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QED procedure applied to the quasidegenerate fine-structure levels of He-like ions
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A procedure for bound-state QED is presented, based upon a covariant form of the time-evolution operator.
In contrast to the standardS-matrix formalism, our procedure is applicable also to states that arequasidegen-
erate. All ~quasi!singularities, which appear when an intermediate state is~quasi!degenerate with the initial
state, are eliminated. Our procedure is closely related to many-body perturbation theory~MBPT! and may open
up possibilities to combine QED and MBPT in a more systematic fashion. The procedure is applied to the fine
structure of the heliumlike neon and argon ions, and good agreement is obtained with recent experimental data.
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I. INTRODUCTION

There is presently great interest in the study of the fi
structure of helium and heliumlike ions, one reason be
that accurate comparison of experimental and theore
data can lead to an independent determination of the fi
structure constanta @1–4#.

The experimental situation regarding heliumlike ions
to 1995 has been reviewed by Kuklaet al. @5#. More re-
cently, measurements have been performed using
electron-beam ion trap@6,7# and by studying solar flares@8#.
Of particular interest are the extremely accurate results
Myers et al., using Doppler-tuned fast-beam laser spectr
copy @9–11#.

Calculations on heliumlike ions have been performed p
ticularly by Drake@12#, using highly correlated nonrelativis
tic wave functions, corrected for relativity and QED b
means of analytical results for the leading terms of theZa
expansion. Relativistic many-body calculations have b
performed mainly by the Notre Dame group@13,14# and to a
lesser extent by our group@15#. Relativistic multiconfigura-
tion Dirac Fock~MCDF! calculations have been performe
by the Oxford and Paris groups@16,17#.

Numerical QED calculations to all orders inZa for the
ground state of heliumlike ions have been performed by
and other groups@18–21#. Corresponding calculations on ex
cited states@22# have been hampered by the fact that t
standard technique for bound-state QED calculations,
S-matrix formulation with the Gell-Mann–Low–Sucher pro
cedure@23,24#, is not applicable to systems withquasidegen-
eracy, i.e., systems with very closely spaced energy lev
The only procedures available to such problems, known
us, are thetwo-times Green’s-function procedure, developed
by Shabaev and co-workers@25–28#, and the covariant
evolution-operator procedure, recently developed by u
@29,30#. We present here numerical all-order results for
quasidegenerate fine-structure levels of some He-like io
using our technique.~Preliminary results from this work
were presented at the workshopQED2000in Trieste, Italy,
October 2000@30#.!

In the 1s2p multiplet of He-like systems, there are tw
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states withJ51, in the j -j scheme represented by 1s2p1/2

and 1s2p3/2, respectively. For light and medium-heavy el
ments these states are very closely spaced and stro
mixed. Systems of this kind are best treated by means of
extended-model-space procedure, for a long time applied in
atomic many-body theory@15,31,32#. In this scheme, awave
operator, V, and aneffective Hamiltonian, Heff , are set up
for a model space containing the quasidegenerate state
question. The wave operator generates the corresponding
act wave functions, ortarget states, when operating on the
zeroth-order functions ormodel states,

Ca5V C0
a , ~1.1!

and the effective Hamiltonian, operating entirely within th
model space, reproduces the correspondingexact energiesof
the target states,

H
eff

C0
a5Ea C0

a . ~1.2!

The model states are eigenstates of the effective Ha
tonian. In theintermediate normalization, which we employ
here, the model functions are projections on the model sp
of the full wave functions,

C0
a5PCa, ~1.3!

and the effective Hamiltonian has the form

H
eff

5PHVP. ~1.4!

In order to set up an effective Hamiltonian for a multid
mensional, quasidegenerate model space, it is necessa
evaluate alsoelements nondiagonal in energy. This is the
crucial point, which makes the standardS-matrix formulation
inapplicable. We shall demonstrate here that this can be r
edied by means of the covariant evolution-operator te
nique, leading to a procedure quite analogous to that use
many-body perturbation theory~MBPT!. We shall illustrate
this by means of the 1s2p multiplet of the He-like neon and
argon ions.

II. TIME-DEPENDENT MBPT

We partition the Hamiltonian into a~time-independent!
zeroth-order Hamiltonian,H0, and a perturbation,H8(t),
©2001 The American Physical Society05-1
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which might be time-dependent,

H5H01H8~ t !. ~2.1!

In the interaction picture~I! the operators and wave func
tions are related to those in the conventional Schro¨dinger~or
Dirac! picture ~S! by

OI~ t !5eiH 0tOSe2 iH 0t, C I~ t !5eiH 0tCS~ t !.

The time-dependent Schro¨dinger equation then takes th
form

i
]

]t
C I~ t !5HI8~ t !C I~ t !. ~2.2!

The ~forward! time evolution of the wave functions i
given by the standardtime-evolution operator, U(t,t0),

C I
a~ t !5U~ t,t0! C I

a~ t0!, ~2.3!

which satisfies the equation

i
]

]t
U~ t,t0!5HI8~ t !U~ t,t0! ~2.4!

and has the expansion

U~ t,t0!511 (
n51

`
~2 i !n

n! E
t0

t

dtn•••

3E
t0

t

dt1T@HI8~ tn!•••HI8~ t1!#e2g(ut1u1ut2u•••1utnu).

~2.5!

Here, T is the Wick time-ordering operatorand g is the
adiabatic damping parameter, which eventually goes to
zero,g→10. ~In the following we shall work entirely in the
interaction picture and leave out the subscriptI.!

The full functions of time-independent MBPT~1.1! cor-
respond to the time-dependent functions att50 and the
zeroth-order wave function~1.3! to the limit t→2`,

Ca5Ca~ t50!, C0
a5Ca~ t→2`!. ~2.6!

According to a generalization of the original Gell-Mann
Low formula @23# to a multidimensional model spac
@33,34#, the target functions can be expressed

Ca~ t !5 lim
g→0

U~ t,2`! fa

^fauU~0,2`!ufa&
, ~2.7!

where $fa% are certain ‘‘parent’’ functions lying in the
model space. In addition to the singular, unlinked diagra
appearing in the nondegenerate case, singularities may
degenerate model-space state appear also for linked
grams, when a degenerate state appears as an interme
state. In the case of aquasidegeneratemodel space, also
quasisingularitiesmay appear, i.e., finite but very large co
tributions, when quasidegenerate states appear as interm
06250
s,
r a
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di-

ate states. All diagrams with intermediate model-space st
are referred to asreducible. The remainingirreducible dia-
grams areregular with no ~quasi!degeneracies.

All singularities as well as quasisingularities are elim
nated in Eq.~2.7!, but when the interaction is time- o
energy-dependent, as in QED, there will in general also b
residual finite contribution, which we refer to as themodel-
space contribution~MSC!.

In order to derive an expression for the MSC, we intr
duce a new operatorŨ—which we refer to as thereduced
evolution operator—by means of the relation

U~ t,2`!P5P1Ũ~ t,2`!PU~0,2`!P. ~2.8!

The new operator,Ũ, is regular, and all singularities and
quasisingularities ofU are contained in the factorPU(0,
2`)P. Ũ contains the irreducible part ofU as well as the
MSC. This relation can be regarded as a generalization of
factorization theorem for time-independent perturbatio
used particularly in nuclear theory@33,34#.

For t50 we have from Eq. 2.8

U~0,2`!P5PU~0,2`!P1QU~0,2`!P

5@11QŨ~0,2`#PU~0,2`!P, ~2.9!

whereQ512P is the projection operator for the comple
mentary space~outside the model space!. The generalized
Gell-Mann–Low relation~2.7! for t50 then yields

Ca5Ca~0!5 lim
g→0

@11QŨ~0,2`!#
PU~0,2`!fa

^fauU~0,2`!ufa&
.

~2.10!

Using the intermediate normalization~1.3!, the model func-
tions are

C0
a5P Ca5 lim

g→0

PU~0,2`! fa

^fauU~0,2`!ufa&
, ~2.11!

and the target functions~2.10! can be expressed

Ca5@11QŨ~0,2`!#C0
a . ~2.12!

The operator@11QŨ(0,2`)# corresponds to the wav
operator~1.1! in time-independent MBPT. We can then e
press the effective Hamiltonian in intermediate normalizat
~1.4! as

Heff5PH@11QŨ~0,2`!#P. ~2.13!

We define theeffective interaction, Heff8 , by

Heff5PH0P1Heff8 ~2.14!

or

Heff8 5PH8VP5PH8@11QŨ~0,2`!#P. ~2.15!
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Using Eq.~2.8! together with Eq.~2.4!, we obtain

i F ]

]t
U~ t,2`!G

t50

P5 i F ]

]t
Ũ~ t,2`!G

t50

PU~0,2`!P

5H8 U~0,2`!P

and with the factorization theorem~2.9!

i F ]

]t
U~ t,2`!G

t50

P5H8@11QŨ~0,2`!#PU~0,2`!P.

This leads with Eq.~2.15! to the useful form of the effective
interaction

Heff8 5PF i
]

]t
Ũ~ t,2`!G

t50

P. ~2.16!

We note that in this form of the effective interaction it is th
closedpart of Ũ that contributes.

The definition ~2.8! of the reduced evolution operato
leads directly to the expansion

UP5P1ŨP1ŨPŨP1ŨPŨPŨP1••• ~2.17!

for simplicity leaving out the arguments@which are (t,2`)
for the first, open operator and (0,2`) for the closed opera
tors between theP operators#. The expansion for the reduce
evolution operator then becomes

ŨP5UP2P2ŨPŨP2ŨPŨPŨP2•••. ~2.18!

The termsŨPŨP,ŨPŨPŨP, etc. are~quasi!singular and
can be shown to eliminate all single, double, . . . singularities
and quasisingularities of the original evolution operator,U.
We refer to these terms as ‘‘counterterms.’’ In the lowest
nontrivial order, Eq.~2.18! yields

Ũ (4)P5~U (4)2U (2)PU(2)!P, ~2.19!

and below we shall apply that to the two-photon exchan
between electrons and demonstrate that it is regular.

III. APPLICATION TO QED

In the standard evolution operator~2.3!, time runs only in
the forward direction, but in order to be able to apply th
operator to QED problems, we shall allow time to run also
the backwarddirection, making the operatorcovariant. This
is illustrated in Fig. 1 for the single-photon exchange b
tween electrons. Using the Feynman gauge, the matrix
ment of the covariant evolution operator becomes@29,30#

^rsuUcov
~2! ~ t8,2`!uab&

5^rsuV~q,q8!uab&
e2 i t 8(q1q81 igr1 igs)

q1q81 ig r1 igs
06250
e

-
e-

V~q,q8!5E dk f21~k!F 1

q2~k2 ig!r
1

1

q82~k2 ig!s
G ,

f 21~k!52
e2

4p2 r 12

~12a1a2! sin~kr12!,

where (A)x5(A) sgn(«x) and q5«a2« r ;q85«b2«s . As
usual for this type of calculation, the Furry picture is us
@18–22#, which means that the orbitals are solutions of t
Dirac equation in the field of the nucleus,V(r ),

hD u i &5@m p•a1b mc2 1V~r !# u i &5« i u i &. ~3.1!

If the outgoing statê rsu lies in the complementaryQ
space, the expression is regular and yields fort850 a con-
tribution to the first-order wave operator,

V (1)5 (
urs&PQ

urs&^rsuV~q,q8!uab&
«a1«b2« r2«s

. ~3.2!

If the outgoing statê rsu lies in the model space, we get
contribution to the first-order effective Hamiltonian~1.4!,

^rsuHeff8 uab&5^rsuV~q,q8!uab&. ~3.3!

The result~3.3! is consistent with the result of the two
times Green’s function@25# and reduces to the well-know
S-matrix result, when the initial and final states have t
same energy (q1q850). The result~3.2! has no analog in
the other procedures.

For the two-photon exchangebetween the electrons, th
covariant evolution operator can be set up in analogy w
the single-photon case@29,30#. For a diagram where the two
photons do not overlap in time, we introduce the te
separable—to be distinguished from areducible diagram,
which is separable with the intermediate state in the mo
space~see Fig. 2, top!. For a general separable second-ord
ladder diagram, the contribution to the effective Hamiltoni
~1.4! is @29#

FIG. 1. The evolution operator for single-photon exchange
tween the electrons including forward and backward time evoluti
represented by two time-ordered~Goldstone! diagrams~top! and a
single Feynman diagram~bottom!. The wavy lines represent th
photon propagator and the straight lines between dots the elec
propagator.
5-3
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INGVAR LINDGREN et al. PHYSICAL REVIEW A 64 062505
^rsuV~q1p8,q81p!utu& ^tuuV~p,p8!uab&

p1p8
, ~3.4!

wherep5«a2« t ,p85«b2«u . When the diagram is reduc
ible, there is a counterterm~2.19!, represented by the secon
diagram in Fig. 2 and given by

2
^rsuV~q2p,q82p8!utu& ^tuuV~p,p8!uab&

p1p8
. ~3.5!

Introducing

W~E0!5V~q1p8,q81p!5V~E02« r2«u ,E02«s2« t!,

which for given r ,s,t,u is a function ofE05«a1«b , the
sum of the ladder and the counterterm can be expressed

^rsuW~E0!2W~E02DE!utu&
DE

^tuuV~p,p8!uab& ~3.6!

with DE being~the negative of! the excitation energy of the
intermediate model-space state,DE5p1p85E02« t2«u .
This shows that the counterterm cancels the~quasi!singular-
ity of the reducible ladder diagram. In the limit of comple
degeneracy (DE→0), the first factor of~3.6! approaches the
derivative of the interaction with respect to the energy, wh

FIG. 2. Graphical representation of the reducible two-phot
photon ladder diagram and the corresponding counter term~2.19!.
06250
as

h

is consistent with theS-matrix result. The result~3.6!, how-
ever, is exactly valid also in the case of quasidegeneracy
for a nondegenerate model space in general. A similar
pression can be derived for the MSC of the wave opera
Also here, the counterterm~2.19! eliminates the~quasi!sin-
gularity.

The expression~3.4! is summed over all intermediat
states in theQ space and is quite analogous to the seco
order expression in standard~time-independent! perturbation
theory, which is completely contained in~3.4!. This illus-
trates the close analogy with standard MBPT, a fact wh
will open up the possibility of combining QED and MBPT i
a more systematic fasion than has previously been poss

The remaining, nonseparable part of the ladder diagr
and the entire crossed two-photon diagram, which is a
nonseparable, are both regular and can be evaluated
straightforward manner.

IV. NUMERICAL RESULTS

The procedure presented here is applied to the 1s2p
states of the He-like ions of Ne and Ar, and the results
given in Table I. We have employed the same numeri
procedure as in our previous calculations@19#, and the accu-
racy is at least 1025 hartrees. The third and fourth column
show our first- and second-order QED result, obtained a
diagonalizing the effective Hamiltonian with one and tw
photons, respectively. In the next column, we have added
higher-order many-body effects, obtained in a separate r
tivistic ~non-QED! many-body calculation@15#, as well as
the mass polarization, taken from Drake@12#. In the follow-
ing column we have estimated from analytical wo
@12,35,36# the QED effects, not included in our numeric
work. Finally, comparison is made with the calculations
Drake and of Planteet al. @14# as well as with available
experimental results@5,8#.

V. DISCUSSION

The results of our calculation agree very well with ava
able experimental data, as well as with the more approxim

-

es
r

TABLE I. The 1s2p energy levels of He-like Ne and Ar. The3P0 state is used as a reference. Valu
given in hartree atomic units (1 hartree52hc R527.2 eV, whereR is the Rydberg constant, corrected fo
the Bohr mass shift!.

Z State QED High. ord. Remain. Total Plante Drakec Experimentald

one
photon

two
photon MBPT QED theory et al.

10 1P123P0 0.343 88 20.082 83 0.004 79 0.000 04 0.265 88 0.265 86 0.265 88
3P223P0 0.007 12 0.001 3720.000 05 0.000 02 0.008 46 0.008 47 0.008 46 0.008 458~2!
3P123P0 0.000 67 0.000 7220.000 02 0.000 00 0.001 37 0.001 37 0.001 36 0.001 371~7!

18 1P123P0 0.689 00 20.079 00 0.003 39 0.000 40 0.613 80 0.613 46 0.613 33
3P223P0 0.120 18 0.004 5620.000 09 0.000 29 0.124 94 0.124 94 0.124 81 0.124 96~3!
3P123P0 0.022 32 0.001 33 0.000 10 0.000 04 0.023 79 0.023 69 0.023 60

aFrom Refs.@12,35,36#.
bFrom Ref.@14#.
cFrom Ref.@12#.
dFrom Refs.@5,8#.
5-4
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QED PROCEDURE APPLIED TO THE . . . PHYSICAL REVIEW A 64 062505
QED calculations of Planteet al. and of Drake. The presen
calculation differs from the previous calculations in seve
important aspects. The calculation of Drake is an accu
nonrelativistic many-body calculation but the relativistic a
QED effects are included only to the leading order inZa by
means of analytical expressions. The calculation of Pla
et al. is an all-order relativistic MBPT calculation with
single-reference model space, including the QED effects
Drake. In the present work, we have evaluated for a quas
generate system the relativisticand the QED effects numeri-
cally to all orders ofZa. The higher-order QED effects in
the present cases are not large enough compared to th
perimental and numerical accuracy to exhibit significant d
ferences in the various calculations. These effects will
important, however, when higher acccuracy is needed o
application to heavier ions.

It should be noted that only thenonradiativeQED correc-
tions ~two-photon ladder and cross! have been calculated nu
merically in our present work. The remainingradiative two-
S.
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electron effects ~screened self energy and vacuu
polarization! have been included using analytical leadin
order results. We have found that for the nonradiative p
effects beyond the leading (Za)3 order are at least compa
rable to and for Ar even dominating over the leading ter
Therefore, in order to perform a calculation of high accura
it is of vital importance to evaluate all the QED effects to
orders inZa. Work along these lines is now in progress.
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