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Abstract. Many-Body Perturbation Theory (MBPT) is today highly developed. The electron correlation of atomic and
molecular systems can be evaluated to essentially all orders of perturbation theory—also relativistically (RMBPT)—by means
of techniques of Coupled-Cluster type. When high accuracy is needed, effects beyond RMBPT will enter, i.e., effects of
retarded Breit interaction and of radiative effects (Lamb shift), effects normally referred to as QED effects. These effects can be
evaluated by means of special techniques, like S-matrix formulation, which cannot simultaneously treat electron correlation.
It would for many applications be desirable to have access to a numerical technique, where effects of electron correlation and
of QED could be treated on the same footing. Such a technique is presently being developed and gradually implemented at
our laboratory. Some numerical results will be given.
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Introduction

Many-Body Perturbation Theory (MBPT) can effectively treat electron correlation of atomic and molecular systems
to essentially all orders, using methods of Coupled-Cluster type [? ], and it can also handle quasi-degeneracy
problems using the "extended model-space technique" [? ]. Quantum-electrodynamical (QED) effects, however, can
be combined with standard MBPT only in the form of first-order energy corrections [? ]. QED effects alone can be
treated with higher accuracy, using S-matrix formulation or related numerical techniques [? ], but these techniques
cannot treat the electron correlation beyond second order. It would be desirable to have access to a technique capable
of treating QED and electron correlation in a unified fashion. The Covariant-Evolution Operator technique, recently
introduced at our laboratory for QED calculations [? ? ? ], has such a potential that is presently being explored.

The covariant evolution operator represents the time evolution of the relativistic state vector. This operator contains
singularities in the form of unlinked diagrams or intermediate model-space states, and eliminating these leads to
what we refer to as the Green’s operator. This operator, which plays a central role in the new formulation, is quite
analogous to the Green’s function of field theory and at the same time closely related to operators of many-body
perturbation theory. Therefore, it serves as a link between field theory and MBPT and makes it possible to treat
quantum-electrodynamics systematically within the framework of MBPT. For two-electron systems, treated to all
orders, the procedure leads to the Bethe-Salpeter equation. The technique is presently being applied to light heliumlike
ions, where quasi-degeneracy appears in excited states and where effects of electron correlation as well as of QED
might be important. Presently, no other numerical technique is available for such calculations.

Basic formalism

In standard time-independent MBPT a number of target states are considered, satisfying the Schrödinger equation
H|Ψα〉= Eα |Ψα〉. The basic tools are the wave operator Ω̂, which transforms the model states to the full target states,
and the effective Hamiltonian Heff, which operating on a model state yields the corresponding exact energy [? ]

|Ψα〉= Ω̂|Ψα
0 〉; Ĥeff|Ψα

0 〉= Eα |Ψα
0 〉 (1)

The model states are the projections of the target states on the model space (intermediate normalization) |Ψα
0 〉= P|Ψα〉.

The wave operator satisfies the generalized Bloch equation in the linked-diagram form
[
Ω̂,H0

]
P = Q

(
V Ω̂− Ω̂Veff

)
linkedP (2)
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FIGURE 1. The non-covariant and the covariant evolution-operators for single-photon exchange. In the covariant form (right)
the outgoing lines can be particle or hole lines.

with Q = 1−P ; H = H0 +V and Heff = PH0P +Veff with Veff being the effective interaction. The Bloch equation
generates the linked-diagram expansion, valid also in the quasi-degenerate case. The last term (Ω̂Veff) gives rise to
"folded" diagrams.

The normal-ordered exponential Ansatz, Ω̂ = {eS}, yields the corresponding Coupled-Cluster Approach
[
Sn,H0

]
P = Q

(
V Ω̂− Ω̂Veff

)
conn,nP (3)

with the cluster operator separated into one-, two-,...body parts, S = S1 +S2 + · · · . The second term, S2, represents the
important pair correlation. The S diagrams are "connected", which is distinct from "linked" diagrams [? ].

In time-dependent perturbation theory the basic tool is the time-evolution operator, in the interaction picture defined

|Ψ(t)〉= Û(t, t0) |Ψ(t0)〉 (t > t0) (4)

leading to the expansion

Û(t, t0) =
∞

∑
n=0

(−i)n

n!

∫ t

t0
dx4

1 . . .
∫ t

t0
dx4

n T
[
Ĥ ′(x1) . . . Ĥ ′(xn)

]
(5)

T is the time-ordering operator and Ĥ ′(x) =−eψ̂†αµ Aµ ψ̂ represents the electron interaction with the electromagnetic
field Aµ . The contraction of two such interactions corresponds to the exchange of a single retarded photon. The
operator (??) is non-covariant, since time moves only in the positive direction (Fig. ?? left). It can be made covariant
by inserting electron propagators on the in- and outgoing lines. Normally, we shall operate to the right on unperturbed
model states, which implies that we can with adiabatic damping set the initial time t0 = −∞, and no propagators on
incoming lines are needed. Time can then flow in both directions on outgoing lines (Fig. ?? right). We then express
the covariant evolution operator for single-photon exchange

ÛCov(t,−∞) = i2
∫ ∫

d3x d3x′ ψ̂†(x)ψ̂†(x′)
∫ ∫

d4x1 d4x2 SF(x,x1)SF(x′,x2)Vsp(x1,x2) ψ̂(x2)ψ̂(x1) (6)

where the energy-dependent potential is in the Fourier transform given by

〈rs|Vsp(E )|ab〉=
〈

rs
∣∣∣
∫ ∞

0
dk f (k)

[ 1
E − εr− εu− (k− iγ)r

+
1

E − εs− εt − (k− iγ)s

]∣∣∣tu
〉

(7)

εx is the energy of the orbital x, generated by the Dirac equation in the nuclear field; (·)x has the same sign as εx; k
is the photon momentum and f (k) is a gauge-dependent function. This expression is valid also when energy is not
conserved between initial and final states. This is needed for treating quasi-degeneracy with the extended-model-space
technique [? ]. In the case of energy conservation, q+q′ = 0, (??) goes over into standard S-matrix result [? ].

Generally, the covariant evolution operator is singular, due to intermediate model-space-states. Eliminating the
singularities, leads to what we refer to as the Green’s operator, Ĝ. This is very closely related to the field-theoretical
Green’s function, the main difference being that it is an operator, while the Green’s function is a function. The Green’s
operator is separated into open and closed parts, Ĝ = 1 + Ĝop + Ĝcl, where Ĝop operates outside and Ĝcl inside the
model space. The former is essentially the MBPT wave operator and the latter yields the effective interaction (??, ??)

Ω̂ = 1+ Ĝop ; Veff = P
(

i
∂
∂ t

Ĝcl(t)
)

t=0
P (8)

The Green’s operator can be applied also to energy-dependent interactions of QED type and therefore
forms a link between MBPT and quantum field theory.
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FIGURE 2. The two-body part of the effective potential Ŵ in the Bethe-Salpeter equation (??) contains all irreducible two-body
potential diagrams, including the Coulomb interaction as well as all retardation and radiative effects.
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FIGURE 3. The wave function with uncontracted photons lies in an extended Fock space.

Eliminating singularities from the covariant evolution operator, leaves some finite residuals [? ? ],

Ĝ(t) = Ĝ0(t)+
∞

∑
n=1

δ nĜ0(t)
δE n

(
V̂eff

)n (9)

where Ĝ0(t) represents the Green’s operator without any intermediate model-space states

Ĝ0 = 1+ΓQŴ +ΓQŴΓQŴ + · · · ; ΓQ =
Q

E0−H0
(10)

and Ŵ represents all irreducible multi-photon interactions (Fig. ??). The difference ratios go over into derivatives in
the case of complete degeneracy. These terms represent the model-space contributions and are analogous to the folded
diagrams of open-shell MBPT (??), but contain also energy derivatives (difference ratios) of the energy-dependent
interaction. Summing the contributions to all orders is in the single-reference case equivalent to the full Bethe-Salpeter
(BS) equation

(E− Ĥ0)|Ψ〉= Ŵ (E)|Ψ〉 (11)

This equation can be solved self-consistently, using e.g. Brillouin-Wigner perturbation theory. For many-body purposes
(size-extensivity etc. [? ]) we would prefer to work with the Rayleigh-Schrödinger theory and the linked-diagram
representation, as in standard MBPT. This can be achieved by transforming the BS equation to the corresponding
Bloch equation (??)

(E0− Ĥ0)Ω̂P =
(

Ŵ (E)Ω̂− Ω̂Ŵeff(E)
)

linked
P (12)

referred to as the Bethe-Salpeter-Bloch equation. Note that the energy parameter of the BS potential Ŵ and of the BS
effective interaction Ŵeff = PŴ Ω̂P is the target-state energy E, and not the model-state energy E0, as one might first
have expected. This shift is due to the derivative terms of the expansion (??). The Bloch equation (??) can be used
to generate a perturbative expansion of the wave operator for energy-dependent interactions. The difficulty is here to
evaluate the energy derivatives of the (multi-photon) perturbation (Ŵ ). This difficulty can be overcome by working in
the extended Fock space.

Implementation. Fock space treatment

With uncontracted interactions (??) the wave function lies in an extended Fock space with a variable number of
(virtual) photons (Fig. ??). This is utilized for the numerical evaluation. Here, the Bloch equation (??) has a particularly
simple structure [

Ω̂,H0
]
P =

(
Ĥ ′Ω̂− Ω̂Veff

)
linkedP (13)
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FIGURE 4. Lowest-order contribution to the wave operator in the extended Fock space and the corresponding contribution to the
single- and double- photon exchange.
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FIGURE 5. Numerical results for non-radiative QED contributions (retarded interactions) in the ground state of He-like neon (in
µ Hartree).

where Ĥ ′ is the energy-independent perturbation (??) and Veff = PH ′Ω̂P. The energy dependence is here introduced
by the energy denominator, and the energy derivative by the folded diagrams with a double energy denominator. The
energy-dependent interaction can be mixed with energy-independent Coulomb interactions.

Starting with iterating the Coulomb interaction, leads to the standard (relativistic) pair-correlation (S2) function (Fig.
?? a). We then generate a new pair function with one uncontracted photon (b), and additional Coulomb interactions
can be added before and after closing the photon (c-e). This leads to one retarded Breit interaction with a number
of Coulomb interactions. Absorbing the photon on the same electron, leads instead to electron self energy and vertex
corrections—after proper renormalization (f). The whole procedure can then be repeated (g). In principle, it is possible
to create a second photon, before the first in absorbed (Fig. ??), which would generate irreducible multi-retarded
photon exchange. This, however, would exceed the computing power we presently have available. The effect might be
estimated analytically, though.

Some numerical results for heliumlike neon are shown in Fig. ??. The first two diagrams (a,b) can be evaluated by
means of standard QED techniques, like S-matrix formulation [? ]. Diagrams of type (c), which represent first-order
QED effects with high-order electron correlation, have never been numerically evaluated before. It is interesting to
note that this effect dominates heavily over the second-order QED effect (b). This demonstrates clearly the importance
of combining QED with electron correlation in a systematic fashion, not only for the lightest systems.
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