Page 0

Kapuy lecture 5 October, 2006

Energy-dependent Many-Body-Perturbation Theory

with Applications in Quantum-Electrodynamics Problems

by Ingvar Lindgren

Physics Department, Göteborg University

• Quantum-electrodynamics

is the quantum theory of the interaction between electrons and the electro-magnetic radiation field

- The interaction is energy dependent Standard MBPT procedures cannot be used
- Our goal is to construct
 a combined Many-Body-QED procedure

- Analytical methods
 - Expansion of the Bethe-Salpeter eqn in powers in α and $Z\alpha$ (Drake, Pachucki)

Restricted to light elements

- Numerical methods
 - S-matrix (Only for single-reference model space. Cannot treat quasidegeneracy
 - Two-times Green's function (Shabaev et al. 1993)
 - Covariant evolution operator (Lindgren et al. 2001)

Restricted to heavy elements

- The exact treatment of a two-electron system requires the solution of the **Bethe-Salpeter equation**
- Normally based upon the **Brillouin-Wigner** perturbation theory
- Using the covariant-evolution operator expansion to all orders is equivalent to solving the BS eqn Lindgren, Salomonson, and Hedendahl, Can. J. Phys. 83, 183 (2005)
- Gives the link between BS eqn and <u>Many-Body Perturbation Theory</u> (based upon Rayleigh-Schrödinger PT)

Definition of QED

Standard Many-Body Procedures

Non-relativistic atomic Hamiltonian:

$$H = \sum_{i=1}^{N} h_{S}(i) + \sum_{i < j}^{N} rac{1}{r_{ij}} \; ; \qquad h_{S} = -rac{1}{2}
abla^{2} - rac{Z}{r}$$

- Many-body perturbation theory (MBPT)
- Coupled-Custer Approach (CCA)
- Configuration Interaction (CI)
- Multi-Configuration Hartree-Fock (MCHF)

Can treat electron correlation to essentially all orders

Definition of QED

Relativistic Dirac-Coulomb-Breit Hamiltonian

$$H = \mathbf{\Lambda}_+ \Big[\sum_{i=1}^N h_D(i) + \sum_{i < j}^N \frac{1}{r_{ij}} + H_B \Big] \mathbf{\Lambda}_+$$

Breit interaction, 1932-33

$$H_B = -rac{1}{2}\sum_{i<1} \left[lpha_i \cdot lpha_j + rac{(lpha_i \cdot r_{ij})(lpha_j \cdot r_{ij})}{r_{ij}^2}
ight]$$

Retardation and virtual pairs neglected No-virtual-pair approximation (NVPA) (Sucher 1980) **Definition of QED**

- Most challenging are QED calculations on the lightest systems, where combined QED-correlation effects are most important
- A crucial test is the fine structure of neutral helium, which has been measured to a few ppb (Gabrielse et al. PRL 95, 20301, 2005)

Analytical calculations have failed to reproduce the helium fine structure

Can a "unified" numerical method improve the situation?

- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Time-independent MBPT

Effective Hamiltonian

Project the Schrödinger eqn onto the model space:

 $P: \ H \, \Psi^{\alpha} = E^{\alpha} \, \Psi^{\alpha}$

 $PH\Omega\Psi_0^\alpha = PE\Psi^\alpha$

 $H_{ ext{eff}} \, \Psi^lpha_0 = E^lpha \, \Psi^lpha_0$

 $H_{\text{eff}} = PH\Omega P = PH_0P + V_{\text{eff}}$

 $V_{\text{eff}} = PH'\Omega P$ is the effective interaction

 $H_{\rm eff}, V_{\rm eff}$ generally multi-dimensional matrices

Generalized Bloch equation

(multi-reference) (Lindgren 1974)

$$ig[\Omega, H_0 ig] P = ig(H' \Omega - \Omega \, V_{ ext{eff}} ig) P$$

Generates the generalized Rayleigh-Schrödinger pert. exp. The Brueckner-Goldstone linked-diagram expansion The Coupled-Cluster expansion

The wave operator and the effective Hamiltonian

are the key ingredients of multi-reference

many-body perfurbation theory.

Outline

- Introduction
 - Definition of QED
 - The need for a combined many-body-QED procedure
- Standard time-independent perturbation theory
- Time-dependent perturbation theory
 - S-matrix formulation
 - Covariant evolution-operator formalism
 - Towards exact treatment
 - Including electron correlation. Fock space
- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Time-dependent MBPT

Adiabatic damping

$$H_{\mathrm{I}}'(t)
ightarrow H_{\mathrm{I}m{\gamma}}'(t) = H_{\mathrm{I}}'(t) \, \mathrm{e}^{-m{\gamma}|t|}$$

$$egin{aligned} U_{\gamma}(t,t_0) &= 1 + \sum\limits_{n=1}^{\infty} rac{(-\mathrm{i})^n}{n!} \int_{t_0}^t \mathrm{d}^4 x_n \cdots \int_{t_0}^t \mathrm{d}^4 x_1 \ imes T_\mathrm{D}ig[\mathcal{H}_\mathrm{I}'(x_n)\mathcal{H}_\mathrm{I}'(x_{n-1})\cdots\mathcal{H}_\mathrm{I}'(x_1)ig] \ \mathrm{e}^{-\gamma(|t_1|+\cdots+|t_n|)} \ H_\mathrm{I}'(t) &= \int \mathrm{d}^3 x \, \mathcal{H}_\mathrm{I}'(t,x) \end{aligned}$$

Evolution operator singular as $\gamma \to 0$

Single-photon exchange

Interaction between the electrons and the electromagnetic radiation field: ${\cal H}_{\rm I}'(x)=-\hat{\psi}_{\rm I}^{\dagger}\alpha^{\mu}A_{\mu}\hat{\psi}_{\rm I}$

TWO interactions represent the interaction between the electrons

$$t = t' \\ \hat{\psi}^{\dagger}_{+} r \\ \hat{\psi}^{\dagger}_{+} r \\ \hat{\psi}^{\dagger}_{+} a \\ \hat{\psi}^{\dagger}_{+}$$

$$egin{aligned} &U_{\gamma}^{(2)}(t',t_0)=-rac{1}{2} \iint_{t_0}^{\circ} \mathrm{d}^4 x_1 \mathrm{d}^4 x_2 \, \hat{\psi}_{\mathrm{I+}}^{\dagger}(x_1) \hat{\psi}_{\mathrm{I+}}^{\dagger}(x_2) \ & imes \mathrm{i} V_{sp}(x_1-x_2) \, \hat{\psi}_{\mathrm{I+}}(x_2) \hat{\psi}_{\mathrm{I+}}(x_1) \, \mathrm{e}^{-\gamma(|t_1|+|t_2|)} \end{aligned}$$

Time-dependent MBPT

$$V_{sp}(x_1 - x_2) = \alpha^{\mu} \alpha^{\nu} D_{F\mu\nu}(x_1 - x_2)$$

is the equivalent potential for single-photon exchange

$$D_{F\mu
u}(x_1-x_2)=-\mathrm{i}A_{\mu}(x_1)A_{
u}(x_2)$$

is the Feynman photon propagator

S-matrix

S-matrix

In Coulomb gauge:

$$V^{C}_{sp}(q) = rac{1}{r_{12}} + \int_{0}^{\infty} rac{2k\,\mathrm{d}k\,f_{C}(k)}{q^{2}-k^{2}+\mathrm{i}\eta}$$

$$f_C(k) = \alpha_1 \cdot \alpha_2 \ \frac{\sin(kr_{12})}{\pi r_{12}} - (\alpha_1 \cdot \nabla_1)(\alpha_2 \cdot \nabla_2) \ \frac{\sin(kr_{12})}{\pi k^2 r_{12}}$$

Instantaneous Coulomb and retarded Breit interaction

The S-matrix formulation works well for first- and second-order QED contributions

Equivalent to lowest-order electron correlation Works only in single-reference case

Can not treat quasidegeneracy

Outline

- Introduction
 - Definition of QED
 - The need for a combined many-body-QED procedure
- Standard time-independent perturbation theory
- Time-dependent perturbation theory
 - S-matrix formulation
 - Covariant evolution-operator formalism
 - Towards exact treatment
 - Including electron correlation. Fock space
- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Covariant evolution operator

(Lindgren et al. PRA 2001, Phys. Rep. Jan. 2004)

Generalized Gell-Mann-Low theorem

 $\Psi^{lpha} = \lim_{\gamma o 0} rac{N^{lpha} U_{\gamma}(0,-\infty) \, \Phi^{lpha}}{\langle \Phi^{lpha} | U_{\gamma}(0,-\infty) | \Phi^{lpha}
angle}$

 $\Phi^{\alpha} = \lim_{\gamma \to 0} \lim_{\gamma \to -\infty} \Psi^{\alpha}(t)$
parent state

Satisfies the S.E. in the multi-reference case:

 $ig(H_0+H'ig) \, \Psi^lpha = E^lpha \, \Psi^lpha$

Covariant evolution operator

Wave operator

 $\Omega = 1 + Q \widetilde{U}(0,-\infty)$

 ${\rm s}$ Effective interaction

$$V_{ ext{eff}} = P \Big[\operatorname{i} rac{\partial}{\partial t} \, \widetilde{U}(t, -\infty) \Big]_{t=0} P$$

 $H_{\rm eff} = PH_0P + V_{\rm eff}$

 $\widetilde{U}(t,-\infty)$ the regular part of the evolution operator

Connection with standard MBPT

Covariant-evolution operator for single-photon exchange

$$\left\langle rs \left| U^{(2)}_{ ext{Cov}}(t',-\infty)
ight| ab
ight
angle = rac{\mathrm{e}^{-\mathrm{i}t'(q+q')}}{q+q'} \left\langle rs ig| V_{sp}(q,q') ig| ab
ight
angle$$

In Coulomb gauge:

 $q = \varepsilon_a - \varepsilon_r, \ q' = \varepsilon_a - \varepsilon_r$

$$V^C_{sp}(q,q') = rac{1}{r_{12}} + \int_0^\infty f_C(k) \, \mathrm{d}k igg[rac{1}{q \, \mp (k - \mathrm{i} \eta)} + rac{1}{q' \, \mp (k - \mathrm{i} \eta)} igg] \ f_C(k) = lpha_1 \cdot lpha_2 \; rac{\sin(kr_{12})}{\pi r_{12}} - (lpha_1 \cdot
abla_1)(lpha_2 \cdot
abla_2) \; rac{\sin(kr_{12})}{\pi k^2 r_{12}}$$

Note, potential has two parameters

Covariant evolution operator

The covariant-evolution-operator (Coul. gauge) $V_{sp}(\mathbf{q},\mathbf{q}') = \frac{1}{r_{12}} + \int_0^\infty f(k) \, \mathrm{d}k \left[\frac{1}{\mathbf{q} \mp (k-\mathrm{i}\eta)} + \frac{1}{\mathbf{q}' \mp (k-\mathrm{i}\eta)} \right]$ $\langle rs | \mathbf{\Omega} | \, ab
angle = \frac{1}{q+q'} \langle rs | V_{sp}(q,q') | ab
angle \quad (|rs
angle \in Q)$

 $\langle rs | V_{\text{eff}} | ab
angle = \langle rs | V_{sp}(q,q') | ab
angle$ Closely related to MBPT

C.f. S-matrix result:

 $V_{sp}(q) = rac{1}{r_{12}} + \int_0^\infty rac{2k\,{
m d}k\,f(k)}{q^2 - k^2 + {
m i}\eta}$

$$\Delta E = \delta_{oldsymbol{q},-oldsymbol{q}^{\prime}} ig\langle rsig| V_{sp}(oldsymbol{q})ig| abig
angle$$

No relation to wave operator No off-diagonal elements of effective Hamiltonian

Fine-structure separations for He-like ions				
lowest P state (in μ Hartree)				
Including one- and two-photon exchange				
Transition	Expt'l	Åsén	Drake	Artemyev
${}^{3}P_{2} = {}^{3}P_{1}$	0.118761(1)	0 11875	0 11870	
2 1	, , ,	,	,	
$^{5}P_{1} - ^{5}P_{0}$	0,0191(2)	0,0188	0,0186	
${}^{3}P_{2} - {}^{3}P_{0}$	$0,\!2302(1)$	0,2302	$0,\!2301$	
${}^{3}P_{1} - {}^{3}P_{0}$	0,0373(2)	0,0373	$0,\!0370$	
${}^{3}P_{2} - {}^{3}P_{0}$	$3,\!4003(8)$	$3,\!4003$	3,3961	3.4000
	lo Including Transition ${}^{3}P_{2} - {}^{3}P_{1}$ ${}^{3}P_{1} - {}^{3}P_{0}$ ${}^{3}P_{2} - {}^{3}P_{0}$ ${}^{3}P_{1} - {}^{3}P_{0}$	lowest P state (Including one- and twTransitionExpt'l ${}^{3}P_{2} - {}^{3}P_{1}$ 0,118761(1) ${}^{3}P_{1} - {}^{3}P_{0}$ 0,0191(2) ${}^{3}P_{2} - {}^{3}P_{0}$ 0,2302(1) ${}^{3}P_{1} - {}^{3}P_{0}$ 0,0373(2)	lowest P state (in μ HartrIncluding one- and two-photonTransitionExpt'lÅsén $^{3}P_{2} - {}^{3}P_{1}$ 0,118761(1)0,11875 $^{3}P_{1} - {}^{3}P_{0}$ 0,0191(2)0,0188 $^{3}P_{2} - {}^{3}P_{0}$ 0,2302(1)0,2302 $^{3}P_{1} - {}^{3}P_{0}$ 0,0373(2)0,0373	Including one- and two-photon exchangTransitionExpt'lÅsénDrake ${}^{3}P_{2} - {}^{3}P_{1}$ 0,118761(1)0,118750,11870 ${}^{3}P_{1} - {}^{3}P_{0}$ 0,0191(2)0,01880,0186 ${}^{3}P_{2} - {}^{3}P_{0}$ 0,2302(1)0,23020,2301 ${}^{3}P_{1} - {}^{3}P_{0}$ 0,0373(2)0,03730,0370

The ${}^{3}P_{1}$ state is a quasi-degenerate combination of the states $1s2p_{1/2}$ and $1s2p_{3/2}$

Outline

- Introduction
 - Definition of QED
 - The need for a combined many-body-QED procedure
- Standard time-independent perturbation theory
- Time-dependent perturbation theory
 - S-matrix formulation
 - Covariant evolution-operator formalism
 - Towards exact treatment
 Including electron correlation. Fock space
- Numerical results of QED effects on He-like ions
- Conclusions and Outlook

Single-photon exchange

Interaction between the electrons and the electromagnetic radiation field: ${\cal H}'_{\rm I}(x) = -\hat{\psi}^{\dagger}_{\rm I} \alpha^{\mu} A_{\mu} \hat{\psi}_{\rm I}$

TWO interactions represent the interaction between the electrons

$$t = t' \stackrel{\psi^{\dagger}_{+}}{\underset{\psi^{\dagger}_{+}}{}} r \stackrel{s}{\underset{\psi^{\dagger}_{+}}{}} \psi^{\dagger}_{+}$$

 $t = t_{0} \stackrel{\psi^{\dagger}_{+}}{\underset{\psi^{\dagger}_{+}}{}} \psi^{\dagger}_{+}$
 $t = t_{0} \stackrel{\psi^{\dagger}_{+}}{\underset{\psi^{\dagger}_{+}}{}} \psi^{\dagger}_{+}$
 $U_{\gamma}^{(2)}(t', t_{0}) = -\frac{1}{2} \iint_{t_{0}}^{t'} d^{4}x_{1} d^{4}x_{2} \psi^{\dagger}_{\mathrm{I}+}(x_{1}) \psi^{\dagger}_{\mathrm{I}+}(x_{2})$
 $\times iV_{sp}(x_{1} - x_{2}) \psi_{\mathrm{I}+}(x_{2}) \psi_{\mathrm{I}+}(x_{1}) e^{-\gamma(|t_{1}| + |t_{2}|)}$

Extended Fock space

 $t = t_0$

The intermediate states lie in Fock space with variable number of photons Satisfies the Fock-space-Schrödinger eqn $(H_0+H')\,\Psi=E\,\Psi \qquad {\cal H}_{
m I}(x)=-\hat\psi_{
m I}^\daggerlpha^\mu A_\mu\hat\psi_{
m I}$ Projection on Hilbert space gives (std, single-ref.) Bethe-Salpeter eqn $ig(E-H_0ig) \Psi = \mathcal{V}(E)$

The Bethe-Salpeter eqn

$$(\boldsymbol{E}-\boldsymbol{H_0}) \boldsymbol{\Psi} = \boldsymbol{\mathcal{V}}(\boldsymbol{E})$$

leads directly to the Brillouin-Wigner expansion

$$\Psi = \left[1 + rac{1}{E-H_0}\mathcal{V}(E) + rac{1}{E-H_0}\mathcal{V}(E)rac{1}{E-H_0}\mathcal{V}(E) + \cdots
ight]$$

The potential is given by all irreducible diagrams

$$\boldsymbol{\mathcal{V}}(\boldsymbol{E}) = \left| \boldsymbol{\mathcal{V}}(\boldsymbol{E}) + \boldsymbol{\mathcal{V}}(\boldsymbol$$

$$ig[\Omega, H_0 ig] P = ig(H' \Omega - \Omega \, V_{ ext{eff}} ig) P$$

Projection of this eqn on Hilbert space gives the (multiref.) Bethe-Salpeter-Bloch eqn

$$ig[\Omega,H_0ig] P = \mathcal{V}(H_{ ext{eff}})\Omega - \Omega \, V_{ ext{eff}}$$

Einstein Centennial paper: Lindgren, Salomonson, Hedendahl, Can.J.Phys. <u>83</u>, 183 (2005)

Our equations have much simpler structure in Fock space

Bloch equation

 $[\Omega, H_0]P = (H'\Omega - \Omega V_{\text{eff}})P$

Perturbation

 $H' = V_C + V_+^l + V_-^l$

Note, all terms are energy independent. The energy dependence originates from the commutator/energy denominator

This is the only perturbation needed

The procedure can also be used for multi-photon effects

although this is computationally very demanding

Numerical results

- For heavy, highly charged ions relativistic and QED effects dominate over electron correlation
- For light systems electron correlation dominates and combined QED-correlation effects might be significant

- For heavy, highly charged ions relativistic and QED effects dominate over electron correlation
- For light systems electron correlation dominates and combined QED-correlation effects might be significant
- S-matrix standard method for QED calculations works well for highly charged ions but not for lighter systems

Cannot treat multi-reference case (quasi-degeneracy)

• Covariant-evolution-operator method QED technique developed for multi-reference case

The covariant-evolution-operator (Coul. gauge) $V_{sp}(q,q') = rac{1}{r_{12}} + \int_0^\infty f(k) \, \mathrm{d}k \, \left| rac{1}{q \mp (k-\mathrm{i}\eta)} + rac{1}{q' \mp (k-\mathrm{i}\eta)}
ight|$ $egin{array}{l} \langle rs \left| \Omega
ight| ab
angle = rac{1}{a+a'} ig \langle rs ig| V_{sp}(q,q') ig| ab ig
angle \quad (|rs
angle \in Q) \end{array}$ $\langle rs \left| V_{ ext{eff}}
ight| ab
angle = \langle rs \left| V_{sp}(q,q')
ight| ab
angle$ Closely related to MBPT C.f. S-matrix result: $V_{sp}(q) = rac{1}{r_{12}} + \int_0^\infty rac{2k \, \mathrm{d}k \, f(k)}{a^2 - k^2 + \mathrm{i}n}$ $\Delta E = \delta_{q,-q'} \left\langle rs | V_{sp}(q) | ab
ight
angle$ No relation to wave operator No off-diagonal elements of effective Hamiltonian

- For heavy, highly charged ions relativistic and QED effects dominate over electron correlation
- For light systems electron correlation dominates and combined QED-correlation effects might be significant
- S-matrix standard method for QED calculations works well for highly charged ions but not for lighter systems Cannot treat multi-reference case (quasi-degeneracy)
- Covariant-evolution-operator method QED technique developed for multi-reference case
- By treating field interaction with <u>single</u> electron as perturbation in <u>Fock space</u>, electron correlation could be included. Leads to faster convergence towards the Bethe-Salpeter eqn.

Outlook

- The new technique can lead to more accurate QED calculations on light and medium-heavy systems
- The technique is for computational reasons at present limited to few-electron systems
- So far, only non-radiative effects have been evaluated. Evaluation of radiative effects is in preparation
- A good testing case is the fine structure of He-like ions

Effects beyond NVPA referred to as QED effects

• **Non-radiative effects** (retardation, virtual pairs)

Retarded Breit

Araki-Sucher

• **Radiative effects** (self energy, vacuum polarization, vertex corrections)

Outlook

- The new technique can lead to more accurate QED calculations on light and medium-heavy systems
- The technique is for computational reasons at present limited to few-electron systems
- So far, only non-radiative effects have been evaluated. Evaluation of radiative effects is in preparation
- A good testing case is the fine structure of He-like ions

Fine-structure	separations	for	He-like	ions
----------------	-------------	-----	---------	------

Lowest P state (in μ Hartree)

Ion	Transition	Expt'l	Åsén	Drake	Artemyev
Z=9	${}^{3}P_{2} - {}^{3}P_{1}$	$0,\!118761(1)$	$0,\!11875$	$0,\!11870$	
Z=9	${}^{3}P_{1} - {}^{3}P_{0}$	$0,\!0191(2)$	0,0188	0,0186	
Z=10	${}^{3}P_{2} - {}^{3}P_{0}$	$0,\!2302(1)$	0,2302	$0,\!2301$	
Z=10	${}^{3}P_{1} - {}^{3}P_{0}$	0,0373(2)	0,0373	$0,\!0370$	
Z=18	${}^{3}P_{2} - {}^{3}P_{0}$	$3,\!4003(8)$	$3,\!4003$	$3,\!3961$	3.4000

The $^{3}P_{1}$ state is a quasi-degenerate combination of the states $1s2p_{1/2}$ and $1s2p_{3/2}$

- Most challenging are QED calculations on the lightest systems, where combined QED-correlation effects are most important
- A crucial test is the fine structure of neutral helium, which has been measured to a few ppb (Gabrielse et al. PRL 95, 20301, 2005)

Analytical calculations have failed to reproduce the helium fine structure

We believe that a "unified" numerical method can be constructed for heavy as well as light systems!

Coworkers

Sten Salomonson Björn Åsén Daniel Hedendahl

Recent publications

- I.Lindgren, S.Salomonson, and B.Åsén, Physics Reports, <u>389</u>, 161 (2004)
- I.Lindgren, S.Salomonson and D.Hedendahl, Can. J. Phys. <u>83</u>, 183 (2005) ("Einstein Centennial paper")
- I.Lindgren, S.Salomonson and D.Hedendahl, Phys. Rev. A<u>73</u>, 062502 (2006)