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Accurate Kohn-Sham potential for the
1s2s 3S state of the helium atom: Tests
of the locality and the ionization-potential
theorems

Sten Salomonson, Fredrik Möller and Ingvar Lindgren

Abstract: The local Kohn-Sham potential has been constructed for the1s2s 3S state of the
helium atom, using the procedure proposed by van Leeuwen and Baerends (Phys. Rev. A49,
2138 (1994)) and the many-body electron density, obtained from the pair-correlation program
of Salomonson and̈Oster (Phys. Rev. A40, 5559 (1989)). The Kohn-Sham orbitals reproduce
the many-body density very accurately, demonstrating the validity of the Kohn-Sham model
and the locality theorem in this case. The ionization-potential theorem, stating that the
Kohn-Sham energy eigenvalue of the outermost electron orbital agrees with the negative of
the corresponding many-body ionization energy (including electronic relaxation), is verified
to nine digits. A Kohn-Sham potential is also constructed to reproduce the Hartree-Fock
density of the same state, and the Kohn-Sham2s eigenvalue is then found to agree with the
same accuracy with the corresponding Hartree-Fock eigenvalue. This is consistent with the
fact that in this model the energy eigenvalue equals the negative of the ionization energy
without relaxation due to Koopmans’ theorem. Related calculations have been performed
previously, particularly for atomic and molecular ground states, but no one of matching
accuracy. In particular, our results demonstrate that there is no conflict between the locality of
the Kohn-Sham potential and the exclusion principle, as claimed by Nesbet (Phys. Rev. A58,
R12 (1998)).
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[Traduit par la ŕedaction]

Density-functional theory (DFT) is based upon the Hohenberg-Kohn (HK) energy functional [1, 2,
3] for an interacting system of electrons, moving in an external (nuclear) potentialv(r),

E[ρ] = FHK[ρ] +
∫

dr ρ(r)v(r). (1)

FHK[ρ] is the universal HK functional, which is in the constrained-search formulation [4, 5]

FHK[ρ] = minΨ→ρ

〈
Ψ

∣∣T̂ + Ŵ
∣∣Ψ〉

, (2)

whereT̂ is the kinetic-energy and̂W the electron-electron-interaction operators of the system. The
wave functionΨ is assumed to be normalized and belonging to theSobolev spaceH1(R3N ) [5, 6].
Were this functional known, minimizing it over normalized densities would yield the ground-state
energy of the system,

E0 = minρ→NE[ρ] = E[ρ0]. (3)
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It is easy to show that the variation principle works also for the lowest eigenstate of certain symme-
try [7], and the principle has recently been extended also to more general excited states [8, 9].

According to the Kohn-Sham (KS) model [10], the electron density of the interacting system can be
generated by a system ofnoninteractingelectrons, moving in thelocal Kohn-Sham potential,vKS(r),

[− 1
2 ∇2 + vKS(r)

]
φi(r) = εi φi(r). (4)

The energy functional for this system is

EKS[ρ] = TKS[ρ] +
∫

dr ρ(r) vKS(r), (5)

where
TKS[ρ] = minΦ→ρ

〈
Φ

∣∣T̂
∣∣Φ〉

, (6)

andΦ is a single Slater-determinantal wave function. The KS potential can be expressed by means of
functional derivatives as

vKS(r) =
δFHK[ρ]
δρ(r)

− δTKS[ρ]
δρ(r)

+ v(r). (7)

It has been proven by Englisch and Englisch [11, 12], based on works of Lieb [5], and recently recon-
firmed by van Leeuwen [6], that the KS potential is under general conditions strictlylocal, although
there are objections to that statement in the literature [13, 14, 15]. In some of our previous works we
have also analyzed the differentiability of density functionals and demonstrated the locality under gen-
eral conditions [16, 17, 18]. In the present work we shall, in addition, give strong numerical support of
the locality theorem. More details of this work will be published elsewhere [19].

The orbitals of the KS model generate the exact density but were originally believed to have no
other physical significance. It has been shown, though, that the negative of the eigenvalue of the out-
ermost electron orbital (HOMO) equals the ionization energy of the system. This was first shown by
Perdew et al. [20, 21] and is known as theionization-potential theorem. This has been challenged by
Kleinman [22], but there are numerous calculations supporting the theorem [23]. In our present work
this theorem is verified with much higher numerical accuracy than in any other calculation known to
us.

Generally, the HK and KS energy functionals and the KS potential are not known, but more or less
sophisticated approximations exist and are widely used in quantum-mechanical calculations [24, 25].
In certain cases, however, the electron density is accurately known, either from experiments or from
ab initio calculations, and then the KS potential can be constructed with the corresponding accuracy.
Essentially two schemes have been developed for this purpose, based upon works of Zhao and Parr [26,
27, 28] and of van Leeuwen and Baerends [29], respectively.

In the present work we have constructed accurate KS potentials for the lowest states of the helium
atom, using the scheme of van Leeuwen and Baerends. In this procedure, the electronic part of the
Kohn-Sham potential,vel(r), defined by (in atomic units)

vKS(r) = −Z

r
+ vel(r) + const., (8)

is obtained by iterations, using the formula

vi+1
el (r) =

ρi(r)
ρex(r)

vi
el(r), (9)

whereρex(r) is the exact many-body density andρi(r) is the density generated with the potential
vi
el(r).
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The electron density of the helium atom is in the present work generated by using the pair-correlation
program of Salomonson and̈Oster [30]. The wave function is here expanded in partial waves, and after
convergence the wave function is for this two-electron system virtually exact.

The convergence criteria in the iterative process (9) was set so that the iterated density should agree
with the exact density within one part in109 at all points. The rate of convergence is usually quite slow
in this process — several thousands of iterations were often needed to achieve this kind of convergence.
In order to improve the convergence rate and avoid ’oscillations’, it was sometimes helpful to take some
average of the last two iterations as the input for the next one. It was also found important to keep the
electronic part of the potential positive at all points during the iterations by adjusting the constant in
the expression (8). After convergence the constant is adjusted so that the potential approaches zero at
infinity.
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Fig. 1. The Kohn-Sham density (dots) superimposed on the many-body density (solid line) for the1s2s 3S state
of the helium atom (atomic units).

The final KS density for the1s2s 3S system is shown in Fig. 1, superimposed on the exact many-
body density. With the resolution of this figure, the two densities are indistinguishable. The corre-
sponding KS potential is shown in Fig. 2. The potential has a ’bump’ near the node of the outermost
electron, which is characteristic of ’optimized local potentials’ [31]. This is an effect of the electron
self interaction (SIC), which varies strongly near the node of the valence wave function due to theρ1/3

dependence [32, 33].
The fact that we can generate the the exact many-body density in the Kohn-Sham model with a

single local potential, proves the locality theorem in this case — at least within our numerical accuracy
of nine digits.

In order to test the ionization-potential theorem mentioned above, the eigenvalue of the Kohn-
Sham2s orbital is compared with the many-body ionization energy. According to this theorem these
quantities should be equal, with opposite signs. We have found the KS eigenvalue to be -0.175 229 3794
H to be compared with our many-body ionization energy (including relaxation) of 0.175 229 3794 H,
i.e., a numerical agreement to nine digitsalso in this case. These values agree also very well with
the value 0.175 229 3782 H, obtained by Pekeris [34], using accurate Hylleraas-type wave functions
(uncorrected for relativity, mass-polarization and QED effects).
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Fig. 2. The electronic part of the Kohn-Sham potential for the helium1s2s 3S state. Note the ’bump’ near the
node of the2s orbital, characteristic of ’optimized’ local potentials [31] (atomic units).

As a further test we have constructed the Kohn-Sham potential that reproduces the Hartree-Fock
(HF) density of the same state. This density is easily generated by solving the standard HF equations
and inserted into the generating formula (9) in place of the many-body density. The resulting KS
potential was found to yield a2s energy eigenvalue of -0.174 256 072 H, which agreed with the HF
value to all digits given. This represents further tests of the locality and ionization-potential theorems.

A comparison between the ionization energy and Hartree-Fock eigenvalue shows that the effect of
relaxation enters here already in the third decimal place. This demonstrates that this effect is reproduced
to six digits by the Kohn-Sham eigenvalue.

Numerical construction of the KS potentials for the ground state of the helium atom as well as other
noble-gas atoms were first performed by Zhao, Morrison and Parr [28], and the ionization-potential
theorem was verified for helium to about two parts in 10000. Similar work on the ground as well as the
first excited singlet states of helium has recently been performed by Harbola [35]. These calculations,
which are partly based upon old density data available in the literature, are less accurate, though, and
the ionization-potential theorem is verified only on percent level. Related calculations have also been
performed on other small atoms and molecules, but none of the calculations we have found in the
literature can match the accuracy of the present work.

In summary, we have demonstrated that it is possible to construct a local Kohn-Sham potential that
generates the many-body density for the lowest-lying triplet state of the helium atom with extreme
accuracy. The validity of the ionization-potential theorem, i.e., the agreement between the absolute
values of the ionization potential and highest-lying orbital eigenvalue, is confirmed with to nine digits.
In the triplet state the electrons can have the same spin orientation, demonstrating that there is no
conflict between locality and the exclusion principle, as claimed by Nesbet [13, 14, 15].
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