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Abstract

A covariant evolution operator (CEO) can be constructed, representing
the time evolution of the relativistic wave function or state vector. Like the
nonrelativistic version, it contains (quasi-)singularities. The regular part is
referred to as the Green’s operator, which is the operator analogue of the
Green’s function. This operator, which is a field-theoretical concept, is closely
related to the many-body wave operator and effective Hamiltonian, and it is
the basic tool for our unified theory. The Green’s operator leads, when the
perturbation is carried to all orders, to the Bethe-Salpeter equation (BSE) in
the equal-time or effective-potential approximation. When relaxing the equal-
time restriction, the procedure is fully compatible with the exact BSE. The
calculations are performed in the photonic Fock space, where the number
of photons is no longer constant. The procedure has been applied to heli-
umlike ions, and the results agree well with S-matrix results in cases when
comparison can be performed. In addition, evaluation of higher-order QED-
correlational effects has been performed, and the effects are found to be quite
significant for light and medium-heavy ions.

1.1 Introduction

Relativistic covariance is an important concept in a relativistic theory. Well-
known examples of covariant theories are Maxwell’s theory of electromag-
netism and Einstein’s special theory of relativity. Many-body perturbation
theories available today, on the other hand, are NOT relativistically covariant.
A covariant many-body theory would, in principle, include electron correla-
tion as well as quantum-electrodynamical effects (QED) to arbitrary order.
In this paper such a procedure will be outlined. The first question is to what
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extent this is an important problem, and where effects beyond the present
procedures are expected to appear.

One important example is the study of highly charged ions, which are
suitable objects for testing QED at very strong fields. With improved ac-
celerators, particularly the new FAIR facility—Facility for Antiproton and
Ion Research—now under construction at GSI in Darmstadt (see Fig. 1.1),
new possibilities will appear to study transition energies (fine and hyperfine
structure, Lamb shift), g-factors etc. with higher accuracy than was previ-
ously possible. In order to match the new experimental situation, it is im-
portant that also theoretical procedures are being developed. In the future
combined effects of QED and relativistic electron correlation will be increas-
ingly important—effects that presently cannot be evaluated.

Fig. 1.1 FAIR project at GSI

Another example is the precision studies of light atoms and ions, such
as the fine structure of the helium atom and heliumlike ions. Very accurate
fine-structure separations have been determined for the helium atom and the
Li+ ion, but accurate results have also been achieved for somewhat heavier
ions, like F+7 and Si+12 [1, 2]. For the helium atom there is a significant
discrepancy between the experimental and theoretical results (see Fig. 1.2),
the reason of which is presently unknown. The most accurate experimental
results are obtained by Gabrielse [3] and by Inguscio et al. [4]. The theoretical
calculations have been performed by Drake and coworkers [5] as well as by
Pachucki and Sapirstein [6]. The theoretical calculations are based upon non-
relativistic wave functions of Hylleraas type with built-in electron correlation,
while relativistic and QED effects are treated analytically in an α, Zα power



1 Relativistically covariant many-body perturbation procedure 3

expansion. Our aim is to develop a numerical procedure for calculating the
combined relativistic, QED and correlation effects.
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Fig. 1.2 Experimental and theoretical results for the fine-structure separations of the
lowest P-state of the helium atom, 23P1 − 23P2 top, 23P0 − 23P1 bottom. (Picture taken
from ref. [3].)

The many-body perturbative procedures are now well developed non-
relativistically as well as relativistically [7]. Here, electron correlation can be
treated essentially to all orders by methods of Coupled-Cluster type, while
QED effects are at most included to first order. For pure QED calculations
several methods have been developed. Most frequently used is the S-matrix
formulation [8], which has been successfully applied particularly to highly
charged ions. More recently, two other methods have been developed, the
Two-times Green’s function technique by Shabaev et al. [9], and the Covariant
Evolution Operator technique (CEO), developed by the Göteborg group [10].
The latter two methods have the advantage over the S-matrix method that
they can be applied to quasi-degenerate states, like fine-structure separations.
As an illustration we consider the calculations performed by the Göteborg
group a few years ago on some light heliumlike ions, compared with exper-
imental data and the calculation by Drake et al. [11] (see Table 1.1). Our
theoretical results agree with the experimental results within the assigned
uncertainties, while some results of Drake fall outside the limits of error.

The methods for QED calculations presently available can for practical
reasons only be applied to second order (two-photon exchange), which par-
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ticularly for light systems yields an insufficient description of the electron
correlation.

Table 1.1 Fine-structure separations for some heliumlike ions (from ref. [10])

Z 3P1 −3P0
3P2 −3P0

3P2 −3P1

9 701(10) µH 4364,517(6) Expt’l
680 5050 4362(5) Drake
690 5050 4364 Göteborg

10 1361(6) 8455(6) 265880 Drake
1370 8460 265880 Göteborg

18 124960(30) Expt’l
124810(60) Drake
124940 Göteborg

The CEO method has the advantage, compared to other techniques for
QED calculations, that it has a structure quite similar to that of MBPT,
which opens up the possibility of merging the two effects, as has been de-
scribed in our recent publications [12, 13]. This will make it possible to de-
velop for the first time a relativistically MBPT procedure that is fully covari-
ant. Before going into this problem, we shall briefly summarize the standard
time-independent and time-dependent perturbation procedures.

1.2 Time-independent perturbation procedure

1.2.1 Bloch equation

We assume that we have a set of target states, satisfying the non-relativistic
Schrödinger equation

HΨα = EαΨα (α = 1, 2, ....d) (1.1)

H is the Hamiltonian of the system1

H =
N∑

i=1

hS(i) +
N∑

i<j

e2

4πrij
(1.2)

where the first term is a sum of single-electron Schrödinger Hamiltonians and
the second term represents the electrostatic interaction between the electrons.

1 We use here relativistic units, c = ~ = me = ε0 = 1, e2 = 4πα, α being the fine-structure
constant.
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For each target state we assume that there exists a model state, which in
the intermediate normalization (IN) is the projection of the target state onto
the model space

Ψα
0 = PΨα (1.3)

Assuming the model states to be linearly independent, a wave operator trans-
forms the model states back to the target states,

Ψα = ΩΨα
0 (1.4)

An effective Hamiltonian can be defined so that, operating entirely within
the model space, it generates the exact energies of all the target states

HeffΨα
0 = EαΨα

0 (1.5)

In IN we have
Heff = PHΩP (1.6)

By partitioning the Hamiltonian into a model Hamiltonian (H0) and a
perturbation (V ),

H = H0 + V (1.7)

the wave operator satisfies the generalized Bloch equation [14, 7]
[
Ω, H0

]
P =

(
V Ω −ΩVeff

)
P (1.8)

Here,
Veff = PV ΩP (1.9)

is the effective interaction and the effective Hamiltonian becomes

Heff = PH0P + Veff (1.10)

The Bloch equation (1.8) can be used to generate a perturbation expansion
of Rayleigh-Schrödinger type also in the case of quasi-degeneracy by means
of an extended model space. If the model space is complete, i.e. contains all
configurations that can be formed by the valence electrons, then it can be
shown that the expansion can be represented graphically by linked diagrams
only, known as the linked diagram or linked cluster theorem,2

[
Ω, H0

]
P =

(
V Ω −ΩVeff

)
linked

P (1.11)

By means of the exponential Ansatz Ω = exp (T ) the Bloch equation leads
directly to the Coupled-Cluster Approach. For general open-shell systems it
is often convenient to use the normal-ordered exponential [15]

2 A linked diagram can consist of disconnected pieces, as long as they are all open in the
sense that they do not operate entirely within the model space.
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Ω = {exp (T )} (1.12)

which eliminates unwanted contractions between the cluster operators. For a
complete model space it then follows that the graphical representation of the
expansion consists of connected diagrams only

[
T, H0

]
P =

(
V Ω −ΩVeff

)
conn

P (1.13)

Mukherjee has recently modified the normal-ordered exponential so that
certain wanted contractions are maintained [16]

Ω = {{exp (T )}} (1.14)

which improves the convergence in certain cases.

1.2.2 Perturbation expansion

As mentioned, the Bloch equation (1.8) is valid for arbitrary quasi-degenerate
model spaces. For simplicity, though, we shall here illustrate how the expan-
sion is performed for a degenerate model space (with energy E0). We can
then express the Bloch equation in the form

ΩP = ΓQ(E0)
(
V Ω −ΩVeff

)
P ; ΓQ(E0) =

Q

E0 −H0
(1.15)

which is essentially the original form of the equation, given by Bloch [17, 18].
In first order we have

Ω(1)P = ΓQ(E0)V P (1.16)

and in second order

Ω(2)P = ΓQ(E0)
(
V Ω(1) −Ω(1)V

(1)
eff

)
P (1.17)

where V
(1)
eff = PV P is the first-order effective interaction. The second term

is a so-called folded term, because it is traditionally drawn in a folded way
(see Fig. 1.3), where the two parts can be evaluated independently. We shall
see that this kind of effect plays an important role in the unified theory we
are developing.
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Fig. 1.3 Graphical representation of the second-order wave operator (1.17). The solid lines
represent single-electron orbitals and the dashed lines instantaneous Coulomb interactions.
The second folded diagram represents the part with the intermediate state in the model
space (P ).

1.2.3 Versions of MBPT/CCA

What is indicated here is a multi-reference approach, in which a multiple of
states are treated simultaneously. This is particularly advantageous in calcu-
lating transitions energies. The valence universal version, valid for different
stages of ionization, is particularly useful in evaluating ionization energies or
electron affinities. A serious disadvantage with the multi-reference approach
is that it often leads to so-called intruder states, i.e., states that do not belong
to the group of target states under study but penetrate into the energy range
of target states of the same symmetry when the perturbation is turned on.
When this happens, the perturbation expansion no longer converges.

The effects of intruder states are generally more severe for molecules than
for atoms, due to more dense energy levels. Therefore, even if there are ways
of avoiding—or at least reducing—the effect of intruder states in the multi-
reference approach, it is when the interest lies entirely in one or a few partic-
ular states, more advantageous to study one state at a time in a state-specific
approach (see the paper by Paldus in this volume).

It is outside the scope of this paper to deal further with the various ap-
proaches of MBPT/CCA, which are well documented in the literature. Our
main goal is to combine many-body calculations with QED, and here it is
irrelevant exactly which many-body approach that is used.

1.2.4 Standard relativistic MBPT: QED effects

The standard relativistic MBPT procedures are based upon the projected
Dirac-Coulomb-Breit approximation [19]

H = Λ+

[ N∑

i=1

hD(i) +
N∑

i<j

e2

4πrij
+ HB

]
Λ+ (1.18)
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where hD is the single-electron Dirac Hamiltonian and HB is the instanta-
neous Breit interaction

HB = − e2

8π

∑

i<j

[αi · αj

rij
+

(αi · rij)(αj · rij)
r3
ij

]
(1.19)

Λ+ is a projection operator that eliminates the negative-energy solutions of
the Dirac equation. This approximation is also known as the No-Virtual-Pair
Approximation (NVPA).

The diagrammatic representation of the NVPA for a two-electron system is
exhibited in Fig. 1.4. The effects beyond the NVPA are traditionally referred
to as QED effects, some of which are shown graphically in Fig. 1.5.
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Fig. 1.4 Graphical representation of the NVPA for heliumlike systems. The dashed line
represents, as before, the Coulomb interaction and the dotted line the instantaneous Breit
interaction.
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Fig. 1.5 Some low-order non-radiative (upper line) and radiative (lower line) ”QED ef-
fects”. The wavy lines represent the covariant photon exchange. These diagrams are Feyn-
man diagrams, where the orbital lines can represent particle as well as hole or anti-particle
states.
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1.3 Time-dependent perturbation theory

1.3.1 Evolution operator

The time-dependent Schrödinger state vector has in the Schrödinger picture
(SP) the time dependence

|χ(t)〉 = e−iH(t−t0) |χ(t0)〉 (1.20)

In the interaction picture (IP) the SP state vectors and operators are trans-
formed according to

|χI(t)〉 = eiH0t |χS(t)〉; VI(t) = eiH0t V e−iH0t (1.21)

This leads to the Schrödinger equation is in IP

i
∂

∂t
|χI(t)〉 = VI(t) |χI(t)〉 (1.22)

The time-evolution operator in IP, U(t, t0), is defined by3

|χ(t)〉 = U(t, t0) |χ(t0)〉 (t > t0) (1.23)

and it satisfies the differential equation

i
∂

∂t
U(t, t0) = V (t)U(t, t0) (1.24)

We assume that an adiabatic damping is applied

V (t) → V (t) e−γ|t| (1.25)

where γ is a small, positive number that eventually tends to zero. This leads
to the expansion [20]

Uγ(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtn T
[
V (t1) . . . V (tn)

]
e−γ(|t1|+|t2|...+|tn|) (1.26)

where T is the time-ordering operator. The perturbation is represented by
the interaction between an electron and the radiation fields

V (t) =
∫

d3xH(t,x) (1.27)

with
3 In the following we shall work mainly in the interaction picture and leave out the subscript
”I”.
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H(x) = −eψ̂(x)†αµAµ(x)ψ̂(x) (1.28)

where x = (t,x) is the four-dimensional space-time coordinate and ψ̂(x), ψ̂(x)†

and Aµ are the electron-field and the photon-field operators, respectively.
This perturbation operates in the extended photonic Fock space, where the
number of photons is no longer constant.4 The expansion (1.26) then becomes

U(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0

dx4
1 . . .

∫ t

t0

dx4
n T

[H(x1) . . .H(xn)
]
e−γ(|t1|+|t2|...+|tn|) (1.29)

where the integrations are performed over all space and over time as indicated.
The exchange of a single photon is represented by TWO perturbations of this
kind.

1.3.2 Gell-Mann–Low theorem

Gell-Mann and Low [21] have shown that for a closed-shell system the state
vector

|χ(0)〉 = |Ψ〉 = lim
γ→0

Uγ(0,−∞)|Φ〉
〈Φ|Uγ(0,−∞)|Φ〉 (1.30)

satisfies the time-independent Schrödinger equation

(H0 + V (0))|Ψ〉 = E|Ψ〉 (1.31)

Here,
|Φ〉 = lim

t→−∞
|χ(t)〉 (1.32)

is the parent state, equal to the limit of the time-dependent target function as
the perturbation is adiabatically turned off. In the single-reference case this
is identical to the model state (1.3). The Gell-Mann–Low (GML) theorem
can be extended to a general open-shell system [10]

∣∣χα(0)
〉

=
∣∣Ψα

〉
= lim

γ→0

Nα Uγ(0,−∞)
∣∣Φα

〉

〈Φα|Uγ(0,−∞)|Φα〉 (1.33)

In this case the parent state |Φα〉 is not necessarily identical to the model
state, |Ψα

0 〉 = P |Ψα〉, which is the reason for the appearance of the normal-
ization factor Nα. In this multi-reference case the wave functions satisfies
similar equations

(H0 + V (0))|Ψα〉 = Eα|Ψα〉 (1.34)

4 Also the Fock space is a form of Hilbert space, and therefore we shall refer to the Hilbert
space with a constant number of photons as the restricted (Hilbert) space and the space
with a variable number of photons as the extended or photonic Fock space.
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It should be observed that a condition for the GML relations to hold is
that the perturbation is time-independent in the Schrödinger picture, apart
from the adiabatic damping. With the Fock-space perturbation (1.27) this
condition is fulfilled, but it is NOT true for any time-dependent perturbation,
acting in the restricted space. Therefore, in the present formalism, which is
based upon the GML theorem, we have to work in the photonic Fock space.

We can define a wave operator in the photonic space in the same way as
before (1.4)

|Ψα〉 = Ω|Ψα
0 〉 (1.35)

(using bold-face symbol to distinguish it from the standard wave operator).
From Eq. (1.34) we can also define a corresponding effective Hamiltonian

P
(
H0 + Veff

)|Ψα
0 〉 = Eα|Ψα

0 〉 (1.36)

and
Veff = PV (0)ΩP (1.37)

Of course, the effective Hamiltonian/interaction lies in the model space, which
is a part of the restricted Hilbert space with constant number of photons,
while the wave operator now acts in the extended space.

1.4 Covariant evolution operator and the Green’s
operator

1.4.1 Definitions

The evolution operator (1.23) is a non-relativistic concept, since time evolves
only in the positive direction. In relativistic applications we must allow time
to run also backwards in the negative direction, which represents the propa-
gation of hole or antiparticle states with negative energy. This leads to the
covariant evolution operator (CEO), introduced by Lindgren, Salomonson
and coworkers [10].

Here, we shall define the CEO by means of the Green’s function (GF),
using the Feynman kernel, which leads to relativistically covariance. The
field-theoretical single-particle GF can be defined [22]

G(x, x0) =

〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉

〈0H| 0H〉 (1.38)

where T is the Wick time-ordering operator and ψ̂H, ψ̂†H are the electron field
operators in the Heisenberg representation. The state |0H〉 is the ”Heisenberg
vacuum”. In the vacuum expectation all normal-ordered products vanish.



12 Authors Suppressed Due to Excessive Length

Therefore, in transforming the time-ordered product to normal ordering by
means of Wick’s theorem, only contractions will remain.

By transforming to the interaction picture, the vacuum expectation above
can be expanded in analogy with the time evolution operator

〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉
=

∞∑
n=0

(−i)n

n!

∫
· · ·

∫
dt1 · · · dtn

×〈0|T [
V (t1) · · ·V (tn) ψ̂(x)ψ̂†(x0)

]|0〉 e−γ(|t1|+|t2|··· ) (1.39)

with integrations over all times. We now define the single-particle CEO5

U1
Cov(t, t0) =

∫∫
d3xd3x0 ψ̂†(x)

〈
0H

∣∣T [ψ̂H(x)ψ̂†H(x0)]
∣∣0H

〉
ψ̂(x0) (1.40)

with integration over the space coordinates of x and x0. This is obviously
relativistically covariant.

The CEO is an operator in contrast to the GF, which is a function. In
Fig. 1.6 we compare diagrams for single-photon exchange for the standard
evolution operator, the GF and the CEO.

t

6ψ̂ a 6b ψ̂

-zr r1 2
6ψ̂† r 6s ψ̂†

t0

t

6a 6b

-zr r1 2
6r 6s

r r

t0 r r

t
6ψ̂† r 6s ψ̂†

6a 6b

-zr r1 2
6r 6s

r r

t0 r r
6ψ̂ a 6b ψ̂

Fig. 1.6 Comparison between the standard evolution operator, the Green’s function and
the covariant evolution operator for single-photon exchange in the equal-time approxima-
tion. The solid lines between heavy dots represent electron propagators and the free lines
electron creation and absorption operators.

The exchange of a single retarded photon is represented by two contracted
perturbations of the type (1.27). The corresponding single-photon CEO can
be shown to be [10]6

〈
rs

∣∣Usp(t)
∣∣ab

〉
=

e−it(E0−Eout)

E0 − Eout
〈rs|Vsp(E0)|ab〉 (1.41)

5 In this definition we shall allow photons operators to remain uncontracted, for reasons
that will be apparent later.
6 When operating on unperturbed states with the adiabatic damping, the initial time is
t0 = −∞, which we normally leave out.
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where Vsp is the effective single-photon potential

〈rs|Vsp(E0)|ab〉 =
〈
rs

∣∣∣
∫ ∞

0

dk f(k)
[ 1
E0 − εr − εu − (k − iγ)r

+
1

E0 − εs − εt − (k − iγ)s

]∣∣∣ab
〉

(1.42)

Here, εx represent the orbital energies and E0 = εa + εb and Eout = εr + εs

are the initial and final energies of the system, respectively. (x)r represents
an expression with the sign of the orbital r, and f(k) is a gauge-dependent
function of the photon momentum. Note, that this potential depends on the
initial energy, E0.

1.4.2 Connection to MBPT

The vacuum expectation (1.39) contains singularities, which are eliminated
by the denominator in the definition of the GF (1.38). For the CEO, which
is an operator, the situation is more complex. We shall refer to the regular
part of the CEO as the Green’s operator (GO), which we separate into open
and closed parts

G(t, t0) = 1 + Gop(t, t0) + Gcl(t, t0) (1.43)

The open and closed parts of this operator are together identical to the
previously introduced reduced covariant evolution operator Ũ(t, t0) [23, 10]

Ũ(t, t0) = Gop(t, t0) + Gcl(t, t0) (1.44)

The parts of the Green’s operator are defined by
{

QU(t, t0)P = Gop(t, t0) · PU(0, t0)P

PU(t, t0)P = P + Gcl(t, t0) · PU(0, t0)P
(1.45)

P is the projection operator for the model space and Q = 1 − P for the
complementary space. The heavy dot implies that the two parts are evaluated
separately in the same way as in folded diagrams (Fig. 1.3).

It is easy to show that for t = 0

U(0, t0)P =
(
1 + Gop(0, t0)

) · PU(0, t0)P (1.46)

known as the factorization theorem. Inserting this into the GML formula
(1.33), yields

|Ψα〉Rel =
(
1 + Gop(0,−∞)

) · P
NαÛCov(0,−∞)

∣∣Φα
Rel

〉

〈Φα
Rel|ÛCov(0,−∞) |Φα

Rel〉
(1.47)
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The expression to the right of the dot is the model state P |Ψα〉Rel = |Ψα
0 〉Rel,

which implies that the expression to the left is the relativistically covariant
wave operator (also a Fock-space operator)

ΩCov = 1 + Gop(0,−∞) (1.48)

The relativistically covariant effective interaction can be shown to be [10]

V Cov
eff = P

(
i
∂

∂t
Gcl(t,−∞)

)
t=0

P (1.49)

1.4.3 Model-space contributions

In the definition of the Green’s function (1.38) the singularities of the vac-
uum expectation appear only in the form of disconnected diagrams. For the
Green’s operator, on the other hand, (quasi-)singularities can appear also for
connected diagrams, when an intermediate state lies in the model space. We
shall consider here two-electron systems, and we shall see how these singu-
larities can be eliminated.

From the definitions (1.45) of the Green’s operator it follows that the open
part can be expanded as

Gop(t)P = Uop(t)P − Gop(t) · Gcl(0)P − Gop(t) · Gcl(0) · Gcl(0)P − · · · (1.50)

The negative terms are referred to as counterterms, which eliminate the
(quasi-)singularities of the CEO, Uop.
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6 6

6 6

-r r

-r r6 6

r r
U(1)(E)

U(1)(E) PE′

PE

-

6 6

6 6

6 6

-r r

-r r6 6

r r
U(1)(E ′)

U(1)(E) PE′

PE
Fig. 1.7 Elimination of singularity of the second-order evolution operator by means of a
counterterm (second diagram).

We consider a ladder diagram with two photons, shown in Fig. 1.7 (left),
and we assume that we operate on a model-space state of energy E . (We
recall that the perturbation in this formalism is the interaction (1.27), which
implies that each retarded photon exchange is a second-order perturbation.)
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For the single photon we have for t = 0

G(1)(E)PE = U (1)
sp (E)PE = ΓE Vsp(E)PE =

1
E −H0

Vsp(E)PE (1.51)

where Vsp(E) is the energy-dependent single-photon potential (1.42). (Also
the evolution operator and the Green’s operator depend on the energy to
the right, which we have indicated, leaving out the time.) The two-photon
CEO can be expressed as a product of two single-photon CEOs, both with
the same energy parameter E ,

U (2)
sp (E)LaddPE = U (1)

sp (E)U (1)
sp (E)PE =

1
E −H0

Vsp(E)
1

E −H0
Vsp(E)PE (1.52)

We assume now that we have an intermediate model-space state of energy
E ′ ≈ E , which makes the expression quasi-singular,

U (2)
sp (E)LaddPE = U (1)

sp (E)PE′ U (1)
sp (E) PE =

1
E −H0

Vsp(E)
PE′

E −H0
Vsp(E)PE

= U (1)
sp (E)

1
E − E ′ PE′Vsp(E)PE (1.53)

Here, PE′Vsp(E)PE is the single-photon effective interaction, which is identi-
cal to the second-order effective interaction (1.37) with the Fock-space wave
operator.

The counterterm looks similar, but the second factor has the energy pa-
rameter E ′ (it does not operate beyond the heavy dot)

U (2)
sp (E)CounterPE = −U (1)

sp (E ′)PE′ · PE′U (1)
sp (E) PE

= −U (1)
sp (E ′) PE′

E − E ′ Vsp(E)PE (1.54)

This eliminates the (quasi-)singularity, but there is a finite remainder,

U
(1)
sp (E)− U

(1)
sp (E ′)

E − E ′ PE′Vsp(E)PE =
δU

(1)
sp (E)
δE V

(1)
eff ⇒ ∂U

(1)
sp (E)
∂E V

(1)
eff (1.55)

Differentiating the single-photon CEO, we find that the two-photon Green’s
operator becomes

G(E)(2)PE = ΓE
(
Vsp(E) Ω(1) −Ω(1)V

(1)
eff +

δVsp(E)
δE V

(1)
eff

)
PE (1.56)

where ΓE is defined in Eq. (1.51). The last two terms are due to the interme-
diate model-space state, and we refer to them as the model-space contribution
(MSC). This is quite analogous to the folded term in Eq. (1.17) in standard
MBPT, the only difference being that we now have an additional term, due
to the energy dependence of the perturbation.
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We have so far only considered multiple single-photon exchange, but this
can be generalized to the full exchange of irreducible interactions, V(E),
shown in Fig. 1.8, yielding

G(E)(2)PE = ΓE
(
V(E) Ω(1) −Ω(1)V

(1)
eff +

δV(E)
δE V

(1)
eff

)
PE (1.57)

where we now have
Veff = PV(E)ΩP (1.58)

with the operators acting in the restricted space.
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Fig. 1.8 Irreducible potential interactions, acting in the restricted space.

1.5 Connection to Bethe-Salpeter equation

1.5.1 Equal-time approximation

When the procedure of the previous section is continued, one finds that the
Green’s operator can be expended as [12, 13]

G(E) = G0(E) +
∞∑

n=1

δnG0(E)
δEn

(
Veff

)n (1.59)

where G0(E) represents the Green’s operator without any intermediate model-
space states (no folds). It then follows that the second term of the expansion
represents the entire MSC.

When we operate with the expansion (1.59) on the model state |Φ〉 with
energy E0, the result is

G(E0)
∣∣Φ〉

=
[
G0(E) +

∞∑
n=1

δnG0(E)
δEn

(
∆E)n

]
E=E0

∣∣Φ〉
(1.60)
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The effective interaction (1.58) with the full irreducible potential and with the
wave operator in the restricted Hilbert space is also equal to Veff = PV (0)ΩP
with the interaction (1.27) and the Fock-space wave operator. Therefore,
according to Eq. (1.36),

Veff |Φ〉 = (E − E0)|Φ〉 = ∆E|Φ〉 (1.61)

This is a Taylor series, and the result can be expressed

G(E0)
∣∣Φ〉

= G0(E)
∣∣Φ〉

(1.62)

This implies that the effect of the model-space contributions is to shift the
energy parameter from the model energy E0 to the target energy E.

From

G0(E0) = 1+
[ 1
E0 −H0

V(E0)+
1

E0 −H0
V(E0)

Q

E0 −H0
V(E0)+· · ·

]
(1.63)

we then find that the Green’s operator with MSC becomes

G(E0) = G0(E) = 1 +
[ 1
E −H0

V(E) +
1

E −H0
V(E)

Q

E −H0
V(E) + · · ·

]

(1.64)
The open part of the Green’s operator represents the open part of the wave
operator (1.48), i.e.,

QΨ =
[ Q

E −H0
V(E) +

Q

E −H0
V(E)

Q

E −H0
V(E) + · · ·

]
|Φ〉 (1.65)

or
Q(E −H0)Ψ = QV(E) Ψ (1.66)

From Eq. (1.61) we have

P (E −H0)|Ψ〉 = Veff(E)|Φ〉 = PV(E)Ψ (1.67)

which yields
(E −H0)|Ψ〉 = V(E)|Ψ〉 (1.68)

This is the Bethe-Salpeter equation in the effective-potential form .
We can regard this equation as the projection of the Fock-space equation
(1.34) onto the restricted space.

We have here assumed that the CEO represents the time evolution of the
relativistic wave function (1.23), which has the consequence that it depends
only on a single initial and a single final time, the same for all particles. In the
next section we shall relax this restriction and let the times be independent
for the individual particles. Then we will retrieve the exact Bethe-Salpeter
equation. This leads to a manifestly covariant concept, although it is not in
accord with standard quantum mechanics.
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1.5.2 The full Bethe-Salpeter equation
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Fig. 1.9 Graphical representation of the Dyson equation for the two-particle Green’s
function. The crossed box represents the proper or irreducible two-particle self energy.

The Dyson equation for the two-particle Green’s function, illustrated in
Fig. 1.9, can be expressed

G(x, x′;x0, x
′
0) = G0(x, x′; x0, x

′
0) +

∫∫∫∫
d4x1d4x2d4x′1d

4x′2

× G0(x, x′;x2, x
′
2) (−i)Σ∗(x2, x

′
2; x1, x

′
1)G(x1, x

′
1; x0, x

′
0) (1.69)

where Σ∗ is the proper or irreducible two-particle self energy (that cannot
be separated into two or more self-energy parts). G0 is the zeroth-order two-
particle Green’s function, which can also be ”dressed” with single-particle
self-energy insertions.

Bethe and Salpeter [24] as well as Gell-Mann and Low [21] argue that a
similar equation can be set up for a two-particle wave function. We assume
we have a single-reference situation and let the Dyson equation act on the
unperturbed wave function of model function Φ(x0, x

′
0) (with t0 = t′0 = −∞)

. With
Ψ(x, x′) =

∫∫
d3x0d3x′0 G(x, x′;x0, x

′
0)Φ(x0, x

′
0) (1.70)

and
Φ(x, x′) =

∫∫
d3x0d3x′0 G0(x, x′; x0, x

′
0)Φ(x0, x

′
0) (1.71)

we have

Ψ(x, x′) = Φ(x, x′) +
∫∫∫∫

d4x1d4x2d4x′1d
4x′2

× G0(x, x′; x2, x
′
2) (−i)Σ∗(x2, x

′
2;x1, x

′
1) Ψ(x1, x

′
1) (1.72)

This is the famous Bethe-Salpeter equation, which is illustrated graphically
in Fig. 1.10. In the treatment of Bethe–Salpeter and Gell-Mann–Low free-
electron propagators are used, and then the first inhomogeneous term cannot
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contribute to a bound state. Here, we shall work in the Ferry picture with
bound-state propagators, and then this term should remain.
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Fig. 1.10 Graphical representation of the inhomogeneous Bethe-Salpeter equation (1.72).
This is similar to Fig. 1.9 but operates now on the unperturbed wave function.

By means of the two-times Green’s operator Eq. (1.70) can be expressed
as an operator relation

|Ψ(t, t′)〉 = G(t, t′;−∞) |Φ〉 (1.73)

which implies that the two-times Green’s operator essentially represents wave
operator of the Bethe-Salpeter state vector. It also follows that the the four-
times Green’s operator acts as a time-evolution operator of the two-times
Green’s function

|Ψ(t, t′)〉 = G(t, t′; t0, t′0) |Ψ(t0, t′0)〉 (1.74)

1.6 Implementation

V (t) =
6 6
q q

6 6

+

6 6

r
6 6

Fig. 1.11 Graphical representation of the perturbation (1.78), acting in the photonic Fock
space.
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In order to implement the procedure developed above, it is convenient to
work in the photonic Fock space, where the number of photons is no longer
constant.

We consider for simplicity the single-reference case and start with the
Fock-space relation (1.34) and the corresponding Fock-space Bloch equation

[
Ω,H0

]
P =

(
V (0)Ω −ΩVeff

)
P (1.75)

We use here the Coulomb gauge, where the interaction can be separated in
an instantaneous Coulomb part and a Breit interaction that can be retarded.
The Breit part is represented by two interactions of the type (1.27) with the
f(k) function in Eq. (1.42) given by

fC(k) = α1 · α2
sin(kr12)

πr12
− (α1 · ∇1) (α2 · ∇2)

sin(kr12)
πk2 r12

(1.76)

where the nabla operators do not operate beyond the factor shown. The terms
here represent the Gaunt and scaler-retardation parts of the interaction, re-
spectively.

The function fC(k) can be expanded in partial waves

fC(k) =
∞∑

l=0

[
V l

G(kr1) · V l
G(kr2)− V l

sr(kr1) · V l
sr(kr2)

]
(1.77)

In the photonic Fock space the perturbation is then of the form

V = VC + V l
G(kr) + V l

sr(kr) (1.78)

which is time independent. This is illustrated in Fig. 1.11. Applying this sim-
ple perturbation in the Fock space is equivalent to applying the complicated
perturbation in Fig. 1.8 in the restricted space.

The photonic-Fock-space Bloch equation now becomes
[
Ω,H0

]
P =

(
VC + V l

1 + V l
2

)
ΩP −ΩVeff (1.79)

letting V l represent the Gaunt term as well as the scalar retardation. Apply-
ing, for instance, first a series of Coulomb interactions, then a perturbation
V l, then a new series of Coulomb interactions, a second V l perturbation
and finally a new series of Coulomb interactions, leads to the result shown
in Fig. 1.12. This represents a single time-dependent photon with crossing
Coulomb interactions, evaluated with correlated wave function. In addition,
folded diagrams have to be included, which also represent the energy deriva-
tives (1.56). By closing the photon on the same electron line, corresponding
self-energy and vertex correction effects are obtained (of course, after proper
renormalization).
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The procedure presented here has been applied to a number of light and
medium-heavy heliumlike ions, and the results agree well with standard S-
matrix results in cases where comparison can be made. In addition, effects of
single retarded photon with correlation—with and without crossing Coulomb
interactions—have been evaluated and found to yield effects that are quite
significant and more important than second-order QED effects for light el-
ements. More details about the implementation procedure and numerical
results will appear in a forthcoming publication.

q qq qq q q qq qq qr
q qq qq qr
q qq qq q

q qq qq qr
q qq qq qr

q qq qq qr
q qq qq qr

q qq qq q

Fig. 1.12 Graphical representation of the perturbative solution of the Fock-space Bloch
equation (1.79).

1.7 Summary and conclusions

We have presented a relativistically covariant many-body perturbation pro-
cedure, based upon the covariant evolution operator and the Green’s op-
erator. This represents a unification of the many-body perturbation theory
and quantum-electrodynamics. Applied to all orders, the procedure leads in
the equal-time approximation to the Bethe-Salpeter equation (BSE) in the
effective-potential form. By relaxing this restriction, the procedure is con-
sistent with the full BSE. The new procedure will be of importance in cases
where QED effects beyond first order in combination with high-order electron
correlation is significant.
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