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Definition of QED

• Quantum-electrodynamics

is the quantum theory of the interaction

between electrons and the electro-magnetic

radiation field

• The interaction is energy dependent

Standard MBPT procedures cannot be used

• Our goal is to construct

a combined Many-Body-QED procedure
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Definition of QED

Standard procedures for QED calculations

• Analytical methods
– Expansion of the Bethe-Salpeter eqn in powers in α and Zα

(Drake, Pachucki)

Restricted to light elements

• Numerical methods
– S-matrix (Only for single-reference model space. Cannot

treat quasidegeneracy

– Two-times Green’s function (Shabaev et al. 1993)

– Covariant evolution operator (Lindgren et al. 2001)

Restricted to heavy elements
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Definition of QED

• The exact treatment of a two-electron system requires
the solution of the Bethe-Salpeter equation

• Normally based upon the Brillouin-Wigner
perturbation theory

• Using the covariant-evolution operator expansion to
all orders is equivalent to solving the BS eqn
Lindgren, Salomonson, and Hedendahl, Can. J. Phys. 83, 183

(2005)

• Gives the link between BS eqn and
Many-Body Perturbation Theory (based upon

Rayleigh-Schrödinger PT)
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Definition of QED

Standard Many-Body Procedures

Non-relativistic atomic Hamiltonian:

H =
N∑
i=1

hS(i) +
N∑
i<j

1

rij
; hS = −1

2
∇2 − Z

r

• Many-body perturbation theory (MBPT)

• Coupled-Custer Approach (CCA)

• Configuration Interaction (CI)

• Multi-Configuration Hartree-Fock (MCHF)

Can treat electron correlation to essentially all orders

Page 12



Definition of QED

Relativistic Dirac-Coulomb-Breit Hamiltonian

H =Λ+

[ N∑
i=1

hD(i) +
N∑
i<j

1

rij
+HB

]
Λ+

Breit interaction, 1932-33

HB = −1

2

∑
i<1

[
αi · αj +

(αi · rij)(αj · rij)
r2ij

]
Retardation and virtual pairs neglected
No-virtual-pair approximation (NVPA)

(Sucher 1980)
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Definition of QED

Effects beyond NVPA referred to as

QED effects

• Non-radiative effects (retardation, virtual pairs)

Retarded Breit Araki-Sucher

�

�

�

• Radiative effects

Self energy

����������

Vacuum polarization

����� � � �������� �

Vertex corr.
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Need for a Many-Body-QED Procedure
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Need for a Many-Body-QED Procedure

�

�

�

� NVPA
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Need for a Many-Body-QED Procedure

� Electron correlation

������������

������������
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Need for a Many-Body-QED Procedure

• Most challenging are QED calculations on the lightest
systems, where combined QED-correlation effects are
most important

• A crucial test is the fine structure of neutral helium,
which has been measured to a few ppb (Gabrielse et al.

PRL 95, 20301, 2005)
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Need for a Many-Body-QED Procedure

Comparison between experimental and theoretical fine
structure for the 2 3P state of neutral heliumExptl�

�Theory
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Need for a Many-Body-QED Procedure

Analytical calculations have failed to reproduce

the helium fine structure

Can a ”unified” numerical method
improve the situation?
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Time-independent MBPT

Time-independent Many-Body Perturbation Theory

(Lindgren-Morrison: Atomic Many-Body Theory, Springer 1986)

Multi-reference case

Target states

H Ψα = EαΨα ; (α = 1, 2, · · · d)
H = H0 +H ′

Model states (intermediate normalization)
Ψα

0 = PΨα

Wave operator

Ψα = Ω Ψα
0

The same for all reference states
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Time-independent MBPT

Effective Hamiltonian

Project the Schrödinger eqn onto the model space:

P : H Ψα = EαΨα

PHΩΨα
0 = PEΨα

Heff Ψα
0 = EαΨα

0

Heff = PHΩP = PH0P + Veff

Veff = PH ′ΩP is the effective interaction

Heff , Veff generally multi-dimensional matrices
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Time-independent MBPT

Generalized Bloch equation

(multi-reference) (Lindgren 1974)[
Ω,H0

]
P =

(
H ′Ω − ΩVeff

)
P

Generates the generalized Rayleigh-Schrödinger pert. exp.
The Brueckner-Goldstone linked-diagram expansion The

Coupled-Cluster expansion

The wave operator and the effective Hamiltonian

are the key ingredients of multi-reference

many-body perfurbation theory.
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Time-dependent MBPT

Time-dependent perturbation theory

Time-evolution operator

Interaction picture

ΨI(t) = eiH0tΨS(t) ; OI(t) = eiH0tOS e−iH0t

ΨIγ(t) = Uγ(t, t0) ΨIγ(t0)
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Time-dependent MBPT

Adiabatic damping

H ′
I(t) → H ′

Iγ(t) = H ′
I(t) e−γ|t|

Uγ (t, t0) = 1 +

∞�
n=1

(−i)n

n!

� t

t0

d4xn · · ·

� t

t0

d4x1

×TD

�H′
I(xn)H′

I(xn−1) · · · H′
I(x1)

�

e−γ(|t1|+···+|tn|)

H ′
I(t) =

�
d3xH′

I(t, x)

Evolution operator singular as γ → 0
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Time-dependent MBPT

Gell-Mann–Low theorem (1951)

Single reference

Ψ = limγ→0 ΨIγ (t = 0) = limγ→0
Uγ(0,−∞)Ψ0

〈Ψ0|Uγ(0,−∞) |Ψ0〉

Denominator eliminates singularities
(Linked-diagram theorem)

Satisfies the time-independent Schrödinger equation

(Single-reference case)(
H0 +H ′) Ψ = EΨ

H ′ is time-independent in Schrödinger picture.
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Time-dependent MBPT

Single-photon exchange

Interaction between the electrons and the electro-
magnetic radiation field: H′

I(x) = −ψ̂†
Iα

µAµψ̂I

TWO interactions represent the interaction between the
electrons

t = t′
ψ̂†

+ r s ψ̂†
+

1

2

t = t0

ψ̂+ a b ψ̂+

U (2)
γ (t′, t0) = −1

2

�� t′

t0

d4x1d
4x2 ψ̂

†
I+(x1)ψ̂

†
I+(x2)

×iVsp(x1 − x2) ψ̂I+(x2)ψ̂I+(x1) e−γ(|t1|+|t2|)
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Time-dependent MBPT

Vsp(x1 − x2) = αµανDFµν(x1 − x2)

is the equivalent potential for single-photon exchange

DFµν(x1 − x2) = −iAµ(x1)Aν(x2)

is the Feynman photon propagator
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S-matrix

S-matrix formulation

S = U(∞,−∞)

In the limit γ → 0
r s

a b

�
rs

��S(2)

��ab� = −2πi δ(q+ q′) 〈rs|Vsp(q)|ab〉

q = εa − εr , q′ = εb − εs

q+ q′ = εa + εb − εr − εs = 0

Vsp(q) is the Fourier transform of the single-photon potential

Energy contribution given by

∆E = δq,−q′

�
rs

��Vsp(q)��ab�
Energy conservation
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S-matrix

In Coulomb gauge:

V C
sp(q) = 1

r12
+

∫ ∞
0

2kdkfC (k)

q2−k2+iη

fC (k) = α1 · α2
sin(kr12)

πr12
− (α1 · ∇1)(α2 · ∇2)

sin(kr12)

πk2r12

Instantaneous Coulomb and retarded Breit interaction
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S-matrix

The S-matrix formulation works well for
first- and second-order QED contributions

Equivalent to lowest-order electron correlation

Works only in single-reference case

Can not treat quasidegeneracy
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Covariant evolution operator

Covariant evolution operator

(Lindgren et al. PRA 2001, Phys. Rep. Jan. 2004)

Generalized Gell-Mann-Low theorem

Ψα = limγ→0
Nα Uγ(0,−∞) Φα

〈Φα|Uγ(0,−∞)|Φα〉

Φα = lim
γ→0

lim
γ→−∞

Ψα(t)

parent state

Satisfies the S.E. in the multi-reference case:(
H0 +H ′) Ψα = EαΨα
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Covariant evolution operator

The singular evolution operator can be separated
into a regular and a singular part:

Uγ(t,−∞)P = P + Ũγ(t,−∞)PUγ(0,−∞)P�Uγ (t,−∞) regular: Reduced evolution operator

Factorization theorem (t=0):

Uγ ( 0 ,−∞)P =

�
1 + Q �U( 0 ,−∞)

�

PUγ (0,−∞)P (Q = 1−P )

Gell-Mann: Ψα = lim
γ→0

Nα Uγ (0,−∞) Φα

〈Φα |Uγ (0,−∞)|Φα〉 = ΩPΨα

wave operator model function

Ψα =
[
1 +QŨ( 0 ,−∞)

]
P

Nα Uγ(0,−∞) Φα

〈Φα|Uγ(0,−∞)|Φα〉
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Covariant evolution operator

Wave operator

Ω = 1 +QŨ(0,−∞)

s Effective interaction

Veff = P
[
i ∂
∂t
Ũ(t,−∞)

]
t=0

P

Heff = PH0P + Veff

Ũ(t,−∞) the regular part of the evolution operator

Connection with standard MBPT
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Covariant evolution operator

The standard evolution operator is non-covariant for finite
times

It can be made covariant by inserting zeroth-order
Green’s functions

t = t′
ψ̂†

+ r s ψ̂†
+� �1 2

t = t0

ψ̂+ a b ψ̂+

t = t′
ψ̂† r s ψ̂†

SF SF

� �1 2

SF SF

� �

t = t0 � �
ψ̂ a b ψ̂

t = t′
ψ̂† r s ψ̂†

ψ̂ a b ψ̂

� �1 2

SF SF

� �

U
(2)
γCov(t

′
, t0) = −1

2
d
3
x

′
1d

3
x

′
2 ψ̂

†
I (x

′
1)ψ̂

†
I (x

′
2)

d
4
x1d

4
x2G0(x

′
1, x

′
2;x1, x2) d

3
x10d

3
x20 iVsp(x1, x2)

×G0(x1, x2;x10, x20) ψ̂I(x20)ψ̂I(x10) e
−γ(|t1|+|t2|)

Integration of t1 and t2 over all times
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Covariant evolution operator

Covariant-evolution operator for single-photon exchange〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ ab〉 = e−it′(q+q′)

q+q′
〈
rs

∣∣Vsp(q, q′)
∣∣ab〉

r s

1
2

a b

q = εa − εr , q
′ = εa − εr

In Coulomb gauge:

V Csp(q, q
′) = 1

r12
+

�∞
0 fC (k) dk

�
1

q ∓(k−iη)
+ 1

q’ ∓(k−iη)

	

fC (k) = α1 ·α2
sin(kr12)

πr12
− (α1 · ∇1)(α2 · ∇2)

sin(kr12)

πk2r12

Note, potential has two parameters
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Covariant evolution operator

The covariant-evolution-operator (Coul. gauge)

Vsp( q,q’ ) = 1
r12

+

� ∞
0
f(k) dk

�

1

q ∓(k−iη)
+ 1

q’ ∓(k−iη)

	

〈rs |Ω| ab〉 =
1

q + q′

�

rs

��Vsp(q, q′)

��ab� (|rs〉 ∈ Q)

〈rs |Veff | ab〉 =
〈
rs

∣∣Vsp(q, q′)
∣∣ab〉

Closely related to MBPT

C.f. S-matrix result:

Vsp(q) = 1
r12

+
∫ ∞
0

2k dk f(k)

q2−k2+iη

∆E = δq,−q′
〈
rs

∣∣Vsp(q)∣∣ab〉
No relation to wave operator

No off-diagonal elements of effective Hamiltonian
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Fine-structure separations for He-like ions
lowest P state (in µ Hartree)

Including one- and two-photon exchange

Ion Transition Expt’l Åsén Drake Artemyev

Z=9 3P2 −3 P1 0,118761(1) 0,11875 0,11870

Z=9 3P1 −3 P0 0,0191(2) 0,0188 0,0186

Z=10 3P2 −3 P0 0,2302(1) 0,2302 0,2301

Z=10 3P1 −3 P0 0,0373(2) 0,0373 0,0370

Z=18 3P2 −3 P0 3,4003(8) 3,4003 3,3961 3.4000

The 3P1 state is a quasi-degenerate combination

of the states 1s2p1/2 and 1s2p3/2
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Including correlation

How can we get further?

Including interactions to all orders is equiv. to exactly
solving the Bethe-Salpeter eqn(

E −H0

)
Ψ = V(E)

�

�

�
� � �������� � · · ·

Not feasible beyond two phot. with std methods

Poor treatment of electron correlation
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Including correlation

Gell-Mann–Low theorem (1951)
Single reference

Ψ = lim
γ→0

ΨIγ (t = 0) = lim
γ→0

Uγ (0,−∞)Ψ0

〈Ψ0|Uγ (0,−∞) |Ψ0〉
Denominator eliminates singularities

(Linked-diagram theorem)

Satisfies the time-independent Schrödinger equation
(Single-reference case)(
H0 +H ′) Ψ = EΨ

H ′ is time-independent in Schrödinger picture.
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Including correlation

Single-photon exchange

Interaction between the electrons and the electro-
magnetic radiation field: H′

I(x) = −ψ̂†
Iα

µAµψ̂I

TWO interactions represent the interaction between the
electrons

t = t′
ψ̂†

+ r s ψ̂†
+

1

2

t = t0

ψ̂+ a b ψ̂+

U (2)
γ (t′, t0) = −1

2

�� t′

t0

d4x1d
4x2 ψ̂

†
I+(x1)ψ̂

†
I+(x2)

×iVsp(x1 − x2) ψ̂I+(x2)ψ̂I+(x1) e−γ(|t1|+|t2|)
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Including correlation

Extended Fock space

t = t′

ψ̂
†
+

t = t0

ψ̂+

The intermediate states lie in Fock space

with variable number of photons

Satisfies the Fock-space-Schrödinger eqn


H0 +H ′�Ψ = EΨ H′
I(x) = −ψ̂†

Iα
µAµψ̂I

Projection on Hilbert space gives (std, single-ref.)

Bethe-Salpeter eqn




E − H0

�

Ψ = V(E)
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Including correlation

The Bethe-Salpeter eqn(
E −H0

)
Ψ = V(E)

leads directly to the Brillouin-Wigner expansion

Ψ =

�

1 + 1
E−H0

V(E) + 1
E−H0

V(E) 1
E−H0

V(E) + · · ·

	

The potential is given by all irreducible diagrams

V(E) = +
�

�

�
+ � � �������� � + + · · ·
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Including correlation

Bloch eqn valid in the extended Fock space[
Ω,H0

]
P =

(
H ′Ω − ΩVeff

)
P

Projection of this eqn on Hilbert space
gives the (multiref.) Bethe-Salpeter-Bloch eqn

[
Ω,H0

]
P = V(Heff )Ω − ΩVeff

Einstein Centennial paper:

Lindgren, Salomonson, Hedendahl, Can.J.Phys. 83, 183 (2005)
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Including correlation

Our equations have much simpler

structure in Fock space
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Including correlation

Fock space




H0 +H ′�Ψ = EΨ

Perturbation is given by the energy-independent electron-field

interaction density H′
I(x) = −ψ̂†

Iα
µAµψ̂I

Hilbert space

(
E −H0

)
Ψ = V(E)

Perturbation is the energy-dependent potential

V(E) = +
�

�

�
+ � � �������� � + + · · ·
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Including correlation

Covariant-Evolution-Operator Approach

Including electron correlation

t = t′
ψ̂
†
+

t = t0

ψ̂+

Treat single interaction as perturbation

with wave function in Fock space(
H0 +H ′) Ψ = EΨ

Use the Bloch eqn in Fock space[
Ω,H0

]
P =

(
H ′Ω − ΩVeff

)
P
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Including correlation

Single-photon potential in Coulomb gauge

Vsp(q, q′) = 1
r12

+
∫ ∞
0
fC(k) dk

[
1

q∓(k−iη)
+ 1

q′∓(k−iη)

]

VC V retsp

fC(k) = α1 · α2

sin(kr12)

πr12
− (α1 · ∇1) (α2 · ∇2)

sin(kr12)

πk2 r12

Gaunt interaction scalar-retardation part

sin(kr12)

kr12
=

∞�

l=0

(2l+ 1)jl(kr1)jl(kr2)C
l(1) ·Cl(2)

fC (k) =


∞
l=0

�

V lG(kr1) · V lG(kr2) −V lSR(kr1) · V lSR(kr2)

�
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Including correlation

Bloch equation[
Ω,H0

]
P =

(
H ′Ω − ΩVeff

)
P

Perturbation

H ′ = VC + V l+ + V l−

Note, all terms are energy independent. The energy

dependence originates from the commutator/energy

denominator

This is the only perturbation needed
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Including correlation

[
Ω,H0

]
P =

(
VC + V l+ + V l−

)
ΩP − Folded

+ + + · · · =
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Including correlation

[
Ω,H0

]
P =

(
VC + V l+ + V l−

)
ΩP − Folded
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Including correlation

The procedure can also be used for multi-photon
effects

�

�

�

�

although this is computationally very demanding
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Including correlation

Expanding the one-, two-,...photon interactions
with correlation leads to a much faster convergence

towards the Bethe-Salpeter eqn

�

�

�

· · ·

Compare

�

�

�
� � �������� � · · ·
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Numerical results

Numerical results
Heliumlike neon, 1s2s 1S

Energy contributions beyond relativistic MBPT

�

2637 µH

�

-773

�

-18 72 ∼-5︸ ︷︷ ︸

�

�

�

-7

�

�

�

1-2 µH

The correlation part represents 25% of the effect
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Summary and Conclusions

Summary and Conclusions

• For heavy, highly charged ions relativistic and QED effects

dominate over electron correlation

• For light systems electron correlation dominates

and combined QED-correlation effects might be significant
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Summary and Conclusions

�
Electron correlation
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Summary and Conclusions

Summary and Conclusions

• For heavy, highly charged ions relativistic and QED effects

dominate over electron correlation

• For light systems electron correlation dominates

and combined QED-correlation effects might be significant

• S-matrix standard method for QED calculations—

works well for highly charged ions but not for lighter

systems

Cannot treat multi-reference case (quasi-degeneracy)

• Covariant-evolution-operator method QED technique

developed for multi-reference case
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Summary and Conclusions

The covariant-evolution-operator (Coul. gauge)

Vsp(q, q
′) = 1

r12
+

� ∞
0
f(k) dk

�

1
q∓(k−iη)

+ 1
q′∓(k−iη)

	

〈rs |Ω| ab〉 =
1

q + q′

�

rs

��Vsp(q, q′)

��ab� (|rs〉 ∈ Q)

〈rs |Veff | ab〉 =
〈
rs

∣∣Vsp(q, q′)
∣∣ab〉

Closely related to MBPT

C.f. S-matrix result:

Vsp(q) = 1
r12

+
� ∞

0

2k dk f(k)

q2−k2+iη

∆E = δq,−q′

�
rs

��Vsp(q)��ab�
No relation to wave operator

No off-diagonal elements of effective Hamiltonian
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Summary and Conclusions

Summary and Conclusions

• For heavy, highly charged ions relativistic and QED effects

dominate over electron correlation

• For light systems electron correlation dominates

and combined QED-correlation effects might be significant

• S-matrix standard method for QED calculations—

works well for highly charged ions but not for lighter systems

Cannot treat multi-reference case (quasi-degeneracy)

• Covariant-evolution-operator method QED technique

developed for multi-reference case

• By treating field interaction with single electron as

perturbation in Fock space, electron correlation could be

included. Leads to faster convergence towards the

Bethe-Salpeter eqn.
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Summary and Conclusions

Covariant-Evolution-Operator Approach

Including electron correlation

t = t′
ψ̂
†
+

t = t0

ψ̂+

Treat single interaction as perturbation

with wave function in Fock space(
H0 +H ′) Ψ = EΨ

Use the Bloch eqn in Fock space[
Ω,H0

]
P =

(
H ′Ω − ΩVeff

)
P
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Summary and Conclusions

Numerical results
Heliumlike neon, 1s2s 1S

Energy contributions beyond relativistic MBPT

�

2637 µH

�

-773

�

-18 72 ∼-5︸ ︷︷ ︸

�

�

�

-7

�

�

�

1-2 µH

The correlation part represents 25% of the effect
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Outlook

Outlook

• The new technique can lead to more accurate QED

calculations

on light and medium-heavy systems

• The technique is for computational reasons at present

limited to few-electron systems

• So far, only non-radiative effects have been evaluated.

Evaluation of radiative effects is in preparation

• A good testing case is the fine structure of He-like ions
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Outlook

Effects beyond NVPA referred to as QED effects

• Non-radiative effects (retardation, virtual pairs)

Retarded Breit Araki-Sucher

�

�

�

• Radiative effects (self energy, vacuum polarization, vertex
corrections)

Self energy

����������

Vacuum polarization

����� � � �������� �

Vertex corr.
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Outlook

Outlook

• The new technique can lead to more accurate QED

calculations

on light and medium-heavy systems

• The technique is for computational reasons at present

limited to few-electron systems

• So far, only non-radiative effects have been evaluated.

Evaluation of radiative effects is in preparation

• A good testing case is the fine structure of He-like ions

Page 103



Outlook

Fine-structure separations for He-like ions
Lowest P state (in µ Hartree)

Ion Transition Expt’l Åsén Drake Artemyev

Z=9 3P2 −3 P1 0,118761(1) 0,11875 0,11870

Z=9 3P1 −3 P0 0,0191(2) 0,0188 0,0186

Z=10 3P2 −3 P0 0,2302(1) 0,2302 0,2301

Z=10 3P1 −3 P0 0,0373(2) 0,0373 0,0370

Z=18 3P2 −3 P0 3,4003(8) 3,4003 3,3961 3.4000

The 3P1 state is a quasi-degenerate combination of the states 1s2p1/2

and 1s2p3/2
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• Most challenging are QED calculations on the lightest
systems, where combined QED-correlation effects are
most important

• A crucial test is the fine structure of neutral helium,
which has been measured to a few ppb (Gabrielse et al.

PRL 95, 20301, 2005)
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Comparison between experimental and theoretical fine
structure for the 2 3P state of neutral heliumExptl�

�Theory
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Analytical calculations have failed to reproduce

the helium fine structure

We believe that a ”unified” numerical method

can be constructed for heavy as well as light

systems!
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