Kapuy lecture 5 October, 2006

Energy-dependent

Many-Body-Perturbation Theory

with Applications in Quantum-Electrodynamics Problems

by Ingvar Lindgren

Physics Department, Göteborg University

Kapuy lecture 5 October, 2006

Outline

- Introduction
- Definition of QED
- The need for a combined many-body-QED procedure
- Standard time-independent perturbation theory
- Time-dependent perturbation theory
- S-matrix formulation
- Covariant evolution-operator formalism
- Towards exact treatment

Including electron correlation. Fock space

- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Definition of QED

- Quantum-electrodynamics is the quantum theory of the interaction between electrons and the electro-magnetic radiation field
- The interaction is energy dependent Standard MBPT procedures cannot be used
- Our goal is to construct a combined Many-Body-QED procedure

Definition of QED

Standard procedures for QED calculations

- Analytical methods
- Expansion of the Bethe-Salpeter eqn in powers in α and $Z \boldsymbol{\alpha}$ (Drake, Pachucki)

Restricted to light elements

- Numerical methods
- S-matrix (Only for single-reference model space. Cannot treat quasidegeneracy
- Two-times Green's function (Shabaev et al. 1993)
- Covariant evolution operator (Lindgren et al. 2001)

Restricted to heavy elements

Definition of QED

- The exact treatment of a two-electron system requires the solution of the Bethe-Salpeter equation
- Normally based upon the Brillouin-Wigner perturbation theory
- Using the covariant-evolution operator expansion to all orders is equivalent to solving the BS eqn Lindgren, Salomonson, and Hedendahl, Can. J. Phys. 83, 183 (2005)
- Gives the link between BS eqn and Many-Body Perturbation Theory (based upon Rayleigh-Schrödinger PT)

Definition of QED

Standard Many-Body Procedures

Non-relativistic atomic Hamiltonian:

$$
H=\sum_{i=1}^{N} h_{S}(i)+\sum_{i<j}^{N} \frac{1}{r_{i j}} ; \quad h_{S}=-\frac{1}{2} \nabla^{2}-\frac{Z}{r}
$$

- Many-body perturbation theory (MBPT)
- Coupled-Custer Approach (CCA)
- Configuration Interaction (CI)

- Multi-Configuration Hartree-Fock (MCHF)

Can treat electron correlation to essentially all orders

Definition of QED

Relativistic Dirac-Coulomb-Breit Hamiltonian

$$
\begin{aligned}
H=\Lambda_{+} & {\left[\sum_{i=1}^{N} h_{D}(i)+\sum_{i<j}^{N} \frac{1}{r_{i j}}+H_{B}\right] \Lambda_{+} } \\
& \text {Breit interaction, 1932-33 } \\
H_{B}=- & \frac{1}{2} \sum_{i<1}\left[\alpha_{i} \cdot \alpha_{j}+\frac{\left(\alpha_{i} \cdot r_{i j}\right)\left(\alpha_{j} \cdot r_{i j}\right)}{r_{i j}^{2}}\right]
\end{aligned}
$$

Retardation and virtual pairs neglected No-virtual-pair approximation (NVPA) (Sucher 1980)

Definition of QED

Effects beyond NVPA referred to as QED effects

- Non-radiative effects (retardation, virtual pairs)

Retarded Breit

- Radiative effects

Need for a Many-Body-QED Procedure

Need for a Many-Body-QED Procedure

TWO-PHOTON CONTRIBUTIONS

Need for a Many-Body-QED Procedure

Need for a Many-Body-QED Procedure

- Most challenging are QED calculations on the lightest systems, where combined QED-correlation effects are most important
- A crucial test is the fine structure of neutral helium, which has been measured to a few ppb (Gabrielse et al. PRL 95, 20301, 2005)

Need for a Many-Body-QED Procedure

Comparison between experimental and theoretical fine structure for the $2^{3} P$ state of neutral heliy

> (a)

(b)
(c)

Analytical calculations have failed to reproduce the helium fine structure

Can a "unified" numerical method improve the situation?

Outline

- Introduction
- Definition of QED
- The need for a combined many-body-QED procedure
- Standard time-independent perturbation theory
- Time-dependent perturbation theory
- S-matrix formulation
- Covariant evolution-operator formalism
- Towards exact treatment

Including electron correlation. Fock space

- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Time-independent MBPT

Time-independent Many-Body Perturbation Theory
(Lindgren-Morrison: Atomic Many-Body Theory, Springer 1986)

Multi-reference case

Target states

$$
\begin{gathered}
H \Psi^{\alpha}=E^{\alpha} \Psi^{\alpha} ; \quad(\alpha=1,2, \cdots d) \\
H=H_{0}+H^{\prime}
\end{gathered}
$$

Model states (intermediate normalization)

$$
\Psi_{0}^{\alpha}=P \Psi^{\alpha}
$$

Wave operator

$$
\Psi^{\alpha}=\Omega \Psi_{0}^{\alpha}
$$

The same for all reference states

Time-independent MBPT

Effective Hamiltonian

Project the Schrödinger eqn onto the model space:

$$
\begin{gathered}
P: H \Psi^{\alpha}=E^{\alpha} \Psi^{\alpha} \\
P H \Omega \Psi_{0}^{\alpha}=P E \Psi^{\alpha} \\
H_{\mathrm{eff}} \Psi_{0}^{\alpha}=E^{\alpha} \Psi_{0}^{\alpha} \\
H_{\mathrm{eff}}=P H \Omega P=P H_{0} P+V_{\mathrm{eff}} \\
V_{\mathrm{eff}}=P H^{\prime} \Omega P \text { is the effective interaction }
\end{gathered}
$$

$H_{\text {eff }}, V_{\text {eff }}$ generally multi-dimensional matrices

Time-independent MBPT

Generalized Bloch equation

(multi-reference) (Lindgren 1974)

$$
\left[\Omega, H_{0}\right] P=\left(H^{\prime} \Omega-\Omega V_{\mathrm{eff}}\right) P
$$

Generates the generalized Rayleigh-Schrödinger pert. exp. The Brueckner-Goldstone linked-diagram expansion The Coupled-Cluster expansion

The wave operator and the effective Hamiltonian are the key ingredients of multi-reference many-body perfurbation theory.

Outline

- Introduction
- Definition of QED
- The need for a combined many-body-QED procedure
- Standard time-independent perturbation theory
- Time-dependent perturbation theory
- S-matrix formulation
- Covariant evolution-operator formalism
- Towards exact treatment

Including electron correlation. Fock space

- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Time-dependent perturbation theory

Time-evolution operator

Interaction picture

$$
\begin{gathered}
\Psi_{\mathrm{I}}(t)=\mathrm{e}^{\mathrm{i} H_{0} t} \Psi_{\mathrm{S}}(t) ; \quad O_{\mathrm{I}}(t)=\mathrm{e}^{\mathrm{i} H_{0} t} O_{\mathrm{S}} \mathrm{e}^{-\mathrm{i} H_{0} t} \\
\Psi_{\mathrm{I} \gamma}(t)=U_{\gamma}\left(t, t_{0}\right) \Psi_{\mathrm{I} \gamma}\left(t_{0}\right)
\end{gathered}
$$

Time-dependent MBPT

Adiabatic damping

$$
\begin{gathered}
H_{\mathrm{I}}^{\prime}(t) \rightarrow H_{\mathrm{I} \gamma}^{\prime}(t)=H_{\mathrm{I}}^{\prime}(t) \mathrm{e}^{-\gamma|t|} \\
U_{\gamma}\left(t, t_{0}\right)=1+\sum_{n=1}^{\infty} \frac{(-\mathrm{i})^{n}}{n!} \int_{t_{0}}^{t} \mathrm{~d}^{4} x_{n} \cdots \int_{t_{0}}^{t} \mathrm{~d}^{4} x_{1} \\
\times \boldsymbol{T}_{\mathrm{D}}\left[\mathcal{H}_{\mathrm{I}}^{\prime}\left(x_{n}\right) \mathcal{H}_{\mathrm{I}}^{\prime}\left(x_{n-1}\right) \cdots \mathcal{H}_{\mathrm{I}}^{\prime}\left(x_{1}\right)\right] \mathrm{e}^{-\gamma\left(\left|t_{1}\right|+\cdots+\left|t_{n}\right|\right)} \\
H_{\mathrm{I}}^{\prime}(t)=\int \mathrm{d}^{3} x \mathcal{H}_{\mathrm{I}}^{\prime}(t, x)
\end{gathered}
$$

Evolution operator singular as $\gamma \rightarrow 0$

Time-dependent MBPT

Gell-Mann-Low theorem (1951)

Single reference
$\Psi=\lim _{\gamma \rightarrow 0} \Psi_{\mathbf{I}_{\gamma}}(t=0)=\lim _{\gamma \rightarrow 0} \frac{U_{\gamma}(0,-\infty) \Psi_{0}}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}$
Denominator eliminates singularities (Linked-diagram theorem)

Satisfies the time-independent Schrödinger equation (Single-reference case)

$$
\left(\boldsymbol{H}_{0}+\boldsymbol{H}^{\prime}\right) \Psi=\boldsymbol{E} \Psi
$$

H^{\prime} is time-independent in Schrödinger picture.

Time-dependent MBPT

Single-photon exchange

Interaction between the electrons and the electromagnetic radiation field: $\quad \mathcal{H}_{\mathrm{I}}^{\prime}(x)=-\hat{\psi}_{\mathrm{I}}^{\dagger} \alpha^{\mu} A_{\mu} \hat{\psi}_{\mathrm{I}}$

TWO interactions represent the interaction between the electrons

$$
\begin{aligned}
& U_{\gamma}^{(2)}\left(t^{\prime}, t_{0}\right)=-\frac{1}{2} \iint_{t_{0}}^{t^{\prime}} \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} \hat{\psi}_{\mathrm{I}+}^{\dagger}\left(x_{1}\right) \hat{\psi}_{\mathrm{I}+}^{\dagger}\left(x_{2}\right) \\
& \times \mathrm{i} V_{s p}\left(x_{1}-x_{2}\right) \hat{\psi}_{\mathrm{I}+}\left(x_{2}\right) \hat{\psi}_{\mathrm{I}+}\left(x_{1}\right) \mathrm{e}^{-\gamma\left(\left|t_{1}\right|+\left|t_{2}\right|\right)}
\end{aligned}
$$

Time-dependent MBPT

$$
V_{s p}\left(x_{1}-x_{2}\right)=\alpha^{\mu} \alpha^{\nu} D_{F \mu \nu}\left(x_{1}-x_{2}\right)
$$

is the equivalent potential for single-photon exchange

$$
D_{F \mu \nu}\left(x_{1}-x_{2}\right)=-\mathrm{i} A_{\mu}\left(x_{1}\right) A_{\nu}\left(x_{2}\right)
$$

is the Feynman photon propagator

S-matrix

S-matrix formulation

$$
S=U(\infty,-\infty)
$$

In the limit $\gamma \rightarrow 0$

$$
\begin{gathered}
\langle r s| S^{(2)}|a b\rangle=-2 \pi \mathrm{i} \delta\left(q+q^{\prime}\right)\langle r s| V_{s p}(q)|a b\rangle \\
q=\varepsilon_{a}-\varepsilon_{r}, q^{\prime}=\varepsilon_{b}-\varepsilon_{s} \\
q+q^{\prime}=\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{r}-\varepsilon_{s}=0
\end{gathered}
$$

$V_{s p}(q)$ is the Fourier transform of the single-photon potential
Energy contribution given by

$$
\Delta E=\delta_{q,-q^{\prime}}\langle r s| V_{s p}(q)|a b\rangle
$$

Energy conservation

S-matrix

In Coulomb gauge:

$$
\begin{gathered}
V_{s p}^{C}(q)=\frac{1}{r_{12}}+\int_{0}^{\infty} \frac{2 k d k f_{C}(k)}{q^{2}-k^{2}+i \eta} \\
f_{C}(k)=\alpha_{1} \cdot \alpha_{2} \frac{\sin \left(k r_{12}\right)}{\pi r_{12}}-\left(\alpha_{1} \cdot \nabla_{1}\right)\left(\alpha_{2} \cdot \nabla_{2}\right) \frac{\sin \left(k r_{12}\right)}{\pi k r_{12}}
\end{gathered}
$$

Instantaneous Coulomb and retarded Breit interaction

S-matrix

The S-matrix formulation works well for first- and second-order QED contributions

Equivalent to lowest-order electron correlation Works only in single-reference case

Can not treat quasidegeneracy

Outline

- Introduction
- Definition of QED
- The need for a combined many-body-QED procedure
- Standard time-independent perturbation theory
- Time-dependent perturbation theory
- S-matrix formulation
- Covariant evolution-operator formalism
- Towards exact treatment

Including electron correlation. Fock space

- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Covariant evolution operator

Covariant evolution operator

(Lindgren et al. PRA 2001, Phys. Rep. Jan. 2004)

Generalized Gell-Mann-Low theorem

$$
\begin{gathered}
\Psi^{\alpha}=\lim _{\gamma \rightarrow 0} \frac{N^{\alpha} U_{\gamma}(0,-\infty) \Phi^{\alpha}}{\left\langle\Phi^{\alpha}\right| U_{\gamma}(0,-\infty)\left|\Phi^{\alpha}\right\rangle} \\
\Phi^{\alpha}=\lim _{\gamma \rightarrow 0} \lim _{\gamma \rightarrow-\infty} \Psi^{\alpha}(t) \\
\text { parent state }
\end{gathered}
$$

Satisfies the S.E. in the multi-reference case:

$$
\left(H_{0}+H^{\prime}\right) \Psi^{\alpha}=E^{\alpha} \Psi^{\alpha}
$$

Covariant evolution operator

The singular evolution operator can be separated into a regular and a singular part:

$$
\begin{gathered}
U_{\gamma}(t,-\infty) P=P+\widetilde{U}_{\gamma}(t,-\infty) P U_{\gamma}(0,-\infty) P \\
\widetilde{U}_{\gamma}(t,-\infty) \text { regular: Reduced evolution operator } \\
\text { Factorization theorem }(\mathrm{t}=0) \text { : } \\
U_{\gamma}(0,-\infty) P=[1+Q \widetilde{U}(0,-\infty)] P U_{\gamma}(0,-\infty) P \quad(Q=1-P) \\
\text { Gell-Mann: } \Psi^{\alpha}=\lim _{\gamma \rightarrow 0} \frac{N^{\alpha} U_{\gamma}(0,-\infty) \Phi^{\alpha}}{\left\langle\Phi^{\alpha}\right| U_{\gamma}(0,-\infty)\left|\Phi^{\alpha}\right\rangle}=\Omega P \Psi^{\alpha}
\end{gathered}
$$

$$
\Psi^{\alpha}=[1+Q \widetilde{U}(0,-\infty)] P \frac{N^{\alpha} U_{\gamma}(0,-\infty) \Phi^{\alpha}}{\left\langle\Phi^{\alpha}\right| U_{\gamma}(0,-\infty)\left|\Phi^{\alpha}\right\rangle}
$$

Covariant evolution operator

Wave operator

$$
\Omega=1+Q \widetilde{U}(0,-\infty)
$$

s Effective interaction

$$
V_{\mathrm{eff}}=P\left[\mathrm{i} \frac{\partial}{\partial t} \widetilde{U}(t,-\infty)\right]_{t=0} P
$$

$$
H_{\mathrm{eff}}=P H_{0} P+V_{\mathrm{eff}}
$$

$\tilde{U}(t,-\infty)$ the regular part of the evolution operator
Connection with standard MBPT

Covariant evolution operator

The standard evolution operator is non-covariant for finite times
It can be made covariant by inserting zeroth-order Green's functions

$$
\begin{aligned}
& U_{\gamma \mathrm{Cov}}^{(2)}\left(t^{\prime}, t_{0}\right)=-\frac{1}{2} \quad \mathrm{~d}^{3} x_{1}^{\prime} \mathrm{d}^{3} x_{2}^{\prime} \hat{\psi}_{\mathrm{I}}^{\dagger}\left(x_{1}^{\prime}\right) \hat{\psi}_{\mathrm{I}}^{\dagger}\left(x_{2}^{\prime}\right) \\
& \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} G_{0}\left(x_{1}^{\prime}, x_{2}^{\prime} ; x_{1}, x_{2}\right) \quad \mathrm{d}^{3} x_{10} \mathrm{~d}^{3} x_{20} \mathrm{i} V_{s p}\left(x_{1}, x_{2}\right) \\
& \times G_{0}\left(x_{1}, x_{2} ; x_{10}, x_{20}\right) \hat{\psi}_{\mathrm{I}}\left(x_{20}\right) \hat{\psi}_{\mathrm{I}}\left(x_{10}\right) \mathrm{e}^{-\gamma\left(\left|t_{1}\right|+\left|t_{2}\right|\right)}
\end{aligned}
$$

Integration of t_{1} and t_{2} over all times

Covariant evolution operator

Covariant-evolution operator for single-photon exchange

$$
\langle r s| U_{\mathrm{Cov}}^{(2)}\left(t^{\prime},-\infty\right)|a b\rangle=\frac{\mathrm{e}^{-\mathrm{i} t^{\prime}\left(q+q^{\prime}\right)}}{q+q^{\prime}}\langle r s| V_{s p}\left(q, q^{\prime}\right)|a b\rangle
$$

$$
q=\varepsilon_{a}-\varepsilon_{r}, q^{\prime}=\varepsilon_{a}-\varepsilon_{r}
$$

In Coulomb gauge:

$$
\begin{gathered}
V_{s p}^{C}\left(q, q^{\prime}\right)=\frac{1}{r_{12}}+\int_{0}^{\infty} f_{C}(k) \mathrm{d} k\left[\frac{1}{\mathrm{q} \mp(k-\mathrm{i} \eta)}+\frac{1}{\mathrm{q}^{\prime} \mp(k-\mathrm{i} \eta)}\right] \\
f_{C}(k)=\alpha_{1} \cdot \alpha_{2} \frac{\sin \left(k r_{12}\right)}{\pi r_{12}}-\left(\alpha_{1} \cdot \nabla_{1}\right)\left(\alpha_{2} \cdot \nabla_{2}\right) \frac{\sin \left(k r_{12}\right)}{\pi k^{2} r_{12}}
\end{gathered}
$$

Note, potential has two parameters

Covariant evolution operator

The covariant-evolution-operator (Coul. gauge)

$$
\begin{gathered}
V_{s p}\left(\mathrm{q}, \mathrm{q}^{\prime}\right)=\frac{1}{r_{12}}+\int_{0}^{\infty} f(k) \mathrm{d} k\left[\frac{1}{\mathrm{q} \mp(k-\mathrm{i} \eta)}+\frac{1}{\mathrm{q}^{\prime} \mp(k-\mathrm{i} \eta)}\right] \\
\langle r s| \Omega|a b\rangle=\frac{1}{q+q^{\prime}}\langle r s| V_{s p}\left(q, q^{\prime}\right)|a b\rangle \quad(|r s\rangle \in Q) \\
\langle r s| V_{\text {eff }}|a b\rangle=\langle r s| V_{s p}\left(q, q^{\prime}\right)|a b\rangle \\
\text { Closely related to MBPT }
\end{gathered}
$$

C.f. S-matrix result:

$$
V_{s p}(q)=\frac{1}{r_{12}}+\int_{0}^{\infty} \frac{2 k \mathrm{~d} k f(k)}{q^{2}-k^{2}+\mathrm{i} \eta}
$$

$$
\Delta E=\delta_{q,-q^{\prime}}\langle r s| V_{s p}(q)|a b\rangle
$$

No relation to wave operator
No off-diagonal elements of effective Hamiltonian

Fine-structure separations for He-like ions

 lowest P state (in μ Hartree)Including one- and two-photon exchange

Ion	Transition	Expt'l	Åsén	Drake	Artemyev
$\mathrm{Z}=9$	${ }^{3} P_{2}-{ }^{3} P_{1}$	$0,118761(1)$	0,11875	0,11870	
$\mathrm{Z}=9$	${ }^{3} P_{1}-{ }^{3} P_{0}$	$0,0191(2)$	0,0188	0,0186	
$\mathrm{Z}=10$	${ }^{3} P_{2}-{ }^{3} P_{0}$	$0,2302(1)$	0,2302	0,2301	
$\mathrm{Z}=10$	${ }^{3} P_{1}-{ }^{3} P_{0}$	$0,0373(2)$	0,0373	0,0370	
$\mathrm{Z}=18$	${ }^{3} P_{2}-{ }^{3} P_{0}$	$3,4003(8)$	3,4003	3,3961	3.4000

The ${ }^{3} P_{1}$ state is a quasi-degenerate combination of the states $1 s 2 p_{1 / 2}$ and $1 s 2 p_{3 / 2}$

Including correlation

How can we get further?

Including interactions to all orders is equiv. to exactly solving the Bethe-Salpeter eqn

$$
\left(E-H_{0}\right) \Psi=\mathcal{V}(E)
$$

Not feasible beyond two phot. with std methods Poor treatment of electron correlation

Outline

- Introduction
- Definition of QED
- The need for a combined many-body-QED procedure
- Standard time-independent perturbation theory
- Time-dependent perturbation theory
- S-matrix formulation
- Covariant evolution-operator formalism
- Towards exact treatment Including electron correlation. Fock space
- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Including correlation

Gell-Mann-Low theorem (1951)

Single reference

$$
\Psi=\lim _{\gamma \rightarrow 0} \Psi_{\mathrm{I} \gamma}(t=0)=\lim _{\gamma \rightarrow 0} \frac{U_{\gamma}(0,-\infty) \Psi_{0}}{\left\langle\Psi_{0}\right| U_{\gamma}(0,-\infty)\left|\Psi_{0}\right\rangle}
$$

Denominator eliminates singularities (Linked-diagram theorem)

Satisfies the time-independent Schrödinger equation (Single-reference case)

$$
\left(\boldsymbol{H}_{0}+\boldsymbol{H}^{\prime}\right) \Psi=\boldsymbol{E} \Psi
$$

H^{\prime} is time-independent in Schrödinger picture.

Including correlation

Single-photon exchange

Interaction between the electrons and the electromagnetic radiation field: $\mathcal{H}_{\mathrm{I}}^{\prime}(x)=-\hat{\psi}_{\mathrm{I}}^{\dagger} \alpha^{\mu} A_{\mu} \hat{\psi}_{\mathrm{I}}$

TWO interactions represent the interaction between the electrons

$$
\begin{aligned}
& U_{\gamma}^{(2)}\left(t^{\prime}, t_{0}\right)=-\frac{1}{2} \iint_{t_{0}}^{t^{\prime}} \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} \hat{\psi}_{\mathrm{I}+}^{\dagger}\left(x_{1}\right) \hat{\psi}_{\mathrm{I}+}^{\dagger}\left(x_{2}\right) \\
& \times \mathrm{i} V_{s p}\left(x_{1}-x_{2}\right) \hat{\psi}_{\mathrm{I}+}\left(x_{2}\right) \hat{\psi}_{\mathrm{I}+}\left(x_{1}\right) \mathrm{e}^{-\gamma\left(\left|t_{1}\right|+\left|t_{2}\right|\right)}
\end{aligned}
$$

Including correlation

Extended Fock space

The intermediate states lie in Fock space with variable number of photons

Satisfies the Fock-space-Schrödinger eqn

$$
\left(H_{0}+H^{\prime}\right) \Psi=E \Psi \quad \mathcal{H}_{\mathrm{I}}^{\prime}(x)=-\hat{\psi}_{\mathrm{I}}^{\dagger} \alpha^{\mu} A_{\mu} \hat{\psi}_{\mathrm{I}}
$$

Projection on Hilbert space gives (std, single-ref.) Bethe-Salpeter eqn

$$
\left(E-H_{0}\right) \Psi=\mathcal{V}(E)
$$

Including correlation

The Bethe-Salpeter eqn

$$
\left(E-H_{0}\right) \Psi=\mathcal{V}(E)
$$

leads directly to the Brillouin-Wigner expansion

$$
\Psi=\left[1+\frac{1}{E-H_{0}} \mathcal{V}(E)+\frac{1}{E-H_{0}} \mathcal{V}(E) \frac{1}{E-H_{0}} \mathcal{V}(E)+\cdots\right]
$$

The potential is given by all irreducible diagrams

Including correlation

Bloch eqn valid in the extended Fock space

$$
\left[\Omega, H_{0}\right] P=\left(H^{\prime} \Omega-\Omega V_{\mathrm{eff}}\right) P
$$

Projection of this eqn on Hilbert space gives the (multiref.) Bethe-Salpeter-Bloch eqn

$$
\left[\Omega, H_{0}\right] P=\mathcal{V}\left(H_{\mathrm{eff}}\right) \Omega-\Omega V_{\mathrm{eff}}
$$

Einstein Centennial paper:
Lindgren, Salomonson, Hedendahl, Can.J.Phys. 83, 183 (2005)

Including correlation

Our equations have much simpler structure in Fock space

Including correlation

Fock space

$$
\left(H_{0}+H^{\prime}\right) \Psi=E \Psi
$$

Perturbation is given by the energy-independent electron-field interaction density $\mathcal{H}_{\mathrm{I}}^{\prime}(x)=-\hat{\psi}_{\mathrm{I}}^{\dagger} \alpha^{\mu} A_{\mu} \hat{\psi}_{\mathrm{I}}$

Hilbert space

$$
\left(E-H_{0}\right) \Psi=\mathcal{V}(E)
$$

Perturbation is the energy-dependent potential

Including correlation

Covariant－Evolution－Operator Approach

Including electron correlation

Treat single interaction as perturbation with wave function in Fock space

$$
\left(\boldsymbol{H}_{0}+\boldsymbol{H}^{\prime}\right) \Psi=\boldsymbol{\Psi} \Psi
$$

Use the Bloch eqn in Fock space

$$
\left[\Omega, H_{0}\right] P=\left(H^{\prime} \Omega-\Omega V_{\mathrm{eff}}\right) P
$$

Including correlation

Single-photon potential in Coulomb gauge

$$
\begin{gathered}
V_{s p}\left(q, q^{\prime}\right)=\frac{1}{r_{12}}+\int_{0}^{\infty} f_{C}(k) \mathrm{d} k\left[\frac{1}{q \mp(k-\mathrm{i} \eta)}+\frac{1}{q^{\prime} \mp(k-\mathrm{i} \eta)}\right] \\
V_{C} \quad V_{s p}^{r e t} \\
f_{C}(k)=\alpha_{1} \cdot \alpha_{2} \frac{\sin \left(k r_{12}\right)}{\pi r_{12}}-\left(\alpha_{1} \cdot \nabla_{1}\right)\left(\alpha_{2} \cdot \nabla_{2}\right) \frac{\sin \left(k r_{12}\right)}{\pi k^{2} r_{12}} \\
\text { Gaunt interaction } \quad \text { scalar-retardation part } \\
\frac{\sin \left(k r_{12}\right)}{k r_{12}}=\sum_{l=0}^{\infty}(2 l+1) j_{l}\left(k r_{1}\right) j_{l}\left(k r_{2}\right) C^{l}(1) \cdot C^{l}(2) \\
f_{C}(k)=\sum_{l=0}^{\infty}\left[V_{G}^{l}\left(k r_{1}\right) \cdot V_{G}^{l}\left(k r_{2}\right)-V_{\mathrm{SR}}^{l}\left(k r_{1}\right) \cdot V_{\mathrm{SR}}^{l}\left(k r_{2}\right)\right]
\end{gathered}
$$

Including correlation

Bloch equation

$$
\left[\Omega, H_{0}\right] P=\left(H^{\prime} \Omega-\Omega V_{\mathrm{eff}}\right) P
$$

Perturbation

$$
H^{\prime}=V_{C}+V_{+}^{l}+V_{-}^{l}
$$

Note, all terms are energy independent. The energy dependence originates from the commutator/energy denominator

This is the only perturbation needed

Including correlation

Including correlation

$$
\left[\Omega, H_{0}\right] P=\left(V_{C}+V_{+}^{l}+V_{-}^{l}\right) \Omega P-\text { Folded }
$$

Including correlation

The procedure can also be used for multi-photon effects

although this is computationally very demanding

Including correlation

Expanding the one-, two-,...photon interactions with correlation leads to a much faster convergence towards the Bethe-Salpeter eqn

Compare

Numerical results

Numerical results

Heliumlike neon, 1s2s ${ }^{1} S$
Energy contributions beyond relativistic MBPT

-7
$1-2 \mu \mathrm{H}$

The correlation part represents 25% of the effect

Summary and Conclusions

Summary and Conclusions

- For heavy, highly charged ions relativistic and QED effects dominate over electron correlation
- For light systems electron correlation dominates and combined QED-correlation effects might be significant

Summary and Conclusions

HELIUM-LIKE IONS

SINGLE-PHOTON CONTRIBUTIONS

Summary and Conclusions

Summary and Conclusions

- For heavy, highly charged ions relativistic and QED effects dominate over electron correlation
- For light systems electron correlation dominates and combined QED-correlation effects might be significant
- S-matrix standard method for QED calculationsworks well for highly charged ions but not for lighter systems
Cannot treat multi-reference case (quasi-degeneracy)
- Covariant-evolution-operator method QED technique developed for multi-reference case

Summary and Conclusions

The covariant－evolution－operator（Coul．gauge）

$$
\begin{gathered}
V_{s p}\left(q, q^{\prime}\right)=\frac{1}{r_{12}}+\int_{0}^{\infty} f(k) \mathrm{d} k\left[\frac{1}{q \mp(k-\mathrm{i} \eta)}+\frac{1}{q^{\prime} \mp(k-\mathrm{i} \eta)}\right] \\
\langle r s| \Omega|a b\rangle=\frac{1}{q+q^{\prime}}\langle r s| V_{s p}\left(q, q^{\prime}\right)|a b\rangle \quad(|r s\rangle \in Q) \\
\langle r s| V_{\text {eff }}|a b\rangle=\langle r s| V_{s p}\left(q, q^{\prime}\right)|a b\rangle \\
\text { Closely related to MBPT }
\end{gathered}
$$

C．f．S－matrix result：

$$
\begin{gathered}
V_{s p}(q)=\frac{1}{r_{12}}+\int_{0}^{\infty} \frac{2 k \mathrm{~d} k f(k)}{q^{2}-k^{2}+\mathrm{i} \eta} \\
\Delta E=\delta_{q,-q^{\prime}}\langle r s| V_{s p}(q)|a b\rangle
\end{gathered}
$$

No relation to wave operator

No off－diagonal elements of effective Hamiltonian

Summary and Conclusions

Summary and Conclusions

- For heavy, highly charged ions relativistic and QED effects dominate over electron correlation
- For light systems electron correlation dominates and combined QED-correlation effects might be significant
- S-matrix standard method for QED calculationsworks well for highly charged ions but not for lighter systems Cannot treat multi-reference case (quasi-degeneracy)
- Covariant-evolution-operator method QED technique developed for multi-reference case
- By treating field interaction with single electron as perturbation in Fock space, electron correlation could be included. Leads to faster convergence towards the Bethe-Salpeter eqn.

Summary and Conclusions

Covariant-Evolution-Operator Approach

Including electron correlation

Treat single interaction as perturbation with wave function in Fock space

$$
\left(\boldsymbol{H}_{0}+\boldsymbol{H}^{\prime}\right) \Psi=\boldsymbol{E} \Psi
$$

Use the Bloch eqn in Fock space

$$
\left[\Omega, H_{0}\right] P=\left(H^{\prime} \Omega-\Omega V_{\mathrm{eff}}\right) P
$$

Numerical results

Heliumlike neon, 1s2s ${ }^{1} S$
Energy contributions beyond relativistic MBPT

$2637 \mu \mathrm{H}$

-773

-18

72
 ~-5

-7

$1-2 \mu \mathrm{H}$

The correlation part represents 25% of the effect

Outlook

Outlook

- The new technique can lead to more accurate QED calculations on light and medium-heavy systems
- The technique is for computational reasons at present limited to few-electron systems
- So far, only non-radiative effects have been evaluated. Evaluation of radiative effects is in preparation
- A good testing case is the fine structure of He-like ions

Outlook

Effects beyond NVPA referred to as QED effects

- Non-radiative effects (retardation, virtual pairs)

Retarded Breit

Araki-Sucher

- Radiative effects (self energy, vacuum polarization, vertex corrections)

Outlook

Outlook

- The new technique can lead to more accurate QED calculations on light and medium-heavy systems
- The technique is for computational reasons at present limited to few-electron systems
- So far, only non-radiative effects have been evaluated. Evaluation of radiative effects is in preparation
- A good testing case is the fine structure of He-like ions

Outlook

Fine-structure separations for He-like ions
Lowest P state (in μ Hartree)

Ion	Transition	Expt'l	Åsén	Drake	Artemyev
$\mathrm{Z}=9$	${ }^{3} P_{2}-{ }^{3} P_{1}$	$0,118761(\mathbf{1})$	0,11875	0,11870	
$\mathrm{Z}=9$	${ }^{3} P_{1}-{ }^{3} P_{0}$	$0,0191(2)$	0,0188	0,0186	
$\mathrm{Z}=10$	${ }^{3} P_{2}-{ }^{3} P_{0}$	$0,2302(1)$	0,2302	0,2301	
$\mathrm{Z}=10$	${ }^{3} P_{1}-{ }^{3} P_{0}$	$0,0373(2)$	0,0373	0,0370	
$\mathrm{Z}=18$	${ }^{3} P_{2}-{ }^{3} P_{0}$	$3,4003(8)$	3,4003	3,3961	3.4000

The ${ }^{3} P_{1}$ state is a quasi-degenerate combination of the states $1 s 2 p_{1 / 2}$ and $1 s 2 p_{3 / 2}$

Outlook

- Most challenging are QED calculations on the lightest systems, where combined QED-correlation effects are most important
- A crucial test is the fine structure of neutral helium, which has been measured to a few ppb (Gabrielse et al. PRL 95, 20301, 2005)

Outlook

Comparison between experimental and theoretical fine structure for the $2^{3} P$ state of neutral helium
(a)

(b)

(c)

Outlook

Analytical calculations have failed to reproduce the helium fine structure

We believe that a "unified" numerical method can be constructed for heavy as well as light systems!

Coworkers

Sten Salomonson Björn Åsén
 Daniel Hedendahl

Recent publications

- I.Lindgren, S.Salomonson, and B.Åsén, Physics Reports, $\underline{\mathbf{3 8 9} \text {, }}$ 161 (2004)
- I.Lindgren, S.Salomonson and D.Hedendahl, Can. J. Phys. 83, 183 (2005) ("Einstein Centennial paper")
- I.Lindgren, S.Salomonson and D.Hedendahl, Phys. Rev. A73, 062502 (2006)

