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A rigorous procedure for energy-dependent many-body perturbation theory (MBPT) is
presented. This can be applied for numerical evaluation of many-body-QED effects by
combining QED with electron correlation to arbitrary order. So far, it has been used
only for the exchange of a single retarded photon together with an arbitrary number of
instantaneous Coulomb interactions. For heliumlike neon this represents more than 99
% of the nonradiative effect on the energy beyond standard MBPT.

1. Introduction

The standard procedure for time- or energy-independent many-body perturbations
on atomic, molecular and nuclear systems, normally referred to as the Many-Body
Perturbation Theory (MBPT), is well developed 1. It is capable of handling elec-
tron correlation essentially to all orders and it can deal with the quasidegeneracy
problem by means of the procedure with extended model space. This is indicated in
the second line of the table below. There we also have indicated that the S-matrix
formalism can handle QED problems but neither electron correlation nor quaside-
generacy. Two methods are available that can deal with QED as well as quasidegen-
eracy, namely the two-times Green’s-function method of Shabaev et al. 2 and the
Covariant-Evolution-Operator method, recently introduced by us 4,3, as indicated
in the next line of the table.

1
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All numerical QED procedures presently available are of independent-particle
type, where the electrons move independently of each other in some average (usually
nuclear) field and interact by the exchange of one or two covariant photons. This
implies that the many-body effect (electron correlation) is treated at most to second
order by these methods, which is often insufficient in interpreting heavy-ion exper-
iments 5. (An approximate scheme for combining QED effects with higher-order
electron correlation, based upon the 1/Z expansion, has recently been developed
by Shabaev et al. 6.)

As the accuracy of heavy-ion experiments improve, the many-body effects be-
come even more important, and it is desirable to be able to include these effects in a
systematic fashion. It turns out that the Covariant-Evolution-Operator method has
a structure that is quite similar to standard MBPT, which opens up the possibility
of combining the two procedures, so that they can form a true ”Many-Body-QED”
procedure. We have indicated this possibility previously 3 and developed this fur-
ther in a more recent publication 7. We refer to this new method as the Many-Body
Covariant-Evolution-Operator method, indicated in the last line of the table. In the
present paper we shall analyze this procedure further and compare it with other
available procedures.

The most accurate method now available for QED calculations on light ele-
ments is the analytical method, developed and applied by Drake, Pachucki and
others 8,9,10,11. This is based upon a perturbative expansion of the relativistic and
QED effects and therefore yields limited accuracy of heavier elements. We believe
that the numerical method proposed here could be a complement to the analytical
one.

2. Standard Time-independent Many-Body Perturbation Theory

In standard time-independent many-body perturbation theory 1 we consider a num-
ber of target states, Ψα, satisfying the time-independent Schrödinger equation

H Ψα = Eα Ψα ; (α = 1, 2, · · · d). (1)

The Hamiltonian is partitioned into a model Hamiltonian, H0, and a time-
independent perturbation, H ′,

H = H0 + H ′. (2)
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The Hilbert space formed by the eigenstates of H0 is separated into a model space
(P ), containing all eigenstates corresponding to one or several eigenvalues of H0,
and a complementary space (Q). For each target state there is a model state, which
in the intermediate normalization is the projection onto the model space of the
corresponding target state,

Ψα
0 = PΨα. (3)

A wave operator transforms the model states to the corresponding target states

Ψα = Ω Ψα
0 . (4)

An effective Hamiltonian

Heff = PHΩP = PH0P + PH ′ΩP = PH0P + Veff (5)

satisfies the secular equation

Heff Ψα
0 = Eα Ψα

0 . (6)

Veff is known as the effective interaction.
The wave operator satisfies the generalized Bloch equation 12,13,14,1

[
Ω, H0

]
P =

(
H ′Ω− ΩVeff

)
P (7)

which leads to the generalized Rayleigh-Schrödinger perturbation expansion. Ex-
pressed in terms of Goldstone diagrams, this leads to the Brueckner-Goldstone 15,16

linked-diagram expansion
[
Ω,H0

]
P =

(
H ′Ω− ΩVeff

)
linked

P (8)

where all terms on the right-hand side are ”linked”. Separating the second-quantized
wave operator in terms of one-, two-, ... body parts, leads to a system of coupled
equations, and solving these self-consistently yields the corresponding correlation
effects to essentially all orders of perturbation theory. The normal-ordered expo-
nential Ansatz, Ω = {eS}, leads similarly to the very effective Coupled-Cluster
Approach (CCA) 1,17.

The important point here is that the commutator of the left-hand side makes
the equations applicable also to a model space that contains several unperturbed
energies. This so-called extended-model-space procedure is very effective in dealing
with near or quasidegeneracy.

3. S-matrix formalism and covariant-evolution operator method

3.1. Time-evolution operator

We employ the interaction picture, where the wave functions and the operators are
related to those of the Schrödinger picture by

ΨI(t) = eiH0tΨS(t) ; OI(t) = eiH0tOS e−iH0t. (9)
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The perturbation is assumed to be the interaction between the electrons and the
electromagnetic radiation field

H′I(x) = −eψ̂†I α
µAµψ̂I, (10)

where ψ̂I, ψ̂†I are the electron field operators, αµ the Dirac alpha operators and Aµ

represents the radiation field. We also employ the adiabatic damping, implying that

H ′
I(t) → H ′

Iγ(t) = H ′
I(t) e−γ|t|, (11)

where γ is a small, positive number, which eventually goes to zero. The time-
evolution operator is in this picture defined by

ΨIγ(t) = Uγ(t, t0)ΨIγ(t0) (12)

and can be expressed as the expansion 18

Uγ(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

d4xn · · ·
∫ t

t0

d4x1 TD

[H′I(xn)H′I(xn−1) · · ·H′I(x1)
]

× e−γ(|t1|+···+|tn|). (13)

TD is the Dyson time-ordering operator, and H′I(x) is the perturbation density

H ′
I(t) =

∫
d3xH′I(t, x). (14)

3.2. Gell-Mann–Low theorem and the reduced evolution operator

According to the Gell-Mann-Low theorem 19, the time-independent wave function
can in the single-reference case (one-dimensional model space) be expressed

Ψ = lim
γ→0

ΨIγ(t = 0) = lim
γ→0

Uγ(0,−∞)Ψ0

〈Ψ0|Uγ(0,−∞) |Ψ0〉 , (15)

satisfying the time-independent Schrödinger equation
(
H0 + H ′) Ψ = E Ψ, (16)

provided that the undamped perturbation H ′ is time-independent in the
Schrödinger picture. The evolution operator generally becomes singular as γ → 0,
but these singularities are eliminated in the ratio (15). The energy eigenvalue is
given by E = E0 + ∆E with

∆E = lim
γ→0

iγλ
〈Ψ0| ∂

∂λUγ(0,−∞|Ψ0〉
〈Ψ0|Uγ(0,−∞|Ψ0〉 . (17)

(Here, the Hamiltonian is temporarily expressed H = H0 + λH ′ with λ eventually
set equal to unity.)

The GML theorem can be extended to the multi-reference case 3, yielding

Ψα = lim
γ→0

Nα Uγ(0,−∞)Φα

〈Φα|Uγ(0,−∞)|Φα〉 . (18)
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Nα is a normalization constant and Φα is the parent state

Φα = lim
γ→0

lim
t→−∞

Ψα
Iγ(t). (19)

The evolution operator can generally be expressed

Uγ(t,−∞)P = P + Ũγ(t,−∞)PUγ(0,−∞)P, (20)

where Ũγ(t,−∞), known as the reduced evolution operator, is regular 4. This leads
to the factorization theorem

Uγ(0,−∞)P =
[
1 + QŨγ(0,−∞)

]
PUγ(0,−∞)P, (21)

which together with the Gell-Mann–Low theorem (15) yields the important relation
between the evolution operator and the wave operator (4)

QΩP = QŨ(0,−∞)P (22)

The effective interaction (5) is related to the evolution operator by 3

Veff = P
[
i
∂

∂t
Ũ(t,−∞)

]
t=0

P. (23)

These relations give the connection between the covariant-evolution-operator
method and standard MBPT.

3.3. Single-photon exchange

t = t′

ψ̂†+ r s ψ̂†+
-r r1 2

t = t0

ψ̂+ a b ψ̂+

(a)

t = t′
ψ̂† r s ψ̂†

SF SF

-r r1 2
SF SF

r r

t = t0 r r
ψ̂ a b ψ̂

(b)

t = t′
ψ̂† r s ψ̂†

ψ̂ a b ψ̂

-r r1 2
SF SF

r r

(c)

Fig. 1. Graphical representation of the standard evolution operator for single-photon exchange
(a). This can be made covariant by inserting electron propagators (SF) or zeroth-order Green’s
functions on the in- and outgoing states (b). This can be simplified by letting t0 → −∞ (c).
The wavy lines represent covariant photons, and the free vertical lines single-electron states in
the bound-interaction picture (28), while the internal lines between heavy dots represent the
corresponding electron propagators.

The evolution operator (13) for single-photon exchange (Fig. 1 a) is

U (2)
γ (t′, t0) = −1

2

∫∫ t′

t0

d4x1d4x2 ψ̂†I+(x1)ψ̂
†
I+(x2) iI(x1, x2) ψ̂I+(x2)ψ̂I+(x1) e−γ(|t1|+|t2|), (24)
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integrated over all space and over time as indicated. ψ̂I+, ψ̂†I+ are the positive-energy
parts of the electron-field operators, and

iI(x1, x2) = (−eαµAµ)1(−eανAν)2 = e2αµ
1αν

2 iDFµν(x1 − x2). (25)

The hook represents contraction between the photon operators, and DFµν(x1−x2) is
the Feynman photon propagator. Integration over all times yields the corresponding
S-matrix

S(2)
γ = −1

2

∫∫ ∞

−∞
d4x1d4x2 ψ̂†I+(x1)ψ̂

†
I+(x2) iI(x1, x2) ψ̂I+(x2)ψ̂I+(x1) e−γ(|t1|+|t2|). (26)

The matrix elements of the S-matrix become in the limit γ → 0〈
rs

∣∣∣S(2)
∣∣∣ ab

〉
= −2πi δ(q + q′) 〈rs|I(x1, x2, q)|ab〉, (27)

where I(x1, x2, q) is the Fourier transform of the interaction (25). r, s... represent
single-electron states, generated by solving the Dirac equation in the nuclear field

hD|i〉 = εi|i〉, (28)

and q = εa−εr and q′ = εb−εs are the negative single-electron excitation energies.
The S-matrix elements become singular, when the energy conservation criterion

q + q′ = εa + εb − εr − εs = 0 (29)

is satisfied and zero otherwise. The corresponding energy contribution is given by
the Sucher formula 20

∆E = lim
γ→0

i
2
γλ

〈Ψ0| ∂
∂λSγ |Ψ0〉

〈Ψ0|Sγ |Ψ0〉 , (30)

which in this case yields

∆E = δq,−q′
〈
rs

∣∣I(x1, x2, q)
∣∣ab

〉
, (31)

δx,y being the Kronecker delta. This is non-zero only when the energy (29) is con-
served. The integration kernel is

I(x1, x2, q) =
∫ ∞

0

2k dk f(x1, x2, k)
q2 − k2 + iη

(32)

where f(x1, x2, k) is a gauge-dependent function of the photon momentum. The
energy conservation (29) restricts the S-matrix application to cases with a one-
dimensional or a completely degenerate model space, preventing the application to
quasidegenerate systems.

The evolution operator (24) is non-covariant for finite times, but it can be made
covariant by integrating over all times, which yields the S matrix (26). Alterna-
tively, it can be made covariant by inserting zeroth-order Green’s functions on the
in- and outgoing states 3 (see Fig. 1 b)

U
(2)
γCov(t

′, t0) = −1
2

∫∫
d3x′1d

3x′2 ψ̂†I (x
′
1)ψ̂

†
I (x

′
2)

∫∫
d4x1d4x2 G0(x′1, x

′
2;x1, x2)

×
∫∫

d3x10d3x20 iI(x1, x2)G0(x1, x2; x10, x20) ψ̂I(x20)ψ̂I(x10) e−γ(|t1|+|t2|) (33)
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and performing the time integrations of t1 and t2 over all times. The initial and
final times can still be finite and are the same for all electrons, i.e.,

t10 = t20 = t0 and t′1 = t′2 = t′.

Starting the perturbation from unperturbed states, we can set the initial time
t0 = −∞, and the expression is simplified to

U
(2)
γCov(t

′,−∞) =
1
2

∫∫
d3x′1d

3x′2 ψ̂†I (x
′
1)ψ̂

†
I (x

′
2)

∫∫
d4x1d4x2 G0(x′1, x

′
2; x1, x2)

× iI(x1, x2) ψ̂I(x2)ψ̂I(x1) e−γ(|t1|+|t2|) (35)

(see Fig. 1 c). This yields in the limit γ → 0 the matrix element for single-photon
exchange

〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ ab

〉
=

e−it′(q+q′)

q + q′
〈
rs

∣∣I(x1, x2, q, q
′)

∣∣ab
〉
, (36)

with

I(x1,x2, q, q
′) =

∫
dk f(x1, x2, k)

[ 1
q − (k − iη)r

+
1

q′ − (k − iη)s

]
, (37)

where (A)x = A sgn(εx). In this order QŨ
(2)
Cov(t,−∞)P = QU

(2)
Cov(t,−∞)P , and the

corresponding contribution to the wave operator (22) becomes

〈rs |Ω| ab〉 =
1

q + q′
〈
rs

∣∣I(x1, x2, q, q
′)

∣∣ab
〉

(|rs〉 ∈ Q) (38)

and to the effective interaction (23)

〈rs |Veff | ab〉 =
〈
rs

∣∣I(x1, x2, q, q
′)

∣∣ab
〉

(|rs〉 ∈ P ). (39)

In the case of energy conservation (29) we find that the last expression becomes
identical to the S-matrix result (31).

In the evolution-operator case (39) there is no energy restriction, which implies
that also non-diagonal elements of the effective Hamiltonian (5) can be evaluated,
and the procedure with extended model space can be applied in order to treat
quasidegeneracy. As mentioned, in the S-matrix formalism this is not possible due
to the energy restriction (29). An important relation is also the wave-operator
expression (38), which gives the connection to the wave function. This has no coun-
terpart in the S-matrix formalism.

4. Many-Body Covariant-Evolution-Operator Approach: Including
electron correlation

Presently available methods for bound.state-QED calculations are essentially
independent-particle models, based upon electrons moving independently of each
other in some average field (usually the nuclear field) and interact with each other
by exchanging covariant photons. No other many-body effects are included, i.e., no
electron correlation apart from that represented by the covariant photons. Since at
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most two such photons can be handle computationally at present, this implies that
the many-body effects are poorly treated.

In the present paper we shall briefly describe how the covariant-evolution-
operator method can be extended to include electron-correlation effects to arbitrary
order of perturbation theory and hence forming a true many-body-QED procedure.
(For more details the reader is referred to our recent publication 7.)

The retarded interaction (25) is the result of two perturbations (10)—the emis-
sion and the absorption of a virtual photon at different times. Here, we consider
each of them as individual perturbations in the Gell-Mann–Low relations (15, 18).
The wave functions will then lie in an extended Fock space, where the number of
photons is no longer conserved, and we express the Schrödinger-like equation (16)
as

(
H0 + H ′)Ψ = E Ψ, (40)

indicating with the bold symbols quantities lying in the extended space (H0 con-
tains also the photon field.) This leads to a Bloch equation, analogous to the stan-
dard one (7),

[
Ω, H0

]
P =

(
H ′Ω−ΩVeff

)
P (41)

which we can solve in a step-by-step process.
We employ the Coulomb gauge, where the interaction between the electrons

consists of the instantaneous Coulomb interaction V12 = e2

4πr12
and the retarded

Breit interaction. The latter is represented by the expression (37) with

f(x1,x2, k) =
e2

4π2

[
−α1 · α2

sin(kr12)
r12

+ (α1 · ∇1) (α2 · ∇2)
sin(kr12)

k2 r12

]
, (42)

r12 being the interelectronic distance. The first term represents the Gaunt interac-
tion and the second term the scalar-retardation part. By means of the expansion
theorem

sin(kr12)
kr12

=
∞∑

l=0

(2l + 1)jl(kr1)jl(kr2)Cl(1) · Cl(2), (43)

where C is a spherical tensor of rank l and jl is a spherical Bessel function, we can
express the relation (42) as 7

f(x1, x2, k) =
∞∑

l=0

[
− V l

G(kr1) · V l
G(kr2) + V l

SR(kr1) · V l
SR(kr2)

]
. (44)

In this way we have separated the Gaunt and the scalar-retardation parts of the
retarded interaction into products of single-particle operators, and we can regard
each of them as the perturbation in the Schrödinger-like equation (40) and the
Bloch equation (41).

By first applying the instantaneous Coulomb interaction, V12, we have the stan-
dard Bloch equation, for a two-electron system leading to the standard pair equation

(
εa + εb − h0(1)− h0(2)

)|ρab〉 = |rs〉〈rs|V12|ρab〉 − |ρcd〉〈cd|Veff |ab〉. (45)
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(b)
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k

(c)

r s

a b

-
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Fig. 2. Illustrations of solving the extended Bloch equation (41) step by step, leaving out the
folded terms.

The pair function ρab is illustrated in Fig. 2 (a). The last term of the equation
represents the folded term, which is not shown in the figure.

In the next step we apply one of the retarded interactions, leading to a function
with one extra photon and to the pair equation
(
εa + εb − h0(1)− h0(2)− k

)|ρl
G,ab(k)〉 = |rs〉〈rs|V l

G(k)|ρab〉 − |ρl
G,cd(k)〉〈cd|Veff |ab〉, (46)

illustrated in Fig. 2 (b). The last term represents a new type of folded diagram
(also not shown in the figure). Before the photon is being absorbed, we can have
additional Coulomb interactions,
(
εa + εb − h0(1)− h0(2)− k

)|ρl
G,ab(k)〉 = |rs〉〈rs|V l

G(k)|ρab〉+ |rs〉〈rs|V12|ρl
G,ab(k)〉

− |ρl
G,cd(k)〉〈cd|Veff |ab〉, (47)

as illustrated in Fig. 2 (c).
Finally, the photon is absorbed and additional Coulomb interactions added,

(
εa + εb − h0(1)− h0(2)

)|ρG,ab〉 = |rs〉〈rs|V l
G(k)|ρl

G,ab(k)〉+ |rs〉〈rs|V12|ρG,ab〉
− |ρG,cd〉〈cd|Veff |ab〉, (48)

as illustrated in Fig. 2 (d).
We have here illustrated the procedure by the exchange of a photon between

two electrons. The same procedure can be used also when the photon is absorbed
by the same electron, leading to radiative effects, like the self-energy and vertex
correction—of course, with the proper renormalization.

5. Numerical results

In Fig. 3 we have illustrated our preliminary numerical results for the 1s2s 1S state
of heliumlike neon. (a) represents the effect of the exchange of one retarded photon,
(b) the effect of one retarded photon with one noncrossing Coulomb interaction
and (c) with one crossing, (d) the effect of two retarded photons (crossing and
noncrossing), (e) the effect of one retarded photon with preceding and succeeding
Coulomb interactions, (f) the same with crossing Coulomb interactions, and (g)
the effect of two retarded photons with electron correlation. The results (c, d) are
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6p

p

(a)
2637 µH

6p

p

(b)

-773

6p

p

(c)

-18

6p

p
6 p

p

(d)

-7

-

(e)

72

-

(f)

∼ -5

6p

p
6 p

p

(g)
1-2 µH

Fig. 3. Numerical results for the energy of the 1s2s 1S state of heliumlike neon. The diagrams (c,
d) are taken from our previous work and (f, g) are estimated. The diagrams (a-d) can evaluated
by the standard QED techniques and (e, f) with the new technique presented here.

taken from our previous S-matrix calculation 21. The main new result of the work
presented here is represented by the many-body-QED diagrams (e, f), which have
substantial effect. (The result (f) is only estimated—numerical evaluation is under-
way.) The diagram (g) is presently beyond reach and has been estimated. In the
standard QED procedures the effects (a-d) can be evaluated, which in the present
case corresponds to 97 % of the energy contribution beyond standard MBPT. With
the new procedure discussed here the effects (a-f) can be evaluated, corresponding
to 99.9 % of this energy.

6. Summary and Conclusions

We have presented a rigorous Many-Body-QED scheme, where QED effects are
combined with electron correlation to arbitrary order. We have here considered
only a single retarded photon and an arbitrary number of instantaneous Coulomb
interactions. This can be repeated, leading to reducible diagrams with the retarded
interactions separated in time. In principle, the procedure can be used also for
several irreducible photons, i.e., photons overlapping in time, although this is con-
siderably more time consuming computationally. Our preliminary numerical results
indicate 7 that for light and medium-heavy elements the effect of the combination
of a single retarded photon and electron correlation beyond second order is much
more important than the effect of two retarded photons. (To treat three retarded
photons numerically is presently beyond reach computationally.) Therefore, the pro-
posed scheme seems to represent the most efficient way of improving the numerical
QED calculations on such systems, and we believe that the method—after further
refinements—could be a valuable complement to the analytical method, also for
light elements.
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