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New Approach to Many-Body-QED
Calculations: Merging Quantum-Electro-
Dynamics with Many-Body Perturbation

Ingvar Lindgren, Sten Salomonson, and Daniel Hedendahl

Abstract: A new method for bound-state QED calculations on many-electron systems
is presented that is a combination of the non-QED many-body technique for quasi-
degenerate systems and the newly developed covariant-evolution-operator technique for QED
calculations. The latter technique has been successfully applied to the fine structure of excited
states of medium-heavy heliumlike ions, and it is expected that the new method should be
applicable also to light elements, hopefully down to neutral helium.
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1. Introduction

There exist essentially two approaches to bound-state QED calculations on many-electron systems,
which we can refer to as thelow-Z and thehigh-Z approaches, respectively.

In the low-field approach the effects of relativity and QED are expanded in powers ofα andZα,
normally starting from the Bethe-Salpeter equation [1]. This was pioneered in the 1950’s by Araki [2]
and Sucher [3], who evaluated all contributions to the helium energy levels to orderα3 H(artrees).
Following mainly the approach of Sucher, Douglas and Kroll [4] evaluated in 1974 all contributions to
the helium fine structure of orderα4 H. In the 1990’s also all contributions of orderα5 H andα5 log α
H have been evaluated by Zhang and Drake [5, 6, 7] as well as by Pachucki and Sapirstein [8, 9, 10].
Numerical evaluation of these effects has been done particularly by Drake and coworkers [11], using
accurate Hylleraas-type of wave functions. With the contributions of orderα5 H the theory has reached
the level of accuracy of the experimental results for the1s2p state of helium, although there are still
serious discrepancies between theory and experiment.

In the high-Z approach the starting point is Dirac orbitals and electron propagators (Green’s func-
tions), generated in the field of the nucleus, which in terms of free electrons correspond to expansions
with nuclear interactions, as illustrated in Fig. 1. With these orbitals/propagators the covariant multi-
(one-, two-,...) photon exchange, illustrated in Fig. 2, is evaluated numerically. This has been the ap-
proach of various groups and successfully applied to highly charged ions (see Refs [12, 13, 14], for
further references).

For an isoelectronic sequence, as the heliumlike systems, the effect of multi-photon exchange de-
creases roughly by a factor ofZ for each additional photon. This implies that the high-Z approach
converges rapidly for heavy elements but quite slowly for light elements. For practical reasons, it is at
present not feasible to evaluate the exchange of more than two covariant photons in this way, which,
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Bound el. Free el. Nuclear interactions

Fig. 1. The bound electron orbital, generated in the field of the atomic nucleus, can be represented by a free
electron with nuclear potential interactions, each corresponding to a factor ofZα in the analytical expansion.

however, leads to good accuracy for highly charged ions. For light elements, on the other hand, where
the electron correlation is relatively strong, this approach is not feasible.
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Fig. 2. Examples of covariant multi-photon exchange diagrams.

There is presently a great interest in the fine structure of the lowest3P state of neutral helium,
both experimentally and theoretically, since a comparison between theory and experiment can yield an
accurate value of the fine-structure constantα. Very accurate measurement of the separation3P1−3 P0

has been performed [15] and even more accurate experiments are under way as reported at the ICAP
2004 conference in Rio de Janeiro. Accurate QED calculations can only be performed with the low-Z
approach, but there is some confusion about the theoretical results [10, 16, 11, 17]. The results disagree,
and the most complete calculation of Drake [11] differs by 4-5 standard deviations from experiments
for the3P1 −3 P0 transition (using the accepted value ofα) and even more for the3P2 −3 P1 transition.
The reason for this problem is not clear. It is obvious that the analytic approach becomes drastically
more complicated — and more error prone — for each order of perturbation, and it is questionable if
it will ever be possible to go beyond the order presently reached.

In the present paper we shall discuss an alternative approach that may make it possible to ex-
tend the numerical approach to lowZ, possibly as far as down to neutral helium. This is based upon
the covariant-evolution-operator approach, which we have successfully used in evaluating the fine-
structure separations of heliumlike ions down toZ = 9 [18, 14]. In the proposed extension we shall
base the evaluation on correlated pair functions, instead of hydrogenic Dirac orbitals, in this way in-
cluding the dominating effect of electron correlation into the QED calculations.

In principle, we will be able to evaluate all effects due to so-called Coulomb-ladder diagrams as
well as those involving a single transverse photon with arbitrary number of Coulomb crossings. This
will constitute a possibility to test the analytical approach.

The contributions due to two transverse photons are of two kinds, in the papers quoted above
denoted by∆ET ·T and∆ET×T , representing reducible and irreducible effects, respectively. It has
been shown by Zhang [6] that the exchange of three transverse photons does not affect the fine structure
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to orderα5 H. We will be able to evaluate the reducible two-photon effect by iterating single-photon
exchange, and therefore the only effect that we will not be able to treat numerical on this level in the
near future is the irreducible two-photon effect. That has then to be included by means of an analytical
approximation. In addition, of course, our approach will automatically include many effects of higher
orders, but not in a complete manner.

To what extent we will be able to evaluate the radiative effects numerically is presently under inves-
tigation. To begin with, we shall use the phenomenological approach, using the anomalous magnetic
moment of the electron, which will be correct to orderα4.

As a background to the description of our new technique, we shall first briefly summarize the
non-QED many-body technique for quasi-degenerate systems, followed by a summary of the high-Z
approaches, theS-matrix method and the recently introduced covariant-evolution-operator method [18,
14].

2. Many-Body Theory

In the standard many-body perturbation theory (MBPT) we want to solve the Schrödinger equation for
a number of target states

H Ψα = Eα Ψα (α = 1, 2 · · · d) (1)

The Hamiltonian is partitioned into an unperturbed model Hamiltonian and a perturbation

H = H0 + H ′ (2)

For each target state we have a model state,Ψa
0 = PΨa, which is an eigenfunction ofH0 and confined

to a model space with the projection operatorP .
The wave operatortransforms the model states to the target statesΨα = Ω Ψα

0 (α = 1, 2 · · · d)
and satisfies the generalized Bloch equation [19]

[Ω,H0

]
P =

(
H ′Ω− ΩPH ′Ω

)
P (3)

assuming intermediate normalizationPΩP = P .
Projecting the Schrödinger equation (1) on the model space yields

PHΩΨα
0 = Eα Ψα

0 (4)

which shows that the model functions are eigenfunctions of theeffective HamiltonianHeff = PHΩP
with the eigenvalues equal to the exact eigenvalues of the target states.

Using second quantization, the wave operator can be separated into one-, two-,..body parts [19]

Ω = 1 + Ω1 + Ω2 + · · · (5)

and insertion into the Bloch equation (3) leads to the equations

[Ωn,H0

]
P =

(
H ′Ω− ΩPH ′Ω

)
n
P (6)

If we consider heliumlike systems, starting with hydrogenic orbitals generated in the field of the nu-
cleus, the wave operator has only a two-body component,Ω = 1 + Ω2, satisfying thepair equation

[Ω2,H0

]
P =

(
H ′ + H ′Ω2

)
2
P − Ω2H

′
eff,2 (7)

whereH ′ is the Coulomb interaction1/r12 andH ′
eff = PH ′ΩP is the perturbative part of the effective

Hamiltonian (4),Heff = PH0P+H ′
eff . The last term in the pair equation (7) represents so-called folded

diagrams. This yields the matrix elements of the wave operator

〈rs|Ω2|ab〉 =
〈rs|1/r12|ab〉+ 〈rs|1/r12|tu〉〈tu|Ω2|ab〉

εa + εb − εr − εs + ∆
(8)
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Fig. 3. The pair function for a two-electron system is equivalent to an infinite sequence of ladder diagrams (in-
cluding the folded diagrams).

summed over the intermediate states|tu〉, where∆ = 〈ab|H ′
eff,2|ab〉 (incl. exchange) is due to the

folded diagrams. The state|ab〉 lies in the model space and the states|rs〉 and|tu〉 outside this space
(εa etc. are the orbital energy eigenvalues).

The pair equation (7) can be solved non-perturbatively by recursion, which corresponds to a per-
turbative expansion to all orders and represents the exact solution of the Schrödinger equation for this
system. This can be represented graphically as in Fig. 3. For the numerical solution we use the method
of discretization, developed by Salomonson andÖster [20, 21].

The pair functions are used to evaluate the elements of the effective Hamiltonian (4) — diagonal as
well as non-diagonal — and the diagonalization then yields the model functions and the energies with
corresponding accuracy. This approach is particularly effective in the case ofquasi-degeneracy, where
unperturbed states can be strongly mixed. By including such states in the model space, their mixing
will be accounted for to all orders of perturbation theory.

A good illustration of the power of the method is the application to the fine structure of the1s2p 3P
state of heliumlike ions, where it has been shown to converge in all cases down to neutral helium [22].
The conventional approach with a single model function, on the other hand, fails for light elements,
and even model functions that are eigenfunctions of the first-order effective Hamiltonian does not lead
to convergence forZ ≤ 6 [23].

3. S-matrix formulation

The standard approach for bound-state QED calculations is theS-matrix formulation [12]. This is
based upon thetime-evolution operator, defined byΨ(t) = U(t, t0)Ψ(t0). This can be expanded as

U(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

d4xn . . .

∫ t

t0

d4x1 TD

[H′I(xn) . . .H′I(x1)
]

(9)
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whereTD is the Wick time-ordering operator and

H′I(x) = −eψ†(x) αµAµ(x)ψ(x) (10)

is the perturbation in the form of the electron-field interaction in the interaction picture [24].e is here
the absolute value of the electronic charge (positive number),ψ(x)/ψ†(x) represent the electron-field
operators andAµ(x) the electromagnetic field.

A damping factorH′I(x) → H′I(x) e−γ|t| is introduced, so that the Hamiltonian approaches the
unperturbed Hamiltonian, whent0 → ±∞. The evolution operator from the unperturbed state for the
exchange of a single photon between two electrons is given by (using relativistic units,m = c = ~ =
ε0 = 1)

SU (2)(t′,−∞) = −e2

2

∫∫ t′

−∞
d4x1 d4x2 ψ†(x′1)ψ

†(x′2)

× αµ
1 iDFµν(x1 − x2)αν

2 ψ(x1) ψ(x2) e−γ(|t1|+|t2|) (11)

and illustrated in Fig. 4.DFµν(x1 − x2) is here the photon propagator, represented by the contraction
of the electromagnetic-field operators of the perturbationsH′I(x1) andH′I(x2). TheS matrix is defined
by S = U(∞,−∞). Performing the time integrations yields for the single-photon exchange

〈rs|S(2)|ab〉 = −2πi δ(εa + εb − εr − εs) 〈rs|Veq|ab〉 (12)

and the corresponding energy shift

∆E = 〈rs|H(1)
eff |ab〉 = δ(εa + εb − εr − εs) 〈rs|Veq|ab〉 (13)

Here,Veq = αµ
1 iDFµν(x1 − x2)αν

2 is theeffective interactionand in the Feynman gauge given by

Veq(q) =
∫ ∞

0

dk f(k)
2k

q2 − k2 + iη
(14)

where

f(k) = − e2

4π2 r12
(1−α1 · α2) sin(kr12)

andq = εa − εr = εs − εb.

t = t′

6ψ a 6b ψ

-r r1 2
6ψ†+ r 6s ψ†+

Fig. 4. Graphical representation of the standard evolution operator for single-photon exchange. The outgoing lines
represent here positive-energy electron states.

The delta factor above shows that energy must be conserved in theS matrix. Therefore, off-diagonal
elements of the effective Hamiltonian between states with different unperturbed energies cannot be
evaluated, which is a serious limitation, implying that the method cannot be applied to the case of
quasi-degeneracy, as described in the MBPT section. An additional shortcoming is that no information
of the wave function is obtained.
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4. Covariant evolution-operator method

In order to remedy the shortcomings of theS-matrix method for bound-state calculations, we have
introduced a modification, referred to as thecovariant evolution-operator method[18, 14]. We then
return to the evolution operator (11), and in order to make this covariant we allow the outgoing orbitals
to represent positive- as well as negative-energy states. This leads to the expression

U
(2)
Cov(t

′,−∞) = −e2

2

∫∫
d3x′1d

3x′2 ψ†(x′1)ψ
†(x′2)

×
∫∫ ∞

−∞
d4x1 d4x2iSF(x′1, x1) iSF(x′2, x2)αµ

1 iDFµν(x2 − x1)αν
2 ψ(x2) ψ(x1) e−γ(|t1|+|t2|) (15)

illustrated by the time-ordered diagrams in Fig. 5.SF(x′, x) is the electron propagatoror single-
electron Green’s function, represented by the internal lines of the right-most diagram.
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Fig. 5. Graphical representation of the covariant evolution operator for single-photon exchange. The outgoing
lines can here represent positive- as well as negative-energy states.

Evaluating the single-photon exchange (15) yields the first-order effective Hamiltonian

H
(1)
eff = Veq(q, q′) =

∫ ∞

0

dk f(k)
[ 1
q ∓ (k − iγ)

+
1

q′ ∓ (k − iγ)

]
(16)

whereq = εa− εr, q′ = εb− εs and∓ represents hole/particle states. In contrast to the corresponding
S-matrix expression (12), energy need not here be conserved. This means that also non-diagonal ele-
ments can be evaluated, which is needed in order to apply the method to quasi-degeneracy as described
above. The covariant evolution operator also yields information about the wave function. The matrix
element of the first-order wave operator is given by

〈rs|Ω|ab〉 =
〈rs|Veq(q, q′)|ab〉

q + q′
(17)

We have applied the covariant-evolution-operator method to evaluate the fine structure of the
1s2s3P state of some heliumlike ions [18, 14], and the results are exhibited in Table 1, where compar-
ison is made with the experimental results as well as with calculations of Drake [25, 11] and Plante et
al. [23] (We refer to Refs [18, 14] for more detailed references and discussions). Our calculation rep-
resents the first numerical evaluation of QED effects of the fine structure of heliumlike ions, including
the strongly mixed3P1 state. Previous calculations, using theS-matrix method, has been restricted to
the pure states3P2 and3P0 [26].

An alternative approach for QED calculations on quasi-degenerate states is thetwo-times Green’s-
function method, developed by Shabaev and coworkers [13]. At least in its present form, this method
does not yield any information about the wave function (wave operator) and can therefore not be used
as a basis for the combined QED-MBPT approach to be presented in the next section.
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Table 1. The 1s2p 3P fine structure of He-like ions. Values forZ=2,3 given in MHz and the remaining in
µHartree.

Z 3P1 −3 P0
3P2 −3 P0

3P2 −3 P1

2 29616.9509(9) 2291.1759(10) Expt’l
29616.94642(18) 2291.15462(31) Drake

3 155704.27(66) -62678.41(66) Expt’l
155703.4(1,5) -62679.4(5) Drake

9 701(10) 4364,517(6) Expt’l
680 5050 4362(5) Drake
690 5050 4364 Plante
690 5050 4364 Present work

10 1371(7) 8458(2) Expt’l
1361(6) 8455(6) 265880 Drake
1370 8469 265860 Plante
1370 8460 265880 Present work

18 124960(30) Expt’l
124810(60) Drake
124942 Plante
124940 Present work

5. Combined high- and low-Z approach

In this section we shall describe the new approach to many-body-QED calculations that is under de-
velopment at our laboratory. This is a combination of the many-body approach for quasi-degeneracy,
described in section 2, and the covariant-evolution-operator method for bound-state QED, described in
the previous section.
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Fig. 6. Graphical representation of a pair function (Fig. 3) with uncontracted photon (folded diagrams left out).

The basic idea is to start with the pair functions, illustrated in Fig. 3, and to add the perturbation
(10), representing the interaction between the electromagnetic field andoneof the electrons. This is
illustrated by the leftmost diagram in Fig. 6. Further iterations of the pair equation yields additional
Coulomb interactions, as represented by the remaining diagrams of the figure. (In principle, these
interactions can also be instantaneous Breit interactions.) This requires one pair function for each
momentumk of the photon.

The photon can be closed by contracting with another perturbation (10), either on the other electron,
which yields covariant photon interaction between the electrons or on the same electron, which yields
a self-energy interaction (the latter with the proper renormalization). This yields diagrams of the type
illustrated in Fig. 7.
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Fig. 7. The uncontracted photon in Fig. 6 can be closed by interacting with the same or the other electron.

Finally, the pair function can be iterated further with Coulomb interactions, which yields diagrams
of the type illustrated in Fig. 8. The first diagram represents a complete covariant photon between
the electrons, evaluated with relativistic correlated wave function. The next diagram represents the
dominating part of the crossed-photon diagram, where one of the photons is retarded and the other is
instantaneous (Coulomb or Coulomb-Breit) and so on. The situation is analogous for the self-energy
diagrams, where the additional interactions yield vertex corrections. For the time being it does not seem
feasible to treat more than one covariant photon in this manner.

It has been shown by Zhang and Drake [6, 27] that one and two transverse photons with arbitrary
number of Coulomb crossings affect the helium fine structure to orderα5 H, while the exchange of
three transverse photons does not enter on this level.

+

6 6

6

-

6

+

6 6

6

-

6

6 6

6

-

6

+ +

6 6

6

6

6

+

6 6

6

6

6

+ · · ·6

6 6

6 6

Fig. 8. Further iterations of the pair functions in Fig. 7 yields QED effects evaluated with fully correlated rela-
tivistic wave functions.

6. Summary and discussion

Here we have outlined a method for many-body-QED calculations that is presently under development.
It is basically a combination of the many-body technique for quasi-degeneracy and the recently devel-
oped covariant-evolution-operator technique for bound-state calculations. We expect the method to be
applicable to all nuclear charges, but our main interest will be on light elements, where the traditional
high-Z approaches fail.

The use of relativistic bound-state orbitals/propagators implies that our numerical results will auto-
matically correspond to many terms in the expansion in powers ofZα of the analytical low-Z approach.
In addition we can evaluate the effect of a single transverse photon with arbitrary Coulomb crossings,
as illustrated in Fig. 8. The only non-radiative effect entering in orderα5 H that we cannot evaluate
numerically at present is the irreducible two-photon effect, which then has to be included analytically.
To begin with, the radiative effects will be included using analytical expressions.

Our goal is to be able to evaluate the fine-structure separation of neutral helium accurately, and
believe that a combination of the numerical and analytical approaches will have the best probability for
success. It is still an open question, though, what accuracy can actually be reached.
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