} \Omega^{(1)} W^{(1)}
$$

Energy-independent perturbations

## Time-dependent perturbation theory

Folded diagrams


Folded

$$
\Omega^{(2)}=\Gamma_{Q} V \Omega^{(1)}+\frac{\delta \Omega^{(1)}}{\delta \varepsilon} W^{(1)}=\Gamma_{Q} V \Omega^{(1)}-\Gamma_{Q} \Omega^{(1)} W^{(1)}
$$

Energy-independent perturbations

$$
G^{(2)}=\Gamma_{Q} V \mathcal{G}^{(1)}-\Gamma_{Q} \mathcal{G}^{(1)} W^{(1)}+\Gamma_{Q} \frac{\delta V}{\delta \mathcal{E}} W^{(1)}
$$

Energy-dependent perturbations

## Time-dependent perturbation theory

Folded diagrams


Folded

$$
\Omega^{(2)}=\Gamma_{Q} V \Omega^{(1)}+\frac{\delta \Omega^{(1)}}{\delta \mathcal{E}} W^{(1)}=\Gamma_{Q} V \Omega^{(1)}-\Gamma_{Q} \Omega^{(1)} W^{(1)}
$$

Energy-independent perturbations

$$
G^{(2)}=\Gamma_{Q} V \mathcal{G}^{(1)}-\Gamma_{Q} \mathcal{G}^{(1)} W^{(1)}+\Gamma_{Q} \frac{\delta V}{\delta \varepsilon} W^{(1)}
$$

Energy-dependent perturbations

## Time-dependent perturbation theory

## Bloch eqn for time-dependent perturbation theory

$$
\left[\mathcal{G}, \boldsymbol{H}_{0}\right]=\boldsymbol{V} \mathcal{G}-\mathcal{G} W+\left[\frac{\delta^{*} \mathcal{G}}{\delta \mathcal{E}}, \boldsymbol{H}_{0}\right] \boldsymbol{W}
$$

* derivation restricted to last interaction


## Time-dependent perturbation theory

## Bloch eqn for time-dependent perturbation theory

$$
\left[\mathcal{G}, \boldsymbol{H}_{0}\right]=V \mathcal{G}-\mathcal{G} W+\left[\frac{\delta^{*} \mathcal{G}}{\delta \mathcal{E}}, \boldsymbol{H}_{0}\right] W
$$

* derivation restricted to last interaction

Compare std MBPT:

$$
\left[\Omega, H_{0}\right]=V \Omega-\Omega W \quad(W=P V \Omega P)
$$

## Time-dependent perturbation theory

## Bloch eqn for time-dependent perturbation theory

$$
\left[\mathcal{G}, \boldsymbol{H}_{0}\right]=V \mathcal{G}-\mathcal{G} W+\left[\frac{\delta^{*} \mathcal{G}}{\delta \mathcal{E}}, \boldsymbol{H}_{0}\right] W
$$

* derivation restricted to last interaction

Compare std MBPT:

$$
\left[\Omega, \boldsymbol{H}_{0}\right]=V \Omega-\Omega \boldsymbol{W} \quad(W=P V \Omega P)
$$

## Time-dependent perturbation theory

## Bloch eqn for time-dependent perturbation theory

$$
\left[\mathcal{G}, \boldsymbol{H}_{0}\right]=V \mathcal{G}-\mathcal{G} W+\left[\frac{\delta^{*} \mathcal{G}}{\delta \mathcal{E}}, \boldsymbol{H}_{0}\right] W
$$

* derivation restricted to last interaction

Compare std MBPT:

$$
\left[\Omega, \boldsymbol{H}_{0}\right]=V \Omega-\Omega W \quad(W=P V \Omega P)
$$

## Procedures completely compatible

# Time-dependent perturbation theory 

## How to evaluate the QED effects perturbatively?

## Time-dependent perturbation theory

## Gell-Mann-Low theorem

$$
H_{D}|\Psi\rangle=\left(H_{0}+V_{C}+v_{T}\right)|\Psi\rangle=E|\Psi\rangle
$$

## Time-dependent perturbation theory

## Gell-Mann-Low theorem

$$
\boldsymbol{H}_{D}|\Psi\rangle=\left(H_{0}+V_{C}+v_{T}\right)|\Psi\rangle=E|\Psi\rangle
$$

$$
V=V_{C}+v_{T}
$$

Coulomb + Transverse

## Time-dependent perturbation theory

## Gell-Mann-Low theorem

$$
H_{D}|\Psi\rangle=\left(H_{0}+V_{C}+v_{T}\right)|\Psi\rangle=E|\Psi\rangle
$$

$$
V=V_{C}+v_{T}
$$

Coulomb + Transverse

$$
V_{C}=\frac{e^{2}}{4 \pi r_{12}}
$$

$$
v_{T}=-\int \mathrm{d}^{3} x \hat{\psi}(x)^{\dagger} e c \alpha^{\mu} A_{\mu}(x) \hat{\psi}(x)
$$

## Time-dependent perturbation theory



## Photonic Fock space

## Time-dependent perturbation theory



## Photonic Fock space

## Perturbation should be time independent! for Gell-Mann-Low to be valid

## Time-dependent perturbation theory

Single-photon exchange requires two perturbations

$$
\langle r s| V_{\mathrm{sp}}(\mathcal{E})|t u\rangle=\langle r s| \int_{0}^{\infty} \mathrm{d} \kappa f(\kappa) \frac{1}{\mathcal{E}-\varepsilon_{r}-\varepsilon_{u}-\kappa}|t u\rangle
$$

## Time-dependent perturbation theory

Single-photon exchange requires two perturbations

$$
\langle r s| V_{\mathrm{sp}}(\mathcal{E})|t u\rangle=\langle r s| \int_{0}^{\infty} \mathrm{d} \kappa f(\kappa) \frac{1}{\mathcal{E}-\varepsilon_{r}-\varepsilon_{u}-\kappa}|t u\rangle
$$

## Time-dependent perturbation theory

Single-photon exchange requires two perturbations


$$
\begin{gathered}
\langle r s| V_{\mathrm{sp}}(\mathcal{E})|t u\rangle=\langle r s| \int_{0}^{\infty} \mathrm{d} \kappa f(\kappa) \frac{1}{\mathcal{E}-\varepsilon_{r}-\varepsilon_{u}-\kappa}|t u\rangle \\
f(\kappa)=\sum_{l} V^{l}\left(\kappa \boldsymbol{r}_{1}\right) \cdot V^{l}\left(\kappa \boldsymbol{r}_{2}\right)
\end{gathered}
$$

TWO energy-independent perturbations. The energy dependence is given by the energy denominator. GML valid

$$
\boldsymbol{H}_{D}\left|\Psi_{l}\right\rangle=\left(\boldsymbol{H}_{0}+\boldsymbol{V}_{C}+V^{l}\right)\left|\Psi_{l}\right\rangle=\boldsymbol{E}\left|\Psi_{l}\right\rangle
$$

## Time-dependent perturbation theory

Iteration of time-independent perturbations


## Time-dependent perturbation theory

Calculating derivative of retarded interaction


$$
V=\frac{f(k)}{\varepsilon-\varepsilon_{r}-\varepsilon_{q}-k}
$$

Derivative by second energy denominator


## Self-energy regularization

Dimensional regularization in Coulomb gauge most appropriate to use in MBPT/QED

Never used before.


## Self-energy regularization

Dimensional regularization in Coulomb gauge most appropriate to use in MBPT/QED

Never used before.


Zero- and one-pot. terms evaluated using Adkins formulas
Modified by J. Holmberg, PRA84, 062504 (2011)
Many-potential term obtained by evaluating the other terms with partial-wave expansion

## Self-energy regularization

First dimensional regularization in Coulomb gauge Self-energy of hydrogen like ions

| $\mathbb{Z}$ | Coulomb gauge | Feynman gauge |
| :---: | :---: | :---: |
| 18 | $1.216901(3)$ | $1.21690(1)$ |
| 54 | $50.99727(2)$ | $50.99731(8)$ |
| 66 | $102.47119(3)$ | $102.4713(1)$ |
| 92 | $355.0430(1)$ | $355.0432(2)$ |

D. Hedendahl and J. Holmberg, Phys. Rev. A85, 012514 (2012)

## Self-energy

## Derivative of self-energy is singular

 Singularity cancelled by vertex correction due to Ward identity$$
\frac{\delta \Sigma}{\delta \mathcal{E}}=\Lambda_{0}
$$

## Self-energy

## Derivative of self-energy is singular

 Singularity cancelled by vertex correction due to Ward identity$$
\frac{\delta \Sigma}{\delta \mathcal{E}}=\Lambda_{0}
$$



Both are charge divergent and have to be renormalized

## Time-dependent perturbation theory

Iteration of time-dependent perturbations

## QED Pair function



## Time-dependent perturbation theory

Iteration of time-dependent perturbations

## QED Pair function



## Time-dependent perturbation theory

Iteration of time-dependent perturbations

## QED Pair function



## Time-dependent perturbation theory

Iteration of time-dependent perturbations

## QED Pair function



## Time-dependent perturbation theory

Iteration of time-dependent perturbations

## QED Pair function



## Numerical illustration

## QED effects in He-like ions, grd state (eV)

| Z | Two-photon | Combined QED-correlation BEYOND two-photon |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Retarded | Inst. Breit | Retard. part | Virt.Pairs | Self-energy | Vertex corr. |
| 10 | 0.0033 | 0.0072 | -0.0011 | 0.0002 |  |  |
| 14 | 0.0080 | 0.0101 | -0.0019 | 0.0004 | 0.0020 |  |
| 18 | 0.0150 | 0.0154 | -0.0027 | 0.0006 | 0.0030 |  |
| 24 | 0.0305 | 0.0192 | -0.0042 | 0.0009 | 0.0050 |  |
| 30 | 0.052 | 0.0244 | -0.0057 | 0.0013 | 0.0090 |  |
| 42 | 0.112 | 0.0286 | -0.0087 | 0.0019 |  |  |
| 50 |  | 0.0320 | -0.011 | 0.0024 | 0.0170 |  |
| 66 |  | 0.0400 | -0.015 | 0.0030 |  |  |

## Can this be applied to larger systems???

## Can this be applied to larger systems???

Might have the potential, since the standard and QED procedures are completely compatible

## Can this be applied to larger systems???

Might have the potential, since the standard and QED procedures are completely compatible

QED effects need only be be inserted to the degree that is relevant

## Can this be applied to larger systems???

Might have the potential, since the standard and QED procedures are completely compatible

QED effects need only be be inserted to the degree that is relevant

## $\operatorname{CCSD}(\mathrm{T})$

## Can this be applied to larger systems???

Might have the potential, since the standard and QED procedures are completely compatible

QED effects need only be be inserted to the degree that is relevant

$$
\operatorname{CCSD}(\mathrm{T})
$$





## Coupled-cluster CCSD

$$
\begin{aligned}
& t=f-x+\frac{f}{f}+\underset{f}{f}+\frac{1}{f} \mathbb{L}+\cdots+\frac{t}{F} \\
& H=H+H+H+H_{+}^{+}+{ }_{+}^{+} \\
& \text {- }
\end{aligned}
$$

## Coupled-cluster CCSD

$$
\begin{aligned}
& \mathrm{H} \cdot \mathrm{H}+\mathrm{H} \cdot \mathrm{H}+\mathrm{H} \cdot \mathrm{H} \\
& \text { fol|fori| } \cdots+1 \cdot H \cdot+\#
\end{aligned}
$$

## MBPT-QED

## QED potentials

$$
\begin{aligned}
& Y=+x+1+H_{0} \\
& H=H+1+H+N+H+W+\cdots
\end{aligned}
$$

## Coupled-cluster CCSD(T)

$$
\begin{aligned}
& t=1+1+10+\frac{1}{1}+\cdots+\frac{1}{7} \\
& 1+1+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+ \\
& +0|+0|+\cdots+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}
\end{aligned}
$$

## Summary

A procedure has been developed for combining MBPT and QED, based upon the covariant-evolution operator method

## Summary

A procedure has been developed for combining MBPT and QED, based upon the covariant-evolution operator method
The perturbations are inserted into the wave function and treated on the same footing as the electron correlation

## Summary

A procedure has been developed for combining MBPT and QED, based upon the covariant-evolution operator method

The perturbations are inserted into the wave function and treated on the same footing as the electron correlation

The compatibility between this procedure and standard MBPT implies that the QED effects can be inserted to the degree that is relevant

## Summary

A procedure has been developed for combining MBPT and QED, based upon the covariant-evolution operator method

The perturbations are inserted into the wave function and treated on the same footing as the electron correlation

The compatibility between this procedure and standard MBPT implies that the QED effects can be inserted to the degree that is relevant
The procedure has been tested for He-like ions

## Summary

A procedure has been developed for combining MBPT and QED, based upon the covariant-evolution operator method

The perturbations are inserted into the wave function and treated on the same footing as the electron correlation

The compatibility between this procedure and standard MBPT implies that the QED effects can be inserted to the degree that is relevant
The procedure has been tested for He-like ions
Application to more general systems might be possible by using the coupled-cluster approach


Ingurlindeten
Relativistic Many-Body Theory

AMew Fidd-hevelralAprosth

## Coworkers

## Sten Salomonson Daniel Hedendahl Johan Holmberg

## Thank you!

