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Scalar vertex operator for bound-state QED in the Coulomb gauge
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Adkins’s result [Phys. Rev. D 34, 2489 (1986)] for the time component of the renormalized vertex operator in
Coulomb-gauge QED is separated according to its tensor structure and some of the Feynman parameter integrals
are carried out analytically, yielding a form suited for numerical bound-state QED calculations. This modified
form is applied to the evaluation of the self-energy shift to the binding energy in hydrogenic ions of high nuclear
charge.
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I. INTRODUCTION

In 1986, Adkins [1] obtained an expression for the renor-
malized vertex operator �

μ
ren in Coulomb-gauge QED. This

operator gives the first-order (one-loop) radiative correction to
the interaction vertex ieγ μ. In this paper I demonstrate how the
time component �0

ren of the renormalized vertex operator can
be put into a form suited for numerical calculations involving
bound states where the scalar Coulomb interaction constitutes
the binding potential. In Sec. III this modified form of �0

ren is
applied to the numerical evaluation of the self-energy shift of
an electron in a hydrogenic, highly charged ion, where one of
the contributions to the total shift can be expressed in terms of
this operator.

Adkins’s result has been verified for the μ = 0 case using
the method of dimensional regularization; a detailed derivation
can be found in Ref. [2]. In the present paper I use units such
that h̄ = c = 1 throughout.

II. SEPARATION OF �0
ren

The time component of the renormalized vertex operator
can be written as

�0
ren(p,q) = α

4π
[γ 0h1 + (γ ·pγ 0γ · q)h2 + (mγ · pγ 0)h3

+ (mγ 0γ ·q)h4 + (γ ·p)h5 + (γ · q)h6 + mh7].

(1)

The hi factors, which can be identified from Ref. [1], are
functions of |p|, |q|, p0, q0, and cos ϑ , where ϑ is the angle
between p and q. Moreover, they contain integrals over up to
three Feynman parameters x, u, and s.

It is rather straightforward to perform some of these
Feynman parameter integrations analytically; in order to do
this we arrange terms in the hi functions according to the
polynomial structure of their numerators. We then obtain 22
different types of integral, for which we define the following
abbreviations:

{F1,F2,F3,F4,F5,F6}

=
∫ 1

0
dx

∫ 1

0
du

{1,x,xu,x2,x2u,x2u2}
�Y

, (2)
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{F7,F8,F9} =
∫ 1

0
dx

∫ 1

0
du

√
x

{1,u,u2}
�X

, (3)

{F10,F11} =
∫ 1

0
dx

∫ 1

0
du

{1,u}√
x�X

, (4)

{F12,F13,F14}

=
∫ 1

0
dx

∫ 1

0
du

∫ 1

0
ds x

√
xs

{1,u,u2}
(�Z)2

, (5)

{F15,F16,F17,F18}

=
∫ 1

0
dx

∫ 1

0
du

∫ 1

0
ds x

√
xs2 {1,u,u2,u3}

(�Z)2
, (6)

{F19,F20,F21} =
∫ 1

0
dx

∫ 1

0
du

∫ 1

0
ds

√
x

{1,s,su}
�Z

, (7)

where the � functions are those introduced by Adkins. They
can be simplified to read

�X = m2 − up2 − (1 − u)q2 + t2
0 − xt2, (8)

�Y = m2 − up2 − (1 − u)q2 + xt2, (9)

�Z = m2 − up2 − (1 − u)q2 + st2
0 − sxt2, (10)

with tμ ≡ upμ + (1 − u)qμ. Finally, the following integral
occurs in the h1 function:

F22 =
∫ 1

0
du ln

�

m2
, (11)

where � = m2 − u(1 − u)k2 and kμ ≡ qμ − pμ.
Using that �X, �Y , and �Z are all of the form ax + b, the

x integrations can readily be carried out, yielding

F1 =
∫ 1

0
du

1

t2
ln

(
t2 + A

A

)
, (12)

{F2,F3} =
∫ 1

0
du

[
1

t2
− A

(t2)2
ln

(
t2 + A

A

)]
× {1,u} ,

(13)

{F4,F5,F6} =
∫ 1

0
du

[
A2

(t2)3
ln

(
t2 + A

A

)
+ t2 − 2A

2(t2)2

]

×{1,u,u2}, (14)
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{F7,F8,F9} =
∫ 1

0
du

{
2
√

C

t2
√

t2
tanh−1

[(
t2

C

)1/2 ]
− 2

t2

}

×{1,u,u2}, (15)

{F10,F11} =
∫ 1

0
du

{
2√
t2C

tanh−1

[(
t2

C

)1/2 ]}
× {1,u} ,

(16)

{F12,F13,F14,F15,F16,F17,F18}

=
∫ 1

0
ds

∫ 1

0
du

s

(st2)2

{
3 − 1

1 − B/st2

− 3

(
B

st2

)1/2

tanh−1

[(
st2

B

)1/2]}

×{1,u,u2,s,su,su2,su3}, (17)

{F19,F20,F21} =
∫ 1

0
ds

∫ 1

0
du

2

st2

{ (
B

st2

)1/2

× tanh−1

[(
st2

B

)1/2]
− 1

}
× {1,s,su},

(18)

with

A = m2 − up2 − (1 − u)q2, (19)

B = m2 − up2 − (1 − u)q2 + st2
0 , (20)

C = m2 − up2 − (1 − u)q2 + t2
0 . (21)

The resulting expressions [Eqs. (12)–(18)] are real and
finite when q0 and p0 lie in the open interval (−m,m), a
condition that is fulfilled for bound electrons. Using the above
definitions, the hi functions of Eq. (1) take the following form:

h1 = −F22 + F8(2k2 − p2 + q2) − 2F9k2 − F7q2 + F10q2 + F11(p2 − q2) + 2F1(m2 + p0q0 + 2p · q)

+F2
(−3m2 + q2

0 − 5q2 − 2q0p0 − 2p · q
) + F3

(
p2

0 − q2
0 − 5p2 + 5q2

) + 4F4q2 + 4F5(p2 − q2 − k2)

+ 4F6k2 − 2F19p · q − 2F12q2p · q − 4F13(p · q − q2)p · q − 2F14k2p · q, (22)

h2 = F7 − F10 + 2[−F1 + F19 + F12q2 + 2F13(p · q − q2) + F14k2], (23)

h3 = −F10 + F19 − 2F13(q2 − p · q) + 2F14k2, (24)

h4 = h3 + 2F12(q2 − p · q) − 2F13k2, (25)

h5 = 2p0[F3 + q2(F14 − F13)] + 2q0
[
F3 − 2F5 + 1

2 (F20 − F19) + F17(p2 − q2) − F14p2 − F13p · q + F16(p · q + q2)
]

+ (q0 − p0)[2F9 − F11 − F8 + 4F6 − F21 + 2F18(q2 − p2) − 2F17(p · q + q2) + 2F14p · q], (26)

h6 = 2p0
[
F2 − F3 − 1

2F19 + 2F13q2 − F12q2 − F14q2
] + 2q0

[
F2 − F3 + 2F5 − 2F4 + 1

2F20 + F16(p2 − 2q2)

+F17(q2 − p2) − F13p2 + F14p2 + F15q2 + p · q(F13 − F16 − F12 + F15)
]

+ (q0 − p0)[F10 − F7 + 3F8 − F11 − 2F9 + 4F5 − 4F6 − F21 + 2F17(2q2 + p · q − p2)

− 2F16(p · q + q2) + 2F13p · q + 2F18(p2 − q2) − 2F14p · q], (27)

h7 = (q0 − p0)(F10 − 2F11 − 4F3) + 2[2F2q0 − F1(q0 + p0)]. (28)

III. NUMERICAL SELF-ENERGY CALCULATION

In the attempts at a unification of relativistic many-body
perturbation theory and QED it is convenient, if not neccesary,
to describe the electromagnetic field in the Coulomb gauge [3].
It is therefore of interest to be able to perform bound-state QED
calculations in this gauge; this section describes how to apply
Eq. (1) to calculate the self-energy shift of an electron in a
hydrogenic ion of high nuclear charge Z.

In a method developed by Brown, Langer, and Schaefer [4]
and improved by Blundell and Snyderman [5], large parts
of the self-energy shift can be treated semianalytically by
using analytical expressions for the free self-energy and vertex
operators. Work to perform such calculations using Adkins’s

expressions for the relevant Coulomb-gauge operators is
described in Ref. [6].

From Sucher’s [7] level shift formula, the self-energy shift
in the state |a〉 is simply given by

�ESE
a = 〈a|�ren

bou|a〉, (29)

where �ren
bou is the renormalized, bound self-energy operator.

Utilizing a potential expansion for the bound electron propa-
gator, the total energy shift can be written as the sum of three
terms

�ESE = �EZP + �EOP + �EMP, (30)
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known as the zero-potential, one-potential, and many-potential
terms, respectively. They correspond to the scattering order in
the nuclear potential and are all gauge dependent.

The relevant term for the present paper is the one-potential
term, which for the binding potential Aμ = (Vnuc,0,0,0) is
given by the expression

�EOP = −e〈a|�μ
renAμ|a〉 = −e〈a|�0

renVnuc|a〉. (31)

We use our modified form of �0
ren to evaluate this contribution.

For high Z it is not feasible to treat the electron-nucleus
interaction perturbatively. An alternative approach is to take
the bound Dirac solutions as a basis for second quantization
in what is known as the Furry picture, a method that treats the
electron-nucleus interaction to all orders in Zα.

To represent our states we use the Fourier-transformed
bound solutions to the Dirac equation in a spherically sym-
metric potential, which are of the form

〈p|a〉 = 	a(p) =
(

P (|p|)χm
κ (p̂)

Q(|p|)χm
−κ (p̂)

)
, (32)

where χ is a two-component ls-coupled spherical spinor
with κ = (−1)j+l+1/2(j + 1

2 ) and P and Q are the radial
components in momentum space. In this case the scalar
components p0 and q0 of the incoming and outgoing momenta

are both equal to the energy Ea of the bound state |a〉.
Substituting Eqs. (32) and (1) into Eq. (31), we obtain

�EOP = −e

∫
d3p

∫
d3q 	†

a(p)γ 0�0
renVnuc(|k|)	a(q).

(33)

Using that (σ · p)χm
κ (p̂) = −|p|χm

−κ (p̂), we can write

4π

α
	†

a(p)γ 0�0
ren	a(q)

= χm†
κ (p̂)χm

κ (q̂)[h1PpPq + h2pqQpQq − h3mpQpPq

−h4mqPpQq − h5pQpPq − h6qPpQq + h7mPpPq]

+χ
m†
−κ (p̂)χm

−κ (q̂)[h1QpQq + h2pqPpPq + h3mpPpQq

+h4mqQpPq − h5pPpQq − h6qQpPq − h7mQpQq],

(34)

where p ≡ |p|, q ≡ |q|; Pp = P (p), Qq = Q(q); and so on.
For the scalar nuclear potential the vertex correction

is independent of the magnetic quantum number m, so a
summation over m followed by a division by 2j + 1 is an
identity operation. We can then use the relation

1

2j + 1

j∑
m=−j

χm†
κ (p̂)χm

κ (q̂) = 1

4π
P|κ+1/2|−1/2(cos ϑ), (35)

where Pl(cos ϑ) is the lth Legendre polynomial in cos ϑ . We
finally obtain, setting z = cos ϑ ,

�Eop = −e
α

2

∫ ∞

0
dp p2

∫ ∞

0
dq q2

∫ 1

−1
dz Vnuc(p,q,z)

×{P|κ+1/2|−1/2(z)[h1PpPq + h2pqQpQq − h3mpQpPq − h4mqPpQq − h5pQpPq − h6qPpQq + h7mPpPq]

+P|−κ+1/2|−1/2(z)[h1QpQq + h2pqPpPq + h3mpPpQq + h4mqQpPq − h5pPpQq − h6qQpPq − h7mQpQq]}.
(36)

We use a numerical representation of the nuclear potential
Vnuc(r), treating the nucleus as a uniform spherical charge
distribution of radius Rnuc. The radial Dirac equation is
solved on a grid (see Ref. [8]) and the Fourier-transformed
solutions P and Q serve as a numerical representation of
the states. All of the integrals in Eq. (36), including those
implicit in the hi functions, are performed with Gauss-
Legendre quadrature, extrapolating to infinite grid size when
necessary. The integrable Coulomb singularity at p = q

is removed with the variable substitutions introduced by
Blundell [9].

The numerical integration of F4, F5, and F6 in Eq. (14)
requires some care. Setting y ≡ t2/A, their integrands can be
written as (dropping the factors {1,u,u2})

A2

(t2)3
ln

(
t2 + A

A

)
+ t2 − 2A

2(t2)2
≡ f (y)

2A
, (37)

with

f (y) = 2

(
ln(1 + y)

y3
− 1

y2

)
+ 1

y
, (38)

which can be expanded as a power series for small y.

IV. RESULTS AND DISCUSSION

The calculated results for the one-potential term of the self-
energy in hydrogenic 1s states with different nuclei are shown
in Table I. The one-potential term is added to the contributions
from the zero- and many-potential terms calculated in Ref. [6]
in order to obtain the total self-energy shift, which is compared
to results from other works. Our calculations were performed
using α−1 = 137.035 999 679 for the inverse fine-structure
constant and EH = 27.211 383 86 eV for the Hartree energy.
A discussion of these results is given in Ref. [6]; here we
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TABLE I. Results for the one-potential term (OP) added to the zero- and many-potential terms (ZP and MP, respectively), which are
described in Ref. [6], to obtain the self-energy (SE) for hydrogenic 1s states with various nuclei. A comparison is made with results from other
works. The values given in Refs. [10–12] have been converted to energies using mc2 = 510.998 928 keV for the rest energy of the electron.
All values are given in eV.

Z Rnuc (fm) ZP OP MP Total SE Other

18 3.423 1.341668068(1) 0.054770997(7) −0.179538(3) 1.216901(3) 1.2168(4)a

26 3.730 4.446768313(3) 0.540671056(7) −0.705680(5) 4.281759(5) 4.281765(2)b,c

36 4.230 12.485838189(7) 2.71976160(3) −2.319815(8) 12.885784(8) 12.885786(6)b,c

54 4.826 43.59062148(6) 17.3879867(3) −9.981343(16) 50.99727(2) 50.99726(3)b,c

82 5.505 151.3929093(5) 119.825027(2) −44.88978(6) 226.32816(6) 226.3281(2)b,c

226.33d

92 5.863 210.0682205(7) 213.739094(3) −68.7643(1) 355.0430(1) 355.0430(2)b,c

355.05d

aResults for a point nucleus taken from Ref. [10].
bResults for a point nucleus taken from Ref. [11].
cCorrection due to the finite nuclear size taken from Ref. [12].
dResults for a point nucleus taken from Ref. [13].

simply note that our Coulomb-gauge calculation is seen to
produce values in good agreement with previously reported
ones.

The numerical implementation of Eq. (36) is reasonably
straightforward and by using the substitutions in Eqs. (37)
and (38), the numerical scheme is stable and accurate.
Extrapolation to a continuous domain of integration is needed
in the numerical quadrature for evaluating the F functions. The
uncertainty is estimated by performing this extrapolation while
excluding one data point at a time, thus forming an ensemble
of extrapolated values. The mean of this ensemble estimates
the true value and the standard deviation estimates the error.
Together with the statistical error from choosing different grid

sizes in radial position space, this estimation accounts for the
uncertainty in the one-potential term.
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