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It has been a long-sought problem to be able to combine many-body perturbation theory and quantum electrodynamics into a uni-
fied, covariant model. Such a model has recently been developed at our laboratory and is outlined in the present paper. The model
has potential applications in many areas and opens up the possibility of studying the interplay between various interactions in diff-
erent system. The model has so far been applied to highly ionized helium-like ions, and some numerical results are given. It is ex-
pected that the combined effect—that has never been calculated before—could have a significant effect on certain experimental
data. The radiative effects are being regularized using the dimensional regularization in Coulomb gauge, and the first numerical re-
sults have been obtained.

1. Introduction

The many-body perturbation theory (MBPT) is now highly
developed, and particularly all-order methods like the cou-
pled-cluster approach (CCA) are very efficient and frequently
used in atomic and molecular calculations [1, 2]. There is
nowadays a great research interest also in highly charged
ions that can be effectively produced in modern high-energy
accelerators. The purpose in this type of research is largely
to study quantum electrodynamics (QED) in the presence of
strong fields [3]. The experimental accuracy can here be quite
high—in some cases far beyond the reach of any theoretical
models presently available [4, 5]. The shortcoming of these
models is expected to be mainly due to the omission of the
combined effect of QED and electron correlation.

The standard methods for MBPT can treat the electron
correlation to essentially all orders of perturbation theory,
but since they are noncovariant they cannot incorporate
QED effects in any systematic way. Several covariant methods
have been developed particularly for QED calculations on
bound atomic systems, and most frequently used is the S-
matrix formulation [6, Chapters 4–6]. These methods, how-
ever, have the disadvantage that they cannot be combined

with MBPT, and they are for practical reasons limited to two-
photon exchange. Particularly for lighter systems, this yields
an incomplete treatment of the electron correlation.

It has been a long-sought problem to be able to calculate
combined MBPT and QED effects in a systematic way,
which could have important implications in various areas.
The main obstacle, however, has been that the MBPT and
QED procedures have quite different structures. (In 1988 a
research programme at the Institute of Theoretical Physics
in Santa Barbara, “Relativistic, Quantum electrodynamic, and
Weak Interaction Effects in Atoms” was largely devoted to this
problem [7].) One of the methods for QED calculations;
however, namely, the Covariant-Evolution-Operator (CEO)
method, recently developed by the Gothenburg group [8, 9],
has a structure that is similar to that of MBPT, and it can
therefore serve as a basis for a unified procedure. Such a
procedure has been developed by the group during the last
few years and is described in a number of publications
[10, 11] as well as in a recent book [6]. The procedure is now
being implemented [12–15], and at a later stage interesting
comparison can be made with accurate experimental data
that presently cannot be explained. The developments made
so far are summarized in the present article.
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2. Time-Independent Many-Body
Perturbation Theory

As an introduction we shall consider the basic many-body
perturbation theory (MBPT), as described, for instance, in
the book by Lindgren and Morrison, Atomic Many-Body
Theory [1].

2.1. Bloch Equation. Many MBPT calculations in physics and
quantum chemistry are based upon the generalized Bloch
equation. We have then a set of target states satisfying the
Schrödinger equation

H|Ψα〉 = Eα|Ψα〉 (α = 1 · · ·d), (1)

and for each target state there exist model states, |Ψα
0〉 (α =

1 . . . d), which are assumed to be linearly independent and
form a model space. The projection operator for the model
space is P, which together with the projection operator for
the complementary space Q, forms the identity operator

P +Q = I. (2)

A single wave operator, Ω, transforms all model states to
the corresponding target states,

Ω
∣
∣Ψα

0

〉 = |Ψα〉 (α = 1 · · ·d). (3)

An effective Hamiltonian, operating in the model space,
generates the exact energy when operating on the model state

Heff

∣
∣Ψα

0

〉 = Eα
∣
∣Ψα

0

〉

(α = 1 · · ·d). (4)

This leads to

ΩHeff

∣
∣Ψα

0

〉 = Eα|Ψα〉 (5)

which according to the Schrödinger equation (1) is equal to
HΩ|Ψα

0〉. These relations hold for the entire model space,
leading to the generalized Bloch equation

ΩHeffP = HΩP. (6)

In intermediate normalization (IN)

〈

Ψα
0 | Ψα

〉 = 1;
∣
∣Ψα

0

〉 = P|Ψα〉 (α = 1 · · ·d), (7)

the effective Hamiltonian (4) becomes

Heff = PHΩP. (8)

The Hamiltonian is normally partitioned into

H = H0 +V , (9)

whereH0 a model Hamiltonian, containing the sum of single-
electron Hamiltonians, and V is a perturbation. This leads to
the commonly used form of the generalized Bloch equation
[1, 16]

[Ω,H0]P = Q(VΩ−ΩVeff)P, (10)

where

Veff = Heff − PH0P = PVΩP (11)

is the effective interaction.
In the graphical representation the wave operator is

under general conditions (complete model space, see [1]) re-
presented by linked diagrams, which is the linked-diagram
theorem, first demonstrated for closed-shell systems by Brue-
ckner [17] and Goldstone [18] and later generalized by Bran-
dow [19] and Lindgren [16] to general open-shell systems.
This can be expressed

[Ω,H0]P = Q(VΩ−ΩVeff)linkedP (12)

a form of the generalized Bloch equation frequently used as
the starting point for many-body perturbation calculations
in physics and quantum chemistry. It is valid also for a many-
dimensional model space that does not have to be degen-
erate. The last term is referred to as the folded part, since it
is conventionally represented graphically by folded diagrams
[19] (see Figure 1).

2.2. All-Order Procedures. The Bloch equation can be iter-
ated, leading to all-order procedures, as illustrated by the pair
function (see Figure 2)

∣
∣ρab

〉 = ΓQ(E0) IPair|ab〉 =: ΩI|ab〉. (13)

Here

Γ(E0) = 1
E0 −H0

; ΓQ(E0) = QΓ(E0) (14)

are the resolvent and reduced resolvent, respectively, and E0

the energy of the initial state.
The all-order pair function satisfies a Dyson-type equa-

tion

ΓQ(E)IPairPE = ΓQ(E)
(

V +VΓQ(E)IPair

−ΓQ(E ′)IPairPE ′I
PairPE

)

PE ,

(15)

where V is the Coulomb interaction. This is represented
graphically in Figure 3. The last term represents the folded
contribution with a double resolvent. PE ,PE ′ , . . . are projec-
tion operators for parts of the model space with energies
E , E ′, . . ., respectively.

The pair equation (13) represents the important pair-cor-
relation to all orders and is frequently used in calculations on
atomic and molecular systems. An even more powerful tech-
nique is the coupled-cluster approach (CCA), where the wave
operator is expressed in exponential form

Ω = eS = 1 + S +
1
2
S2 +

1
3!
S3 + · · · . (16)

This has the effect, for instance, that including pair correla-
tion into the cluster operator, yields the most important qua-
druple effects on the wave operator. This technique has
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Figure 1: (a) Folded diagrams appear in the standard (Goldstone) graphical formulation of MBPT and represent the finite remainder after
eliminating singularities due to intermediate model-space state, |cd〉. In a relativistic treatment, Feynman diagrams are normally used, and
then the corresponding diagrams will be drawn straight (right). (b) The second-order diagram is separated into a regular part with the
intermediate state in the model space and a remainder, due to the intermediate model-space state, represented by the folded diagram.
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Figure 2: Graphical representation of the pair function (13).
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Figure 3: Graphical representation of the all-order pair equation (15). The last diagram represents the “folded” term. The double line
represents the double denominator (double resolvent).

been extensively used during the last decades, particularly in
quantum chemistry. For a review the reader is in particular
referred to a recent review [2].

For open-shell systems it is convenient to apply the
normal-ordered exponential Ansatz [20]

Ω =
{

eS
}

= 1 + S +
1
2

{

S2} +
1
3!

{

S3} + · · ·, (17)

where the curly brackets represent normal ordering. In this
way spurious contractions between open-shell operators are
avoided.

In the CCA all diagrams are “connected” (for a complete
model space), and the expansion can be expressed in analogy
with (12) as (For the exact definitions of “linked” and “con-
nected” diagrams, see, for instance, [1].)

[S,H0]P = Q(VΩ−ΩVeff)connP . (18)

2.3. Relativistic MBPT. Relativistic MBPT is normally based
upon the projected Dirac-Coulomb-Breit Hamiltonian [21]

HDCproj = Λ+

⎡

⎣

N
∑

i=1

hD(i) +VC +VB

⎤

⎦Λ+, (19)

where the three terms represent the sum of single-particle
Dirac Hamiltonians, Coulomb, and instantaneous Breit in-

teractions between the electrons, respectively. The projection
operators, Λ, are inserted in order to avoid negative-energy
states that can lead to singularities (Breit-Ravenhall disease
[22]). This approximation includes all effect up to order α2

Rydbergs (or α4mc2), where α is the fine-structure constant.
Effects beyond this approximation—of order α3 Rydbergs
and higher—are conventionally referred to as QED effects
(see further below).

3. Covariant-Evolution Operator

Mainly three methods for QED calculations on bound states
have been developed (see [9, Section 5], [6, Chapter 6]). The
standard procedure is the well-known S-matrix formulation,
and more recently two other methods have been developed,
the two-times Green’s function technique, developed by
the St Petersburg group [23], and the covariant-evolution-
operator (CEO) method, developed by the Gothenburg
group [9]. The CEO method is particularly suitable for com-
bining with MBPT and will be briefly summarized below.

3.1. Definition. The standard time-evolution operator,
U(t, t0), describes in the interaction picture the evolution of
the nonrelativistic time-dependent state vector

∣
∣
∣χ(t)

〉

= NU(t, t0)
∣
∣
∣χ(t0)

〉

(t > t0), (20)
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where N is a normalization constant. It should be noted that
the evolution operator generally does not preserve the nor-
malization, and in addition it can contain singularities. Ther-
efore this equation should be handled with care.

The operator can be expanded (Relativistic units are used:
c = m = � = ε0 = 1.)

U(t, t0) =
∞
∑

n=0

(−i)n

n!

∫ t

t0
dx4

1 · · ·
∫ t

t0
dx4

n T[H(x1) · · ·H(xn)]

× e−γ(|t1|+|t2|··· ),
(21)

where an adiabatic damping is inserted in order to handle
the singularities. The damping factor, γ, eventually goes to
zero. T is the Wick-time-ordering operator and H(x) is the
perturbation density

H(x) = −ψ̂†(x)eαμAμ(x)ψ̂(x) (22)

corresponding to the time-dependent perturbation

V(t) =
∫

d3xH(t, x). (23)

We note that this represents the emission/absorption of a
single photon and, hence, operates in the extended Fock space
with a variable number of photons. Two such interactions are
needed to form the exchange of a virtual photon between the
electrons (see Figure 4).

The field-theoretical Green’s function can in the closed-
shell case be defined

G(x, x0) =
〈

0H

∣
∣
∣T

[

ψ̂H(x)ψ̂†H(x0)
]∣
∣
∣0H

〉

〈0H | 0H〉 , (24)

where ψ̂H, ψ̂†H are the electron-field operators in the Heisen-
berg representation. The state |0H〉 is the “vacuum in the
Heisenberg representation,” that is, the state in the Heisenberg
representation with no particles or holes. The numerator is

〈0H | 0H〉 = 〈0|S|0〉, (25)

where 〈0| is the vacuum state in the interaction picture and
S = U(∞,−∞) is the S-matrix. This leads to the expansion

G(x, x0) = 1
〈0|S|0〉

∞
∑

n=0

(−i)n

n!

∫

d4x1 · · ·
∫

d4xn

×
〈

0
∣
∣
∣T

[

ψ̂(x)H(x1) · · ·H(xn)ψ̂†(x0)
]∣
∣
∣0
〉

× e−γ(|t1|+|t2|··· ).
(26)

The standard evolution operator (20) operates only in the
forward direction and is graphically represented by diagrams
with outgoing particle lines (of positive energy). The opera-
tor for single-photon exchange between the electrons is illus-
trated in the first diagram in Figure 5. This operator is not
covariant and consequently cannot be used in a relativistic

t

r

u

t

r

u

s

Figure 4: The single-photon exchange between the electrons is in
the covariant-evolution operator represented by two perturbations
(23).

treatment. Green’s function (24), on the other hand, with
electron propagators on the free ends is covariant (second
diagram). By attaching free-electron lines to the graphical
representation of Green’s function, we will represent an evol-
ution operator that is covariant, the covariant-evolution oper-
ator (CEO; third diagram).

The covariant-evolution operator is the evolution opera-
tor for the relativistic state vector in analogy with (20)

∣
∣
∣χα

Rel
(t)
〉

= NαUCov(t, t0)
∣
∣
∣χα

Rel
(t0)

〉

(27)

which also generally lies in the extended space (in the follow-
ing we shall drop the subscripts “Cov” and “Rel”).

The single-particle covariant-evolution operator can
generally be expressed

U1(t, t0) =
∫∫

d3x d3x0ψ̂
†(x)

〈

0H

∣
∣
∣T

[

ψ̂H(x)ψ̂†H(x0)
]∣
∣
∣0H

〉

× ψ̂(x0)e−γ(|t1|+|t2|··· ),
(28)

involving the same vacuum expectation as in the definition of
the single-particle Green’s function (24), apart from the fact
that we shall here allow for uncontracted photons.

The covariant-evolution operator for single-photon ex-
change, operating on the unperturbed state, |ab〉, of energy
E0 becomes (leaving out the damping factor)

Usp(t,−∞)|ab〉 = e−it(E0−H0)Γ(E0)Vsp|ab〉, (29)

where Γ(E0) is the resolvent (14). When only positive-energy
states are involved (no virtual pairs), the potentialVsp is given
by
〈

rs
∣
∣
∣Vsp

∣
∣
∣ab

〉

=
〈

rs

∣
∣
∣
∣
∣

∫∞

0
dk f (κ)

[

1
εa − εr −

(

κ− iγ
)

+
1

εb − εs −
(

κ− iγ
)

]∣
∣
∣
∣
∣
ab

〉

,

(30)

where f (κ) is a gauge-dependent function of the magnitude
of the photon momentum, κ = |k|.
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Figure 5: Comparison between the standard evolution operator, Green’s function, and the covariant-evolution operator for single-photon
exchange in the equal-time approximation [6, Figure 8.1].

In contrast to the situation in the S-matrix formulation,
the initial and final states can in the covariant-evolution-
operator formalism have different energies. When the initial
and final states do have the same energy, the potential (30)
above becomes

〈

cd
∣
∣
∣Vsp

∣
∣
∣ab

〉

=
〈

cd

∣
∣
∣
∣
∣

∫∞

0

2κdκ f (κ)
q2 − κ2 + iγ

∣
∣
∣
∣
∣
ab

〉

(31)

(q = εa − εc = εd − εb) which is the energy-conservative S-
matrix result.

In a ladder of single-photon-exchange, involving only
positive-energy states and interacting to the far right on
the unperturbed state of energy E0, the general potential
becomes (see Figure 6)
〈

rs
∣
∣
∣Vsp(E0)

∣
∣
∣tu

〉

=
〈

rs

∣
∣
∣
∣
∣

∫∞

0
dk f (κ)

[

1
E0 − εr − εu −

(

κ− iγ
)

+
1

E0 − εt − εs −
(

κ− iγ
)

]∣
∣
∣
∣
∣
tu

〉

.

(32)

If there are no model-space states involved, the covariant-
evolution operator for the complete ladder becomes

U0(t,−∞)LaddP = e−it(E0−H0)ΓQ(E0)Vsp(E0)

× ΓQ(E0)Vsp(E0) · · ·ΓQ(E0)Vsp(E0)P.
(33)

We note that the energy parameter of all potentials and re-
solvents as well as the time factor is the energy of the un-
perturbed state to the far right.

3.2. Green’s Operator. The covariant-evolution operator
(CEO) becomes singular (or quasisingular) when a state de-
generate (or quasidegenerate) with the initial state is involv-
ed. In the definition of Green’s function in the closed-shell
case (24) the corresponding singularities are eliminated by
dividing by the expectation value of the S-matrix. In the CEO
case a different procedure is needed.

We define the Green’s operator in the general Fock space
by the relation

U(t, t0)P = G(t, t0) · PU(0, t0)P (34)

t u

r s

t u

r
s

t u

r s

E0 E0E0

= +

Figure 6: The evolution-operator diagram for single-photon ex-
change.

where the operator to the left of the heavy dot does not oper-
ate beyond the dot. This implies that the energy parameter
of Green’s operator above is that of the intermediate model-
space state. The definition leads to the expansion (with t0 =
−∞)

G(0)(t, E)PE = U (0)(t, E)PE

G(1)(t, E)PE = U (1)(t, E)PE − G(0)(t, E ′) · PE ′U
(1)(0, E)PE

G(2)(t, E)PE = U (2)(t, E)PE − G(0)(t, E ′′) · PE ′′U
(2)(0, E)PE

− G(1)(t, E ′) · PE ′U
(1)(0, E)PE

and so forth.
(35)

As before, PE ,PE ′ , . . . are projection operators for the
parts of the model space with the energies E , E ′, . . ., and the
relevant energy parameters of the operators are indicated.
The negative “counterterms” cancel the singularities, making
the Green’s operator regular. We note that with the perturba-
tion (22) the term PE ′U (1)(0, E)PE with only a single uncon-
tracted photon vanishes.

It follows from the definition (27) that
∣
∣
∣χα(t)

〉

= NαU(t,−∞)|Φα〉, (36)

where

|Φα〉 = lim
t−∞

∣
∣
∣χα(t)

〉

(37)

is the “parent state.” For the time t = 0 we have
∣
∣
∣χα(0)

〉

= |Ψα〉 = NαU(0,−∞)|Φα〉. (38)
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The target state |Ψα〉 is intermediately normalized (7) if

Nα = 〈

Ψα
0|U(0,−∞)|Φα

〉−1, (39)

where |Ψα
0〉 is the corresponding model state. This leads to

∣
∣
∣χα(0)

〉

= |Ψα〉 = lim
γ→ 0

U(0,−∞)|Φα〉
〈

Ψα
0

∣
∣U(0,−∞)|Φα〉 (40)

which is a generalization of the Gell-Mann and Low theorem
[24], valid also for a multidimensional model space [9]. Here,
both the numerator and denominator are normally singular,
but the ratio is regular in the limit when γ → 0.

Using the definition of Green’s operator (34), we have
from (36)
∣
∣
∣χα(t)

〉

= NαG(t,−∞) · PU(0,−∞)|Φα〉 = G(t,−∞)
∣
∣Ψα

0

〉

,

(41)

since

NαPU(0,−∞)|Φα〉 = P|Ψα〉 = ∣
∣Ψα

0

〉

(42)

is the model state. This implies that Green’s operator acts as
a wave operator for the relativistic state vector at all times. In
particular, the covariant analogue of the MBPT wave opera-
tor (3) becomes

Ω = G(0,−∞) (43)

which is also a Fock-space operator. This gives the connec-
tion between the CEO formalism and standard MBPT.

3.3. The Many-Body Hamiltonian. (See [6, Sections 6.4, 5].)
The state vector (40), |Ψα〉, satisfies a relativistic “Schrö-
dinger-like” eigenvalue equation

H|Ψα〉 = (H0 +VF)|Ψα〉 = Eα|Ψα〉 . (44)

When the Coulomb gauge is used (as we shall normally
assume to be the case here), the perturbation, VF, is given by
the Coulomb interaction, VC, and the transverse part of the
perturbation (23). The total many-body Hamiltonian then
becomes in second quantization

H =
∫

d3xψ̂†(x)
(

α · p̂ + βm + vext(x)− eαμAμ(x)
)

ψ̂(x)

+HRad +
1
2

∫∫

d3x1 d3x2ψ̂
†(x1)ψ̂†(x2)VCψ̂(x2)ψ̂(x1),

(45)

where vext(x) is the external (usually nuclear) potential. This
is Fock-space operator, operating in the extended space with
unpaired photons. Since the number of photons is not
conserved, also the radiation-field Hamiltonian, HRad, is in-
cluded.

Using Fock-space operators, the effective interaction (11)
becomes

VFeff = PVFΩP. (46)

The effective interaction still operates in the model space,
which is a part of the restricted space with no unpaired
photons.

Q

P + Q P

Q Q

Q

+

Figure 7: Elimination of the singularity of the second-order evo-
lution operator due to an intermediate model-space state (49) (c.f.
Figure 1).

3.4. Model-Space Contribution. (See [10, 11], [6, Section
6.7].) The second-order Green’s-operator expression (35) is
for t = 0

G(2)(0, E)PE =QU (2)(0, E)PE − G(1)(0, E ′) · PE ′U
(1)(0, E)PE

(47)

using the fact that G(0)(0) = 1. We assume here that the per-
turbation is the complete photon exchange (32). The second-
order CEO then becomes

U (2)(0, E)PE = Γ(E)V(E)(P +Q)Γ(E)V(E)PE . (48)

This will be (quasi)singular, if the intermediate state lies in
the model space. The singularity is cancelled by the coun-
terterm, leaving a finite contribution,

G(2)(0, E)PE

= ΓQ(E)V(E)ΓQ(E)V(E)PE +
δG(1)(0, E)

δE
PE ′V(E)PE ,

(49)

where δG(1)(0, E) = G(1)(0, E) − G(1)(0, E ′) and δE = E −
E ′. This is illustrated in Figure 7. In the case of complete
degeneracy the difference ratio turns into a partial derivative.
The finite contribution is referred to as the model-space con-
tribution (MSC). If the interaction is energy independent,
this becomes identical to the corresponding folded contri-
bution in standard MBPT (Figure 1).

Generalizing the procedure above to arbitrary orders,
leads to [10, Equation (100)], [11, Equation (64)], [6, Equa-
tion (6.96)]

G(0, E)PE = G0(0, E)PE +
∑

n=1

δnG0(0, E)
δEn

(Veff)nPE

(50)

where Veff is the effective interaction (11). The first term
above represents Green’s operator without any folds

G0(0, E) = 1 + ΓQ(E)V(E) + ΓQ(E)V(E)ΓQ(E)V(E) + · · · .
(51)

Consequently the last term of (50) represents the effects of
all folds.
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Operating with (50) on the model function in the case of
a one-dimensional model space (single reference) of energy
E0, gives

G(0,E0)|Ψ0〉 =
⎡

⎣G0(0, E) +
∞
∑

n=1

δnG0(0, E)
δEn

(ΔE)n
⎤

⎦

E=E0

|Ψ0〉,

(52)

where ΔE is the difference between the exact energy E and
the unperturbed energy E0 and Veff|Ψ0〉 = ΔE|Ψ0〉. This is a
Taylor expansion, (In the limit of complete degeneracy we
have (see further [10, Appendix E]) δn/δEn ⇒ (1/n!)
(∂n/∂En)) and the result can be expressed

G(0,E0)|Ψ0〉 = G0(0,E)|Ψ0〉 , (53)

implying that the MSC have the effect of shifting the ener-
gy parameters from the unperturbed to the perturbed energy.
This relation is analogous to the relation between the Bril-
louin-Wigner and the Rayleigh-Schrödinger expansions in
perturbation theory (see, for instance, [1, Chapter 9]).

It can be shown that analogous results hold also for a
general model space and for arbitrary times. This implies that
also the time dependence of the Green’s operator is shifted in
a similar way. In view of (33) the time dependence of the GO,
operating on a model state Ψα

0 then becomes e−it(Eα−H0) (in
interaction picture). Since according to (41) Green’s opera-
tor has the same time dependence as the relativistic wave
function, this result is in accordance with the standard
quantum-mechanical picture. It then follows that

i
(
∂

∂t
G(t,−∞)

)

t=0

∣
∣Ψα

0

〉 = (Eα −H0)|Ψα〉. (54)

Projecting onto the model space, yields

VFeff = P
(

i
∂

∂t
G(t,−∞)

)

t=0
P , (55)

using the definition (11).

3.5. Connection to the Bethe-Salpeter Equation. (See [10], [6,
Section 6.9].) We shall now show that the procedure pre-
sented here is compatible with the Bethe-Salpeter equation
[24, 25]. We consider a single target state |Ψ〉 (with energy
E) and the model state |Ψ0〉 (energy E0). From the relations
(43) and (53) we have

Ω = G(0,E0) = G0(0,E)

= 1 + ΓQ(E)V(E) + ΓQ(E)V(E)ΓQ(E)V(E) + · · ·
(56)

which is a Brillouin-Wigner expansion of the wave operator.
We then have

Q(E −H0)Ω|Ψ0〉
= Q

(

V(E) +V(E)ΓQ(E)V(E) + · · · )|Ψ0〉
= QV(E)Ω|Ψ0〉.

(57)

In analogy with the relation (53) we have for the effective
interaction (11)

Veff(E0) = Veff, 0(E), (58)

where

Veff, 0(E)

= P
(

V(E) +V(E)ΓQ(E)V(E) + · · · )P = PV(E)ΩP
(59)

is the effective interaction without folds. Hence,

Veff(E0)|Ψ0〉 = PV(E)Ω|Ψ0〉. (60)

But according to the definition (11)

Veff|Ψ0〉 = P(E −H0)|Ψ0〉 = P(E −H0)Ω|Ψ0〉, (61)

since PΩP = P in intermediate normalization and P
commutes with H0. Combining this with (57) leads to the
relation

(E −H0)Ω|Ψ0〉 = V(E)Ω|Ψ0〉. (62)

The treatment can be generalized by replacing the single-
photon exchange by the set of all irreducible multiphoton
exchange, V (see Figure 8), leading to the “Schrödinger-like”
equation in the restricted Hilbert space [10, Equation (113)],
[6, Equation (6.126)]

(H0 + V(E))|Ψ〉 = E|Ψ〉 (63)

which is equivalent to the Bethe-Salpeter equation [24, 25].
In the restricted space we have an equivalent Hamiltonian

H = H0 + V(E) (64)

that is energy dependent. This we can compare with the Gell-
Mann-Low Hamiltonian (44) that is energy independent and
operates in the extended Fock space.

4. Combining MBPT with QED

4.1. General. (See [11], [6, Section 8.3].) We shall now
describe how the covariant-evolution operator (CEO), devel-
oped in the previous section, can be used to combine MBPT
and QED into a unified theory.

What is conventionally referred to as QED effects are
effects that lie beyond the standard relativistic MBPT treat-
ment, based upon the relativistic Dirac-Coulomb-Breit
Hamiltonian (19). These effects are of three kinds, (i) retard-
ation, (ii) virtual electron-positron pairs, and (iii) radiative
effects (electron self-energy, vacuum polarization, and vertex
correction).

The retardation effect is considered in the photon ex-
change above (30). Virtual pairs can be treated together with
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Figure 8: Examples of irreducible multiphoton exchange diagrams.
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Figure 9: All 16 time-ordered diagrams corresponding to the transverse single-photon exchange given by (65) ([6, Figure 8.3]).

single-photon exchange by generalizing the potential to [6,
Equation (8.11)]

〈

rs
∣
∣
∣VVP

sp (E)
∣
∣
∣tu

〉

=
〈

rs
∣
∣
∣
∣

∫

dκ f (κ)
[

± t±r∓
εt − εr ± κ ±

t±s±
E − εt − εs ∓ κ

± u±r±
E − εr − εu ∓ κ ±

u±s∓
εu − εs ± κ

]∣
∣
∣
∣tu

!

,

(65)

where t±, and so forth, represent projection operators for par-
ticle/hole states, respectively. The upper or lower sign should
be used consistently in each term, inclusive the sign in the
front. The 16 combinations of upper and lower signs in

the four term lead to the time-ordered diagrams, shown in
Figure 9.

Vacuum-polarization effects on electron propagators can
be represented by a potential, as discussed in several publi-
cations [26].

The single-photon exchange is in the covariant-evolution
operator procedure represented by two single-particle inter-
actions (23). The first-order electron self-energy can then be
evaluated by closing the second interaction on the same ele-
ctron (c.f. Figure 4). In both cases—before closing the
photon—one or several instantaneous interactions (Coul-
omb or Breit) could be inserted, leading to the “QED poten-
tial”, illustrated in Figure 10. It is assumed here that the self-
energy and vertex diagrams are properly renormalized (see
further below). This potential contains at most one retard-
ed photon, which is the maximum that for the time being can
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Figure 10: Feynman diagram representing the “QED potential,” VQED. The dotted lines represent instantaneous Coulomb and (if needed)
Breit interactions [6, Figure 8.10].
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VQEDΩQED

Figure 11: Iteration of the QED potential in Figure 10. This can be expressed by the self-consistent Dyson-type equation in Figure 12 [6,
Figure 8.13].
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Figure 12: Graphical representation of the single-photon Bloch equation (66) (c.f. Figure 3). The last diagram represents the “folded” term,
that is, the last term of the equation. This equation can be compared with the Bethe-Salpeter equation, valid only in the single-reference case,
where there is no folded contribution. The order-by-order expansion of this equation is illustrated in Figure 11 [6, Figure 8.12].

be handled numerically. It should be noted that by including
one or several instantaneous Breit interactions, most of
the higher-order effects are actually included. This approx-
imation is therefore quite accurate, as will be demonstrated
below.

The QED potential can be iterated, as illustrated in
Figure 11. The sum can be expressed in a Dyson-type of equ-
ation [6, Equation (8.68)]

ΩQED = 1 + ΓQVQEDΩQED +
δ∗ΩQED

δE
VQED

eff
(66)

which is equivalent to a Bloch equation (10). Here, the last
term represents the folded contribution. The asterisk indi-
cates that the partial derivation should only include the last
interaction. This equation can be generalized by replacing the
single-photon potential by the irreducible multiphoton po-
tential (Figure 8). The equation, illustrated in Figure 12,
then represents a generalization of the Bethe-Salpeter equa-
tion, valid also for a multidimensional model space. Due to
its resemblance with the standard Bloch equation of MBPT
(10), it is referred to as the Bethe-Salpeter-Bloch equation.

The Bethe-Salpeter equation as it stands, however, is not
suitable for numerical work, since already in second order
(two-photon exchange) it is essentially beyond reach for
computers of today. This problem can be circumvented by

using the covariant-evolution operator with (to start with)
one retarded photon and a number of instantaneous ones,
which can easily be generated. We may then start with an
iterated pair function, ΩI (13), and add a transverse photon,
with or without crossing Coulomb interactions, and finish
with new Coulomb iterations. This leads to the modified
Bethe-Salpeter equation [11], [6, Equation (8.70)],

ΩQED = ΩI + ΓQVQEDΩQED +
δ∗ΩQED

δE
VQED

eff
(67)

illustrated in Figure 13. This procedure leads to much faster
convergence and is already with a single retarded photon in
most cases more accurate than the second-order BSE.

4.2. Coupled-Cluster-QED Procedure. The procedure descri-
bed above can also be combined with the coupled-cluster ap-
proach, mentioned earlier (Section 2.2). This leads to a CC-
QED procedure, described in a recent publication [27]. It is
also briefly described in the book [6, Section 8.4]. The pair
functions of the classical procedure are then replaced by
pair functions including QED effects, and the single-particle
interactions will include electron self-energy and other
single-particle effects. Since the classical and the QED pro-
cedures are completely compatible, the QED effects need to
be included only in the components, where the effect is ex-
pected to significant.
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Figure 13: Graphical representation of the Bloch equation (67), where a standard pair function (ΩI) is combined with a QED potential [6,
Figure 8.14].
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Figure 14: The effect of electron correlation beyond two-photon exchange—Coulomb-Breit NVPA, Coulomb-Breit retardation with and
without Coulomb crossings, and Coulomb-Breit virtual pairs, all WITH electron correlation, for the ground-state of helium-like ions (from
[12, 13]). For comparison the effect of pure retarded two-photon exchange without additional correlation (included in the second-order
Bethe-Salpeter equation) is also indicated [6, Figure 10.10].

4.3. Renormalization. (See [6, Chapter 12].) The radiative
QED effects involve divergences that have to be eliminated by
regularization and renormalization processes. In order to
take full advantage of the developments in MBPT, it is neces-
sary to perform the calculations using the Coulomb gauge.
The renormalization process is more complicated in the
non-covariant Coulomb gauge than in the covariant gauges
normally used in QED calculations. However, formulas have
been derived by Adkins for the dimensional regularization in
Coulomb gauge for the lowest-order free-electron self-ener-
gy and vertex correction [28, 29]. This procedure is now be-
ing implemented in our program structure [14, 15]. It has
been tested on the self-energy of highly charged hydrogen-
like ions, and the results agree very well with those obtained
earlier using Feynman gauge. In addition, the Coulomb-
gauge results exhibit higher numerical stability. To our know-
ledge this represents the first numerical dimensional regular-
ization in the Coulomb gauge.

5. Implementation Procedure and
Numerical Results

We illustrate the results of the numerical implementation
of the procedures briefly described in the previous sections
by the calculations performed by Hedendahl in his doctorial
thesis [12] and illustrated in Figure 14. The implementation
procedure and some results are also summarized in [6, Chap-
ter 10] (more details will be given in a forthcoming publi-
cation [13]).

The picture shows the effect of electron correlation bey-
ond two-photon exchange for the Coulomb-Breit interaction
on helium-like ions. The results are normalized to the non-
relativistic ionization energy, and the vertical scale is loga-
rithmic. The top line represents the total correlation effect in
the no-pair approximation. This effect is largely present in
relativistic MBPT (19). The second and third lines show the
effect of correlation upon the retardation, without and with
Coulomb crossings (without virtual pairs), and the last heavy
line represents the correlation effect on the virtual pairs.
These effects lie beyond all previously existing procedures
and, therefore, have never been calculated.

As a comparison, the thin line at the bottom indicates the
estimated effect of two retarded interactions without corre-
lation. This is included in the second-order Bethe-Salpeter
equation while the other effects are not. This comparison
demonstrates clearly that—for light and medium-heavy ele-
ments—even a single retarded photon together with instan-
taneous Coulomb interactions contains substantial effects
not present in second-order BSE. The accuracy of the com-
bined MBPT-QED procedure can be improved even further
by including the instantaneous Breit interaction.

6. Summary and Outlook

The present article summarizes the research activity of the
Gothenburg Atomic-Theory Group over the last decade. For
the first time a unified theory of MBPT and QED has been
developed and implemented on highly charged helium-like
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ions. The procedure is compatible with the Bethe-Salpeter
equation (BSE), which is exact but intractable for practical
work and leads already in second order to almost insur-
mountable problems. The unified MBPT-QED procedure is a
way around this problem. Here, a limited number of retarded
interactions are combined with numerous instantaneous
interactions (Coulomb and Breit). It has been demonstrated
that already a single retarded interaction together with in-
stantaneous interactions leads for light and medium-heavy
elements to much higher accuracy than second-order BSE
(Figure 14). This implies that the combined MBPT-QED
procedure is superior to a perturbation expansion of the
original BSE. Therefore, much more accurate calculations
can be performed than have so far been possible. This opens
up possibilities of performing calculations that was previ-
ously inaccessible. Then comparison can be made with very
accurate measurements of energy separations [4, 5], results
that so far have not been explained. Obviously, the model
proposed has implications also beyond the current project.
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J. Paldus, and J. Pittner, Eds., pp. 357–374, Springer, New York,
NY, USA, 2010.

[28] G. S. Adkins, “One-loop renormalization of coulomb-gauge
QED,” Physical Review D, vol. 27, no. 8, pp. 1814–1820, 1983.

[29] G. S. Adkins, “One-loop vertex function in Coulomb-gauge
QED,” Physical Review D, vol. 34, no. 8, pp. 2489–2492, 1986.


