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Definition of QED

¢ Quantum-electrodynamics

is the quantum theory of the interaction

between electrons and the electro-magnetic
radiation field

e The interaction is energy dependent
Standard M BPT procedures cannot be used

e Our goal is to construct
a combined Many-Body-QED procedure




Definition of QED

Standard procedures for QED calculations

e Analytical methods
— Expansion of the Bethe-Salpeter eqn in powers in a and Z«

(Drake, Pachucki)

Restricted to light elements

e Numerical methods

— S-matrix (Only for single-reference model space. Cannot

treat quasidegeneracy
— Two-times Green’s function (Shabaev et al. 1993)

— Covariant evolution operator (Lindgren et al. 2001)

Restricted to heavy elements




Definition of QED

The exact treatment of a two-electron system requires
the solution of the Bethe-Salpeter equation

Normally based upon the Brillouin-Wigner

perturbation theory

Using the covariant-evolution operator expansion to
all orders is equivalent to solving the BS eqn
Lindgren, Salomonson, and Hedendahl, Can. J. Phys. 83, 183
(2005)

Gives the link between BS eqn and
Many-Body Perturbation Theory (based upon
Rayleigh-Schrodinger PT)




Definition of QED

Standard Many-Body Procedures

Non-relativistic atomic Hamiltonian:
1 Z
1<J Tij

e Many-body perturbation theory (MBPT)
e Coupled-Custer Approach (CCA)

e Configuration Interaction (CI)
e Multi-Configuration Hartree-Fock (MCHF)

Can treat electron correlation to essentially all orders




Definition of QED

Relativistic Dirac-Coulomb-Breit Hamiltonian

N N 1
H :A+{th(z') 5 — —|—HB}A+

i=1 i<j Y

Breit interaction, 1932-33

@li'rﬁ)(aﬁ°7%j)}

1
HB:_§Z{O"5°O‘J'+ 2

i<l Tij

Retardation and virtual pairs neglected
No-virtual-pair approximation (NVPA)
(Sucher 1980)




Definition of QED

Effects beyond NVPA referred to as
QED effects

e Non-radiative effects (retardation, virtual pairs)

"

Retarded Breit

e Radiative effects
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Need for a Many-Body-QED Procedure
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Need for a Many-Body-QED Procedure
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Need for a Many-Body-QED Procedure
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Need for a Many-Body-QED Procedure

e Most challenging are QED calculations on the lightest
systems, where combined QED-correlation effects are

most important

e A crucial test is the fine structure of neutral helium,

which has been measured to a few ppb (Gabrielse et al.
PRL 95, 20301, 2005)




Need for a Many-Body-QED Procedure

Comparison between experimental and theoretical fine
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Need for a Many-Body-QED Procedure

Analytical calculations have failed to reproduce
the helium fine structure

Can a ”unified” numerical method

improve the situation?
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Time-independent M BPT

Time-independent Many-Body Perturbation Theory

(Lindgren-Morrison: Atomic Many-Body Theory, Springer 1986)

Multi-reference case
Target states

HY*=E*¥*; (a=1,2,---d)
H = Hoy + H’

Model states (intermediate normalization)
¥o = Py

Wave operator

The same for all reference states

T . . ON



Time-independent M BPT

Effective Hamiltonian

Project the Schrodinger eqn onto the model space:

P: HVY* = E* ¥~

PHQUS = PER®

Hog ¥ = E~ U2

H.yg = PHQP = PHoP + Vg
Veg = PH'QP is the effective interaction

H g, Vog generally multi-dimensional matrices




Time-independent M BPT

Generalized Bloch equation

(multi-reference) (Lindgren 1974)

Generates the generalized Rayleigh-Schrodinger pert. exp.
The Brueckner-Goldstone linked-diagram expansion The

Coupled-Cluster expansion

The wave operator and the effective Hamiltonian

are the key ingredients of multi-reference

many-body perfurbation theory.
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Time-dependent MBPT

Time-dependent perturbation theory

Time-evolution operator

Interaction picture

\Ifl(t) — eiHOt\IlS(t) ; OI(t) — eiHotOS e—iHot

\IJI‘Y (t) — U’Y(t? tO) ‘I’I'y (tO)




Time-dependent MBPT

Adiabatic damping

Hy(t) — Hy, (t) = Hy(t)e "

oo (_l)n t t
n=1 v Jto to

X Tp [Hy (n )Hy (X 1) - - H(21)] e 7t FlEtnD)
HI(t) = /d%ﬁi(t,m)

Evolution operator singular asv — 0




Time-dependent MBPT

Gell-Mann—Low theorem (1951)

Single reference

U’Y(07_oo)‘I’O
(Po|U~(0,—0c0) |¥g)

\P = lim—y_,o \:[117 (t = O) = limny_)()

Denominator eliminates singularities

(Linked-diagram theorem)

Satisfies the time-independent Schrodinger equation

(Single-reference case)

(Ho+H)$ =EV

H’ is time-independent in Schrodinger picture.




Time-dependent MBPT

Single-photon exchange

Interaction between the electrons and the electro-
magnetic radiation field: Hj(x) = —15;04“14“1@1

TWO interactions represent the interaction between the

electrons

(o
t = tg---

1 [ . .
UL (t',to) = —5// d*zid*z2 ], (z1)P], (x2)
to

Xi‘/sp (331 — 332) ¢I+(w2)¢1+(w1) e_7(|t1|+|t2|)




Time-dependent MBPT

Vep(1 — x2) = a*a”Dry (1 — 22)

is the equivalent potential for single-photon exchange

DF“V(wl — :132) = —iAu(wl)A,/(iEz)

is the Feynman photon propagator




S-matrix

S-matrix formulation
S =U(co,—00)

In the limit v — 0
(rs ‘5(2)‘ ab) = —2wid(q + q') (rs|Vip(q)|ab)

_ /! __
q— € — €&r yq — Ep — Es

g+qg =e€q+ep —r —es =0

Vsp(q) is the Fourier transform of the single-photon potential

Energy contribution given by

AE = b4,_q (rs|Vep(q)|ab)

Energy conservation




S-matrix

In Coulomb gauge:

_ 1 oo 2kdk fc (k
ng(q) - E _|_ fO qz—kzi(i'ﬂ)

sin(krlz)

Sin(k’f‘lz) _

fc(ki) = (1 * X2

(al . Vl)(az . Vz)

Tri2 sz'rl2

Instantaneous Coulomb and retarded Breit interaction




S-matrix

The S-matrix formulation works well for
first- and second-order QED contributions

Equivalent to lowest-order electron correlation

Works only in single-reference case

Can not treat quasidegeneracy
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Covariant evolution operator

Covariant evolution operator

(Lindgren et al. PRA 2001, Phys. Rep. Jan. 2004)

Generalized Gell-Mann-Low theorem

N® U, (0,—c0) &
P |U (0,—00)|P>)

P — lim,-),_>() {

®% = lim lim WY (t)
¥Yy—0~v— —00
parent state

Satisfies the S.E. in the multi-reference case:

(Ho + H') & = E~ ¥




Covariant evolution operator

The singular evolution operator can be separated
into a regular and a singular part:

U, (t,—c0)P = P + U, (t, —o0) PU,(0, —c0) P

U, (t, —oco) regular: Reduced evolution operator

Factorization theorem (t=0):
U,(0,—00)P =[14+QU(0,—00)] PU,(0,—0)P (Q=1-P)

N> U-~ (0, — P
Gell-Mann: ¢ = lim ~(0, —o0)

= QPU“
2 (@], (0, —o0) [89)

wave operator model function




Covariant evolution operator
Wave operator

s Effective interaction

Heg = PHoP + Vg

ﬁ(t, —o0) the regular part of the evolution operator

Connection with standard MBPT

Ty .

I AY



Covariant evolution operator

The standard evolution operator is non-covariant for finite
times
It can be made covariant by inserting zeroth-order

Green’s functions

1 = ~
Ui (sto) = =5 d°aid®a (@) ] (21)

4 4 ’ ’ 3 3 .
d w]_d 2 G0($1,$2;w1,w2) d wlod 20 1V3p(:131,a:2)

XGo(x1,T2; 10, T20) 7,51(0820)1,51(.%10) e~ Y(t1l+It2])

Integration of t; and t5 over all times




Covariant evolution operator

Covariant-evolution operator for single-photon exchange

(rs [US, (¢, —00)| ab) = =5 (15| Vi (g, ') |ab)

In Coulomb gauge:

q') = L k) dk 1
(q q') = 12 +f0 fo (k) q F(k—in) qQ’ F(k—in)

fo(k) = an - ag SBEM2) ) (ag - ) SR(kT12)

Tri2 k2 12

Note, potential has two parameters




Covariant evolution operator

The covariant-evolution-operator (Coul. gauge)

: — L k) dk L -
Vep(@,q’ ) = 712 +f0 f (k) q F(k—in) ki q’ F(k—in)

(rs[$2] ab) = (rs|Vsp(a,q')|ab) (Irs) € Q)

q+q

(rs|Veg| ab) = (rs|Vip(a, q')|abd)
Closely related to MBPT

C.f. S-matrix result:

oo 2l<: dk f(k
‘/sp(Q) T iz T f q° k2f—|(—173

AE = 64, (r5|Vsp(q)|ab)

No relation to wave operator

No off-diagonal elements of effective Hamiltonian




Fine-structure separations for He-like ions

lowest P state (in u Hartree)

Including one- and two-photon exchange

Transition Expt’l Asén

Drake Artemyev

0,118761(1) 0,11875
0,0191(2 0,0188

0,2302(1
0,0373(2
3,4003(8

0,0373

(
)
) 0,2302
)
) 3,4003

0,11870
0,0186
0,2301
0,0370
3,3961

The °P; state is a quasi-degenerate combination

of the states 152p,,o and 1s2p3 /-




Including correlation

How can we get further?

Including interactions to all orders is equiv. to exactly

solving the Bethe-Salpeter eqn

(E — Ho) ¥ = V(E)

A =] o O

Not feasible beyond two phot. with std methods

Poor treatment of electron correlation
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Including correlation

Gell-Mann—Low theorem (1951)

Single reference

i . U, (0, —oc0)Wg
v =1 Vi (t=0) =1 AN
Yim W1y (¢ = 0) = lim 75 0. (0, —o0) [To)

Denominator eliminates singularities

(Linked-diagram theorem)

Satisfies the time-independent Schrodinger equation

(Single-reference case)

(Ho+H)$ =EV

H’ is time-independent in Schrodinger picture.




Including correlation

Single-photon exchange

Interaction between the electrons and the electro-
magnetic radiation field: Hj(x) = —vﬁ}ua“A,ﬂﬁI

TWO interactions represent the interaction between the

electrons

(2
t = tg---

1 [ . .
U (', to) = —5// d*zid*zz Pl (z1)d], (z2)
to

XiVap (21 — T2) P14 (x2)Pry (z1) e Y2 IF1E2D




Including correlation

Extended Fock space

The intermediate states lie in Fock space

with variable number of photons

Satisfies the Fock-space-Schrodinger eqn

(Ho+ H)® =E ¥ H(z) = —piat A,

Projection on Hilbert space gives (std, single-ref.)

Bethe-Salpeter eqn

(E — Ho) ¥ = V(E)




Including correlation

The Bethe-Salpeter eqn
(E — Ho) ¥ = V(E)

leads directly to the Brillouin-Wigner expansion

U = [1 + 5=m V(E) + g=g V(E) g=g V(E) + - - ]

The potential is given by all irreducible diagrams

V(E) = |~ +>:<+w0m +{:f”




Including correlation

Bloch eqn valid in the extended Fock space

Projection of this eqn on Hilbert space
gives the (multiref.) Bethe-Salpeter-Bloch eqn

[Q, HO}P = V(Herr)2 — Q Vg

Einstein Centennial paper:
Lindgren, Salomonson, Hedendahl, Can.J.Phys. 83, 183 (2005)




Including correlation

Our equations have much simpler

structure in Fock space




Including correlation

Fock space

(Ho+ H )% =EV¥

Perturbation is given by the energy-independent electron-field
interaction density H;(x) = —¢]a* A,

Hilbert space

(E — Hy) ¥ = V(E)

Perturbation is the energy-dependent potential

vE) = ||+ [+ o + {7+




Including correlation

Covariant-Evolution-Operator Approach

Including electron correlation

Treat single interaction as perturbation

with wave function in Fock space

(Ho+H' )% =E W

Use the Bloch eqn in Fock space




Including correlation

Single-photon potential in Coulomb gauge

stp(Qa q') = 4+ fooo fo(k) dk qZF(I:—in) T q’:F(’i—in)

T12

ret
Ve V., p

Sin(k’r’lz) Sin(kT12)

fc(k) = a1 - az — (a1 - V1) (a2 - Va2)

Trio k? r12

Gaunt interaction scalar-retardation part

sin(kr12)

= > @+ gi(kr1)di(kr2)C (1) - CH(2)
=0

krqio

fo(k) = 32, [V(l;(krl) - V& (kra) — Vi (kr1) - VSlR(krz)]




Including correlation

Bloch equation
[Q,Ho|P = (H'Q — QVeg) P
Perturbation

H =Vc+Vy +V!

Note, all terms are energy independent. The energy
dependence originates from the commutator/energy

denominator

This is the only perturbation needed




Including correlation

Q,Ho|P = (Vo + Vi + V) QP — Folded




Including correlation

Q,Ho|P = (Vo + Vi + V) QP — Folded




Including correlation

The procedure can also be used for multi-photon
effects

although this is computationally very demanding




Including correlation

Expanding the one-, two-,...photon interactions
with correlation leads to a much faster convergence

towards the Bethe-Salpeter eqn

Compare

-0 C




Numerical results

Numerical results

Heliumlike neon, 1s2s'S

Energy contributions beyond relativistic MBPT

/ =

2637 uH 773 -18

\

~N

The correlation part represents 25% of the effect




Summary and Conclusions

Summary and Conclusions

e For heavy, highly charged ions relativistic and QED effects

dominate over electron correlation

e For light systems electron correlation dominates

and combined QED-correlation effects might be significant




Summary and Conclusions
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Summary and Conclusions

Summary and Conclusions

For heavy, highly charged ions relativistic and QED effects
dominate over electron correlation

For light systems electron correlation dominates

and combined QED-correlation effects might be significant

S-matrix standard method for QED calculations—
works well for highly charged ions but not for lighter
systems

Cannot treat multi-reference case (quasi-degeneracy)

Covariant-evolution-operator method QED technique

developed for multi-reference case




Summary and Conclusions

The covariant-evolution-operator (Coul. gauge)

Ver(2,9') = 75 + Jo F(R)dk| ==y + 7=a=m)

r12

1
q—+q’

(rs |Veg| ab) = (rs|Vip(q, q’)|abd)
Closely related to MBPT

(15|82 ab) = (rs|Vsp(a,q')|ab) (rs) € Q)

C.f. S-matrix result:

2k dk k
Vip(a) = 735 + J57 2

AE = 6,4,_q (rs|Vip(q)|ab)

No relation to wave operator

No off-diagonal elements of effective Hamiltonian




Summary and Conclusions

Summary and Conclusions

For heavy, highly charged ions relativistic and QED effects

dominate over electron correlation

For light systems electron correlation dominates

and combined QED-correlation effects might be significant

S-matrix standard method for QED calculations—
works well for highly charged ions but not for lighter systems
Cannot treat multi-reference case (quasi-degeneracy)

Covariant-evolution-operator method QED technique
developed for multi-reference case

By treating field interaction with single electron as

perturbation in Fock space, electron correlation could be

included. Leads to faster convergence towards the

Bethe-Salpeter eqn.




Summary and Conclusions

Covariant-Evolution-Operator Approach

Including electron correlation

Treat single interaction as perturbation

with wave function in Fock space

(Ho+H' )% =E W

Use the Bloch eqn in Fock space




Summary and Conclusions

Numerical results
Heliumlike neon, 1s2s'S

Energy contributions beyond relativistic MBPT

/ = [

2637 uH 18

N

/”

The correlation part represents 25% of the effect
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Outlook

Outlook

The new technique can lead to more accurate QED
calculations

on light and medium-heavy systems

The technique is for computational reasons at present

limited to few-electron systems

So far, only non-radiative effects have been evaluated.

Evaluation of radiative effects is in preparation

A good testing case is the fine structure of He-like ions

TYY . . . 1N1



Outlook

Effects beyond NVPA referred to as QED effects

e Non-radiative effects (retardation, virtual pairs)

I I == I =

Retarded Breit Araki-Sucher

e Radiative effects (self energy, vacuum polarization, vertex

corrections)
7 < Ao O oA

Self energy Vacuum polarization Vertex corr.

TYY Y. . 1N



Outlook

Outlook

The new technique can lead to more accurate QED
calculations

on light and medium-heavy systems

The technique is for computational reasons at present

limited to few-electron systems

So far, only non-radiative effects have been evaluated.

Evaluation of radiative effects is in preparation

A good testing case is the fine structure of He-like ions

TYY . . 1N



Outlook

Fine-structure separations for He-like ions
Lowest P state (in u Hartree)

Ion  Transition Expt’l Asén Drake Artemyev

7.=9 0,118761(1) 0,11875 0,11870

7=9 0,0191(2) 0,0188  0,0186

7=10 0,2302(1) 0,2302  0,2301

7=10 0,0373(2) 0,0373  0,0370

7=18 3,4003(8) 3,4003  3,3961  3.4000

The °P; state is a quasi-degenerate combination of the states 1s2p; /2

and 182]93/2

TYY . . 1N A



Outlook

e Most challenging are QED calculations on the lightest
systems, where combined QED-correlation effects are

most important

e A crucial test is the fine structure of neutral helium,

which has been measured to a few ppb (Gabrielse et al.
PRL 95, 20301, 2005)

TY. . 1N™



Outlook

Comparison between experimental and theoretical fine

structure for the 2 3P state of neutral hellLEg(
ptl

(@ Harvard'05 fthls work)

LENS'05 [11]

York'00 [12]

Texas'00 [10]

theory: P&S'03 [15] et Theory
D02{14] | = <

130 140 150 160
frequency - 2 291 000 kHz

——2°°, Harvard'05 (this work)

-1-5%,  LENS'05[11]
— 2%, _Yorko01[13]
Texas'00 [10]

theory: P&S'03 [15] it §
. D02 [14]

920 930 940
frequency - 29616 000 kHz

o e fipt iy

— 2%, LENS'05 [11] ¢

2N 23P York'00-01 [12,13]
Texas'00 [10]

i theory: P&S'03 [15]

o D'02 [14]

100 110 120
frequency - 31 908 000 kHz

T . . 1N



Outlook

Analytical calculations have failed to reproduce
the helium fine structure

We believe that a ”unified” numerical method
can be constructed for heavy as well as light

systems!
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