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QED procedure applied to the quasidegenerate fine-structure levels of He-like ions

Ingvar Lindgrer® Bjorn Asen, Sten Salomonson, and Ann-Marie’ Meansson-Pendrill
Department of Physics, Chalmers University of Technology antelfaog University, Gteborg, Sweden
(Received 9 April 2001; published 19 November 2p01

A procedure for bound-state QED is presented, based upon a covariant form of the time-evolution operator.
In contrast to the standa®matrix formalism, our procedure is applicable also to states thafw@asidegen-
erate All (quas)singularities, which appear when an intermediate statgussjdegenerate with the initial
state, are eliminated. Our procedure is closely related to many-body perturbation(&®"y) and may open
up possibilities to combine QED and MBPT in a more systematic fashion. The procedure is applied to the fine
structure of the heliumlike neon and argon ions, and good agreement is obtained with recent experimental data.
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. INTRODUCTION states withJ=1, in thej-j scheme represented by2p,,,
and 1s2ps,, respectively. For light and medium-heavy ele-
There is presently great interest in the study of the finaments these states are very closely spaced and strongly
structure of helium and heliumlike ionS, one reason being'nixed_ Sys‘[ems of this kind are best treated by means of the
that accurate comparison of experimental and theoreticadxtended-model-space proceduier a long time applied in
data can lead to an independent determination of the finestomic many-body theor}15,31,32. In this scheme, avave
structure constant [1-4]. operator, ), and aneffective HamiltonianH;, are set up
The experimental situation regarding heliumlike ions upfor a model space containing the quasidegenerate states in
to 1995 has been reviewed by Kuké al. [5]. More re-  question. The wave operator generates the corresponding ex-
cently, measurements have been performed using agct wave functions, otarget stateswhen operating on the

electron-beam ion traf6,7] and by studying solar flard8].  zeroth-order functions amodel states
Of particular interest are the extremely accurate results of

Myers et al,, using Doppler-tuned fast-beam laser spectros- ve=0 Vg, 1.1
copy [9-11]. _ L _ . _

Calculations on heliumlike ions have been performed parand the effective Hamiltonian, operating .ent|rely WI'FhIn the
ticularly by Drake[12], using highly correlated nonrelativis- Model space, reproduces the corresponeiert energiesf
tic wave functions, corrected for relativity and QED by the target states,
means of analytical results for the leading terms of Ziee
expansion. Relativistic many-body calculations have been
performed mainly by the Notre Dame groL48,14] and to a
lesser extent by our groufd5]. Relativistic multiconfigura-
tion Dirac Fock(MCDF) calculations have been performed
by the Oxford and Paris group46,17).

Numerical QED calculations to all orders #w for the
ground state of heliumlike ions have been performed by us VE=PW?, (1.3
and other groupgl8-21]. Corresponding calculations on ex-
cited stateg§22] have been hampered by the fact that theand the effective Hamiltonian has the form
standard technique for bound-state QED calculations, the
Smatrix formulation with the Gell-Mann—Low—-Sucher pro- Heff: PHQP. 1.4
cedur€g 23,24, is not applicable to systems witiuasidegen- . I -
eracy, i.e., systems with very closely spaced energy levels. In order to set up an effective Hamiltonian for a multidi-

The only procedures available to such problems, known ténensmnal, quasidegenerate model space, it is necessary to

us, are thdwo-times Green’'s-function procedyrgeveloped g;ﬁlijaalueoﬁ:tsﬁﬁir:: rr]r:aneZntcrjlgg(t);r?clj Em e;[ﬁ;gfyo?lril;; t}gﬁ
by Shabaev and co-workef®5-28, and the covariant point,

: inapplicable. We shall demonstrate here that this can be rem-
evolution-operator procedurerecently developed by us

[29,30. We present here numerical all-order results for theemed by means of the covarant evolution-operator tech-

quasidegenerate fine-structure levels of some He-like ion%gﬂeigizd'ngerttc:ﬁ)ztri%%eghu; &gg%nwg;ﬁzlﬁlrggr:;ed n
using our technique(Preliminary results from this work Y yp .

were presented at the worksh@ED2000in Trieste, Italy, ';;rlsol;yi(r)?qians of thes2p multiplet of the He-like neon and
October 200(30].) 9 :
In the 1s2p multiplet of He-like systems, there are two

H Wi=E“ Vg, 1.2)

The model states are eigenstates of the effective Hamil-
tonian. In theintermediate normalizatignwhich we employ
here, the model functions are projections on the model space
of the full wave functions,

II. TIME-DEPENDENT MBPT

We partition the Hamiltonian into é&ime-independent
*Corresponding author; ingvar.lindgren@fy.chalmers.se zeroth-order HamiltonianHy, and a perturbationH’ (t),
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which might be time-dependent, ate states. All diagrams with intermediate model-space states
) are referred to aseducible The remainingrreducible dia-
H=Ho+H'(1). (2.1 grams areegular with no (quasjdegeneracies.

All singularities as well as quasisingularities are elimi-
nated in Eq.(2.7), but when the interaction is time- or
energy-dependent, as in QED, there will in general also be a
residual finite contributionwhich we refer to as thenodel-

_ aiHgt —iHgt _ aiHgt space contributiofMSC).
Oi)y=e700se 70, Wi(t)=eTel (1), In order to derive an expression for the MSC, we intro-
The time-dependent Schiimger equation then takes the duce a new operatdd—which we refer to as theeduced
form evolution operator—by means of the relation

In the interaction picture(l) the operators and wave func-
tions are related to those in the conventional Sdimger (or
Dirac) picture (S by

d —0)P= U — o0 — o0
iﬁ‘lﬁ(t):Hl’(t)‘I’,(t). 2.2 u(t, )P=P+U(t, YPU(0,—0)P. (2.8

. . _ ~ The new operatorlJ, is regular, and all singularities and
~ The (forward) time evolution of the wave functions is quasisingularities o are contained in the factoPU(O,
given by the standarime-evolution operatorJ (t, o), —)P. U contains the irreducible part & as well as the

MSC. This relation can be regarded as a generalization of the

THH=U(tt) ¥i(to), 23 factorization theorem for time-independent perturbations,
which satisfies the equation USGF% ftartgulaerlzgnen#gﬁaé ;he205583,34]-
=0 we hav . 2.
J
iEU(t,t0)=H,’(t)U(t,to) (2.9 U(0,—»)P=PU(0,—*)P+QU(0,—»)P

and has the expansion =[1+QU(0,==]PU0,~=)P, (2.9
o - whereQ=1—-P is the projection operator for the comple-
Uttg) =1+ (=) ftdt mentary spacdoutside the model spaceThe generalized
’ n=1 N Jy, " Gell-Mann-Low relation(2.7) for t=0 then yields

t a
X | dt T[H{ (ty)- - - H/{ (ty)]e~ v(tl*+ltal -+ ltal), Wa—pa(Q)= [i 10 — oo PU(0,— )¢
Jto ! : 1 (0) 7lin0[l+QU(O, )J<¢a|U(O,—oc)|¢a>'
(2.9 (2.10

Here, T is the Wick time-ordering operatorand vy is the

adiabatic damping parameterwhich eventually goes to Using the intermediate normalizatigt.3), the model func-

zero,y— +0. (In the following we shall work entirely in the tions are
interaction picture and leave out the subsctipt PU(0,— )

The full functions of time-independent MBM(L.1) cor- W§=P W= lim ! ' (2.11)
respond to the time-dependent functionstat0 and the y—0o{ p*|U(0,— )| %)
zeroth-order wave functiofiL.3) to the limitt— —co,

and the target function®.10 can be expressed
Pe=v*t=0), V5=V (t——x). (2.6
We=[1+QU(0,—=)]Wy. (2.12

According to a generalization of the original Gell-Mann—
Low formula [23] to a multidimensional model space

The operatof 1+QU(0,— )] corresponds to the wave
[33,34), the target functions can be expressed P 11+QU( )] P

operator(1.1) in time-independent MBPT. We can then ex-
" press the effective Hamiltonian in intermediate normalization
« - Ult,—=) ¢ (1.4 as
we(t) = lim-—— —, (2.7
y-o{@*[U(0,— )| ")

where { ¢} are certain parent functions lying in the

model space. In addition to the singular, unlinked diagramsyVe define theeffective interactionH .4, by

appearing in the nondegenerate case, singularities may for a

degenerate model-space state appear also for linked dia- Her= PHoP +Heg (2.14
grams, when a degenerate state appears as an intermediate

state. In the case of guasidegeneratenodel space, also ©f

guasisingularitiesnay appeatr, i.e., finite but very large con- ~

tributions, when quasidegenerate states appear as intermedi- Heg=PH QP=PH'[1+QU(0,—)]P. (2.19

Hey=PH[1+QU(0,—»)]P. (2.13
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Using Eq.(2.8) together with Eq(2.4), we obtain

I b
T Ta- ::z :
I EU('[,—OC) ) PZI[EU(L_OO) B PU(0,—x)P i -+
t=0 t=0 ;
T a
=H'U(0,~)P t=t

and with the factorization theoref2.9)

[l
A »
W
| 3
A S
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)

P=H'[1+QU(0,—*)]PU(0,—)P.

| a
| EU('[,—OC) o

o~
I --
o~
~

. ) . FIG. 1. The evolution operator for single-photon exchange be-
This leads with Eq(2.19 to the useful form of the effective  yyeen the electrons including forward and backward time evolution,
Interaction represented by two time-orderé@oldstong¢ diagrams(top) and a
single Feynman diagrartbottom). The wavy lines represent the
photon propagator and the straight lines between dots the electron
propagator.

P
Heg=P|i—0(t,—=)| P, (2.16

t=0

. 1
—(k=iv)r g —(k—iy)s

We note that in this form of the effective interaction it is the
closedpart of U that contributes.

The definition (2.8) of the reduced evolution operator
leads directly to the expansion 2

e .
~ e L fa1(k)=— ———(1—aja,) sin(kryp),
UP=P+UP+UPUP+UPUPUP+--- (2.17 4y,

V(Q:Q'):f dk f21(k){q

for simplicity leaving out the argumenfsvhich are ¢,—=)  Where @),=(A)sgn(e,) and q=e,—&,;q"=ep—&s. AS
for the first, open operator and (0x) for the closed opera- usual for this type of calculation, the Furry picture is used

tors between the operator$ The expansion for the reduced [18—23, which means that the orbitals are solutions of the

UP=uUpP-P-UPUP-UPUPUP-.... (218 ho [i)=[mp-a+Bmc +V(N][)=s ). (3.2
. - e~ ) If the outgoing statgrs| lies in the complementar®
The termsUPUP,UPUPUP, etc. are(quasjsingular and  gpace the expression is regular and yieldstferO a con-
can be shown to eliminate all single, douhle. singularities  ipution to the first-order wave operator,

and quasisingularities of the original evolution operatdr,
We refer to these terms ascdunterterms In the lowest Irs)(rs|V(q,q’)|ab)
nontrivial order, Eq(2.18 yields o= .

(3.2
Irs)eQ gatep—e—&g

U@p=(u®—-y@py®
urP=(U UIPU)P, (219 If the outgoing statérs| lies in the model space, we get a

and below we shall apply that to the two-photon exchangecont”buuon to the first-order effective Hamiltoni&h.4),

between electrons and demonstrate that it is regular. (rs|HLqab)=(rs|V(q,q")|ab). 3.3

lll. APPLICATION TO QED The result(3.3) is consistent with the result of the two-
times Green'’s functiof25] and reduces to the well-known
Smatrix result, when the initial and final states have the
same energyd+q’' =0). The result(3.2) has no analog in

In the standard evolution operat@®.3), time runs only in
the forward direction, but in order to be able to apply this
operator to QED problems, we shall allow time to run also in

the backwarddirection, making the operata@ovariant This theFotrh;ehr p;\r/sc_edhurtes; wchanabetween the electrons. th
is illustrated in Fig. 1 for the single-photon exchange be- or thetwo-photon exchangbetween Ihe electrons, the
covariant evolution operator can be set up in analogy with

tween electrons. Using the Feynman gauge, the matrix elez” "™ .
ment of the covariant evolution operator becor{zs,30 e[hhe tsmgleéphoton cas{?g,Sq. F_or a dlagrgm v(\:/ihere tEe two
photons do not overlap in time, we introduce the term

separable—to be distinguished from a@&educible diagram,

(2) (41 _
(rs|Uco,(t', —)|ab) which is separable with the intermediate state in the model

cov

e it/ (a+a iy +ivy) space(see Fig. 2, top For a general separable second-order
=(rs|V(q,q’)|ab) - - ladder diagram, the contribution to the effective Hamiltonian
a+a’ iy tivs (1.9) is [29]
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is consistent with th&matrix result. The resul{3.6), how-
ever, is exactly valid also in the case of quasidegeneracy, or
for a nondegenerate model space in general. A similar ex-
pression can be derived for the MSC of the wave operator.
Also here, the counterterit2.19 eliminates the(quasjsin-
gularity.

The expression(3.4) is summed over all intermediate
states in theQ space and is quite analogous to the second-
a order expression in standaftime-independentperturbation

theory, which is completely contained {13.4). This illus-

FIG. 2. Graphical representation of the reducible two-photon-traltes the close analogy with standard MBPT, a fact which

photon ladder diagram and the corresponding counter (2ri®). will open up the p_oss@hty of combining QED and MBPT ',n
a more systematic fasion than has previously been possible.
., , The remaining, nonseparable part of the ladder diagram
(rs|V(a+p’,q’+p)[tu) (tu|V(p,p')|ab) (3.4 and the entire crossed two-photon diagram, which is also
p+p’ ' ' nonseparable, are both regular and can be evaluated in a
straightforward manner.
wherep=e,—¢&;,p' =¢p,—¢&,. When the diagram is reduc-
ible, there is a counterter2.19, represented by the second IV. NUMERICAL RESULTS
diagram in Fig. 2 and given by

@
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-
~

The procedure presented here is applied to tk&pl
ChAl / states of the He-like ions of Ne and Ar, and the results are
_ (rs|V(q—p.a’—p")[tu) tulV(p.p )|ab). (3.5 given in Table I. We have employed the same numerical
ptp’ procedure as in our previous calculatida8], and the accu-
) racy is at least 10° hartrees. The third and fourth columns
Introducing show our first- and second-order QED result, obtained after
— " _ . o diagonalizing the effective Hamiltonian with one and two
W(Eo)=V(a+p".q"+p)=V(Eo—er—2u.Bo~es—ey), photons, respectively. In the next column, we have added the
which for givenr,s,t,u is a function ofEg=¢,+¢y, the r_ngh_er-order many-body Eﬁgcts, IOtha”_‘ed In a separlidte rela-
sum of the ladder and the counterterm can be expressed at%nstlc (non-QED many-body caicu atiori15], as well as
the mass polarization, taken from Draki2]. In the follow-
(rs|W(Eq) — W(Eo— AE)|tu) ing column we have estimatgad from _ analytical work
AE (tu|V(p,p")|ab)y (3.6 [12,35,36 the QED effects, not included in our numerical
work. Finally, comparison is made with the calculations of
Drake and of Planteet al. [14] as well as with available
experimental resultgs,8].

with AE being(the negative ofthe excitation energy of the
intermediate model-space stattE=p+p'=Ey—e;—¢,.
This shows that the counterterm cancels (ipeasjsingular-
ity of the reducible ladder diagram. In the limit of complete
degeneracyAE—0), the first factor 013.6) approaches the The results of our calculation agree very well with avail-
derivative of the interaction with respect to the energy, whichable experimental data, as well as with the more approximate

V. DISCUSSION

TABLE I. The 1s2p energy levels of He-like Ne and Ar. ThtP, state is used as a reference. Values
given in hartree atomic units (1 hartre@hc R=27.2 eV, whereR is the Rydberg constant, corrected for
the Bohr mass shift

4 State QED High. ord. Remain. Total Plante  DrakeExperimentdl
one two
photon  photon MBPT QED theory et al.

10 'P,—3P, 0.34388 —0.08283 0.00479 0.00004 0.26588 0.26586 0.26588
3p,—3P, 0.00712 0.00137-0.00005 0.00002 0.00846 0.00847 0.00846 0.0082)58
%p,—%P, 0.00067 0.00072-0.00002 0.00000 0.00137 0.00137 0.00136 0.001871
18 'P,—3P, 0.68900 —0.07900 0.00339 0.00040 0.61380 0.61346 0.61333
3p,—3%P, 0.12018 0.00456—0.00009 0.00029 0.12494 0.12494 0.12481 0.123)96
3p,—3%P, 0.02232 0.00133 0.00010 0.00004 0.02379 0.02369 0.02360

8 rom Refs[12,35,34.
From Ref.[14].
°From Ref.[12].
dFrom Refs[5,8].
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QED calculations of Plantet al. and of Drake. The present electron effects (screened self energy and vacuum
calculation differs from the previous calculations in severalpolarization have been included using analytical leading-
important aspects. The calculation of Drake is an accuraterder results. We have found that for the nonradiative part,
nonrelativistic many-body calculation but the relativistic andeffects beyond the leadind@Z@)® order are at least compa-
QED effects are included only to the leading ordeZim by  rable to and for Ar even dominating over the leading term.
means of analytical expressions. The calculation of Plantgherefore, in order to perform a calculation of high accuracy,
et al. is an all-order relativistic MBPT calculation with a it is of vital importance to evaluate all the QED effects to all

single-reference model space, including the QED effects ofrders inz«. Work along these lines is now in progress.
Drake. In the present work, we have evaluated for a quaside-

generate system the relativisaad the QED effects numeri-
cally to all orders ofZ«. The higher-order QED effects in
the present cases are not large enough compared to the ex-
perimental and numerical accuracy to exhibit significant dif- The authors wish to acknowledge stimulating discussions
ferences in the various calculations. These effects will bevith Eric-Olivier Le Bigot, Paul Indelicato, Vladimir Sha-
important, however, when higher acccuracy is needed or ibbaev, and Martin Gustavsson. Most of the calculations were
application to heavier ions. performed at the Parallel Computer CenbC) in Stock-

It should be noted that only theonradiativeQED correc-  holm. This work was supported by the Swedish Natural Sci-
tions (two-photon ladder and crgsBave been calculated nu- ence Research Council, The Alexander von Humboldt Foun-
merically in our present work. The remaininadiativetwo-  dation, and the EU program “Eurotrap.”
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