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Coulomb-gauge self-energy calculation for high-Z hydrogenic ions
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We present results from numerical calculations in the Coulomb gauge of the first-order self-energy shift of
bound hydrogenic states in highly stripped ions. We apply the expressions for the renormalized free-electron
self-energy and vertex operators obtained by G. S. Adkins [Phys. Rev. D 27, 1814 (1983); 34, 2489 (1986)]
to the evaluation of the zero- and one-potential terms. It is found that in this gauge the contribution from the
many-potential term, which limits the overall accuracy, is significantly smaller than in the covariant Feynman
gauge. This enables us to improve the accuracy of the self-energy prediction considerably compared to that
obtained in the corresponding Feynman-gauge calculations.
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I. INTRODUCTION

Today, experimentalists are performing extremely precise
measurements on static and dynamic properties of highly
stripped ions [1]. These simple systems provide an excellent
opportunity for testing the validity of quantum electrodynam-
ics (QED) in strong electromagnetic fields. Radiative effects
such as self-energy, vacuum polarization, and vertex correction
constitute a significant part of the binding energy of an electron
in a few-electron ion of high nuclear charge Z, and in order to
interpret the experimental results, equally precise calculations
of these contributions have to be performed.

For systems involving more than one electron, the combined
effect of electron correlation and QED requires a theoretical
treatment where these two effects are treated simultaneously
in order to obtain high accuracy [2]. By expressing the
electromagnetic field in the noncovariant Coulomb gauge,
much of the interelectronic interaction can be treated in an
instantaneous manner; this is due to the explicit appearance
of the instantaneous Coulomb and Breit interaction terms in
this gauge. It is of interest then to also be able to calculate
radiative corrections in the Coulomb gauge, and in this article
we will focus on one of these corrections—the self-energy of
an electron in a high-Z hydrogenlike ion.

A standard way of evaluating the self-energy of an electron
in a high-Z ion, originally due to Brown, Langer, and Schaefer
[3] and improved by Blundell and Snyderman [4], involves
a potential expansion whereby the energy shift is partly ex-
pressed in terms of expectation values of free-QED operators.
Adkins [5,6] obtained expressions for the relevant Coulomb-
gauge operators already in 1983 and 1986. However, to our
knowledge there have been no publications demonstrating the
applicability of his results to the bound, atomic case. It is the
purpose of the present paper to provide such a demonstration.
We use units such that h̄ = c = 1 throughout.

II. THE BOUND SELF-ENERGY SHIFT

The bound self-energy shift is obtained from Sucher’s
level-shift formula [7] as the expectation value of the renor-
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malized bound self-energy operator with respect to the bound
state |a〉:

�ESE
a = 〈a|�bou|a〉 − 〈a|δm|a〉. (1)

�bou involves the bound electron propagator which can
be rewritten using a potential expansion as shown in Fig. 1.
The self-energy shift then decomposes into three terms: a
zero-potential, one-potential, and many-potential term. The
zero- and one-potential terms contain divergent parts which
cancel due to renormalization constraints, and the many-
potential term is finite in itself. Thus, after this cancellation
the total self-energy shift is given by the sum of three finite
terms:

�ESE
a = �EZP

a + �EOP
a + �EMP

a . (2)

The zero-potential term is the expectation value of the free,
renormalized self-energy operator:

�EZP
a = 〈a|�ren.

free |a〉. (3)

The one-potential term is the expectation value of the free,
renormalized vertex correction to the interaction with the
nuclear potential Aμ = (Vnuc,0):

�EOP
a = −e〈a|�μ

ren.Aμ|a〉 = −e〈a|�0
ren.Vnuc|a〉. (4)

We compute these two terms in the momentum-space repre-
sentation.

By expanding the photon propagator in terms of partial
waves, the many-potential term can be expressed as a sum
over the angular momentum l of the photon:

�EMP =
∞∑
l=0

�EMP
l . (5)

Each l term can be obtained using the subtraction scheme (see
Fig. 1):

�EMP
a,l = 〈a|�bou|a〉l − 〈a|�free|a〉l − 〈a|(−e)�0Vnuc|a〉l ,

(6)

where the terms on the right-hand side involve the un-
renormalized operators. We compute these terms in position
space.
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FIG. 1. Expansion of the bound self-energy operator in terms of
a free particle scattered in the nuclear potential. The heavy lines
represent bound states. The dashed lines corresponds to the scalar
Coulomb interaction.

III. NUMERICAL METHOD

Let us now turn to a brief description of the numerical
implementation. To represent our states we use a numerical
spectrum obtained by solving the radial Dirac equation
on a discretized space in the presence of a spherically
symmetric binding potential V (r) (see Ref. [8]). This al-
lows us to take into account the finite size of the nuclear
charge distribution, and by setting V (r) = 0 we obtain a
complete set of free states. The spin-angular parts are treated
analytically.

In evaluating the zero-potential term, we use Malenfant’s
[9] modified form

�ren.
free = A(p/ − m) + Bγ · p + Cm (7)

of Adkins’ renormalized self-energy function where the
Feynman parameter integrations have been carried out. The
expectation value of this operator is obtained as a three-
dimensional momentum-space integral. After performing the
angular integrations we end up with a one-dimensional integral
over p = |p|:

�EZP
a =

∫ ∞

0
dp p2

{
P 2

a [A(Ea − m) + Cm]

+Q2
a[A(Ea + m) − Cm] + 2pPaQa(A − B)

}
,

(8)

where Pa and Qa are the Fourier-transformed large and small
components of the radial wave function, respectively, and Ea

is the energy of the state |a〉. We evaluate this integral using
Gauss-Legendre quadrature.

For the one-potential term we separate the tensor structure
of Adkins’ result for �0 as

�0
ren.(p,q) = α

4π
[γ 0h1 + (γ · pγ 0γ · q)h2 + (mγ · pγ 0)h3

+ (mγ 0γ · q)h4 + (γ · p)h5 + (γ · q)h6 + mh7].

(9)

Here, the hi are functions of |p|, |q|, and cos ϑ , where ϑ

is the angle between p and q. The hi functions also contain
integrals over up to three Feynman parameters. Performing
some of these integrations analytically, we are left with just
two Feynman parameters. After treating the spin-angular parts
analytically, we end up with the following expression for the
one-potential term:

�EOP
a = −e

α

2

∫ ∞

0
dp p2

∫ ∞

0
dq q2

∫ 1

−1
d(cos ϑ) Vnuc(p,q, cos ϑ){P|κ+1/2|−1/2(cos ϑ)[h1PpPq + h2pqQpQq

−h3mpQpPq − h4mqPpQq − h5pQpPq − h6qPpQq + h7mPpPq] + P|−κ+1/2|−1/2(cos ϑ)[h1QpQq

+h2pqPpPq + h3mpPpQq + h4mqQpPq − h5pPpQq − h6qQpPq − h7mQpQq]}, (10)

where p = |p|, q = |q|, and Pl(cos ϑ) is the lth Legendre
polynomial in cos ϑ , and where Pp = Pa(p), Qq = Qa(q),
and so on. The spin-angular quantum number κ is equal to
(−1)j+l+ 1

2 (j + 1
2 ). All of the integrations in (10), including

those implicit in the hi functions, are performed using
Gauss-Legendre quadrature. The integrand has an integrable
Coulomb singularity at p = q which is handled with the vari-
able substitutions suggested by Blundell [10]. A detailed treat-
ment of the one-potential term in the Coulomb gauge, includ-
ing explicit expressions for the hi functions, is given in [11].

The unrenormalized terms in the many-potential term,
Eq. (6), are extracted from their corresponding Feynman
diagrams using the bound-state QED Feynman rules. The
general expression for first term, the unrenormalized bound
self-energy, is

〈a|�bou|a〉 = i〈a|
∫

dz

2π
SF(z)I (z; x2,x1)|a〉, (11)

where SF(z) is the bound electron propagator

SF(z) =
∑

n

|n〉〈n|
Ea − En − z + iη sgn(En)

. (12)

The gauge dependence of Eq. (11) resides in the interac-
tion term I (z; x2,x1), which includes the photon propagator
Dμν(z; x2,x1):

I (z; x2,x1) = e2αμανDμν(z; x2,x1). (13)

In the Coulomb gauge the interaction term consists of the
instantaneous Coulomb interaction

IC(x2,x1) = e2
∫

d3k

(2π )3

eik·(x2−x1)

k2 + iη
, (14)
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and the Breit interaction

IB(z; x2,x1) = e2
∫

d3k

(2π )3

(
α1 · α2 − (α · ∇)1(α · ∇)2

k2

)
eik·(x2−x1)

z2 − k2 + iη
. (15)

The unrenormalized Coulomb-gauge bound self-energy is then expressed as

〈a|�bou|a〉l =
∫ ∞

0
dk

∑
n

(
sgn(En) 〈a|V l

C(kr2)|n〉 · 〈n|V l
C(kr1)|a〉

+ 〈a|V l
G(kr2)|n〉 · 〈n|V l

G(kr1)|a〉 − 〈a|V l
SR(kr2)|n〉 · 〈n|V l

SR(kr1)|a〉
Ea − En − k sgn(En)

)
, (16)

and it includes an integration over the radial part of the linear momentum of the photon, k = |k|. For the bound self-energy the
summation over the intermediate state |n〉 is performed over a complete numerical spectrum of single-electron states, of both
positive and negative energy, obtained in the presence of the binding potential. The expression in Eq. (16) is also valid for the
unrenormalized zero-potential term, if the summation over intermediate states is instead performed over a complete set of free
single-electron states. In Eq. (16) V l

C, V l
G, and V l

SR are single-vertex potentials for the three types of interactions that occur in the
Coulomb gauge, the Coulomb interaction, the Gaunt interaction, and the scalar retardation. The expressions for V l

G and V l
SR are

given in [12], and the potential V l
C(kr) for the Coulomb interaction is

V l
C(kr) = e

2π

√
(2l + 1) jl(kr)Cl , (17)

where jl(kr) is the spherical Bessel function and Cl is the angular tensor.
The unrenormalized one-potential term is extracted with a similar procedure, and the expression we use in the calculation of

the many-potential term is

−e〈a|�0Vnuc|a〉l = −e

∫ ∞

0
dk

∑
t,u

(
〈a|V l

C(kr2)|u〉〈u|Vnuc|t〉〈t |V l
C(kr1)|a〉F

+ 〈a|V l
G(kr2)|u〉〈u|Vnuc|t〉〈t |V l

G(kr1)|a〉 − 〈a|V l
SR(kr2)|u〉〈u|Vnuc|t〉〈t |V l

SR(kr1)|a〉
[Ea − Et − k sgn(Et )][Ea − Eu − k sgn(Eu)]

G

)
, (18)

where

F = [sgn(Et ) − sgn(Eu)]
1

Et − Eu

, (19)

G = 1 + [sgn(Et ) − sgn(Eu)]
k

Et − Eu

. (20)

The summation over the intermediate states |t〉 and |u〉 is
performed over the spectrum of free single-electron states.

IV. RESULTS AND DISCUSSION

For comparison we have also performed corresponding
calculations in the Feynman gauge, and our results in the
two gauges for the 1s states with various nuclei are given in
Table I, where we also compare our results to those obtained
by Mohr and Soff [13–15]. We also note that the results of
Yerokhin et al. [16] are in complete agreement with Mohr’s
point-nucleus calculations.

In Table I the self-energy is expressed in terms of the
function F (Zα) defined through

�ESE = α

π

(Zα)4mc2

n3
F (Zα). (21)

Our calculations use α = 137.035 999 679−1 for the fine-
structure constant and EH = 27.211 383 86 eV for the Hartree
energy. The nucleus is treated as a uniform, spherical charge
distribution of radius Rnuc.

Table II shows a comparison of the contributions to the total
self-energy shift in the two gauges. An important feature of
the Coulomb gauge is that the contribution from the many-
potential term is significantly smaller than in the Feynman
gauge. It is the many-potential term which limits the overall
accuracy of this scheme, and by reducing its importance, the
final uncertainty is reduced in the Coulomb gauge. This feature
is clearly seen in Figure 2, where we plot the contributions to
the total self-energy from the analytical free-QED operators
(the zero- and one-potential terms) as a function of Z.

TABLE I. Inferred values for the function F (Zα) from the results
obtained in this work are compared to previously reported results.
The nuclear radii are given in fm.

Coulomb Feynman
Z Rnuc gauge gauge Other

18 3.423 3.444 043(9) 3.444 04(3) 3.4438(12)a

26 3.730 2.783 762(3) 2.783 77(1) 2.783 766(1)a,b

36 4.230 2.279 314(2) 2.279 316(7) 2.279 314(1)a,b

54 4.826 1.781 866 2(6) 1.781 868(3) 1.781 866(1)a,b

66 5.210 1.604 461 5(4) 1.604 462(2) 1.604 52(1)a,c

82 5.505 1.487 258 4(4) 1.487 259(1) 1.487 258(1)a,b

92 5.863 1.472 424 1(4) 1.472 425(1) 1.472 424(1)a,b

aValues with point nucleus by Mohr [13,14].
bNuclear-size correction from Mohr and Soff [15].
cMissing nuclear-size correction cubic spline interpolated.
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TABLE II. Comparison between the Feynman and Coulomb
gauges for the contributions to the self-energy obtained in the present
work. Values are given in eV.

Z Term Coulomb gauge Feynman gauge

18 �EZP 1.341 668 068(1) −67.924 837 74(5)
�EOP 0.054 770 997(7) 49.511 443 05(6)
�EMP −0.179 538(3) 19.630 296(10)
Sum 1.216 901(3) 1.216 90(1)

54 �EZP 43.590 621 48(6) −285.092 638 6(1)
�EOP 17.387 986 7(3) 190.356 052 0(3)
�EMP −9.981 343(16) 145.733 90(8)
Sum 50.997 27(2) 50.997 31(8)

66 �EZP 79.791 727 3(2) −355.317 806 4(6)
�EOP 43.151 260 4(7) 248.819 551(1)
�EMP −20.471 793(25) 208.969 5(1)
Sum 102.471 19(3) 102.471 3(1)

92 �EZP 210.068 220 5(7) −516.318 598(4)
�EOP 213.739 094(4) 472.000 597(6)
�EMP −68.764 3(1) 399.361 2(2)
Sum 355.043 0(1) 355.043 2(2)

The uncertainty of the zero-potential term is solely due
to the statistical variation from choosing different grid-sizes
in position space. This effect is also present in the one-
potential term, but here additional uncertainties come from the
extrapolation to continuous space in the numerical integrations
over the two Feynman parameters. The many-potential term
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FIG. 2. Contribution to the total self-energy of the 1s state from
the zero- and one-potential terms in the two gauges.

acquires its uncertainty from two extrapolations to infinity—
one in the total number of grid points in position space, and
one in the sum over partial waves l.
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