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The leading contributions to the helium fine structure beyond the first-order relativistic
contribution were first derived by Araki [1] and Sucher [2], starting from the Bethe-Salpeter
equation [3] and including the non-relativistic as well as the relativistic momentum regions.
Following particularly the approach of Sucher, Douglas and Kroll [4] have derived all terms
of order α4 H(artree), where no contributions in the relativistic region were found. The
same approach was later used by Zhang [5, 6] to derive corrections of order α5 log α H and
of order α5 H in the non-relativistic region and recoil corrections to order α4m/M H (see
also Ref. [7]). Later some additional effects of order α5 H due to relativistic momenta were
found by Zhang and Drake [8]. The radiative parts are treated more rigorously by Zhang in a
separate paper [9]. Using a different approach, Pachuchi and Sapirstein [10] have derived all
contributions of order α5 H and report some disagreement with the early results of Zhang [5].

The approach of Sucher – that is followed by Douglas and Kroll and Zhang – is based directly
on the BS equation and then makes it easy to identify the contributions in terms of Feynman
diagrams and therefore convenient to use for us in identifying terms that can be evaluated
numerically. The approach of Pachuchi is more difficult to use in this respect.

Here, I shall follow mainly the presentation of Douglas and Kroll (DK), which is quite
detailed and easy to follow. It is largely based upon the thesis of Sucher (S) [2]. I will also
give some comments about the work of Zhang (Z) [5]. S, DK and Z work mainly in the
momentum representation, but I shall entirely use the coordinate representation.

The Bethe-Salpeter equation

The two-particle, two-times Green’s function satisfies the Dyson equation (DK 2.2) (see
Fetter and Walecka [11], Ch. 3&4)

G(x′1x
′
2; x10x20) = G0(x′1x

′
2; x10x20)

+
∫∫∫∫

d4x1d4x2d4x3d4x4 G0(x′1x
′
2; x3x4)κ(x3x4;x1x2) G(x1x2; x10x20) (1)

which is illustrated in Fig. 1.
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Figure 1:

The very thick horizontal line represents all interactions between the electrons, and the
thinner line represents the kernel κ of all non-separable interactions, i.e., interactions that
cannot be separated into several diagrams of the same kind by cutting the diagram along a
horizontal line.

G0 is the zeroth-order Green’s function

G0(x′1x
′
2;x10x20) = S1(x′1;x10) S2(x′2;x20) (2)
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where S is the electron propagator or zeroth-order single-particle Green’s function

S(x′, x0) =
∫

dω

2π
S(ω) e−iωτ τ = t′ − t0

S(ω) =
|r〉〈r|

ω − εr + iηr
=

Λ+

ω − h + iη
+

Λ−
ω − h− iη

(3)

Here, h is the single-electron Dirac Hamiltonian in the field of the nucleus and Λ± are
projection operators for positive and negative-energy single-particle states.

In operator form the Dyson equation (1) becomes

G = G0 + G0κG (4)

which can be expressed
(F − κ) G = 1 (5)

with F = G−1
0 . The homogeneous part represents the equation for the corresponding wave

function (DK 2.5, 2.26; Z 1)
(F − κ)Ψ = 0 (6)

This is one form of the Bethe-Salpeter equation. (My κ corresponds to G in S and DK
and to g in Z.)[
Compare the Green’s-function equation for the Schrödinger wave function ΨS (see Lindgren-

Morrison (LM) [12] Sect.9.3)
(E −H + iη) G+ = 1 (7)

corresponding to the Schrödinger equation

H Φ = E Φ (8)

Formally this holds only for a time-independent Hamiltonian but since the interactions are
physically time-independent, this might be justified.

]

The kernel can be separated into non-radiative (exchange) and radiative parts (DK 2.37,
Fig. 3)

κ = κI + κrad (9)

DK separates κI furthermore into (DK 3.5, Fig. 5)

κI = Ic + κT + κT×c + κT×c2 + κT×T + · · · (10)

where Ic is the Coulomb interaction Ic = 1/r12, κT interaction with a single transverse
photon, κT×c a transverse photon + one Coulomb etc.

For the perturbative expansion it is convenient to separate the kernel into a Coulomb inter-
action and a remainder (S 1.28, DK 3.4, Z 10)

κ = Ic + κ∆ (11)

where
κ∆ = κT + κT×c + κT×c2 + κT×T + · · ·+ κrad (12)

The BS equation (6) can now be expressed

(F − κ∆)Ψ = IcΨ (13)

or (S 1.30, DK 3.6)
Ψ = (F − κ∆)−1IcΨ (14)
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Using the identity (S 1.35, DK 3.11)

(A−B)−1 ≡ A−1 + A−1B(A−B)−1 (15)

this equation becomes (DK 3.12)

Ψ =
[
G0 + G0κ∆(F − κ∆)−1

]
IcΨ (16)

with F = G−1
0 .

The fourier transform of the zeroth-order Green’s function (2) with respect to τ = t′ − t0 is
(DK 3.21)

G0(ε; x′1, x
′
2; x10, x20) =

∫
dτ

2π
eiετ G0(τ ;x′1, x

′
2; x10, x20)

=
∫

dω

2π

|r〉〈r|
ω − εr + iηr

|s〉〈s|
ε− ω − εs + iηs

(17)

where r, s run over positive- and negative-energy states. With the two-electron projection
operators Λ++ etc, this becomes (DK 3.24)

iG0(ε) =
|rs〉〈rs|

ε− εr − εs

(
Λ++ − Λ−−

)
=

1
ε−H0

(
Λ++ − Λ−−

)
(18)

with H0 = h1 + h2.

We can assume that the exact wave function has the time dependence

Ψ(t,x1, x2) = e−iEt Φ(x1,x2) (19)

where E is the energy of the system and Φ is the time-independent wave function that is
a solution to the time-independent Schrödinger equation (8) The fourier transform of the
wave function then leads to

Ψ(ε, x1,x2) =
∫

dt

2π
eiεt Ψ(t, x1,x2) = δ(E − ε)Φ(x1, x2) (20)

and the integration over the parameter ε that DK (3.7) and Z (14) perform simply generates
the time-independent wave function Φ, and we can replace ε by E in the zeroth-order Green’s
function (18).

By fourier transforming the entire BS (16) and integrating over ε, the result becomes (the
factors of i do not seem correct)

[
H0 +

(
Λ++ − Λ−−

)
Ic + i

∫
dε

2π
DG0κ∆(F − κ∆)−1Ic

]
Ψ(E) = EΨ(E) (21)

with D = E −H0. This is the form of the Bethe-Salpater equation, derived by Sucher
(S 1.47) and rederived by Douglas and Kroll (DK 3.26) and by Zhang (Z 15).

The operator on the lhs can be written in the form Hc + H∆, where (S 2.2, DK 3.28)

Hc = H0 + Λ++IcΛ++ (22)

is the Hamiltonian of the no-(virtual-) pair Dirac-Coulomb equation (Z 16)

Hc Ψc = Ec Ψc (23)

and (S 2.3)

H∆ = Λ++Ic(1− Λ++)− Λ−−Ic +
[
i
∫

dε

2π
DG0κ∆(F − κ∆)−1Ic

]
= H∆1 + H∆2 (24)
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is the remaining ”QED part” (DK 3.29, Z 17). The first part H∆1 represents virtual pairs
due to the Coulomb interaction and the second part effects of relativity and transverse
photons.

In order to include electron self energy and vacuum polarizations, the electron propagators
(2) are replaced by propagators with self-energy insertions Σ(ε), properly renormalized (DK
2.10)

S′(ε) =
|r〉〈r|

ε− εr − Σ(ε) + iηr
(25)

Also renormalized photon self energies have to be inserted into the photon lines.

By including also the instantaneous Breit interaction in Ic, the no-pair Hamiltonian (22)
becomes the standard Dirac-Coulomb-Breit Hamiltonian of the No-Virtual-Pair Approxi-
mation (NVPA) and the remainder (24) would be what we refer to as ”QED effects”.

Perturbation expansion of the BS equation

The effect of the QED Hamiltonian (24) can be expanded perturbatively, using the Brillouin-
Wigner perturbation theory (LM 9.39, DK 3.36)

∆E = 〈Ψ0|V + V TEV + V TEV TEV + · · · |Ψ0〉 = 〈Ψ0| V

1− TEV
|Ψ0〉 (26)

where TE is the BW resolvent (LM 9.16, DK 3.38)

TE = ΓQ =
Q

E −H0
(27)

The unperturbed wave function is in our case one solution of the no-pair Dirac-Coulomb
equation (23), Ψc, and we can assume that the perturbation is expanded in other eigen-
functions of Hc. Q is the projection operator that excludes the state Ψc (assuming no
degeneracy) and then

ΓQ =
Q

E −Hc
(28)

This leads to the expansion (S 2.13, DK 3.43, Z 28)

∆E(1) = 〈Ψc|H∆|Ψc〉 (29a)

∆E(2) = 〈Ψc|H∆ΓQH∆|Ψc〉 (29b)

∆E(3) = 〈Ψc|H∆ΓQH∆ΓQH∆|Ψc〉 (29c)

etc.

Since Λ++|Ψc〉 = |Ψc〉 and Λ−−|Ψc〉 = 0, it follows that 〈Ψc|H∆1|Ψc〉 ≡ 0, and the first-order
correction becomes (DK 3.44)

∆E(1) = 〈Ψc|H∆2|Ψc〉 = 〈Ψc|i
∫

dε

2π
DG0JG0Ic|Ψc〉 (30)

with F−1 = G0 and (DK 3.45)

J = κ∆(1−G0κ∆)−1 (31)

The second-order corrections are (DK 3.46, Z 30)

∆E(2)
a = 〈Ψc|H∆1 ΓQ H∆1|Ψc〉 = −〈Ψc|IcΛ−− ΓQ Λ−−Ic|Ψc〉 (32a)
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∆E
(2)
b = 〈Ψc|H∆1 ΓQ H∆2|Ψc〉 = 〈Ψc|IcΛ−− ΓQ i

∫
dε

2π
DG0JG0Ic|Ψc〉 (32b)

(Note that the two Ic are missing from the DK equation.)

∆E(2)
c = 〈Ψc|H∆2 ΓQ H∆1|Ψc〉 = 〈Ψc|i

∫
dε

2π
DG0JG0Ic ΓQ Λ−−Ic|Ψc〉 (32c)

(This agrees with Z 30 but not with DK 3.46 – the factor IcL++ should be removed.)

∆E
(2)
d = 〈Ψc|H∆2 ΓQ H∆2|Ψc〉 = 〈Ψc|i

∫
dε

2π
DG0JG0Ic ΓQ i

∫
dε

2π
DG0JG0Ic|Ψc〉 (32d)

Since ΓQD ≈ Q and Λ−−Q = Λ−−, ΓQ can in the first three equations be replaced by D−1.
Then the results agree – apart from the misprints mentioned above – with the results of DK
and Z.

According to DK ∆E
(2)
a , ∆E

(2)
c and ∆E(3) do not contribute to the fs in order α4 (Hartrees).

This holds also in the next order according to Zhang, but ∆E(3) will contribute to the singlet
energy in that order. (I do not see the reason why ∆E

(2)
b contributes, while ∆E

(2)
c does not,

as they seem to be quite equivalent.) In the relativistic momentum region the second-order
part ∆E

(2)
a contributes to the energy already in order α3 H and to the fine structure in order

α5 H [5, p.1256].

The zeroth-order Green’s function (2) can be reformulated in the following way (DK 3.48)

G0 = S1S2 ≡
(
S1 + S2

)(
S−1

1 + S−1
2

)−1 =
S1 + S2

E −H0
= D−1

(
S1 + S2

)
(33)

With E = Ec + ∆E and
Dc = Ec −H0 = D −∆E (34)

we have (DK 3.50a, note misprint)

D−1 =
1

Dc
− ∆E

DcD
(35)

The first-order contribution can then be expressed (DK 3.49, Z 29)

∆E(1) = 〈Ψc|D−1 i
∫

dε

2π
(S1 + S2)J(S1 + S2)|Ψc〉

= 〈Ψc|D−1
c (1−∆E/D) i

∫
dε

2π
(S1 + S2)J(S1 + S2)|Ψc〉 (36)

Using the relation (34), we have Ec −Hc = Dc −Λ++CΛ++, and the no-pair equation (23)
can be written (DK 3.51)

(Dc − Λ++Ic) Ψc = 0 (37)

Then the second-order correction ∆E
(2)
b (32b) can be expressed

∆E
(2)
b = 〈Ψc|(Ic −Dc) i

∫
dε

2π
G0JG0Ic|Ψc〉 (38)

This is consistent with (Z 30). This can be combined with the first-order correction ∆E(1)

(30), yielding (DK 3.52,54, Z 37)

〈Ψc|(Ic + ∆E) i
∫

dε

2π
G0JG0Ic|Ψc〉 (39)

Both DK and Z have the ∆E term with the opposite sign.
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We make the expansion (DK 3.45, Z 32)

J = κ∆(1−G0κ∆)−1 = κ∆ + κ∆G0κ∆ + · · · (40)

where diagrams from the second and higher terms in this expansion are separable (reducible).
Making the replacement (DK 3.53, Z 12)

κ∆ = κT + ∆κ (41)

where κT represents the interaction of a single transverse photon, the expression (39) be-
comes (DK 3.54)

〈Ψc|Ic i
∫

dε

2π
G0

[
κT + κT G0κT + ∆κ + · · · ]G0Ic|Ψc〉 (42)

The expression for ∆E
(2)
d (32d) becomes similarly in lowest order

〈Ψc|i
∫

dε

2π
DG0κT G0Ic ΓQ i

∫
dε

2π
DG0κT G0Ic|Ψc〉 (43)

The only additional term that contributes to the fs in this order is then the second part of
∆E(1) (36)

∆E 〈Ψc|Ic i
∫

dε

2π
G0κT G0Ic|Ψc〉 (44)

As noted, the last term differs in sign from DK 3.54.

The complete contribution to the fs to order α4 then becomes

〈Ψc|Ic i
∫

dε

2π
G0

[
κT + κT G0κT + ∆κ

]
G0Ic|Ψc〉

+ 〈Ψc|i
∫

dε

2π
DG0κT G0Ic ΓQ i

∫
dε

2π
DG0κT G0Ic|Ψc〉

+ ∆E 〈Ψc|Ic i
∫

dε

2π
G0κT G0Ic|Ψc〉 (45)

with
∆κ = κT×c + κT×c2 + κT×T + κrad (46)

Zhang (Z 37) gives the following expression for the energy correction (transferred to our
notations), valid to order α5 H, which is consistent with DK

∆E =
〈
Ψc

∣∣∣ i
∫

dε

2π
IcG0JG0Ic −∆E i

∫
dε

2π
(S1+ + S2+)J(S1 + S2)D2

cIc

+ i
∫

dε

2π
DG0JG0Ic ΓQ i

∫
dε′

2π
DG0JG0Ic

∣∣∣Ψ
〉

(47)

In addition, there is a contribution in the relativistic momentum region from Coulomb
interactions to this order. In this order it is necessary to consider the Coulomb crossings to
all orders in the one- and two-transverse-photon exchange

Comparison with our numerical approach

Douglas and Kroll discuss in Chapter 4 (9 pages!) the Coulomb ladder diagrams, leading to
the terms ∆W 6

c (i), i = 1− 5 (DK 4.36). These effects will be dealt with in our relativistic
pair program. In Chapter 5 (11 pages!) DK discuss diagrams with a single transverse
photon, leading to the terms ∆W 6

T (i), i = 1 − 8 (DK 5.35). All these effects will in our
approach also be evaluated numerically.

6



In Chapter 6 DK discuss the diagrams with two transverse photons, i.e., the effects of
κT×T and κT G0κT , referred to as ∆ET×T and ∆ET ·T , respectively. The latter represents
a separable diagram and can be evaluated numerically by iterating the one-photon process
(instantaneous Breit and retarded photon). The effect of T ×T with no pairs is found to be
of order α5 + α5 log α H, and the effect of double pairs is also found to give no contribution
to the fs in order α4 H. The pair effect with Coulomb interactions is also found to vanish in
this order. That leaves only the term ∆ET×T with a single pair to be evaluated analytically.

In Chapter 7 DK discuss radiative corrections in a phenomenological way, based upon the
anomalous magnetic moment of the electron. The numerical results of DK are given in
Ref. [13].

Zhang deals with a single transverse photon in his section III (14 pages and 93 equations!)
and the Coulomb ladder in section V. The Coulomb crossings to all orders, needed in this
order, can be done numerically with our approach. There is also a contribution from the
Coulomb interactions to order α5 H, which can also be evaluated numerically. This leaves
also here only the two-photon crossing ∆ET×T (with Coulomb crossings) to be estimated
analytically. Zhang treats also the radiative corrections more rigorously than DK, particu-
larly in Ref. [9]. The phenomenological approach of DK is confirmed to be justified to order
α4 H, but is not sufficient in the next order.
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